1
|
Zhao S, Wu L, Xu Y, Nie Y. Fe(II) and 2-oxoglutarate-dependent dioxygenases for natural product synthesis: molecular insights into reaction diversity. Nat Prod Rep 2025; 42:67-92. [PMID: 39403014 DOI: 10.1039/d4np00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Covering: up to 2024Fe(II) and 2-oxoglutarate-dependent dioxygenases (Fe/2OG DOs) are a superfamily of enzymes that play important roles in a variety of catalytic reactions, including hydroxylation, ring formation, ring reconstruction, desaturation, and demethylation. Each member of this family has similarities in their overall structure, but they have varying specific differences, making Fe/2OG DOs attractive for catalytic diversity. With the advancement of current research, more Fe/2OG DOs have been discovered, and their catalytic scope has been further broadened; however, apart from hydroxylation, many reaction mechanisms have not been accurately demonstrated, and there is a lack of a systematic understanding of their molecular basis. Recently, an increasing number of X-ray structures of Fe/2OG DOs have provided new insights into the structural basis of their function and substrate-binding properties. This structural information is essential for understanding catalytic mechanisms and mining potential catalytic reactions. In this review, we summarize most of the Fe/2OG DOs whose structures have been resolved in recent years, focus on their structural features, and explore the relationships between various structural elements and unique catalytic mechanisms and their associated reaction type classification.
Collapse
Affiliation(s)
- Songyin Zhao
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Lunjie Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Kumari P, Bhattacharjee S, Venkat Raman K, Tilgam J, Paul K, Senthil K, Baaniya M, Rama Prashat G, Sreevathsa R, Pattanayak D. Identification of methyltransferase and demethylase genes and their expression profiling under biotic and abiotic stress in pigeon pea ( Cajanus cajan [L.] Millspaugh). FRONTIERS IN PLANT SCIENCE 2025; 15:1521758. [PMID: 39886681 PMCID: PMC11779730 DOI: 10.3389/fpls.2024.1521758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025]
Abstract
The methylation- demethylation dynamics of RNA plays major roles in different biological functions, including stress responses, in plants. m6A methylation in RNA is orchestrated by a coordinated function of methyl transferases (writers) and demethylases (Erasers). Genome-wide analysis of genes involved in methylation and demethylation was performed in pigeon pea. Blast search, using Arabidopsis gene sequences, resulted in the identification of two methylation genes (CcMTA70, CcMTB70), two genes encoding adaptor proteins for methylation (CcFIPA and CcFIPB) and 10 demethylase (ALKBH) genes (CcALKBH1A, CcALKBH1B, CcALKBH1C, CcALKBH2, CcALKBH8, CcALKBH8A, CcALKBH8B, CcALKBH9, CcALKBH10A and CcALKBH10B) in the pigeon pea genome. The identified genes were analyzed through phylogenetic relationship, chromosomal position, gene structure, conserved motif, domain and subcellular location prediction etc. These structural analyses resulted in categorization of MTs and FIPs into one group, i.e., CcMTA/B and CcFIPA/B, respectively; and ALKBHs into four groups, viz. CcALKBH1/2, CcALKBH8, CcALKBH9 and CcALKBH10. Relative expression analysis of the identified genes in various tissues at different developmental stages revealed the highest level of expression in leaf and the least in root. CcMTs and CcFIPs had similar patterns of expression, and CcALKBH10B demonstrated the highest and CcALKBH2 the lowest level of expression in all the tissues analyzed. CcALKBH8 showed the highest induction in expression upon exposure to heat stress, and CcALKBH10B demonstrated the highest level of induction in expression during drought, salt and biotic (Helicoverpa armigera infestation) stresses. The present study would pave the way for detailed molecular characterization of m6A methylation in pigeon pea and its involvement in stress regulation.
Collapse
Affiliation(s)
- Priyanka Kumari
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
- Division of Molecular Biology and Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - Sougata Bhattacharjee
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
- Division of Molecular Biology and Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - K. Venkat Raman
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Jyotsana Tilgam
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
- Division of Molecular Biology and Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - Krishnayan Paul
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
- Division of Molecular Biology and Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - Kameshwaran Senthil
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Mahi Baaniya
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
- Division of Molecular Biology and Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - G. Rama Prashat
- Division of Genetics and Plant Breeding, Indian Agricultural Research Institute, New Delhi, India
| | - Rohini Sreevathsa
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Debasis Pattanayak
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| |
Collapse
|
3
|
Xiao MZ, Fu JY, Bo LT, Li YD, Lin ZW, Chen ZS. ALKBH1: emerging biomarker and therapeutic target for cancer treatment. Discov Oncol 2024; 15:816. [PMID: 39704856 DOI: 10.1007/s12672-024-01696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
As neoplastic cells proliferate, disseminate, and infiltrate, they undergo substantial alterations in their epigenetic configuration. Among the pivotal enzymes implicated in this phenomenon is the AlkB family of demethylases, notably AlkB homolog 1 (ALKBH1), which demonstrates conspicuous upregulation across various malignancies. The heightened expression of ALKBH1 renders it a compelling candidate for the development of multifaceted anticancer modalities. Despite the commendable progress achieved by investigators in elucidating the perturbations associated with ALKBH1 in malignant tissues, a comprehensive mechanism remains elusive. The present study endeavors to address this lacuna by synthesizing recent advancements pertaining to ALKBH1's involvement in oncogenesis over the preceding decade. Therefore, this research not only furnishes novel insights but also establishes a foundation for prospective initiatives aimed at cancer prophylaxis and therapeutics that exploit epigenetic regulatory mechanisms.
Collapse
Affiliation(s)
- Ming Zhu Xiao
- Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jin Yin Fu
- Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Le Tao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Yi Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Zhong Wei Lin
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhe Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
4
|
Hahn A, Hung GCC, Ahier A, Dai CY, Kirmes I, Forde BM, Campbell D, Lee RSY, Sucic J, Onraet T, Zuryn S. Misregulation of mitochondrial 6mA promotes the propagation of mutant mtDNA and causes aging in C. elegans. Cell Metab 2024; 36:2528-2541.e11. [PMID: 39173633 DOI: 10.1016/j.cmet.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
In virtually all eukaryotes, the mitochondrial DNA (mtDNA) encodes proteins necessary for oxidative phosphorylation (OXPHOS) and RNAs required for their synthesis. The mechanisms of regulation of mtDNA copy number and expression are not completely understood but crucially ensure the correct stoichiometric assembly of OXPHOS complexes from nuclear- and mtDNA-encoded subunits. Here, we detect adenosine N6-methylation (6mA) on the mtDNA of diverse animal and plant species. This modification is regulated in C. elegans by the DNA methyltransferase DAMT-1 and demethylase ALKB-1. Misregulation of mtDNA 6mA through targeted modulation of these activities inappropriately alters mtDNA copy number and transcript levels, impairing OXPHOS function, elevating oxidative stress, and shortening lifespan. Compounding these defects, mtDNA 6mA hypomethylation promotes the cross-generational propagation of a deleterious mtDNA. Together, these results reveal that mtDNA 6mA is highly conserved among eukaryotes and regulates lifespan by influencing mtDNA copy number, expression, and heritable mutation levels in vivo.
Collapse
Affiliation(s)
- Anne Hahn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Grace Ching Ching Hung
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Arnaud Ahier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuan-Yang Dai
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ina Kirmes
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brian M Forde
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rachel Shin Yie Lee
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Josiah Sucic
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Yang S, Xing J, Liu D, Song Y, Yu H, Xu S, Zuo Y. Review and new insights into the catalytic structural domains of the Fe(ll) and 2-Oxoglutarate families. Int J Biol Macromol 2024; 278:134798. [PMID: 39153678 DOI: 10.1016/j.ijbiomac.2024.134798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Histone lysine demethylase (KDM), AlkB homolog (ALKBH), and Ten-Eleven Translocation (TET) proteins are members of the 2-Oxoglutarate (2OG) and ferrous iron-dependent oxygenases, each of which harbors a catalytic domain centered on a double-stranded β-helix whose topology restricts the regions directly involved in substrate binding. However, they have different catalytic functions, and the deeply structural biological reasons are not yet clear. In this review, the catalytic domain features of the three protein families are summarized from both sequence and structural perspectives. The construction of the phylogenetic tree and comparison of the structure show ten relatively conserved β-sheets and three key regions with substantial structural differences. We summarize the relationship between three key regions of remarkable differences and the substrate compatibility of the three protein families. This review facilitates research into substrate-selective inhibition and bioengineering by providing new insights into the catalytic domains of KDM, ALKBH, and TET proteins.
Collapse
Affiliation(s)
- Siqi Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Jixiang Xing
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Dongyang Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yancheng Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Haoyu Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Shuhua Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China; State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China.
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
6
|
Sharma S, Dasgupta M, Vadaga BS, Kodgire P. Unfolding the symbiosis of AID, chromatin remodelers, and epigenetics-The ACE phenomenon of antibody diversity. Immunol Lett 2024; 269:106909. [PMID: 39128629 DOI: 10.1016/j.imlet.2024.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Activation-induced cytidine deaminase (AID) is responsible for the initiation of somatic hypermutation (SHM) and class-switch recombination (CSR), which result in antibody affinity maturation and isotype switching, thus producing pathogen-specific antibodies. Chromatin dynamics and accessibility play a significant role in determining AID expression and its targeting. Chromatin remodelers contribute to the accessibility of the chromatin structure, thereby influencing the targeting of AID to Ig genes. Epigenetic modifications, including DNA methylation, histone modifications, and miRNA expression, profoundly impact the regulation of AID and chromatin remodelers targeting Ig genes. Additionally, epigenetic modifications lead to chromatin rearrangement and thereby can change AID expression levels and its preferential targeting to Ig genes. This interplay is symbolized as the ACE phenomenon encapsulates three interconnected aspects: AID, Chromatin remodelers, and Epigenetic modifications. This review emphasizes the importance of understanding the intricate relationship between these aspects to unlock the therapeutic potential of these molecular processes and molecules.
Collapse
Affiliation(s)
- Saurav Sharma
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Mallar Dasgupta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Bindu Sai Vadaga
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India.
| |
Collapse
|
7
|
Li F, Xiong L, Zhang J, Guo Y, Xu K, Xiong Z, Wang Y, Ji S, Tong A, Li L, Yang S. Structural Optimization and Structure-Activity Relationship of 1 H-Pyrazole-4-carboxylic Acid Derivatives as DNA 6mA Demethylase ALKBH1 Inhibitors and Their Antigastric Cancer Activity. J Med Chem 2024; 67:15456-15475. [PMID: 39225755 DOI: 10.1021/acs.jmedchem.4c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
DNA N6-methyladenine (6mA) demethylase ALKBH1 plays an important role in various cellular processes. Dysregulation of ALKBH1 is associated with the development of some cancer types, including gastric cancer, implicating a potential therapeutic target. However, there is still a lack of potent ALKBH1 inhibitors. Herein, we report the discovery of a highly potent ALKBH1 inhibitor, 1H-pyrazole-4-carboxylic acid derivative 29. The structure-activity relationship of this series of compounds was also discussed. Because of the poor cell membrane permeability of 29, we prepared a prodrug of 29 (29E), which showed excellent cellular activities. In gastric cancer cell lines HGC27 and AGS, 29E treatment significantly increased the abundance of 6mA, inhibited cell viability, and upregulated the AMP-activated protein kinase (AMPK) signaling pathway. In addition, the hydrolysis product 29 showed high exposure in mice after administration of 29E. Collectively, this research provides a new potent ALKBH1 inhibitor, which could serve as a lead compound for subsequent drug development.
Collapse
Affiliation(s)
- Feng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Xiong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yinping Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ke Xu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zijie Xiong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuyang Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shanmian Ji
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Aiping Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengyong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Wang J, Zhou X, Han T, Zhang H. Epigenetic signatures of trophoblast lineage and their biological functions. Cells Dev 2024; 179:203934. [PMID: 38942294 DOI: 10.1016/j.cdev.2024.203934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, DNA hypomethylation in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as in vitro models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.
Collapse
Affiliation(s)
- Jianqi Wang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaobo Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Reproductive Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tingli Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China; The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Hua Zhang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China.
| |
Collapse
|
9
|
Li T, Cheng C, Liu J. Chemical and Enzyme-Mediated Chemical Reactions for Studying Nucleic Acids and Their Modifications. Chembiochem 2024; 25:e202400220. [PMID: 38742371 DOI: 10.1002/cbic.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Nucleic acids are genetic information-carrying molecules inside cells. Apart from basic nucleotide building blocks, there exist various naturally occurring chemical modifications on nucleobase and ribose moieties, which greatly increase the encoding complexity of nuclei acids, contribute to the alteration of nucleic acid structures, and play versatile regulation roles in gene expression. To study the functions of certain nucleic acids in various biological contexts, robust tools to specifically label and identify these macromolecules and their modifications, and to illuminate their structures are highly necessary. In this review, we summarize recent technique advances of using chemical and enzyme-mediated chemical reactions to study nucleic acids and their modifications and structures. By highlighting the chemical principles of these techniques, we aim to present a perspective on the advancement of the field as well as to offer insights into developing specific chemical reactions and precise enzyme catalysis utilized for nucleic acids and their modifications.
Collapse
Affiliation(s)
- Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
| | - Chongguang Cheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
- Life Sciences Institute, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, Zhejiang Province, China
| |
Collapse
|
10
|
Qiu T, Zeng L, Chen Y, Yang Y. Nucleic acid demethylase MpAlkB1 regulates the growth, development, and secondary metabolite biosynthesis in Monascus purpureus. World J Microbiol Biotechnol 2024; 40:282. [PMID: 39060812 DOI: 10.1007/s11274-024-04094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Nucleic acid demethylases of α-ketoglutarate-dependent dioxygenase (AlkB) family can reversibly erase methyl adducts from nucleobases, thus dynamically regulating the methylation status of DNA/RNA and playing critical roles in multiple cellular processes. But little is known about AlkB demethylases in filamentous fungi so far. The present study reports that Monascus purpureus genomes contain a total of five MpAlkB genes. The MpAlkB1 gene was disrupted and complemented through homologous recombination strategy to analyze its biological functions in M. purpureus. MpAlkB1 knockout significantly accelerated the growth of strain, increased biomass, promoted sporulation and cleistothecia development, reduced the content of Monascus pigments (Mps), and strongly inhibited citrinin biosynthesis. The downregulated expression of the global regulator gene LaeA, and genes of Mps biosynthesis gene cluster (BGC) or citrinin BGC in MpAlkB1 disruption strain supported the pleiotropic trait changes caused by MpAlkB1 deletion. These results indicate that MpAlkB1-mediated demethylation of nucleic acid plays important roles in regulating the growth and development, and secondary metabolism in Monascus spp.
Collapse
Affiliation(s)
- Tiaoshuang Qiu
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Lingqing Zeng
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yuling Chen
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yingwu Yang
- Bioengineering College, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
11
|
Zhong J, Xu Z, Ding N, Wang Y, Chen W. The biological function of demethylase ALKBH1 and its role in human diseases. Heliyon 2024; 10:e33489. [PMID: 39040364 PMCID: PMC11260981 DOI: 10.1016/j.heliyon.2024.e33489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
AlkB homolog 1 (ALKBH1) is a member of the AlkB family of dioxygenases that are dependent on Fe(II) and α-ketoglutarate. Mounting evidence demonstrates that ALKBH1 exhibits enzymatic activity against various substrates, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), N3-methylcytidine (m3C), 5-methylcytosine (m5C), N6-methyladenine (N6-mA, 6mA), and H2A, indicating its dual roles in different biological processes and involvement in human diseases. Up to the present, there is ongoing debate regarding ALKBH1's enzymatic activity. In this review, we present a comprehensive summary of recent research on ALKBH1, including its substrate diversity and pathological roles in a wide range of human disorders, the underlying mechanisms of its functions, and its dysregulation. We also explored the potential of ALKBH1 as a prognostic target.
Collapse
Affiliation(s)
- Jing Zhong
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| | - Zhengyang Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| | - Ning Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| | - Yanting Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| | - Wenwen Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
12
|
Chen S, Lai W, Wang H. Recent advances in high-performance liquid chromatography tandem mass spectrometry techniques for analysis of DNA damage and epigenetic modifications. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503755. [PMID: 38821674 DOI: 10.1016/j.mrgentox.2024.503755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 06/02/2024]
Abstract
Environmental exposure would cause DNA damage and epigenetic modification changes, potentially resulting in physiological dysfunction, thereby triggering diseases and even cancer. DNA damage and epigenetic modifications are thus promising biomarkers for environmental exposures and disease states. Benefiting from its high sensitivity and accuracy, high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) is considered the "gold standard technique" for investigating epigenetic DNA modifications. This review summarizes the recent advancements of UHPLC-MS/MS-based technologies for DNA damage and epigenetic modifications analysis, mainly focusing on the innovative methods developed for UHPLC-MS/MS-related pretreatment technologies containing efficient genomic DNA digestion and effective removal of the inorganic salt matrix, and the new strategies for improving detection sensitivity of liquid chromatography-mass spectrometry. Moreover, we also summarized the novel hyphenated techniques of the advanced UHPLC-MS/MS coupled with other separation and analysis methods for the measurement of DNA damage and epigenetic modification changes in special regions and fragments of chromosomes.
Collapse
Affiliation(s)
- Shaokun Chen
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiyi Lai
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
13
|
Li D, Du J, Gao M, He C. Identification of AtALKBH1A and AtALKBH1D as DNA N 6-adenine demethylases in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112055. [PMID: 38432357 DOI: 10.1016/j.plantsci.2024.112055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
DNA N6-methyladenine (6 mA) has recently been discovered as a novel DNA modification in animals and plants. In mammals, AlkB homolog 1 (ALKBH1) has been identified as a DNA 6 mA demethylase. ALKBH1 tightly controls the DNA 6 mA methylation level of mammalian genomes and plays important role in regulating gene expression. DNA 6 mA methylation has also been reported to exist in plant genomes, however, the plant DNA 6 mA demethylases and their function remain largely unknown. Here we identify homologs of ALKBH1 as DNA 6 mA demethylases in Arabidopsis. We discover that there are four homologs of ALKBH1, AtALKBH1A, AtALKBH1B, AtALKBH1C and AtALKBH1D, in Arabidopsis. In vitro enzymatic activity studies reveal that AtALKBH1A and 1D can efficiently erase DNA 6 mA methylation. Loss of function of AtALKBH1A and AtALKBH1D causes elevated DNA 6 mA methylation levels in vivo. atalkbh1a/1d mutant displays delayed seed gemination. Based on our RNA-seq data, we find some regulators of seed gemination are dysregulated in atalkbh1a/1d, and the dysregulation is correlated with changes of DNA 6 mA methylation levels. This study identifies plant DNA 6 mA demethylases and reports the function of DNA 6 mA methylation in regulating seed germination.
Collapse
Affiliation(s)
- Donghao Li
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Juan Du
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Min Gao
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chongsheng He
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
14
|
Martinez-Feduchi P, Jin P, Yao B. Epigenetic modifications of DNA and RNA in Alzheimer's disease. Front Mol Neurosci 2024; 17:1398026. [PMID: 38726308 PMCID: PMC11079283 DOI: 10.3389/fnmol.2024.1398026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the most common form of dementia. There are two main types of AD: familial and sporadic. Familial AD is linked to mutations in amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2). On the other hand, sporadic AD is the more common form of the disease and has genetic, epigenetic, and environmental components that influence disease onset and progression. Investigating the epigenetic mechanisms associated with AD is essential for increasing understanding of pathology and identifying biomarkers for diagnosis and treatment. Chemical covalent modifications on DNA and RNA can epigenetically regulate gene expression at transcriptional and post-transcriptional levels and play protective or pathological roles in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
15
|
Xiong L, Li F, Guo Y, Zhang J, Xu K, Xiong Z, Tong A, Li L, Yang S. Discovery of a Potent and Cell-Active Inhibitor of DNA 6mA Demethylase ALKBH1. J Am Chem Soc 2024; 146:6992-7006. [PMID: 38437718 DOI: 10.1021/jacs.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
N6-Methyladenine (6mA) of DNA has emerged as a novel epigenetic mark in eukaryotes, and several 6mA effector proteins have been identified. However, efforts to selectively inhibit the biological functions of these effector proteins with small molecules are unsuccessful to date. Here we report the first potent and selective small molecule inhibitor (13h) of AlkB homologue 1 (ALKBH1), the only validated 6mA demethylase. 13h showed an IC50 of 0.026 ± 0.013 μM and 1.39 ± 0.13 μM in the fluorescence polarization (FP) and enzyme activity assay, respectively, and a KD of 0.112 ± 0.017 μM in the isothermal titration calorimetry (ITC) assay. The potency of 13h was well explained by the cocrystal structure of the 13h-ALKBH1 complex. Furthermore, 13h displayed excellent selectivity for ALKBH1. In cells, compound 13h and its derivative 16 were able to engage ALKBH1 and modulate the 6mA levels. Collectively, our study identified the first potent, isoform selective, and cell-active ALKBH1 inhibitor, providing a tool compound for exploring the biological functions of ALKBH1 and DNA 6mA.
Collapse
Affiliation(s)
- Liang Xiong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yinping Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ke Xu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zijie Xiong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Aiping Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengyong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
16
|
Gong Y, Wang Q, Wei L, Liang W, Wang L, Lv N, Du X, Zhang J, Shen C, Xin Y, Sun L, Xu J. Genome-wide adenine N6-methylation map reveals epigenomic regulation of lipid accumulation in Nannochloropsis. PLANT COMMUNICATIONS 2024; 5:100773. [PMID: 38007614 PMCID: PMC10943562 DOI: 10.1016/j.xplc.2023.100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 11/23/2023] [Indexed: 11/27/2023]
Abstract
Epigenetic marks on histones and DNA, such as DNA methylation at N6-adenine (6mA), play crucial roles in gene expression and genome maintenance, but their deposition and function in microalgae remain largely uncharacterized. Here, we report a genome-wide 6mA map for the model industrial oleaginous microalga Nannochloropsis oceanica produced by single-molecule real-time sequencing. Found in 0.1% of adenines, 6mA sites are mostly enriched at the AGGYV motif, more abundant in transposons and 3' untranslated regions, and associated with active transcription. Moreover, 6mA gradually increases in abundance along the direction of gene transcription and shows special positional enrichment near splicing donor and transcription termination sites. Highly expressed genes tend to show greater 6mA abundance in the gene body than do poorly expressed genes, indicating a positive interaction between 6mA and general transcription factors. Furthermore, knockout of the putative 6mA methylase NO08G00280 by genome editing leads to changes in methylation patterns that are correlated with changes in the expression of molybdenum cofactor, sulfate transporter, glycosyl transferase, and lipase genes that underlie reductions in biomass and oil productivity. By contrast, knockout of the candidate demethylase NO06G02500 results in increased 6mA levels and reduced growth. Unraveling the epigenomic players and their roles in biomass productivity and lipid metabolism lays a foundation for epigenetic engineering of industrial microalgae.
Collapse
Affiliation(s)
- Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qintao Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Li Wei
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wensi Liang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lianhong Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Nana Lv
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xuefeng Du
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jiashun Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chen Shen
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yi Xin
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Luyang Sun
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
17
|
Zhang L, Duan HC, Paduch M, Hu J, Zhang C, Mu Y, Lin H, He C, Kossiakoff AA, Jia G, Zhang L. The Molecular Basis of Human ALKBH3 Mediated RNA N 1 -methyladenosine (m 1 A) Demethylation. Angew Chem Int Ed Engl 2024; 63:e202313900. [PMID: 38158383 PMCID: PMC11846542 DOI: 10.1002/anie.202313900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
N1 -methyladenosine (m1 A) is a prevalent post-transcriptional RNA modification, and the distribution and dynamics of the modification play key epitranscriptomic roles in cell development. At present, the human AlkB Fe(II)/α-ketoglutarate-dependent dioxygenase family member ALKBH3 is the only known mRNA m1 A demethylase, but its catalytic mechanism remains unclear. Here, we present the structures of ALKBH3-oligo crosslinked complexes obtained with the assistance of a synthetic antibody crystallization chaperone. Structural and biochemical results showed that ALKBH3 utilized two β-hairpins (β4-loop-β5 and β'-loop-β'') and the α2 helix to facilitate single-stranded substrate binding. Moreover, a bubble-like region around Asp194 and a key residue inside the active pocket (Thr133) enabled specific recognition and demethylation of m1 A- and 3-methylcytidine (m3 C)-modified substrates. Mutation of Thr133 to the corresponding residue in the AlkB Fe(II)/α-ketoglutarate-dependent dioxygenase family members FTO or ALKBH5 converted ALKBH3 substrate selectivity from m1 A to N6 -methyladenosine (m6 A), as did Asp194 deletion. Our findings provide a molecular basis for understanding the mechanisms of substrate recognition and m1 A demethylation by ALKBH3. This study is expected to aid structure-guided design of chemical probes for further functional studies and therapeutic applications.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)
| | - Hong-Chao Duan
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 (China)
| | - Marcin Paduch
- Institute for Biophysical Dynamics, University of Chicago Chicago, IL (USA)
| | - Jingyan Hu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)
| | - Chi Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 (China)
| | - Yajuan Mu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)
| | - Houwen Lin
- Research Centre for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 (China)
- Institute of Marine Biomedicine, Shenzhen Polytechnic Shenzhen 518055 (China)
| | - Chuan He
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL (USA)
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL (USA)
- Howard Hughes Medical Institute, University of Chicago Chicago, IL (USA)
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL (USA)
- Institute for Biophysical Dynamics, University of Chicago Chicago, IL (USA)
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 (China)
- Peking-Tsinghua Center for Life Sciences, Beijing 100871 (China)
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)
| |
Collapse
|
18
|
Chang R, Tsui KH, Pan LF, Li CJ. Spatial and single-cell analyses uncover links between ALKBH1 and tumor-associated macrophages in gastric cancer. Cancer Cell Int 2024; 24:57. [PMID: 38317214 PMCID: PMC10845659 DOI: 10.1186/s12935-024-03232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND AlkB homolog 1, histone H2A dioxygenase (ALKBH1), a crucial enzyme involved in RNA demethylation in humans, plays a significant role in various cellular processes. While its role in tumor progression is well-established, its specific contribution to stomach adenocarcinoma (STAD) remains elusive. This study seeks to explore the clinical and pathological relevance of ALKBH1, its impact on the tumor immune microenvironment, and its potential for precision oncology in STAD. METHODS We adopted a comprehensive multi-omics approach to identify ALKBH1 as an potential diagnostic biomarker for STAD, demonstrating its association with advanced clinical stages and reduced overall survival rates. Our analysis involved the utilization of publicly available datasets from GEO and TCGA. We identified differentially expressed genes in STAD and scrutinized their relationships with immune gene expression, overall survival, tumor stage, gene mutation profiles, and infiltrating immune cells. Moreover, we employed spatial transcriptomics to investigate ALKBH1 expression across distinct regions of STAD. Additionally, we conducted spatial transcriptomic and single-cell RNA-sequencing analyses to elucidate the correlation between ALKBH1 expression and immune cell populations. Our findings were validated through immunohistochemistry and bioinformatics on 60 STAD patient samples. RESULTS Our study unveiled crucial gene regulators in STAD linked with genetic variations, deletions, and the tumor microenvironment. Mutations in these regulators demonstrated a positive association with distinct immune cell populations across six immune datasets, exerting a substantial influence on immune cell infiltration in STAD. Furthermore, we established a connection between elevated ALKBH1 expression and macrophage infiltration in STAD. Pharmacogenomic analysis of gastric cancer cell lines further indicated that ALKBH1 inactivation correlated with heightened sensitivity to specific small-molecule drugs. CONCLUSION In conclusion, our study highlights the potential role of ALKBH1 alterations in the advancement of STAD, shedding light on novel diagnostic and prognostic applications of ALKBH1 in this context. We underscore the significance of ALKBH1 within the tumor immune microenvironment, suggesting its utility as a precision medicine tool and for drug screening in the management of STAD.
Collapse
Affiliation(s)
- Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Recreation and Sports Management, Tajen University, Pingtung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Li-Fei Pan
- Department of General Affair Office, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
19
|
Feng X, Cui X, Zhang LS, Ye C, Wang P, Zhong Y, Wu T, Zheng Z, He C. Sequencing of N 6-methyl-deoxyadenosine at single-base resolution across the mammalian genome. Mol Cell 2024; 84:596-610.e6. [PMID: 38215754 PMCID: PMC10872247 DOI: 10.1016/j.molcel.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/25/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Although DNA N6-methyl-deoxyadenosine (6mA) is abundant in bacteria and protists, its presence and function in mammalian genomes have been less clear. We present Direct-Read 6mA sequencing (DR-6mA-seq), an antibody-independent method, to measure 6mA at base resolution. DR-6mA-seq employs a unique mutation-based strategy to reveal 6mA sites as misincorporation signatures without any chemical or enzymatic modulation of 6mA. We validated DR-6mA-seq through the successful mapping of the well-characterized G(6mA)TC motif in the E. coli DNA. As expected, when applying DR-6mA-seq to mammalian systems, we found that genomic DNA (gDNA) 6mA abundance is generally low in most mammalian tissues and cells; however, we did observe distinct gDNA 6mA sites in mouse testis and glioblastoma cells. DR-6mA-seq provides an enabling tool to detect 6mA at single-base resolution for a comprehensive understanding of DNA 6mA in eukaryotes.
Collapse
Affiliation(s)
- Xinran Feng
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Xiaolong Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Li-Sheng Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA; Department of Chemistry, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chang Ye
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Pingluan Wang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yuhao Zhong
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Tong Wu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Zhong Zheng
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Shang G, Yang M, Li M, Ma L, Liu Y, Ma J, Chen Y, Wang X, Fan S, Xie M, Wu W, Dai S, Chen Z. Structural Basis of Nucleic Acid Recognition and 6mA Demethylation by Caenorhabditis elegans NMAD-1A. Int J Mol Sci 2024; 25:686. [PMID: 38255759 PMCID: PMC10815869 DOI: 10.3390/ijms25020686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
N6-methyladenine (6mA) of DNA is an emerging epigenetic mark in the genomes of Chlamydomonas, Caenorhabditis elegans, and mammals recently. Levels of 6mA undergo drastic fluctuation and thus affect fertility during meiosis and early embryogenesis. Here, we showed three complex structures of 6mA demethylase C. elegans NMAD-1A, a canonical isoform of NMAD-1 (F09F7.7). Biochemical results revealed that NMAD-1A prefers 6mA Bubble or Bulge DNAs. Structural studies of NMAD-1A revealed an unexpected "stretch-out" conformation of its Flip2 region, a conserved element that is usually bent over the catalytic center to facilitate substrate base flipping in other DNA demethylases. Moreover, the wide channel between the Flip1 and Flip2 of the NMAD-1A explained the observed preference of NMAD-1A for unpairing substrates, of which the flipped 6mA was primed for catalysis. Structural analysis and mutagenesis studies confirmed that key elements such as carboxy-terminal domain (CTD) and hypothetical zinc finger domain (ZFD) critically contributed to structural integrity, catalytic activity, and nucleosome binding. Collectively, our biochemical and structural studies suggest that NMAD-1A prefers to regulate 6mA in the unpairing regions and is thus possibly associated with dynamic chromosome regulation and meiosis regulation.
Collapse
Affiliation(s)
- Guohui Shang
- State Key Laboratory of Animal Biotech Breeding and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meiting Yang
- State Key Laboratory of Animal Biotech Breeding and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Min Li
- National Protein Science Facility, Tsinghua University, Beijing 100084, China
| | - Lulu Ma
- State Key Laboratory of Animal Biotech Breeding and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yunlong Liu
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Jun Ma
- State Key Laboratory of Animal Biotech Breeding and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiyun Chen
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Xue Wang
- State Key Laboratory of Animal Biotech Breeding and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shilong Fan
- National Protein Science Facility, Tsinghua University, Beijing 100084, China
| | - Mengjia Xie
- State Key Laboratory of Animal Biotech Breeding and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Wu
- State Key Laboratory of Animal Biotech Breeding and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zhongzhou Chen
- State Key Laboratory of Animal Biotech Breeding and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Zhang X, Zhou C, Zhao Y, Deng C, Wu H, Zhuo Z, He J. ALKBH1 rs2267755 C>T polymorphism decreases neuroblastoma risk in Chinese children. J Cancer 2024; 15:526-532. [PMID: 38169562 PMCID: PMC10758041 DOI: 10.7150/jca.89271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Neuroblastoma is a highly malignant extracranial solid tumor in pediatrics. ALKBH1 as a recently discovered DNA N6-methyldeoxyadenosine (6mA) demethylase closely links to tumorigenesis. Whether the ALKBH1 polymorphism contributes to neuroblastoma risk remains unclear. In the present study, we genotyped the ALKBH1 single nucleotide polymorphisms (SNPs) in 402 neuroblastoma patients and 473 healthy controls by TaqMan assay. Odds ratios (ORs) and 95% confidence intervals (CIs) were also calculated to evaluate the strength of the association. Our result exhibited that the rs2267755 C>T (CT vs. CC, adjusted OR=0.69, 95% CI=0.50-0.94, P=0.019) is significantly associated with reduced neuroblastoma risk. And its protective effect is particularly significant in children with tumors originating from the retroperitoneal. Combined genotype analysis revealed that carriers with 1-2 protective genotypes are more susceptible to neuroblastoma than those with 3-4 protective genotypes (adjusted OR=0.71, 95% CI=0.53-0.97, P=0.028). Moreover, the rs2267755 C>T is significantly associated with messenger RNA (mRNA) expression of ALKBH1 and three of its surrounding genes, including SNWQ, ADCK1, and RPL21P10. These results suggest that the rs2267755 C>T may be a genetic variant to reduce neuroblastoma risk.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Yemu Zhao
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Changmi Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Haiyan Wu
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
22
|
Ghaedrahmati F, Nasrolahi A, Najafi S, Mighani M, Anbiyaee O, Haybar H, Assareh AR, Kempisty B, Dzięgiel P, Azizidoost S, Farzaneh M. Circular RNAs-mediated angiogenesis in human cancers. Clin Transl Oncol 2023; 25:3101-3121. [PMID: 37039938 DOI: 10.1007/s12094-023-03178-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Circular RNAs (circRNAs) as small non-coding RNAs with cell, tissue, or organ-specific expression accomplish a broad array of functions in physiological and pathological processes such as cancer development. Angiogenesis, a complicated multistep process driving a formation of new blood vessels, speeds up tumor progression by supplying nutrients as well as energy. Abnormal expression of circRNAs reported to affect tumor development through impressing angiogenesis. Such impacts are introduced as constant with different tumorigenic features known as "hallmarks of cancer". In addition, deregulated circRNAs show possibilities to prognosis and diagnosis both in the prophecy of prognosis in malignancies and also their prejudice from healthy individuals. In the present review article, we have evaluated the angiogenic impacts and anti-angiogenic managements of circRNAs in human cancers.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mighani
- School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, US
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
23
|
Li F, Wang Y, Zhang J. Kinetic isotope effect study of N-6 methyladenosine chemical demethylation in bicarbonate-activated peroxide system. J Chem Phys 2023; 159:124103. [PMID: 38127372 DOI: 10.1063/5.0169285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 12/23/2023] Open
Abstract
N-6 methyladenosine is the most abundant nucleic acid modification in eukaryotes and plays a crucial role in gene regulation. The AlkB family of alpha-ketoglutarate-dependent dioxygenases is responsible for nucleic acid demethylation. Recent studies have discovered that a chemical demethylation system using hydrogen peroxide and ammonium bicarbonate can effectively demethylate nucleic acids. The addition of ferrous ammonium sulfate boosts the oxidation rate by forming a Fenton reagent with hydrogen peroxide. However, the specific mechanism and key steps of this process remain unclear. In this study, we investigate the influence of ferrous ammonium sulfate concentration on the kinetic isotope effect (KIE) of the chemical demethylation system using LC-MS. As the concentration of ferrous ions increases, the observed KIE decreases from 1.377 ± 0.020 to 1.120 ± 0.016, indicating a combination of the primary isotope effect and inverse α-secondary isotope effect with the ion pairing effect. We propose that the initial hydrogen extraction is the rate-limiting step and observe a tight transition state structure in the formation of the hm6A process through the analysis of KIE trends. The concentration-dependent KIE provides a novel perspective on the mechanism of chemical demethylation and offers a chemical model for enzyme-catalyzed demethylation.
Collapse
Affiliation(s)
- Fangya Li
- School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Ying Wang
- School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Jianyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| |
Collapse
|
24
|
Jia Q, Zhang X, Liu Q, Li J, Wang W, Ma X, Zhu B, Li S, Gong S, Tian J, Yuan M, Zhao Y, Zhou DX. A DNA adenine demethylase impairs PRC2-mediated repression of genes marked by a specific chromatin signature. Genome Biol 2023; 24:198. [PMID: 37649077 PMCID: PMC10469495 DOI: 10.1186/s13059-023-03042-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The Fe (II)- and α-ketoglutarate-dependent AlkB family dioxygenases are implicated in nucleotide demethylation. AlkB homolog1 (ALKBH1) is shown to demethylate DNA adenine methylation (6mA) preferentially from single-stranded or unpaired DNA, while its demethylase activity and function in the chromatin context are unclear. RESULTS Here, we find that loss-of-function of the rice ALKBH1 gene leads to increased 6mA in the R-loop regions of the genome but has a limited effect on the overall 6mA level. However, in the context of mixed tissues, rather than on individual loci, the ALKBH1 mutation or overexpression mainly affects the expression of genes with a specific combination of chromatin modifications in the body region marked with H3K4me3 and H3K27me3 but depleted of DNA CG methylation. In the similar context of mixed tissues, further analysis reveals that the ALKBH1 protein preferentially binds to genes marked by the chromatin signature and has a function to maintain a high H3K4me3/H3K27me3 ratio by impairing the binding of Polycomb repressive complex 2 (PRC2) to the targets, which is required for both the basal and stress-induced expression of the genes. CONCLUSION Our findings unravel a function of ALKBH1 to control the balance between the antagonistic histone methylations for gene activity and provide insight into the regulatory mechanism of PRC2-mediated H3K27me3 deposition within the gene body region.
Collapse
Affiliation(s)
- Qingxiao Jia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinran Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junjie Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wentao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shicheng Gong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjing Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405, Orsay, France.
| |
Collapse
|
25
|
Guo C, Liu Z, Zhang H. DNA 6mA demethylase ALKBH1 regulates DDX18 expression to promote proliferation of human head and neck squamous cell carcinoma. Cell Oncol (Dordr) 2023; 46:1097-1111. [PMID: 36976498 DOI: 10.1007/s13402-023-00800-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 03/29/2023] Open
Abstract
PURPOSE Human head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. Currently, surgical resection plus a combination of chemotherapy and radiotherapy is the standard treatment for HNSCC, and the 5-year survival rate of patients with HNSCC remains very low because of the higher incidence of metastasis with consequent recurrence. Here, we aimed to investigate the potential role of DNA N6-methyladenine (6mA) demethylase ALKBH1 in tumor cell proliferation in HNSCC. METHODS The expression of ALKBH1 in 10 pairs of HNSCC/normal tissues and 3 HNSCC cell lines were measured by qRT‒PCR and western blotting. Colony formation, flow cytometry, patient-derived HNSCC organoid assays were used to assess the role of ALKBH1 in HNSCC cell proliferation in cell lines and human HNSCC patients. MeDIP-seq, RNA sequencing, Dot blotting and western blotting were used to evaluate the regulatory effect of ALKBH1 on the expression of DEAD-box RNA helicase DDX18. A dual-luciferase reporter assay was used to assess the putative effect of DNA 6mA levels on DDX18 transcription. RESULTS ALKBH1 was highly expressed in HNSCC cells and patient tissues. Functional experiments revealed that ALKBH1 knockdown in SCC9, SCC25, and CAL27 cells inhibited their proliferation in vitro. Using patient-derived HNSCC organoid assay, we found that knockdown of ALKBH1 inhibited the proliferation and colony formation of HNSCC patients-derived organoids. Moreover, we found that ALKBH1 can enhance DDX18 expression by erasing DNA 6mA level and regulating its promoter activity. ALKBH1 deficiency blocked tumor cell proliferation by inhibiting DDX18 expression. Exogenous overexpression of DDX18 rescued the cell proliferation arrest caused by ALKBH1 knockdown. CONCLUSION Our data reveal the important role of ALKBH1 in regulating proliferation of HNSCC.
Collapse
Affiliation(s)
- Chengli Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital, Wuhan University, No.185, East Lake Road, Wuhan, Hubei, 430071, China.
| | - Haojian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, No.185, East Lake Road, Wuhan, Hubei, 430071, China.
| |
Collapse
|
26
|
Zhou J, Horton JR, Kaur G, Chen Q, Li X, Mendoza F, Wu T, Blumenthal RM, Zhang X, Cheng X. Biochemical and structural characterization of the first-discovered metazoan DNA cytosine-N4 methyltransferase from the bdelloid rotifer Adineta vaga. J Biol Chem 2023; 299:105017. [PMID: 37414145 PMCID: PMC10406627 DOI: 10.1016/j.jbc.2023.105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Much is known about the generation, removal, and roles of 5-methylcytosine (5mC) in eukaryote DNA, and there is a growing body of evidence regarding N6-methyladenine, but very little is known about N4-methylcytosine (4mC) in the DNA of eukaryotes. The gene for the first metazoan DNA methyltransferase generating 4mC (N4CMT) was reported and characterized recently by others, in tiny freshwater invertebrates called bdelloid rotifers. Bdelloid rotifers are ancient, apparently asexual animals, and lack canonical 5mC DNA methyltransferases. Here, we characterize the kinetic properties and structural features of the catalytic domain of the N4CMT protein from the bdelloid rotifer Adineta vaga. We find that N4CMT generates high-level methylation at preferred sites, (a/c)CG(t/c/a), and low-level methylation at disfavored sites, exemplified by ACGG. Like the mammalian de novo 5mC DNA methyltransferase 3A/3B (DNMT3A/3B), N4CMT methylates CpG dinucleotides on both DNA strands, generating hemimethylated intermediates and eventually fully methylated CpG sites, particularly in the context of favored symmetric sites. In addition, like DNMT3A/3B, N4CMT methylates non-CpG sites, mainly CpA/TpG, though at a lower rate. Both N4CMT and DNMT3A/3B even prefer similar CpG-flanking sequences. Structurally, the catalytic domain of N4CMT closely resembles the Caulobacter crescentus cell cycle-regulated DNA methyltransferase. The symmetric methylation of CpG, and similarity to a cell cycle-regulated DNA methyltransferase, together suggest that N4CMT might also carry out DNA synthesis-dependent methylation following DNA replication.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gundeep Kaur
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xuwen Li
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Fabian Mendoza
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tao Wu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
27
|
Peng Z, Ma J, Christov CZ, Karabencheva-Christova T, Lehnert N, Li D. Kinetic Studies on the 2-Oxoglutarate/Fe(II)-Dependent Nucleic Acid Modifying Enzymes from the AlkB and TET Families. DNA 2023; 3:65-84. [PMID: 38698914 PMCID: PMC11065319 DOI: 10.3390/dna3020005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Nucleic acid methylations are important genetic and epigenetic biomarkers. The formation and removal of these markers is related to either methylation or demethylation. In this review, we focus on the demethylation or oxidative modification that is mediated by the 2-oxoglutarate (2-OG)/Fe(II)-dependent AlkB/TET family enzymes. In the catalytic process, most enzymes oxidize 2-OG to succinate, in the meantime oxidizing methyl to hydroxymethyl, leaving formaldehyde and generating demethylated base. The AlkB enzyme from Escherichia coli has nine human homologs (ALKBH1-8 and FTO) and the TET family includes three members, TET1 to 3. Among them, some enzymes have been carefully studied, but for certain enzymes, few studies have been carried out. This review focuses on the kinetic properties of those 2-OG/Fe(II)-dependent enzymes and their alkyl substrates. We also provide some discussions on the future directions of this field.
Collapse
Affiliation(s)
- Zhiyuan Peng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jian Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Christo Z. Christov
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| | | | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
28
|
Wu X, Wang W, Fan S, You L, Li F, Zhang X, Wu H, Tang J, Qi Y, Feng W, Yan L, Ren M. U-shaped association between serum IGF2BP3 and T2DM: A cross-sectional study in Chinese population. J Diabetes 2023; 15:349-361. [PMID: 36891946 PMCID: PMC10101838 DOI: 10.1111/1753-0407.13378] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
OBJECTIVE To clarify the expression of N6-methyladenosine (m6 A) modulators involved in the pathogenesis of type 2 diabetes mellitus (T2DM). We further explored the association of serum insulin-like growth factor 2 mRNA-binding proteins 3 (IGF2BP3) levels and odds of T2DM in a high-risk population. METHODS The gene expression data set GSE25724 was obtained from the Gene Expression Omnibus, and a cluster heatmap was generated by using the R package ComplexHeatmap. Differential expression analysis for 13 m6 A RNA methylation regulators between nondiabetic controls and T2DM subjects was performed using an unpaired t test. A cross-sectional design, including 393 subjects (131 patients with newly diagnosed T2DM, 131 age- and sex-matched subjects with prediabetes, and 131 healthy controls), was carried out. The associations between serum IGF2BP3 concentrations and T2DM were modeled by restricted cubic spline and logistic regression models. RESULTS Two upregulated (IGF2BP2 and IGF2BP3) and 5 downregulated (methyltransferase-like 3 [METTL3], alkylation repair homolog protein 1 [ALKBH1], YTH domain family 2 [YTHDF2], YTHDF3, and heterogeneous nuclear ribonucleoprotein [HNRNPC]) m6 A-related genes were found in islet samples of T2DM patients. A U-shaped association existed between serum IGF2BP3 levels and odds of T2DM according to cubic natural spline analysis models, after adjustment for body mass index, waist circumference, diastolic blood pressure, total cholesterol, and triglyeride. Multivariate logistic regression showed that progressively higher odds of T2DM were observed when serum IGF2BP3 levels were below 0.62 ng/mL (odds ratio 3.03 [95% confidence interval 1.23-7.47]) in model 4. CONCLUSION Seven significantly altered m6 A RNA methylation genes were identified in T2DM. There was a U-shaped association between serum IGF2BP3 levels and odds of T2DM in the general Chinese adult population. This study provides important evidence for further examination of the role of m6 A RNA methylation, especially serum IGF2BP3 in T2DM risk assessment.
Collapse
Affiliation(s)
- Xiaoying Wu
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Department of EndocrinologyNational Center of Gerontology, Beijing Hospital, Peking University Fifth School of Clinical MedicineBeijingChina
| | - Wei Wang
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Shujin Fan
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Lili You
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Feng Li
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Xiaoyun Zhang
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Hongshi Wu
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Juying Tang
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yiqin Qi
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Wanting Feng
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Li Yan
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Meng Ren
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
29
|
Smith N, Shirazi S, Cakouros D, Gronthos S. Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. Int J Mol Sci 2023; 24:ijms24076499. [PMID: 37047469 PMCID: PMC10095074 DOI: 10.3390/ijms24076499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Many crucial epigenetic changes occur during early skeletal development and throughout life due to aging, disease and are heavily influenced by an individual’s lifestyle. Epigenetics is the study of heritable changes in gene expression as the result of changes in the environment without any mutation in the underlying DNA sequence. The epigenetic profiles of cells are dynamic and mediated by different mechanisms, including histone modifications, non-coding RNA-associated gene silencing and DNA methylation. Given the underlining role of dysfunctional mesenchymal tissues in common age-related skeletal diseases such as osteoporosis and osteoarthritis, investigations into skeletal stem cells or mesenchymal stem cells (MSC) and their functional deregulation during aging has been of great interest and how this is mediated by an evolving epigenetic landscape. The present review describes the recent findings in epigenetic changes of MSCs that effect growth and cell fate determination in the context of aging, diet, exercise and bone-related diseases.
Collapse
Affiliation(s)
- Nicholas Smith
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Suzanna Shirazi
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| |
Collapse
|
30
|
Wang X, Wong CC, Chen H, Fu K, Shi L, Su H, Guo S, Gou H, Hu X, Zhang L, Ji J, Yu J. The N 6-methyladenine DNA demethylase ALKBH1 promotes gastric carcinogenesis by disrupting NRF1 binding capacity. Cell Rep 2023; 42:112279. [PMID: 36989111 DOI: 10.1016/j.celrep.2023.112279] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/20/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
DNA N6-methyladenine (6mA) is an epigenetic modification that regulates various biological processes. Here, we show that gastric cancer (GC) cells and tumors display a marked reduction in 6mA levels compared with normal gastric tissues and cells. 6mA is abundant in the surrounding transcription start sites and occurs at consensus motifs. Among the 6mA regulators, ALKBH1, a demethylase, is significantly overexpressed in GC tissues compared with adjacent normal tissues. Moreover, high ALKBH1 expression is associated with poor survival of patients with GC. ALKBH1 knockout in mice impairs chemically induced gastric carcinogenesis. Mechanistically, ALKBH1 mediates DNA 6mA demethylation to repress gene expression. In particular, the 6mA sites are enriched in NRF1 binding sequences and targeted for demethylation by ALKBH1. ALKBH1-induced 6mA demethylation inhibits NRF1-driven transcription of downstream targets, including multiple genes involved in the AMP-activated protein kinase (AMPK) signaling pathway. Accordingly, ALKBH1 suppresses AMPK signaling, causing a metabolic shift toward the Warburg effect, which facilitates tumorigenesis.
Collapse
Affiliation(s)
- Xiaohong Wang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kaili Fu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lingxue Shi
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao Su
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shang Guo
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaoxu Hu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lianhai Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
31
|
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023; 13:1153463. [PMID: 37007161 PMCID: PMC10060643 DOI: 10.3389/fonc.2023.1153463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The AlkB family (ALKBH1-8 and FTO), a member of the Fe (II)- and α-ketoglutarate-dependent dioxygenase superfamily, has shown the ability to catalyze the demethylation of a variety of substrates, including DNA, RNA, and histones. Methylation is one of the natural organisms’ most prevalent forms of epigenetic modifications. Methylation and demethylation processes on genetic material regulate gene transcription and expression. A wide variety of enzymes are involved in these processes. The methylation levels of DNA, RNA, and histones are highly conserved. Stable methylation levels at different stages can coordinate the regulation of gene expression, DNA repair, and DNA replication. Dynamic methylation changes are essential for the abilities of cell growth, differentiation, and division. In some malignancies, the methylation of DNA, RNA, and histones is frequently altered. To date, nine AlkB homologs as demethylases have been identified in numerous cancers’ biological processes. In this review, we summarize the latest advances in the research of the structures, enzymatic activities, and substrates of the AlkB homologs and the role of these nine homologs as demethylases in cancer genesis, progression, metastasis, and invasion. We provide some new directions for the AlkB homologs in cancer research. In addition, the AlkB family is expected to be a new target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Qingsan Zhu,
| |
Collapse
|
32
|
Feng X, He C. Mammalian DNA N 6-methyladenosine: Challenges and new insights. Mol Cell 2023; 83:343-351. [PMID: 36736309 PMCID: PMC10182828 DOI: 10.1016/j.molcel.2023.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/05/2023]
Abstract
DNA N6-methyldeoxyadenosine (6mA) modification was first discovered in Bacterium coli in the 1950s. Over the next several decades, 6mA was recognized as a critical DNA modification in the genomes of prokaryotes and protists. While important in prokaryotes, less is known about the presence and functional roles of DNA 6mA in eukaryotes, particularly in mammals. Taking advantage of recent technology advances that made 6mA detection and sequencing possible, studies over the past several years have brought new insights into 6mA biology in mammals. In this perspective, we present recent progress, discuss challenges, and pose four questions for future research regarding mammalian DNA 6mA.
Collapse
Affiliation(s)
- Xinran Feng
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
33
|
Chen LQ, Zhang Z, Chen HX, Xi JF, Liu XH, Ma DZ, Zhong YH, Ng WH, Chen T, Mak DW, Chen Q, Chen YQ, Luo GZ. High-precision mapping reveals rare N 6-deoxyadenosine methylation in the mammalian genome. Cell Discov 2022; 8:138. [PMID: 36575183 PMCID: PMC9794812 DOI: 10.1038/s41421-022-00484-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/16/2022] [Indexed: 12/28/2022] Open
Abstract
N6-deoxyadenosine methylation (6mA) is the most widespread type of DNA modification in prokaryotes and is also abundantly distributed in some unicellular eukaryotes. However, 6mA levels are remarkably low in mammals. The lack of a precise and comprehensive mapping method has hindered more advanced investigations of 6mA. Here, we report a new method MM-seq (modification-induced mismatch sequencing) for genome-wide 6mA mapping based on a novel detection principle. We found that modified DNA bases are prone to form a local open region that allows capture by antibody, for example, via a DNA breathing or base-flipping mechanism. Specified endonuclease or exonuclease can recognize the antibody-stabilized mismatch-like structure and mark the exact modified sites for sequencing readout. Using this method, we examined the genomic positions of 6mA in bacteria (E. coli), green algae (C. reinhardtii), and mammalian cells (HEK239T, Huh7, and HeLa cells). In contrast to bacteria and green algae, human cells possess a very limited number of 6mA sites which are sporadically distributed across the genome of different cell types. After knocking out the RNA m6A methyltransferase METTL3 in mouse ES cells, 6mA becomes mostly diminished. Our results imply that rare 6mA in the mammalian genome is introduced by RNA m6A machinery via a non-targeted mechanism.
Collapse
Affiliation(s)
- Li-Qian Chen
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China ,grid.410643.4Guangdong Cardiovascular Institute, Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Zhang Zhang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Hong-Xuan Chen
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Jian-Fei Xi
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xue-Hong Liu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Dong-Zhao Ma
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Yu-Hao Zhong
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Wen Hui Ng
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Tao Chen
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Daniel W. Mak
- grid.194645.b0000000121742757School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qi Chen
- grid.12981.330000 0001 2360 039XSchool of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong China
| | - Yao-Qing Chen
- grid.12981.330000 0001 2360 039XSchool of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong China
| | - Guan-Zheng Luo
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| |
Collapse
|
34
|
Hu Y, Hong X, Yuan Z, Mu J, Zhang X, Fang Z, Yuan Y, Zheng S, Guo C. Pan-cancer analysis of DNA epigenetic modifications by hydrophilic interaction liquid chromatography-tandem mass spectrometry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol 2022; 19:1215-1234. [PMID: 36220996 PMCID: PMC9622816 DOI: 10.1038/s41423-022-00933-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.
Collapse
|
36
|
Li H, Zhang N, Wang Y, Xia S, Zhu Y, Xing C, Tian X, Du Y. DNA N6-Methyladenine Modification in Eukaryotic Genome. Front Genet 2022; 13:914404. [PMID: 35812743 PMCID: PMC9263368 DOI: 10.3389/fgene.2022.914404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is treated as an important epigenetic mark in various biological activities. In the past, a large number of articles focused on 5 mC while lacking attention to N6-methyladenine (6 mA). The presence of 6 mA modification was previously discovered only in prokaryotes. Recently, with the development of detection technologies, 6 mA has been found in several eukaryotes, including protozoans, metazoans, plants, and fungi. The importance of 6 mA in prokaryotes and single-celled eukaryotes has been widely accepted. However, due to the incredibly low density of 6 mA and restrictions on detection technologies, the prevalence of 6 mA and its role in biological processes in eukaryotic organisms are highly debated. In this review, we first summarize the advantages and disadvantages of 6 mA detection methods. Then, we conclude existing reports on the prevalence of 6 mA in eukaryotic organisms. Next, we highlight possible methyltransferases, demethylases, and the recognition proteins of 6 mA. In addition, we summarize the functions of 6 mA in eukaryotes. Last but not least, we summarize our point of view and put forward the problems that need further research.
Collapse
Affiliation(s)
- Hao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuechen Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Siyuan Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yating Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chen Xing
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xuefeng Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du,
| |
Collapse
|
37
|
A fungal dioxygenase CcTet serves as a eukaryotic 6mA demethylase on duplex DNA. Nat Chem Biol 2022; 18:733-741. [PMID: 35654845 DOI: 10.1038/s41589-022-01041-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/31/2022] [Indexed: 12/24/2022]
Abstract
N6-methyladenosine (6mA) is a DNA modification that has recently been found to play regulatory roles during mammalian early embryo development and mitochondrial transcription. We found that a dioxygenase CcTet from the fungus Coprinopsis cinerea is also a dsDNA 6mA demethylase. It oxidizes 6mA to the intermediate N6-hydroxymethyladenosine (6hmA) with robust activity of 6mA-containing duplex DNA (dsDNA) as well as isolated genomics DNA. Structural characterization revealed that CcTet utilizes three flexible loop regions and two key residues-D337 and G331-in the active pocket to preferentially recognize substrates on dsDNA. A CcTet D337F mutant protein retained the catalytic activity on 6mA but lost activity on 5-methylcytosine. Our findings uncovered a 6mA demethylase that works on dsDNA, suggesting potential 6mA demethylation in fungi and elucidating 6mA recognition and the catalytic mechanism of CcTet. The CcTet D337F mutant protein also provides a chemical biology tool for future functional manipulation of DNA 6mA in vivo.
Collapse
|
38
|
Li S, Du J. Making a 6mA demethylase. Nat Chem Biol 2022; 18:683-684. [PMID: 35654844 DOI: 10.1038/s41589-022-01042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sisi Li
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China.
| | - Jiamu Du
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
39
|
Tan T, Li Y, Tang B, Chen Y, Chen X, Xie Q, Hu Z, Chen G. Knockout of SlALKBH2 weakens the DNA damage repair ability of tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111266. [PMID: 35487670 DOI: 10.1016/j.plantsci.2022.111266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
During the growth and evolution of plants, genomic DNA is subject to constant assault from endogenous and environmental DNA damage compounds, which will result in mutagenic or genotoxic covalent adducts. Whether for prokaryotes, eukaryotes or even viruses, maintaining genome integrity is critical for the continuation of life. Escherichia coli and mammals have evolved the AlkB family of Fe(II)/alpha-ketoglutarate-dependent dioxygenases that repair DNA alkylation damage. We identified a functional homologue with EsAlkB and HsALKBH2 in tomatoes, and named it SlALKBH2. In our study, the SlALKBH2 knockout mutant showed hypersensitivity to the DNA mutagen MMS and displayed more severe growth abnormalities than wild-type plants under mutagen treatment, such as slow growth, leaf deformation and early senescence. Additionally, genes with high transcriptional activity, such as rDNA, have increased methylation under MMS treatment. In conclusion, this study shows that the tomato SlALKBH2 gene may play an important role in ensuring the integrity of the genome.
Collapse
Affiliation(s)
- Tingting Tan
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yangyang Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Boyan Tang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yating Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Xinru Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
40
|
Yu D, Zhou J, Chen Q, Wu T, Blumenthal RM, Zhang X, Cheng X. Enzymatic Characterization of In Vitro Activity of RNA Methyltransferase PCIF1 on DNA. Biochemistry 2022; 61:1005-1013. [PMID: 35605980 PMCID: PMC9178792 DOI: 10.1021/acs.biochem.2c00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/04/2022] [Indexed: 11/30/2022]
Abstract
PCIF1 and FTO are a pair of human mRNA cap-specific modification enzymes that have opposing activities. PCIF1 adds a methyl group to the N6-position of 2'O-methyladenosine (Am), generating N6, 2'O-dimethyladenosine (m6Am), when Am is the cap-proximal nucleotide. FTO removes the N6-methyl group from m6Am. In addition, FTO has a demethylase activity on a broad spectrum of various RNA substrates, as well as on DNA N6-methyldeoxyadenosine (m6dA). While the existence of m6dA in mammalian DNA remains controversial, we show here that PCIF1 has significant methylation activity on single stranded DNA deoxyadenosine, double stranded RNA/DNA hybrids, and double stranded DNA, though with lower catalytic efficiency than that on its preferred RNA substrate. PCIF1 has activities in the order ssRNA > RNA/DNA hybrid > ssDNA > dsDNA. We discuss the implications of PCIF1 generation, and FTO removal, of DNA adenine methylation.
Collapse
Affiliation(s)
- Dan Yu
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jujun Zhou
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Qin Chen
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Tao Wu
- Department
of Molecular & Human Genetics, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Robert M. Blumenthal
- Department
of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life
Sciences, Toledo, Ohio 43614, United States
| | - Xing Zhang
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Xiaodong Cheng
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
41
|
Shen C, Wang K, Deng X, Chen J. DNA N 6-methyldeoxyadenosine in mammals and human disease. Trends Genet 2022; 38:454-467. [PMID: 34991904 PMCID: PMC9007851 DOI: 10.1016/j.tig.2021.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023]
Abstract
N6-methyladenine (6mA) is the most prevalent DNA modification in prokaryotes. However, its presence and significance in eukaryotes remain elusive. Recently, with methodology advances in detection and sequencing of 6mA in eukaryotes, 6mA is back in the spotlight. Although multiple studies have reported that 6mA is an important epigenetic mark in eukaryotes and plays a regulatory role in DNA transcription, transposon activation, stress response, and other bioprocesses, there are some discrepancies in the current literature. We review the recent advances in 6mA research in eukaryotes, especially in mammals. In particular, we describe the abundance/distribution of 6mA, its potential role in regulating gene expression, identified regulators, and pathological roles in human diseases, especially in cancer. The limitations faced by the field and future perspectives in 6mA research are also discussed.
Collapse
Affiliation(s)
- Chao Shen
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| | - Kitty Wang
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| | - Xiaolan Deng
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| | - Jianjun Chen
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| |
Collapse
|
42
|
Sheng Y, Zhou M, You C, Dai X. Dynamics and biological relevance of epigenetic N6-methyladenine DNA modification in eukaryotic cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Lyu C, Niu Y, Lai W, Wang Y, Wang Y, Dai P, Ma C, Chen S, Li Y, Jiang G, Liang Z, Ma W, Gao Z, Tong WM, Wang H. Rare and misincorporated DNA N 6-methyladenine is a hallmark of cytotoxic stresses for selectively stimulating the stemness and proliferation of glioblastoma cells. Cell Discov 2022; 8:39. [PMID: 35501312 PMCID: PMC9061847 DOI: 10.1038/s41421-022-00399-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
The entity of DNA N6-methyladenine (6mA) in mammals remains elusive and subsequently its roles in diseases are poorly understood. Here we exploited a bacterial DNA contamination-free and ultrasensitive UHPLC-MS/MS assay to reassess DNA 6mA in human glioblastomas and unveiled that DNA 6mA (~0.08 ppm) is extremely rare. By the use of two independent heavy stable isotope-labeling strategies, we further prove that the observed 6mA is solely generated by DNA polymerase-mediated misinocorporation. In vitro experiments point toward that the generation of misincorporated DNA 6mA is associated with the cellular stresses-caused release of RNA N6-methyladenine (m6A) nucleoside, which is profoundly inhibited by hypoxia milieu. Consistently, compared with normal brain tissues, DNA 6mA decreases in hypoxic human gliomas. Our data also strongly support that rare DNA 6mA rather than relatively abundant DNA 5-methylcytosine and 5-hydroxymethylcytosine is a hallmark of poor prognosis of IDH1/2 mutation-absent glioblastoma patients, reflecting the incidence of cytotoxic stresses and subsequent release of m6A nucleoside. The released m6A nucleoside may selectively preserve a subset of the glioblastoma cells and stimulate their stemness and proliferation. Noteworthily, demethylation-inhibiting IDH1 mutation increases the DNA 6mA content in human gliomas, but the depletion of the demethylase candidate ALKBH1 fails to do so, together suggesting the presence of other unknown 6mA demethylase for erasing misincorporated DNA 6mA. This is the first report on the identification of the misincorporated 6mA together with its origin and roles in diseases.
Collapse
Affiliation(s)
- Cong Lyu
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Weiyi Lai
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peibin Dai
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
- Department of neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunhui Ma
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shaokun Chen
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao Li
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guibin Jiang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengliang Gao
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China.
- Department of neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
44
|
Genome-Wide Identification, Classification and Expression Analysis of m 6A Gene Family in Solanum lycopersicum. Int J Mol Sci 2022; 23:ijms23094522. [PMID: 35562913 PMCID: PMC9100520 DOI: 10.3390/ijms23094522] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Advanced knowledge of messenger RNA (mRNA) N6-methyladenosine (m6A) and DNA N6-methyldeoxyadenosine (6 mA) redefine our understanding of these epigenetic modifications. Both m6A and 6mA carry important information for gene regulation, and the corresponding catalytic enzymes sometimes belong to the same gene family and need to be distinguished. However, a comprehensive analysis of the m6A gene family in tomato remains obscure. Here, 24 putative m6A genes and their family genes in tomato were identified and renamed according to BLASTP and phylogenetic analysis. Chromosomal location, synteny, phylogenetic, and structural analyses were performed, unravelling distinct evolutionary relationships between the MT-A70, ALKBH, and YTH protein families, respectively. Most of the 24 genes had extensive tissue expression, and 9 genes could be clustered in a similar expression trend. Besides, SlYTH1 and SlYTH3A showed a different expression pattern in leaf and fruit development. Additionally, qPCR data revealed the expression variation under multiple abiotic stresses, and LC-MS/MS determination exhibited that the cold stress decreased the level of N6 2′-O dimethyladenosine (m6Am). Notably, the orthologs of newly identified single-strand DNA (ssDNA) 6mA writer–eraser–reader also existed in the tomato genome. Our study provides comprehensive information on m6A components and their family proteins in tomato and will facilitate further functional analysis of the tomato N6-methyladenosine modification genes.
Collapse
|
45
|
Chang LC, Chiang SK, Chen SE, Hung MC. Targeting 2-oxoglutarate dehydrogenase for cancer treatment. Am J Cancer Res 2022; 12:1436-1455. [PMID: 35530286 PMCID: PMC9077069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023] Open
Abstract
Tricarboxylic acid (TCA) cycle, also called Krebs cycle or citric acid cycle, is an amphoteric pathway, contributing to catabolic degradation and anaplerotic reactions to supply precursors for macromolecule biosynthesis. Oxoglutarate dehydrogenase complex (OGDHc, also called α-ketoglutarate dehydrogenase) a highly regulated enzyme in TCA cycle, converts α-ketoglutarate (αKG) to succinyl-Coenzyme A in accompany with NADH generation for ATP generation through oxidative phosphorylation. The step collaborates with glutaminolysis at an intersectional point to govern αKG levels for energy production, nucleotide and amino acid syntheses, and the resources for macromolecule synthesis in cancer cells with rapid proliferation. Despite being a flavoenzyme susceptible to electron leakage contributing to mitochondrial reactive oxygen species (ROS) production, OGDHc is highly sensitive to peroxides such as HNE (4-hydroxy-2-nonenal) and moreover, its activity mediates the activation of several antioxidant pathways. The characteristics endow OGDHc as a critical redox sensor in mitochondria. Accumulating evidences suggest that dysregulation of OGDHc impairs cellular redox homeostasis and disturbs substrate fluxes, leading to a buildup of oncometabolites along the pathogenesis and development of cancers. In this review, we describe molecular interactions, regulation of OGDHc expression and activity and its relationships with diseases, specifically focusing on cancers. In the end, we discuss the potential of OGDHs as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 404, Taiwan
| | - Shih-Kai Chiang
- Department of Animal Science, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing UniversityTaichung 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing UniversityTaichung 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing UniversityTaiwan
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
- Deparment of Biotechnology, Asia UniversityTaichung 413, Taiwan
- Research Center for Cancer Biology, China Medical UniversityTaichung 404, Taiwan
| |
Collapse
|
46
|
Quantification of Epigenetic DNA Modifications of Subchromatin Structures by UHPLC-MS/MS. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Abstract
Epitranscriptomic RNA modifications can regulate biological processes, but there remains a major gap in our ability to identify and measure individual modifications at nucleotide resolution. Here we present Mal-Seq, a chemical method for sequencing 5-formylcytosine (f5C) modifications on RNA based on the selective and efficient malononitrile-mediated labeling of f5C residues to generate adducts that are read as C-to-T mutations upon reverse transcription and polymerase chain reaction amplification. We apply Mal-Seq to characterize the prevalence of f5C at the wobble position of mt-tRNA(Met) in different organisms and tissue types and find that high-level f5C modification is present in mammals but lacking in lower eukaryotes. Our work sheds light on mitochondrial tRNA modifications throughout eukaryotic evolution and provides a general platform for characterizing the f5C epitranscriptome.
Collapse
Affiliation(s)
- Ang Li
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Xuemeng Sun
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
48
|
Boulias K, Greer EL. Means, mechanisms and consequences of adenine methylation in DNA. Nat Rev Genet 2022; 23:411-428. [PMID: 35256817 PMCID: PMC9354840 DOI: 10.1038/s41576-022-00456-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/29/2022]
Abstract
N6-methyl-2'-deoxyadenosine (6mA or m6dA) has been reported in the DNA of prokaryotes and eukaryotes ranging from unicellular protozoa and algae to multicellular plants and mammals. It has been proposed to modulate DNA structure and transcription, transmit information across generations and have a role in disease, among other functions. However, its existence in more recently evolved eukaryotes remains a topic of debate. Recent technological advancements have facilitated the identification and quantification of 6mA even when the modification is exceptionally rare, but each approach has limitations. Critical assessment of existing data, rigorous design of future studies and further development of methods will be required to confirm the presence and biological functions of 6mA in multicellular eukaryotes.
Collapse
|
49
|
Ma L, Lu H, Tian Z, Yang M, Ma J, Shang G, Liu Y, Xie M, Wang G, Wu W, Zhang Z, Dai S, Chen Z. Structural insights into the interactions and epigenetic functions of human nucleic acid repair protein ALKBH6. J Biol Chem 2022; 298:101671. [PMID: 35120926 PMCID: PMC8892091 DOI: 10.1016/j.jbc.2022.101671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/03/2022] Open
Abstract
Human AlkB homolog 6, ALKBH6, plays key roles in nucleic acid damage repair and tumor therapy. However, no precise structural and functional information are available for this protein. In this study, we determined atomic resolution crystal structures of human holo-ALKBH6 and its complex with ligands. AlkB members bind nucleic acids by NRLs (nucleotide recognition lids, also called Flips), which can recognize DNA/RNA and flip methylated lesions. We found that ALKBH6 has unusual Flip1 and Flip2 domains, distinct from other AlkB family members both in sequence and conformation. Moreover, we show that its unique Flip3 domain has multiple unreported functions, such as discriminating against double-stranded nucleic acids, blocking the active center, binding other proteins, and in suppressing tumor growth. Structural analyses and substrate screening reveal how ALKBH6 discriminates between different types of nucleic acids and may also function as a nucleic acid demethylase. Structure-based interacting partner screening not only uncovered an unidentified interaction of transcription repressor ZMYND11 and ALKBH6 in tumor suppression but also revealed cross talk between histone modification and nucleic acid modification in epigenetic regulation. Taken together, these results shed light on the molecular mechanism underlying ALKBH6-associated nucleic acid damage repair and tumor therapy.
Collapse
Affiliation(s)
- Lulu Ma
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hongyun Lu
- School of food and health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zizi Tian
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meiting Yang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jun Ma
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guohui Shang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yunlong Liu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Mengjia Xie
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoguo Wang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
50
|
Schmidl D, Jonasson NSW, Menke A, Schneider S, Daumann L. Spectroscopic and in vitro investigations of Fe2+/α-Ketoglutarate-dependent enzymes involved in nucleic acid repair and modification. Chembiochem 2022; 23:e202100605. [PMID: 35040547 PMCID: PMC9401043 DOI: 10.1002/cbic.202100605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Indexed: 11/08/2022]
Abstract
The activation of molecular oxygen for the highly selective functionalization and repair of DNA and RNA nucleobases is achieved by α-ketoglutarate (α-KG)/iron-dependent dioxygenases. Enzymes of special interest are the human homologs AlkBH of Escherichia coli EcAlkB and ten-eleven translocation (TET) enzymes. These enzymes are involved in demethylation or dealkylation of DNA and RNA, although additional physiological functions are continuously being revealed. Given their importance, studying enzyme-substrate interactions, turnover and kinetic parameters is pivotal for the understanding of the mode of action of these enzymes. Diverse analytical methods, including X-ray crystallography, UV/Vis absorption, electron paramagnetic resonance (EPR), circular dichroism (CD) and NMR spectroscopy have been employed to study the changes in the active site and the overall enzyme structure upon substrate, cofactor and inhibitor addition. Several methods are now available to assess activity of these enzymes. By discussing limitations and possibilities of these techniques for EcAlkB, AlkBH and TET we aim to give a comprehensive synopsis from a bioinorganic point of view, addressing researchers from different disciplines working in the highly interdisciplinary and rapidly evolving field of epigenetic processes and DNA/RNA repair and modification.
Collapse
Affiliation(s)
- David Schmidl
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Niko S W Jonasson
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Annika Menke
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Sabine Schneider
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Lena Daumann
- Ludwig-Maximilians-Universität München, Department of Chemistry, Butenandtstr. 5-13, 81377, München, GERMANY
| |
Collapse
|