1
|
Ma J, Huang Y, Jia G, Dong X, Shi Q, Sun Y. Discovery of broad-spectrum high-affinity peptide ligands of spike protein for the vaccine purification of SARS-CoV-2 and Omicron variants. Int J Biol Macromol 2024; 283:137059. [PMID: 39500432 DOI: 10.1016/j.ijbiomac.2024.137059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
Abstract
To combat with emerging SARS-CoV-2 variants of concern (VOCs), we report the identification of a set of unique HWK-motif peptide ligands for the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein from a phage-displayed peptide library. These HWK-motif peptides exhibited nanomolar affinity for RBD. Among them, the peptide, HWKAVNWLKPWT (SP-HWK), had not only the highest affinities for RBD and trimer S protein, but also broad-spectrum affinities for RBDs from VOCs. Molecular dynamics simulations and competitive ELISA revealed a conserved pocket between the cryptic and the outer faces of RBD for SP-HWK binding, distinct from the human angiotensin-converting enzyme 2 receptor binding site. By coupling SP-HWK to agarose gel, the as-prepared affinity gel could efficiently capture RBD and trimer S from the ancestral strain and the Omicron variant, and the bound targets could be recovered by mild elution at pH 6.0. More importantly, the affinity gel presented excellent and stable chromatographic performance in the purification of inactivated SARS-CoV-2 and Omicron vaccines, affording high yields and purities, and strong HCP reduction. The results demonstrated the potential of SP-HWK as a broad-spectrum peptide ligand for developing a universal platform for the vaccine purification of SARS-CoV-2 and VOCs.
Collapse
Affiliation(s)
- Jing Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yongdong Huang
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | | | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
2
|
Blazhynska M, Lagardère L, Liu C, Adjoua O, Ren P, Piquemal JP. Water-glycan interactions drive the SARS-CoV-2 spike dynamics: insights into glycan-gate control and camouflage mechanisms. Chem Sci 2024:d4sc04364b. [PMID: 39220162 PMCID: PMC11359970 DOI: 10.1039/d4sc04364b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
To develop therapeutic strategies against COVID-19, we introduce a high-resolution all-atom polarizable model capturing many-body effects of protein, glycan, solvent, and membrane components in SARS-CoV-2 spike protein open and closed states. Employing μs-long molecular dynamics simulations powered by high-performance cloud-computing and unsupervised density-driven adaptive sampling, we investigated the differences in bulk-solvent-glycan and protein-solvent-glycan interfaces between these states. We unraveled a sophisticated solvent-glycan polarization interaction network involving the N165/N343 glycan-gate patterns that provide structural support for the open state and identified key water molecules that could potentially be targeted to destabilize this configuration. In the closed state, the reduced solvent polarization diminishes the overall N165/N343 dipoles, yet internal interactions and a reorganized sugar coat stabilize this state. Despite variations, our glycan-solvent accessibility analysis reveals the glycan shield capability to conserve constant interactions with the solvent, effectively camouflaging the virus from immune detection in both states. The presented insights advance our comprehension of viral pathogenesis at an atomic level, offering potential to combat COVID-19.
Collapse
Affiliation(s)
- Marharyta Blazhynska
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| | - Louis Lagardère
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin Texas 78712 USA
- Qubit Pharmaceuticals 75014 Paris France
| | - Olivier Adjoua
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin Texas 78712 USA
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| |
Collapse
|
3
|
Yılmaz Çolak Ç. Bacterial Membrane Vesicles as a Novel Vaccine Platform against SARS-CoV-2. Curr Microbiol 2024; 81:317. [PMID: 39164527 DOI: 10.1007/s00284-024-03846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Throughout history, infectious diseases have plagued humanity, with outbreaks occurring regularly worldwide. Not every outbreak affects people globally; however, in the case of Coronavirus Disease 2019 (COVID-19), caused by a novel coronavirus (SARS-CoV-2), it reached a pandemic level within a remarkably short period. Fortunately, advancements in medicine and biotechnology have facilitated swift responses to the disease, resulting in the development of therapeutics and vaccines. Nevertheless, the persistent spread of the virus and the emergence of new variants underscore the necessity for protective interventions, leading researchers to seek more effective vaccines. Despite the presence of various types of vaccines, including mRNA and inactivated vaccines against SARS-CoV-2, new platforms have been investigated since the pandemic, and research on bacterial membrane vesicles (BMVs) has demonstrated their potential as a novel COVID-19 vaccine platform. Researchers have explored different strategies for BMV-based COVID-19 vaccines, such as mixing the vesicles with antigenic components of the virus due to their adjuvant capacity or decorating the vesicles with the viral antigens to create adjuvanted delivery systems. These approaches have presented promising results in inducing robust immune responses, but obstacles such as reproducibility in obtaining and homogeneous characterization of BMVs remain in developing vesicle-based vaccines. Overall, the development of BMV-based vaccines represents a novel and promising strategy in the fight against COVID-19. Additional research and clinical trials are needed to further evaluate the potential of these vaccines to offer long-lasting protection against SARS-CoV-2 and its evolving variants.
Collapse
Affiliation(s)
- Çiğdem Yılmaz Çolak
- Life Sciences, Marmara Research Center, TUBITAK, Kocaeli, Türkiye.
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul, Türkiye.
| |
Collapse
|
4
|
Tse AL, Acreman CM, Ricardo-Lax I, Berrigan J, Lasso G, Balogun T, Kearns FL, Casalino L, McClain GL, Chandran AM, Lemeunier C, Amaro RE, Rice CM, Jangra RK, McLellan JS, Chandran K, Miller EH. Distinct pathway for evolution of enhanced receptor binding and cell entry in SARS-like bat coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600393. [PMID: 38979151 PMCID: PMC11230278 DOI: 10.1101/2024.06.24.600393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Understanding the zoonotic risks posed by bat coronaviruses (CoVs) is critical for pandemic preparedness. Herein, we generated recombinant vesicular stomatitis viruses (rVSVs) bearing spikes from divergent bat CoVs to investigate their cell entry mechanisms. Unexpectedly, the successful recovery of rVSVs bearing the spike from SHC014, a SARS-like bat CoV, was associated with the acquisition of a novel substitution in the S2 fusion peptide-proximal region (FPPR). This substitution enhanced viral entry in both VSV and coronavirus contexts by increasing the availability of the spike receptor-binding domain to recognize its cellular receptor, ACE2. A second substitution in the spike N-terminal domain, uncovered through forward-genetic selection, interacted epistatically with the FPPR substitution to synergistically enhance spike:ACE2 interaction and viral entry. Our findings identify genetic pathways for adaptation by bat CoVs during spillover and host-to-host transmission, fitness trade-offs inherent to these pathways, and potential Achilles' heels that could be targeted with countermeasures.
Collapse
|
5
|
Hills FR, Eruera AR, Hodgkinson-Bean J, Jorge F, Easingwood R, Brown SHJ, Bouwer JC, Li YP, Burga LN, Bostina M. Variation in structural motifs within SARS-related coronavirus spike proteins. PLoS Pathog 2024; 20:e1012158. [PMID: 38805567 PMCID: PMC11236199 DOI: 10.1371/journal.ppat.1012158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/10/2024] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
SARS-CoV-2 is the third known coronavirus (CoV) that has crossed the animal-human barrier in the last two decades. However, little structural information exists related to the close genetic species within the SARS-related coronaviruses. Here, we present three novel SARS-related CoV spike protein structures solved by single particle cryo-electron microscopy analysis derived from bat (bat SL-CoV WIV1) and civet (cCoV-SZ3, cCoV-007) hosts. We report complex glycan trees that decorate the glycoproteins and density for water molecules which facilitated modeling of the water molecule coordination networks within structurally important regions. We note structural conservation of the fatty acid binding pocket and presence of a linoleic acid molecule which are associated with stabilization of the receptor binding domains in the "down" conformation. Additionally, the N-terminal biliverdin binding pocket is occupied by a density in all the structures. Finally, we analyzed structural differences in a loop of the receptor binding motif between coronaviruses known to infect humans and the animal coronaviruses described in this study, which regulate binding to the human angiotensin converting enzyme 2 receptor. This study offers a structural framework to evaluate the close relatives of SARS-CoV-2, the ability to inform pandemic prevention, and aid in the development of pan-neutralizing treatments.
Collapse
Affiliation(s)
- Francesca R. Hills
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alice-Roza Eruera
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James Hodgkinson-Bean
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Fátima Jorge
- Otago Microscopy and Nano Imaging Unit, University of Otago, Dunedin, New Zealand
| | - Richard Easingwood
- Otago Microscopy and Nano Imaging Unit, University of Otago, Dunedin, New Zealand
| | - Simon H. J. Brown
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, New South Wales, Australia
| | - James C. Bouwer
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yi-Ping Li
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Laura N. Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Otago Microscopy and Nano Imaging Unit, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Upadhyay V, Panja S, Lucas A, Patrick C, Mallela KMG. Biophysical evolution of the receptor-binding domains of SARS-CoVs. Biophys J 2023; 122:4489-4502. [PMID: 37897042 PMCID: PMC10719049 DOI: 10.1016/j.bpj.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
With hundreds of coronaviruses (CoVs) identified in bats that can infect humans, it is essential to understand how CoVs that affected the human population have evolved. Seven known CoVs have infected humans, of which three CoVs caused severe disease with high mortalities: severe acute respiratory syndrome (SARS)-CoV emerged in 2002, Middle East respiratory syndrome-CoV in 2012, and SARS-CoV-2 in 2019. SARS-CoV and SARS-CoV-2 belong to the same family, follow the same receptor pathway, and use their receptor-binding domain (RBD) of spike protein to bind to the angiotensin-converting enzyme 2 (ACE2) receptor on the human epithelial cell surface. The sequence of the two RBDs is divergent, especially in the receptor-binding motif that directly interacts with ACE2. We probed the biophysical differences between the two RBDs in terms of their structure, stability, aggregation, and function. Since RBD is being explored as an antigen in protein subunit vaccines against CoVs, determining these biophysical properties will also aid in developing stable protein subunit vaccines. Our results show that, despite RBDs having a similar three-dimensional structure, they differ in their thermodynamic stability. RBD of SARS-CoV-2 is significantly less stable than that of SARS-CoV. Correspondingly, SARS-CoV-2 RBD shows a higher aggregation propensity. Regarding binding to ACE2, less stable SARS-CoV-2 RBD binds with a higher affinity than more stable SARS-CoV RBD. In addition, SARS-CoV-2 RBD is more homogenous in terms of its binding stoichiometry toward ACE2 compared to SARS-CoV RBD. These results indicate that SARS-CoV-2 RBD differs from SARS-CoV RBD in terms of its stability, aggregation, and function, possibly originating from the diverse receptor-binding motifs. Higher aggregation propensity and decreased stability of SARS-CoV-2 RBD warrant further optimization of protein subunit vaccines that use RBD as an antigen by inserting stabilizing mutations or formulation screening.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sudipta Panja
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alexandra Lucas
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Casey Patrick
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Krishna M G Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
7
|
Li Z, Lee JE, Cho N, Yoo HM. Anti-viral effect of usenamine a using SARS-CoV-2 pseudo-typed viruses. Heliyon 2023; 9:e21742. [PMID: 38027904 PMCID: PMC10656252 DOI: 10.1016/j.heliyon.2023.e21742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The escalating pandemic brought about by the novel SARS-CoV-2 virus is threatening global health, and thus, it is necessary to develop effective antiviral drugs. Usenamine A is a dibenzo-furan derivative separated from lichen Usnea diffracta showing broad-spectrum activity against different viruses. We evaluate that usenamine A has antiviral effects against novel SARS-CoV-2 Delta variant pseudotyped viruses (PVs) in A549 cells. In addition, usenamine A significantly suppresses SARS-CoV-2 PV-induced mitochondrial depolarization, elevated reactive oxygen species (ROS) levels, apoptosis, and inflammation. Usenamine A also causes the SARS-CoV-2 spike protein to become less stable. Thus, usenamine A shows potential as an antiviral drug that can provide protection against COVID-19.
Collapse
Affiliation(s)
- Zijun Li
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Joo-Eun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, South Korea
| |
Collapse
|
8
|
Pondé RADA. Physicochemical effects of emerging exchanges on the spike protein's RBM of the SARS-CoV-2 Omicron subvariants BA.1-BA.5 and its influence on the biological properties and attributes developed by these subvariants. Virology 2023; 587:109850. [PMID: 37562286 DOI: 10.1016/j.virol.2023.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Emerging in South Africa, SARS-CoV-2 Omicron variant was marked by the expression of an exaggerated number of mutations throughout its genome and by the emergence of subvariants, whose attributes developed by them have been associated with amino acid exchanges that occur mainly in the RBM region of the spike protein. The RBM comprises a region within the RBD and is directly involved in the SARS-CoV-2 spike protein interaction with the host cell ACE2 receptor, during the infection mechanism and viral transmission. Defined as the region from aa 437 to aa 508, there are several residues in certain positions that interact directly with the human ACE-2 receptor during these processes. The occurrence of amino acid exchanges in these positions causes physicochemical alterations in the SARS-CoV-2 spike protein, which confer additional advantages and attributes to the agent. In addition, these exchanges serve as a basis for the characterization of new variants and subvariants of SARS-CoV-2. In this review, the amino acid exchanges that have occurred in the RBM of the subvariants BA.1 to BA.5 of SARS-CoV-2 that emerged from the Omicron are described. The physicochemical effects caused by them on spike protein are also described, as well as their influence on the biological properties and attributes developed by the subvariants BA.1, BA.2, BA.3, BA.4 and BA.5.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Secretaria de Estado da Saúde -SES/Superintendência de Vigilância em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica de Doenças Transmissíveis-GVEDT/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil; Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
9
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
10
|
Fang L, Xu J, Zhao Y, Fan J, Shen J, Liu W, Cao G. The effects of amino acid substitution of spike protein and genomic recombination on the evolution of SARS-CoV-2. Front Microbiol 2023; 14:1228128. [PMID: 37560529 PMCID: PMC10409611 DOI: 10.3389/fmicb.2023.1228128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Over three years' pandemic of 2019 novel coronavirus disease (COVID-19), multiple variants and novel subvariants have emerged successively, outcompeted earlier variants and become predominant. The sequential emergence of variants reflects the evolutionary process of mutation-selection-adaption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Amino acid substitution/insertion/deletion in the spike protein causes altered viral antigenicity, transmissibility, and pathogenicity of SARS-CoV-2. Early in the pandemic, D614G mutation conferred virus with advantages over previous variants and increased transmissibility, and it also laid a conservative background for subsequent substantial mutations. The role of genomic recombination in the evolution of SARS-CoV-2 raised increasing concern with the occurrence of novel recombinants such as Deltacron, XBB.1.5, XBB.1.9.1, and XBB.1.16 in the late phase of pandemic. Co-circulation of different variants and co-infection in immunocompromised patients accelerate the emergence of recombinants. Surveillance for SARS-CoV-2 genomic variations, particularly spike protein mutation and recombination, is essential to identify ongoing changes in the viral genome and antigenic epitopes and thus leads to the development of new vaccine strategies and interventions.
Collapse
Affiliation(s)
- Letian Fang
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jie Xu
- Department of Foreign Languages, International Exchange Center for Military Medicine, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Junyan Fan
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jiaying Shen
- School of Medicine, Tongji University, Shanghai, China
| | - Wenbin Liu
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Jalal D, Samir O, Elzayat MG, El-Shqanqery HE, Diab AA, ElKaialy L, Mohammed AM, Hamdy D, Matar IK, Amer K, Elnakib M, Hassan W, Mansour T, Soliman S, Hassan R, Al-Toukhy GM, Hammad M, Abdo I, Sayed AA. Genomic characterization of SARS-CoV-2 in Egypt: insights into spike protein thermodynamic stability. Front Microbiol 2023; 14:1190133. [PMID: 37333655 PMCID: PMC10273679 DOI: 10.3389/fmicb.2023.1190133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
The overall pattern of the SARS-CoV-2 pandemic so far has been a series of waves; surges in new cases followed by declines. The appearance of novel mutations and variants underlie the rises in infections, making surveillance of SARS-CoV-2 mutations and prediction of variant evolution of utmost importance. In this study, we sequenced 320 SARS-CoV-2 viral genomes isolated from patients from the outpatient COVID-19 clinic in the Children's Cancer Hospital Egypt 57357 (CCHE 57357) and the Egypt Center for Research and Regenerative Medicine (ECRRM). The samples were collected between March and December 2021, covering the third and fourth waves of the pandemic. The third wave was found to be dominated by Nextclade 20D in our samples, with a small number of alpha variants. The delta variant was found to dominate the fourth wave samples, with the appearance of omicron variants late in 2021. Phylogenetic analysis reveals that the omicron variants are closest genetically to early pandemic variants. Mutation analysis shows SNPs, stop codon mutation gain, and deletion/insertion mutations, with distinct patterns of mutations governed by Nextclade or WHO variant. Finally, we observed a large number of highly correlated mutations, and some negatively correlated mutations, and identified a general inclination toward mutations that lead to enhanced thermodynamic stability of the spike protein. Overall, this study contributes genetic and phylogenetic data, as well as provides insights into SARS-CoV-2 viral evolution that may eventually help in the prediction of evolving mutations for better vaccine development and drug targets.
Collapse
Affiliation(s)
- Deena Jalal
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Omar Samir
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Mariam G. Elzayat
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Hend E. El-Shqanqery
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Aya A. Diab
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Lamiaa ElKaialy
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Aya M. Mohammed
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Donia Hamdy
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Islam K. Matar
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Department of Chemistry, Saint Mary’s University, Halifax, NS, Canada
| | - Khaled Amer
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Mostafa Elnakib
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Wael Hassan
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Tarek Mansour
- Department of Virology and Immunology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Clinical Pathology, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Sonia Soliman
- Department of Clinical Pathology, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Reem Hassan
- Department of Clinical and Chemical Pathology, Kasr Al-Aini School of Medicine, Cairo University, Cairo, Egypt
- Molecular Microbiology Unit, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ghada M. Al-Toukhy
- Department of Virology and Immunology, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Mahmoud Hammad
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Pediatric Oncology, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ibrahim Abdo
- Department of Clinical Pharmacy, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ahmed A. Sayed
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Faculty of Science, Department of Biochemistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Zabiegala A, Kim Y, Chang KO. Roles of host proteases in the entry of SARS-CoV-2. ANIMAL DISEASES 2023; 3:12. [PMID: 37128508 PMCID: PMC10125864 DOI: 10.1186/s44149-023-00075-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023] Open
Abstract
The spike protein (S) of SARS-CoV-2 is responsible for viral attachment and entry, thus a major factor for host susceptibility, tissue tropism, virulence and pathogenicity. The S is divided with S1 and S2 region, and the S1 contains the receptor-binding domain (RBD), while the S2 contains the hydrophobic fusion domain for the entry into the host cell. Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various cleavage sites. In this article, we review host proteases including furin, trypsin, transmembrane protease serine 2 (TMPRSS2) and cathepsins in the activation of SARS-CoV-2 S. Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin. The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2, and the binding triggers further conformational changes and exposure of the S2' site to proteases such as type II transmembrane serine proteases (TTPRs) including TMPRSS2. In the presence of TMPRSS2 on the target cells, SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane. In the absence of TMPRSS2, SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry. Additional host proteases involved in the cleavage of the S were discussed. This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2, and discussed the dual roles of such inhibitors in virus replication.
Collapse
Affiliation(s)
- Alexandria Zabiegala
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| |
Collapse
|
13
|
Thakur S, Verma RK, Kepp KP, Mehra R. Modelling SARS-CoV-2 spike-protein mutation effects on ACE2 binding. J Mol Graph Model 2023; 119:108379. [PMID: 36481587 PMCID: PMC9690204 DOI: 10.1016/j.jmgm.2022.108379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
The binding affinity of the SARS-CoV-2 spike (S)-protein to the human membrane protein ACE2 is critical for virus function. Computational structure-based screening of new S-protein mutations for ACE2 binding lends promise to rationalize virus function directly from protein structure and ideally aid early detection of potentially concerning variants. We used a computational protocol based on cryo-electron microscopy structures of the S-protein to estimate the change in ACE2-affinity due to S-protein mutation (ΔΔGbind) in good trend agreement with experimental ACE2 affinities. We then expanded predictions to all possible S-protein mutations in 21 different S-protein-ACE2 complexes (400,000 ΔΔGbind data points in total), using mutation group comparisons to reduce systematic errors. The results suggest that mutations that have arisen in major variants as a group maintain ACE2 affinity significantly more than random mutations in the total protein, at the interface, and at evolvable sites. Omicron mutations as a group had a modest change in binding affinity compared to mutations in other major variants. The single-mutation effects seem consistent with ACE2 binding being optimized and maintained in omicron, despite increased importance of other selection pressures (antigenic drift), however, epistasis, glycosylation and in vivo conditions will modulate these effects. Computational prediction of SARS-CoV-2 evolution remains far from achieved, but the feasibility of large-scale computation is substantially aided by using many structures and mutation groups rather than single mutation effects, which are very uncertain. Our results demonstrate substantial challenges but indicate ways forward to improve the quality of computer models for assessing SARS-CoV-2 mutation effects.
Collapse
Affiliation(s)
- Shivani Thakur
- Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur, 492015, Chhattisgarh, India
| | - Rajaneesh Kumar Verma
- Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur, 492015, Chhattisgarh, India
| | - Kasper Planeta Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, 2800, Kongens Lyngby, Denmark.
| | - Rukmankesh Mehra
- Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur, 492015, Chhattisgarh, India.
| |
Collapse
|
14
|
Lee JE, Jeong SY, Li Z, Kim HY, Kim HW, Yoo MJ, Jang HJ, Kim DK, Cho N, Yoo HM, Kim KH. Development of a screening platform to discover natural products active against SARS-CoV-2 infection using lung organoid models. Biomater Res 2023; 27:18. [PMID: 36855173 PMCID: PMC9974403 DOI: 10.1186/s40824-023-00357-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/19/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Natural products can serve as one of the alternatives, exhibiting high potential for the treatment and prevention of COVID-19, caused by SARS-CoV-2. Herein, we report a screening platform to test the antiviral efficacy of a natural product library against SARS-CoV-2 and verify their activity using lung organoids. METHODS Since SARS-CoV-2 is classified as a risk group 3 pathogen, the drug screening assay must be performed in a biosafety level 3 (BSL-3) laboratory. To circumvent this limitation, pseudotyped viruses (PVs) have been developed as replacements for the live SARS-CoV-2. We developed PVs containing spikes from Delta and Omicron variants of SARS-CoV-2 and improved the infection in an angiotensin-converting enzyme 2 (ACE2)-dependent manner. Human induced pluripotent stem cells (hiPSCs) derived lung organoids were generated to test the SARS-CoV-2 therapeutic efficacy of natural products. RESULTS Flavonoids from our natural product library had strong antiviral activity against the Delta- or Omicron-spike-containing PVs without affecting cell viability. We aimed to develop strategies to discover the dual function of either inhibiting infection at the beginning of the infection cycle or reducing spike stability following SARS-CoV-2 infection. When lung cells are already infected with the virus, the active flavonoids induced the degradation of the spike protein and exerted anti-inflammatory effects. Further experiments confirmed that the active flavonoids had strong antiviral activity in lung organoid models. CONCLUSION This screening platform will open new paths by providing a promising standard system for discovering novel drug leads against SARS-CoV-2 and help develop promising candidates for clinical investigation as potential therapeutics for COVID-19.
Collapse
Affiliation(s)
- Joo-Eun Lee
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Zijun Li
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
| | - Hyun-Yi Kim
- NGeneS Inc., Ansan, 15495, Republic of Korea
| | - Hyun-Woo Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Min Jeong Yoo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hee Joo Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Namki Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea.
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
15
|
Lee M, Major M, Hong H. Distinct Conformations of SARS-CoV-2 Omicron Spike Protein and Its Interaction with ACE2 and Antibody. Int J Mol Sci 2023; 24:3774. [PMID: 36835186 PMCID: PMC9967551 DOI: 10.3390/ijms24043774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Since November 2021, Omicron has been the dominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant that causes the coronavirus disease 2019 (COVID-19) and has continuously impacted human health. Omicron sublineages are still increasing and cause increased transmission and infection rates. The additional 15 mutations on the receptor binding domain (RBD) of Omicron spike proteins change the protein conformation, enabling the Omicron variant to evade neutralizing antibodies. For this reason, many efforts have been made to design new antigenic variants to induce effective antibodies in SARS-CoV-2 vaccine development. However, understanding the different states of Omicron spike proteins with and without external molecules has not yet been addressed. In this review, we analyze the structures of the spike protein in the presence and absence of angiotensin-converting enzyme 2 (ACE2) and antibodies. Compared to previously determined structures for the wildtype spike protein and other variants such as alpha, beta, delta, and gamma, the Omicron spike protein adopts a partially open form. The open-form spike protein with one RBD up is dominant, followed by the open-form spike protein with two RBD up, and the closed-form spike protein with the RBD down. It is suggested that the competition between antibodies and ACE2 induces interactions between adjacent RBDs of the spike protein, which lead to a partially open form of the Omicron spike protein. The comprehensive structural information of Omicron spike proteins could be helpful for the efficient design of vaccines against the Omicron variant.
Collapse
Affiliation(s)
- Myeongsang Lee
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Marian Major
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Huixiao Hong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
16
|
Structural patterns of SARS-CoV-2 variants of concern (alpha, beta, gamma, delta) spike protein are influenced by variant-specific amino acid mutations: A computational study with implications on viral evolution. J Theor Biol 2023; 558:111376. [PMID: 36473508 PMCID: PMC9721161 DOI: 10.1016/j.jtbi.2022.111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 (SARS2) regularly mutates resulting to variants of concern (VOC) which have higher virulence and transmissibility rates while concurrently evading available therapeutic strategies. This highlights the importance of amino acid mutations occurring in the SARS2 spike protein structure since it may affect virus biology. However, this was never fully elucidated. Here, network analysis was performed based on the COVID-19 genomic epidemiology network between December 2019-July 2021. Representative SARS2 VOC spike protein models were generated and quality checked, protein model superimposition was done, and common contact based on contact mapping was established. Throughout this study, we found that: (1) certain individual variant-specific amino acid mutations can affect the spike protein structural pattern; (2) certain individual variant-specific amino acid mutations had no affect on the spike protein structural pattern; and (3) certain combination of variant-specific amino acids are putatively epistatic mutations that can potentially influence the VOC spike protein structural pattern. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".
Collapse
|
17
|
Toelzer C, Gupta K, Berger I, Schaffitzel C. Cryo-EM reveals binding of linoleic acid to SARS-CoV-2 spike glycoprotein, suggesting an antiviral treatment strategy. Acta Crystallogr D Struct Biol 2023; 79:111-121. [PMID: 36762857 PMCID: PMC9912919 DOI: 10.1107/s2059798323000049] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
The COVID-19 pandemic and concomitant lockdowns presented a global health challenge and triggered unprecedented research efforts to elucidate the molecular mechanisms and pathogenicity of SARS-CoV-2. The spike glycoprotein decorating the surface of SARS-CoV-2 virions is a prime target for vaccine development, antibody therapy and serology as it binds the host cell receptor and is central for viral cell entry. The electron cryo-microscopy structure of the spike protein revealed a hydrophobic pocket in the receptor-binding domain that is occupied by an essential fatty acid, linoleic acid (LA). The LA-bound spike protein adopts a non-infectious locked conformation which is more stable than the infectious form and shields important immunogenic epitopes. Here, the impact of LA binding on viral infectivity and replication, and the evolutionary conservation of the pocket in other highly pathogenic coronaviruses, including SARS-CoV-2 variants of concern (VOCs), are reviewed. The importance of LA metabolic products, the eicosanoids, in regulating the human immune response and inflammation is highlighted. Lipid and fatty-acid binding to a hydrophobic pocket in proteins on the virion surface appears to be a broader strategy employed by viruses, including picornaviruses and Zika virus. Ligand binding stabilizes their protein structure and assembly, and downregulates infectivity. In the case of rhinoviruses, this has been exploited to develop small-molecule antiviral drugs that bind to the hydrophobic pocket. The results suggest a COVID-19 antiviral treatment based on the LA-binding pocket.
Collapse
Affiliation(s)
- Christine Toelzer
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, United Kingdom
- Bristol Synthetic Biology Centre: BrisSynBio, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - Kapil Gupta
- Imophoron Ltd, St Philips Central, Albert Road, Bristol BS2 0XJ, United Kingdom
| | - Imre Berger
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, United Kingdom
- Bristol Synthetic Biology Centre: BrisSynBio, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, United Kingdom
- Bristol Synthetic Biology Centre: BrisSynBio, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
18
|
Nejat R, Torshizi MF, Najafi DJ. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines (Basel) 2023; 11:204. [PMID: 36851081 PMCID: PMC9968219 DOI: 10.3390/vaccines11020204] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Since the spread of the deadly virus SARS-CoV-2 in late 2019, researchers have restlessly sought to unravel how the virus enters the host cells. Some proteins on each side of the interaction between the virus and the host cells are involved as the major contributors to this process: (1) the nano-machine spike protein on behalf of the virus, (2) angiotensin converting enzyme II, the mono-carboxypeptidase and the key component of renin angiotensin system on behalf of the host cell, (3) some host proteases and proteins exploited by SARS-CoV-2. In this review, the complex process of SARS-CoV-2 entrance into the host cells with the contribution of the involved host proteins as well as the sequential conformational changes in the spike protein tending to increase the probability of complexification of the latter with angiotensin converting enzyme II, the receptor of the virus on the host cells, are discussed. Moreover, the release of the catalytic ectodomain of angiotensin converting enzyme II as its soluble form in the extracellular space and its positive or negative impact on the infectivity of the virus are considered.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Laleh Hospital, Tehran 1467684595, Iran
| | | | | |
Collapse
|
19
|
Jiang S, Wu S, Zhao G, He Y, Bao L, Liu J, Qin C, Hou J, Ding Y, Cheng A, Jiang B, Wu J, Yan J, Humeau L, Patella A, Weiner DB, Broderick K, Wang B. Comparison of Wild Type DNA Sequence of Spike Protein from SARS-CoV-2 with Optimized Sequence on The Induction of Protective Responses Against SARS-Cov-2 Challenge in Mouse Model. Hum Vaccin Immunother 2022; 18:2016201. [PMID: 35061975 PMCID: PMC8986195 DOI: 10.1080/21645515.2021.2016201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genetic optimization of Nucleic Acid immunogens is important for potentially improving their immune potency. A COVID-19 DNA vaccine is in phase III clinical trial which is based on a promising highly developable technology platform. Here, we show optimization in mice generating a pGX-9501 DNA vaccine encoding full-length spike protein, which results in induction of potent humoral and cellular immune responses, including neutralizing antibodies, that block hACE2-RBD binding of live CoV2 virus in vitro. Optimization resulted in improved induction of cellular immunity by pGX-9501 as demonstrated by increased IFN-γ expression in both CD8+ and CD4 + T cells and this was associated with more robust antiviral CTL responses compared to unoptimized constructs. Vaccination with pGX-9501 induced subsequent protection against virus challenge in a rigorous hACE2 transgenic mouse model. Overall, pGX-9501 is a promising optimized COVID-19 DNA vaccine candidate inducing humoral and cellular immunity contributing to the vaccine's protective effects.
Collapse
Affiliation(s)
- Sheng Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College (SHMC), Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuting Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College (SHMC), Fudan University, Shanghai, China
| | - Gan Zhao
- Biomedical Research Institute of Advaccine (BRIA), Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou City, Jiangsu
| | - Yue He
- Biomedical Research Institute of Advaccine (BRIA), Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou City, Jiangsu
| | - Linlin Bao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jiangning Liu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jiawang Hou
- Biomedical Research Institute of Advaccine (BRIA), Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou City, Jiangsu
| | - Yuan Ding
- Biomedical Research Institute of Advaccine (BRIA), Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou City, Jiangsu
| | - Alex Cheng
- Biomedical Research Institute of Advaccine (BRIA), Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou City, Jiangsu
| | - Brian Jiang
- Biomedical Research Institute of Advaccine (BRIA), Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou City, Jiangsu
| | - John Wu
- Biomedical Research Institute of Advaccine (BRIA), Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou City, Jiangsu
| | - Jian Yan
- Inovio Pharmaceuticals, Plymouth Meeting, PA, USA
| | | | - Ami Patella
- Inovio Pharmaceuticals, Plymouth Meeting, PA, USA
| | | | | | - Bin Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College (SHMC), Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,CONTACT Bin Wang School of Basic Medical Sciences, Fudan University, 131 Dong’an Road, 409 Fuxing Building, Shanghai200032, China
| |
Collapse
|
20
|
Perico CP, De Pierri CR, Neto GP, Fernandes DR, Pedrosa FO, de Souza EM, Raittz RT. Genomic landscape of the SARS-CoV-2 pandemic in Brazil suggests an external P.1 variant origin. Front Microbiol 2022; 13:1037455. [PMID: 36620039 PMCID: PMC9814972 DOI: 10.3389/fmicb.2022.1037455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Brazil was the epicenter of worldwide pandemics at the peak of its second wave. The genomic/proteomic perspective of the COVID-19 pandemic in Brazil could provide insights to understand the global pandemics behavior. In this study, we track SARS-CoV-2 molecular information in Brazil using real-time bioinformatics and data science strategies to provide a comparative and evolutive panorama of the lineages in the country. SWeeP vectors represented the Brazilian and worldwide genomic/proteomic data from Global Initiative on Sharing Avian Influenza Data (GISAID) between February 2020 and August 2021. Clusters were analyzed and compared with PANGO lineages. Hierarchical clustering provided phylogenetic and evolutionary analyses of the lineages, and we tracked the P.1 (Gamma) variant origin. The genomic diversity based on Chao's estimation allowed us to compare richness and coverage among Brazilian states and other representative countries. We found that epidemics in Brazil occurred in two moments with different genetic profiles. The P.1 lineages emerged in the second wave, which was more aggressive. We could not trace the origin of P.1 from the variants present in Brazil. Instead, we found evidence pointing to its external source and a possible recombinant event that may relate P.1 to a B.1.1.28 variant subset. We discussed the potential application of the pipeline for emerging variants detection and the PANGO terminology stability over time. The diversity analysis showed that the low coverage and unbalanced sequencing among states in Brazil could have allowed the silent entry and dissemination of P.1 and other dangerous variants. This study may help to understand the development and consequences of variants of concern (VOC) entry.
Collapse
Affiliation(s)
- Camila P Perico
- Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
- Graduate Program in Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
| | - Camilla R De Pierri
- Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Giuseppe Pasqualato Neto
- Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
| | - Danrley R Fernandes
- Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
- Graduate Program in Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
| | - Fabio O Pedrosa
- Graduate Program in Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Emanuel M de Souza
- Graduate Program in Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Roberto T Raittz
- Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
- Graduate Program in Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
21
|
Replacement dynamics and the pathogenesis of the Alpha, Delta and Omicron variants of SARS-CoV-2. Epidemiol Infect 2022; 151:e32. [PMID: 36535802 PMCID: PMC9990386 DOI: 10.1017/s0950268822001935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
New SARS-CoV-2 variants causing COVID-19 are a major risk to public health worldwide due to the potential for phenotypic change and increases in pathogenicity, transmissibility and/or vaccine escape. Recognising signatures of new variants in terms of replacing growth and severity are key to informing the public health response. To assess this, we aimed to investigate key time periods in the course of infection, hospitalisation and death, by variant. We linked datasets on contact tracing (Contact Tracing Advisory Service), testing (the Second-Generation Surveillance System) and hospitalisation (the Admitted Patient Care dataset) for the entire length of contact tracing in the England - from March 2020 to March 2022. We modelled, for England, time delay distributions using a Bayesian doubly interval censored modelling approach for the SARS-CoV-2 variants Alpha, Delta, Delta Plus (AY.4.2), Omicron BA.1 and Omicron BA.2. This was conducted for the incubation period, the time from infection to hospitalisation and hospitalisation to death. We further modelled the growth of novel variant replacement using a generalised additive model with a negative binomial error structure and the relationship between incubation period length and the risk of a fatality using a Bernoulli generalised linear model with a logit link. The mean incubation periods for each variant were: Alpha 4.19 (95% credible interval (CrI) 4.13-4.26) days; Delta 3.87 (95% CrI 3.82-3.93) days; Delta Plus 3.92 (95% CrI 3.87-3.98) days; Omicron BA.1 3.67 (95% CrI 3.61-3.72) days and Omicron BA.2 3.48 (95% CrI 3.43-3.53) days. The mean time from infection to hospitalisation was for Alpha 11.31 (95% CrI 11.20-11.41) days, Delta 10.36 (95% CrI 10.26-10.45) days and Omicron BA.1 11.54 (95% CrI 11.38-11.70) days. The mean time from hospitalisation to death was, for Alpha 14.31 (95% CrI 14.00-14.62) days; Delta 12.81 (95% CrI 12.62-13.00) days and Omicron BA.2 16.02 (95% CrI 15.46-16.60) days. The 95th percentile of the incubation periods were: Alpha 11.19 (95% CrI 10.92-11.48) days; Delta 9.97 (95% CrI 9.73-10.21) days; Delta Plus 9.99 (95% CrI 9.78-10.24) days; Omicron BA.1 9.45 (95% CrI 9.23-9.67) days and Omicron BA.2 8.83 (95% CrI 8.62-9.05) days. Shorter incubation periods were associated with greater fatality risk when adjusted for age, sex, variant, vaccination status, vaccination manufacturer and time since last dose with an odds ratio of 0.83 (95% confidence interval 0.82-0.83) (P value < 0.05). Variants of SARS-CoV-2 that have replaced previously dominant variants have had shorter incubation periods. Conversely co-existing variants have had very similar and non-distinct incubation period distributions. Shorter incubation periods reflect generation time advantage, with a reduction in the time to the peak infectious period, and may be a significant factor in novel variant replacing growth. Shorter times for admission to hospital and death were associated with variant severity - the most severe variant, Delta, led to significantly earlier hospitalisation, and death. These measures are likely important for future risk assessment of new variants, and their potential impact on population health.
Collapse
|
22
|
Verkhivker GM, Agajanian S, Oztas D, Gupta G. Computational analysis of protein stability and allosteric interaction networks in distinct conformational forms of the SARS-CoV-2 spike D614G mutant: reconciling functional mechanisms through allosteric model of spike regulation. J Biomol Struct Dyn 2022; 40:9724-9741. [PMID: 34060425 DOI: 10.1080/07391102.2021.1933594] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we used an integrative computational approach to examine molecular mechanisms underlying functional effects of the D614G mutation by exploring atomistic modeling of the SARS-CoV-2 spike proteins as allosteric regulatory machines. We combined coarse-grained simulations, protein stability and dynamic fluctuation communication analysis with network-based community analysis to examine structures of the native and mutant SARS-CoV-2 spike proteins in different functional states. Through distance fluctuations communication analysis, we probed stability and allosteric communication propensities of protein residues in the native and mutant SARS-CoV-2 spike proteins, providing evidence that the D614G mutation can enhance long-range signaling of the allosteric spike engine. By combining functional dynamics analysis and ensemble-based alanine scanning of the SARS-CoV-2 spike proteins we found that the D614G mutation can improve stability of the spike protein in both closed and open forms, but shifting thermodynamic preferences towards the open mutant form. Our results revealed that the D614G mutation can promote the increased number of stable communities and allosteric hub centers in the open form by reorganizing and enhancing the stability of the S1-S2 inter-domain interactions and restricting mobility of the S1 regions. This study provides atomistic-based view of allosteric communications in the SARS-CoV-2 spike proteins, suggesting that the D614G mutation can exert its primary effect through allosterically induced changes on stability and communications in the residue interaction networks.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA, USA.,Depatment of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Steve Agajanian
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Deniz Oztas
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| |
Collapse
|
23
|
Song S, Kim H, Jang EY, Jeon H, Diao H, Khan MRI, Lee M, Lee YJ, Nam J, Kim S, Kim Y, Sohn E, Hwang I, Choi J. SARS-CoV-2 spike trimer vaccine expressed in Nicotiana benthamiana adjuvanted with Alum elicits protective immune responses in mice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2298-2312. [PMID: 36062974 PMCID: PMC9538723 DOI: 10.1111/pbi.13908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has spurred rapid development of vaccines as part of the public health response. However, the general strategy used to construct recombinant trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) proteins in mammalian cells is not completely adaptive to molecular farming. Therefore, we generated several constructs of recombinant S proteins for high expression in Nicotiana benthamiana. Intramuscular injection of N. benthamiana-expressed Sct vaccine (NSct Vac) into Balb/c mice elicited both humoral and cellular immune responses, and booster doses increased neutralizing antibody titres. In human angiotensin-converting enzyme knock-in mice, two doses of NSct Vac induced anti-S and neutralizing antibodies, which cross-neutralized Alpha, Beta, Delta and Omicron variants. Survival rates after lethal challenge with SARS-CoV-2 were up to 80%, without significant body weight loss, and viral titres in lung tissue fell rapidly, with no infectious virus detectable at 7-day post-infection. Thus, plant-derived NSct Vac could be a candidate COVID-19 vaccine.
Collapse
Affiliation(s)
- Shi‐Jian Song
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Heeyeon Kim
- Division of Acute Viral Disease, Center for Emerging Virus ResearchNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Eun Young Jang
- Division of Vaccine Research, Vaccine Research CenterNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Hyungmin Jeon
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Hai‐Ping Diao
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Md Rezaul Islam Khan
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Mi‐Seon Lee
- Division of Infectious Diseases InspectionJeju Special Self‐Governing Province Institute of Environment ResearchJejuKorea
| | - Young Jae Lee
- Division of Vaccine Research, Vaccine Research CenterNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Jeong‐hyun Nam
- Division of Vaccine Research, Vaccine Research CenterNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Seong‐Ryeol Kim
- Division of Acute Viral Disease, Center for Emerging Virus ResearchNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Young‐Jin Kim
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Eun‐Ju Sohn
- BioApplications Inc.Pohang Technopark ComplexPohangSouth Korea
| | - Inhwan Hwang
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Jang‐Hoon Choi
- Division of Acute Viral Disease, Center for Emerging Virus ResearchNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| |
Collapse
|
24
|
Haan TJ, Smith LK, DeRonde S, House E, Zidek J, Puhak D, Redlinger M, Parker J, Barnes BM, Burkhead JL, Knall C, Bortz E, Chen J, Drown DM. Pattern of SARS-CoV-2 variant B.1.1.519 emergence in Alaska. Sci Rep 2022; 12:20662. [PMID: 36450812 PMCID: PMC9712339 DOI: 10.1038/s41598-022-25373-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Alaska has the lowest population density in the United States (US) with a mix of urban centers and isolated rural communities. Alaska's distinct population dynamics compared to the contiguous US may have contributed to unique patterns of SARS-CoV-2 variants observed in early 2021. Here we examined 2323 SARS-CoV-2 genomes from Alaska and 278,635 from the contiguous US collected from December 2020 through June 2021 because of the notable emergence and spread of lineage B.1.1.519 in Alaska. We found that B.1.1.519 was consistently detected from late January through June of 2021 in Alaska with a peak prevalence in April of 77.9% unlike the rest of the US at 4.6%. The earlier emergence of B.1.1.519 coincided with a later peak of Alpha (B.1.1.7) compared to the contiguous US. We also observed differences in variant composition over time between the two most populated regions of Alaska and a modest increase in COVID-19 cases during the peak incidence of B.1.1.519. However, it is difficult to disentangle how social dynamics conflated changes in COVID-19 during this time. We suggest that the viral characteristics, such as amino acid substitutions in the spike protein, likely contributed to the unique spread of B.1.1.519 in Alaska.
Collapse
Affiliation(s)
- Tracie J Haan
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Lisa K Smith
- Alaska Division of Public Health, State of Alaska, Fairbanks, AK, USA
| | - Stephanie DeRonde
- Alaska Division of Public Health, State of Alaska, Fairbanks, AK, USA
| | - Elva House
- Alaska Division of Public Health, State of Alaska, Fairbanks, AK, USA
| | - Jacob Zidek
- Alaska Division of Public Health, State of Alaska, Fairbanks, AK, USA
| | - Diana Puhak
- Alaska Division of Public Health, State of Alaska, Fairbanks, AK, USA
| | - Matthew Redlinger
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | - Jayme Parker
- Alaska Division of Public Health, State of Alaska, Fairbanks, AK, USA
| | - Brian M Barnes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Jason L Burkhead
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | - Cindy Knall
- WWAMI School of Medical Education, University of Alaska Anchorage, Anchorage, AK, USA
| | - Eric Bortz
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA.
- WWAMI School of Medical Education, University of Alaska Anchorage, Anchorage, AK, USA.
| | - Jack Chen
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.
- Alaska Division of Public Health, State of Alaska, Fairbanks, AK, USA.
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA.
| | - Devin M Drown
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA.
| |
Collapse
|
25
|
Toelzer C, Gupta K, Yadav SKN, Hodgson L, Williamson MK, Buzas D, Borucu U, Powers K, Stenner R, Vasileiou K, Garzoni F, Fitzgerald D, Payré C, Gautam G, Lambeau G, Davidson AD, Verkade P, Frank M, Berger I, Schaffitzel C. The free fatty acid-binding pocket is a conserved hallmark in pathogenic β-coronavirus spike proteins from SARS-CoV to Omicron. SCIENCE ADVANCES 2022; 8:eadc9179. [PMID: 36417532 PMCID: PMC9683698 DOI: 10.1126/sciadv.adc9179] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/19/2022] [Indexed: 06/01/2023]
Abstract
As coronavirus disease 2019 (COVID-19) persists, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) emerge, accumulating spike (S) glycoprotein mutations. S receptor binding domain (RBD) comprises a free fatty acid (FFA)-binding pocket. FFA binding stabilizes a locked S conformation, interfering with virus infectivity. We provide evidence that the pocket is conserved in pathogenic β-coronaviruses (β-CoVs) infecting humans. SARS-CoV, MERS-CoV, SARS-CoV-2, and VOCs bind the essential FFA linoleic acid (LA), while binding is abolished by one mutation in common cold-causing HCoV-HKU1. In the SARS-CoV S structure, LA stabilizes the locked conformation, while the open, infectious conformation is devoid of LA. Electron tomography of SARS-CoV-2-infected cells reveals that LA treatment inhibits viral replication, resulting in fewer deformed virions. Our results establish FFA binding as a hallmark of pathogenic β-CoV infection and replication, setting the stage for FFA-based antiviral strategies to overcome COVID-19.
Collapse
Affiliation(s)
- Christine Toelzer
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Kapil Gupta
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
- Imophoron Ltd., St. Philips Central, Albert Rd, Bristol BS2 0XJ, UK
| | - Sathish K. N. Yadav
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Lorna Hodgson
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | | | - Dora Buzas
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Ufuk Borucu
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Kyle Powers
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Richard Stenner
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Kate Vasileiou
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Frederic Garzoni
- Imophoron Ltd., St. Philips Central, Albert Rd, Bristol BS2 0XJ, UK
| | - Daniel Fitzgerald
- Halo Therapeutics Ltd., St. Philips Central, Albert Rd, Bristol BS2 0XJ, UK
| | - Christine Payré
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Gunjan Gautam
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Gérard Lambeau
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Andrew D. Davidson
- Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Paul Verkade
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | | | - Imre Berger
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
- Halo Therapeutics Ltd., St. Philips Central, Albert Rd, Bristol BS2 0XJ, UK
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
- Halo Therapeutics Ltd., St. Philips Central, Albert Rd, Bristol BS2 0XJ, UK
| |
Collapse
|
26
|
Lam SD, Waman VP, Fraternali F, Orengo C, Lees J. Structural and energetic analyses of SARS-CoV-2 N-terminal domain characterise sugar binding pockets and suggest putative impacts of variants on COVID-19 transmission. Comput Struct Biotechnol J 2022; 20:6302-6316. [PMID: 36408455 PMCID: PMC9639386 DOI: 10.1016/j.csbj.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is an ongoing pandemic that causes significant health/socioeconomic burden. Variants of concern (VOCs) have emerged affecting transmissibility, disease severity and re-infection risk. Studies suggest that the - N-terminal domain (NTD) of the spike protein may have a role in facilitating virus entry via sialic-acid receptor binding. Furthermore, most VOCs include novel NTD variants. Despite global sequence and structure similarity, most sialic-acid binding pockets in NTD vary across coronaviruses. Our work suggests ongoing evolutionary tuning of the sugar-binding pockets and recent analyses have shown that NTD insertions in VOCs tend to lie close to loops. We extended the structural characterisation of these sugar-binding pockets and explored whether variants could enhance sialic acid-binding. We found that recent NTD insertions in VOCs (i.e., Gamma, Delta and Omicron variants) and emerging variants of interest (VOIs) (i.e., Iota, Lambda and Theta variants) frequently lie close to sugar-binding pockets. For some variants, including the recent Omicron VOC, we find increases in predicted sialic acid-binding energy, compared to the original SARS-CoV-2, which may contribute to increased transmission. These binding observations are supported by molecular dynamics simulations (MD). We examined the similarity of NTD across Betacoronaviruses to determine whether the sugar-binding pockets are sufficiently similar to be exploited in drug design. Whilst most pockets are too structurally variable, we detected a previously unknown highly structurally conserved pocket which can be investigated in pursuit of a generic pan-Betacoronavirus drug. Our structure-based analyses help rationalise the effects of VOCs and provide hypotheses for experiments. Our findings suggest a strong need for experimental monitoring of changes in NTD of VOCs.
Collapse
Affiliation(s)
- Su Datt Lam
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Vaishali P. Waman
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Christine Orengo
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Jonathan Lees
- Translational Health Sciences, Bristol Medical University, University of Bristol, Bristol, United Kingdom
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
27
|
Pang YT, Acharya A, Lynch DL, Pavlova A, Gumbart JC. SARS-CoV-2 spike opening dynamics and energetics reveal the individual roles of glycans and their collective impact. Commun Biol 2022; 5:1170. [PMID: 36329138 PMCID: PMC9631587 DOI: 10.1038/s42003-022-04138-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
The trimeric spike (S) glycoprotein, which protrudes from the SARS-CoV-2 viral envelope, binds to human ACE2, initiated by at least one protomer's receptor binding domain (RBD) switching from a "down" (closed) to an "up" (open) state. Here, we used large-scale molecular dynamics simulations and two-dimensional replica exchange umbrella sampling calculations with more than a thousand windows and an aggregate total of 160 μs of simulation to investigate this transition with and without glycans. We find that the glycosylated spike has a higher barrier to opening and also energetically favors the down state over the up state. Analysis of the S-protein opening pathway reveals that glycans at N165 and N122 interfere with hydrogen bonds between the RBD and the N-terminal domain in the up state, while glycans at N165 and N343 can stabilize both the down and up states. Finally, we estimate how epitope exposure for several known antibodies changes along the opening path. We find that the BD-368-2 antibody's epitope is continuously exposed, explaining its high efficacy.
Collapse
Affiliation(s)
- Yui Tik Pang
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,BioInspired Syracuse and Department of Chemistry, Syracuse University, Syracuse, NY, 13244, USA
| | - Diane L Lynch
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
28
|
Stability and expression of SARS-CoV-2 spike-protein mutations. Mol Cell Biochem 2022; 478:1269-1280. [PMID: 36302994 PMCID: PMC9612610 DOI: 10.1007/s11010-022-04588-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022]
Abstract
Protein fold stability likely plays a role in SARS-CoV-2 S-protein evolution, together with ACE2 binding and antibody evasion. While few thermodynamic stability data are available for S-protein mutants, many systematic experimental data exist for their expression. In this paper, we explore whether such expression levels relate to the thermodynamic stability of the mutants. We studied mutation-induced SARS-CoV-2 S-protein fold stability, as computed by three very distinct methods and eight different protein structures to account for method- and structure-dependencies. For all methods and structures used (24 comparisons), computed stability changes correlate significantly (99% confidence level) with experimental yeast expression from the literature, such that higher expression is associated with relatively higher fold stability. Also significant, albeit weaker, correlations were seen between stability and ACE2 binding effects. The effect of thermodynamic fold stability may be direct or a correlate of amino acid or site properties, notably the solvent exposure of the site. Correlation between computed stability and experimental expression and ACE2 binding suggests that functional properties of the SARS-CoV-2 S-protein mutant space are largely determined by a few simple features, due to underlying correlations. Our study lends promise to the development of computational tools that may ideally aid in understanding and predicting SARS-CoV-2 S-protein evolution.
Collapse
|
29
|
Bedada FB, Gorfu G, Teng S, Neita ME. Insight into genomic organization of pathogenic coronaviruses, SARS-CoV-2: Implication for emergence of new variants, laboratory diagnosis and treatment options. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:917201. [PMID: 39157715 PMCID: PMC11328875 DOI: 10.3389/fmmed.2022.917201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/13/2022] [Indexed: 08/20/2024]
Abstract
SARS-CoV-2 is a novel zoonotic positive-sense RNA virus (ssRNA+) belonging to the genus beta coronaviruses (CoVs) in the Coronaviridae family. It is the causative agent for the outbreak of the disease, COVID-19. It is the third CoV causing pneumonia around the world in the past 2 decades. To date, it has caused significant deaths worldwide. Notably, the emergence of new genetic variants conferring efficient transmission and immune evasion remained a challenge, despite the reduction in the number of death cases, owing to effective vaccination regimen (boosting) and safety protocols. Thus, information harnessed from SARS-CoV-2 genomic organization is indispensable for seeking laboratory diagnosis and treatment options. Here in, we review previously circulating variants of SARS-CoV-2 designated variant of concern (VOC) including the Alpha (United Kingdom), Beta (South Africa), Gamma (Brazil), Delta (India), and recently circulating VOC, Omicron (South Africa) and its divergent subvariants (BA.1, BA.2, BA.3, BA.2.12.1, BA.4 and BA.5) with BA.5 currently becoming dominant and prolonging the COVID pandemic. In addition, we address the role of computational models for mutagenesis analysis which can predict important residues that contribute to transmissibility, virulence, immune evasion, and molecular detections of SARS-CoV-2. Concomitantly, the importance of harnessing the immunobiology of SARS-CoV-2 and host interaction for therapeutic purpose; and use of an in slilico based biocomputational approaches to achieve this purpose via predicting novel therapeutic agents targeting PRR such as toll like receptor, design of universal vaccine and chimeric antibodies tailored to the emergent variant have been highlighted.
Collapse
Affiliation(s)
- Fikru B. Bedada
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| | - Gezahegn Gorfu
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
- Department of Pathology, College of Medicine, Howard University, Washington, DC, United States
| | - Shaolei Teng
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC, United States
| | - Marguerite E. Neita
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| |
Collapse
|
30
|
Srinivasa Rao ASR, Krantz SG. Mathematical analysis and topology of SARS-CoV-2, bonding with cells and unbonding. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 2022; 514:125664. [PMID: 34538930 PMCID: PMC8438870 DOI: 10.1016/j.jmaa.2021.125664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 06/13/2023]
Abstract
We consider the structure of the novel coronavirus (SARS-Cov-2) in terms of the number of spikes that are critical in bonding with the cells in the host. Bonding formation is considered for selection criteria with and without any treatments. Functional mappings from the discrete space of spikes and cells and their analysis are performed. We found that careful mathematical constructions help in understanding the treatment impacts, and the role of vaccines within a host. Smale's famous 2-D horseshoe examples inspired us to create 3-D visualizations and understand the topological diffusion of spikes from one human organ to another organ. The pharma industry will benefit from such an analysis for designing efficient treatment and vaccine strategies.
Collapse
Affiliation(s)
- Arni S R Srinivasa Rao
- Laboratory for Theory and Mathematical Modeling, Medical College of Georgia, Department of Mathematics, Augusta University, GA, USA
| | - Steven G Krantz
- Department of Mathematics, Washington University in St. Louis, MO, USA
| |
Collapse
|
31
|
The Comparison of Mutational Progression in SARS-CoV-2: A Short Updated Overview. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3040018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The COVID-19 pandemic has impacted the world population adversely, posing a threat to human health. In the past few years, various strains of SARS-CoV-2, each with different mutations in its structure, have impacted human health in negative ways. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations influence the virulence, antibody evasion, and Angiotensin-converting enzyme 2 (ACE2) affinity of the virus. These mutations are essential to understanding how a new strain of SARS-CoV-2 has changed and its possible effects on the human body. This review provides an insight into the spike mutations of SARS-CoV-2 variants. As the current scientific data offer a scattered outlook on the various type of mutations, we aimed to categorize the mutations of Beta (B.1.351), Gamma (P.1), Delta (B.1.612.2), and Omicron (B.1.1.529) systematically according to their location in the subunit 1 (S1) and subunit 2 (S2) domains and summarized their consequences as a result. We also compared the miscellany of mutations that have emerged in all four variants to date. The comparison shows that mutations such as D614G and N501Y have emerged in all four variants of concern and that all four variants have multiple mutations within the N-terminal domain (NTD), as in the case of the Delta variant. Other mutations are scattered in the receptor binding domain (RBD) and subdomain 2 (SD2) of the S1 domain. Mutations in RBD or NTD are often associated with antibody evasion. Few mutations lie in the S2 domain in the Beta, Gamma, and Delta variants. However, in the Omicron variant many mutations occupy the S2 domain, hinting towards a much more evasive virus.
Collapse
|
32
|
Park T, Hwang H, Moon S, Kang SG, Song S, Kim YH, Kim H, Ko EJ, Yoon SD, Kang SM, Hwang HS. Vaccines against SARS-CoV-2 variants and future pandemics. Expert Rev Vaccines 2022; 21:1363-1376. [PMID: 35924678 PMCID: PMC9979704 DOI: 10.1080/14760584.2022.2110075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/02/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vaccination continues to be the most effective method for controlling COVID-19 infectious diseases. Nonetheless, SARS-CoV-2 variants continue to evolve and emerge, resulting in significant public concerns worldwide, even after more than 2 years since the COVID-19 pandemic. It is important to better understand how different COVID-19 vaccine platforms work, why SARS-CoV-2 variants continue to emerge, and what options for improving COVID-19 vaccines can be considered to fight against SARS-CoV-2 variants and future pandemics. AREA COVERED Here, we reviewed the innate immune sensors in the recognition of SARS-CoV-2 virus, innate and adaptive immunity including neutralizing antibodies by different COVID-19 vaccines. Efficacy comparison of the several COVID-19 vaccine platforms approved for use in humans, concerns about SARS-CoV-2 variants and breakthrough infections, and the options for developing future COIVD-19 vaccines were also covered. EXPERT OPINION Owing to the continuous emergence of novel pathogens and the reemergence of variants, safer and more effective new vaccines are needed. This review also aims to provide the knowledge basis for the development of next-generation COVID-19 and pan-coronavirus vaccines to provide cross-protection against new SARS-CoV-2 variants and future coronavirus pandemics.
Collapse
Affiliation(s)
- Taeyoung Park
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Hyogyeong Hwang
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Suhyeong Moon
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Sang Gu Kang
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Seunghyup Song
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Young Hun Kim
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Hanbi Kim
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Eun-Ju Ko
- College of Veterinary Medicine and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Soon-Do Yoon
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, South Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Hye Suk Hwang
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| |
Collapse
|
33
|
Structural heterogeneity and precision of implications drawn from cryo-electron microscopy structures: SARS-CoV-2 spike-protein mutations as a test case. EUROPEAN BIOPHYSICS JOURNAL 2022; 51:555-568. [PMID: 36167828 PMCID: PMC9514682 DOI: 10.1007/s00249-022-01619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
Protein structures may be used to draw functional implications at the residue level, but how sensitive are these implications to the exact structure used? Calculation of the effects of SARS-CoV-2 S-protein mutations based on experimental cryo-electron microscopy structures have been abundant during the pandemic. To understand the precision of such estimates, we studied three distinct methods to estimate stability changes for all possible mutations in 23 different S-protein structures (3.69 million ΔΔG values in total) and explored how random and systematic errors can be remedied by structure-averaged mutation group comparisons. We show that computational estimates have low precision, due to method and structure heterogeneity making results for single mutations uninformative. However, structure-averaged differences in mean effects for groups of substitutions can yield significant results. Illustrating this protocol, functionally important natural mutations, despite individual variations, average to a smaller stability impact compared to other possible mutations, independent of conformational state (open, closed). In summary, we document substantial issues with precision in structure-based protein modeling and recommend sensitivity tests to quantify these effects, but also suggest partial solutions to the problem in the form of structure-averaged “ensemble” estimates for groups of residues when multiple structures are available.
Collapse
|
34
|
A Quantitative ELISA to Detect Anti-SARS-CoV-2 Spike IgG Antibodies in Infected Patients and Vaccinated Individuals. Microorganisms 2022; 10:microorganisms10091812. [PMID: 36144414 PMCID: PMC9502828 DOI: 10.3390/microorganisms10091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/03/2022] Open
Abstract
There is an ongoing need for high-precision serological assays for the quantitation of anti-SARS-CoV-2 antibodies. Here, a trimeric SARS-CoV-2 spike (S) protein was used to develop an ELISA to quantify specific IgG antibodies present in serum, plasma, and dried blood spots (DBS) collected from infected patients or vaccine recipients. The quantitative S-ELISA was calibrated with international anti-SARS-CoV-2 immunoglobulin standards to provide test results in binding antibody units per mL (BAU/mL). The assay showed excellent linearity, precision, and accuracy. A sensitivity of 100% was shown for samples collected from 54 patients with confirmed SARS-CoV-2 infection more than 14 days after symptom onset or disease confirmation by RT-PCR and 58 vaccine recipients more than 14 days after vaccination. The assay specificity was 98.3%. Furthermore, antibody responses were measured in follow-up samples from vaccine recipients and infected patients. Most mRNA vaccine recipients had a similar response, with antibody generation starting 2-3 weeks after the first vaccination and maintaining positive for at least six months after a second vaccination. For most infected patients, the antibody titers increased during the second week after PCR confirmation. This S-ELISA can be used to quantify the seroprevalence of SARS-CoV-2 in the population exposed to the virus or vaccinated.
Collapse
|
35
|
Choque-Guevara R, Poma-Acevedo A, Montesinos-Millán R, Rios-Matos D, Gutiérrez-Manchay K, Montalvan-Avalos A, Quiñones-Garcia S, Cauti-Mendoza MDG, Agurto-Arteaga A, Ramirez-Ortiz I, Criollo-Orozco M, Huaccachi-Gonzales E, Romero YK, Perez-Martinez N, Isasi-Rivas G, Sernaque-Aguilar Y, Villanueva-Pérez D, Ygnacio F, Vallejos-Sánchez K, Fernández-Sánchez M, Guevara-Sarmiento LA, Fernández-Díaz M, Zimic M. Squalene in oil-based adjuvant improves the immunogenicity of SARS-CoV-2 RBD and confirms safety in animal models. PLoS One 2022; 17:e0269823. [PMID: 35998134 PMCID: PMC9397949 DOI: 10.1371/journal.pone.0269823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/30/2022] [Indexed: 01/09/2023] Open
Abstract
COVID-19 pandemic has accelerated the development of vaccines against its etiologic agent, SARS-CoV-2. However, the emergence of new variants of the virus lead to the generation of new alternatives to improve the current sub-unit vaccines in development. In the present report, the immunogenicity of the Spike RBD of SARS-CoV-2 formulated with an oil-in-water emulsion and a water-in-oil emulsion with squalene was evaluated in mice and hamsters. The RBD protein was expressed in insect cells and purified by chromatography until >95% purity. The protein was shown to have the appropriate folding as determined by ELISA and flow cytometry binding assays to its receptor, as well as by its detection by hamster immune anti-S1 sera under non-reducing conditions. In immunization assays, although the cellular immune response elicited by both adjuvants were similar, the formulation based in water-in-oil emulsion and squalene generated an earlier humoral response as determined by ELISA. Similarly, this formulation was able to stimulate neutralizing antibodies in hamsters. The vaccine candidate was shown to be safe, as demonstrated by the histopathological analysis in lungs, liver and kidney. These results have shown the potential of this formulation vaccine to be evaluated in a challenge against SARS-CoV-2 and determine its ability to confer protection.
Collapse
Affiliation(s)
| | | | | | - Dora Rios-Matos
- Laboratorios de investigación y desarrollo, FARVET SAC, Chincha, Ica, Perú
| | | | | | - Stefany Quiñones-Garcia
- Laboratorios de investigación y desarrollo, FARVET SAC, Chincha, Ica, Perú
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria de Grecia Cauti-Mendoza
- Laboratorios de investigación y desarrollo, FARVET SAC, Chincha, Ica, Perú
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | | | | - Yomara K. Romero
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Gisela Isasi-Rivas
- Laboratorios de investigación y desarrollo, FARVET SAC, Chincha, Ica, Perú
| | | | | | - Freddy Ygnacio
- Laboratorios de investigación y desarrollo, FARVET SAC, Chincha, Ica, Perú
| | - Katherine Vallejos-Sánchez
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | | - Mirko Zimic
- Laboratorios de investigación y desarrollo, FARVET SAC, Chincha, Ica, Perú
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- * E-mail:
| | | |
Collapse
|
36
|
Claireaux M, Caniels TG, de Gast M, Han J, Guerra D, Kerster G, van Schaik BDC, Jongejan A, Schriek AI, Grobben M, Brouwer PJM, van der Straten K, Aldon Y, Capella-Pujol J, Snitselaar JL, Olijhoek W, Aartse A, Brinkkemper M, Bontjer I, Burger JA, Poniman M, Bijl TPL, Torres JL, Copps J, Martin IC, de Taeye SW, de Bree GJ, Ward AB, Sliepen K, van Kampen AHC, Moerland PD, Sanders RW, van Gils MJ. A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike. Nat Commun 2022; 13:4539. [PMID: 35927266 PMCID: PMC9352689 DOI: 10.1038/s41467-022-32232-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/22/2022] [Indexed: 12/21/2022] Open
Abstract
Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigate the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We show that ∼82% of SARS-CoV-2 S-reactive B cells harbor a naive phenotype, which represents an unusually high fraction of total human naive B cells (∼0.1%). Approximately 10% of these naive S-reactive B cells share an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Mathieu Claireaux
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Tom G Caniels
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Marlon de Gast
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Denise Guerra
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Gius Kerster
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Barbera D C van Schaik
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Public Health, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Public Health, Amsterdam, the Netherlands
| | - Angela I Schriek
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Marloes Grobben
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Philip J M Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Karlijn van der Straten
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Yoann Aldon
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Joan Capella-Pujol
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Jonne L Snitselaar
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Wouter Olijhoek
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Aafke Aartse
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Mitch Brinkkemper
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Ilja Bontjer
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Judith A Burger
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Meliawati Poniman
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Tom P L Bijl
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Isabel Cuella Martin
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Steven W de Taeye
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Godelieve J de Bree
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kwinten Sliepen
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Public Health, Amsterdam, the Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Public Health, Amsterdam, the Netherlands
| | - Rogier W Sanders
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands.
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| | - Marit J van Gils
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands.
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands.
| |
Collapse
|
37
|
da Costa CHS, de Freitas CAB, Alves CN, Lameira J. Assessment of mutations on RBD in the Spike protein of SARS-CoV-2 Alpha, Delta and Omicron variants. Sci Rep 2022; 12:8540. [PMID: 35595778 PMCID: PMC9121086 DOI: 10.1038/s41598-022-12479-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome (SARS) coronavirus 2 (CoV-2) variant Omicron spread more rapid than the other variants of SARS-CoV-2 virus. Mutations on the Spike (S) protein receptor-binding domain (RBD) are critical for the antibody resistance and infectivity of the SARS-CoV-2 variants. In this study, we have used accelerated molecular dynamics (aMD) simulations and free energy calculations to present a systematic analysis of the affinity and conformational dynamics along with the interactions that drive the binding between Spike protein RBD and human angiotensin-converting enzyme 2 (ACE2) receptor. We evaluate the impacts of the key mutation that occur in the RBDs Omicron and other variants in the binding with the human ACE2 receptor. The results show that S protein Omicron has stronger binding to the ACE2 than other variants. The evaluation of the decomposition energy per residue shows the mutations N440K, T478K, Q493R and Q498R observed in Spike protein of SARS-CoV-2 provided a stabilization effect for the interaction between the SARS-CoV-2 RBD and ACE2. Overall, the results demonstrate that faster spreading of SARS-CoV-2 Omicron may be correlated with binding affinity of S protein RBD to ACE2 and mutations of uncharged residues to positively charged residues such as Lys and Arg in key positions in the RBD.
Collapse
Affiliation(s)
- Clauber Henrique Souza da Costa
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, Belém, PA, Brazil
| | - Camila Auad Beltrão de Freitas
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, Belém, PA, Brazil
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, Belém, PA, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, Belém, PA, Brazil.
| |
Collapse
|
38
|
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic demonstrates the threat posed by novel coronaviruses to human health. Coronaviruses share a highly conserved cell entry mechanism mediated by the spike protein, the sole product of the S gene. The structural dynamics by which the spike protein orchestrates infection illuminate how antibodies neutralize virions and how S mutations contribute to viral fitness. Here, we review the process by which spike engages its proteinaceous receptor, angiotensin converting enzyme 2 (ACE2), and how host proteases prime and subsequently enable efficient membrane fusion between virions and target cells. We highlight mutations common among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern and discuss implications for cell entry. Ultimately, we provide a model by which sarbecoviruses are activated for fusion competency and offer a framework for understanding the interplay between humoral immunity and the molecular evolution of the SARS-CoV-2 Spike. In particular, we emphasize the relevance of the Canyon Hypothesis (M. G. Rossmann, J Biol Chem 264:14587-14590, 1989) for understanding evolutionary trajectories of viral entry proteins during sustained intraspecies transmission of a novel viral pathogen.
Collapse
Affiliation(s)
- Kyle A. Wolf
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Interdiscipinary Ph.D. Program in Structural and Computational Biology and Quantitative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason C. Kwan
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
- Center for Excellence in Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
39
|
Martin DP, Lytras S, Lucaci AG, Maier W, Grüning B, Shank SD, Weaver S, MacLean OA, Orton RJ, Lemey P, Boni MF, Tegally H, Harkins GW, Scheepers C, Bhiman JN, Everatt J, Amoako DG, San JE, Giandhari J, Sigal A, Williamson C, Hsiao NY, von Gottberg A, De Klerk A, Shafer RW, Robertson DL, Wilkinson RJ, Sewell BT, Lessells R, Nekrutenko A, Greaney AJ, Starr TN, Bloom JD, Murrell B, Wilkinson E, Gupta RK, de Oliveira T, Kosakovsky Pond SL. Selection Analysis Identifies Clusters of Unusual Mutational Changes in Omicron Lineage BA.1 That Likely Impact Spike Function. Mol Biol Evol 2022; 39:msac061. [PMID: 35325204 PMCID: PMC9037384 DOI: 10.1093/molbev/msac061] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron overall previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.
Collapse
Affiliation(s)
- Darren P. Martin
- Institute of Infectious Diseases and Molecular Medicine, Division of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Alexander G. Lucaci
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Wolfgang Maier
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany, usegalaxy.eu
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany, usegalaxy.eu
| | - Stephen D. Shank
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Steven Weaver
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Oscar A. MacLean
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Maciej F. Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Gordon W. Harkins
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Cathrine Scheepers
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jinal N. Bhiman
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Daniel G. Amoako
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nei-yuan Hsiao
- Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Arne De Klerk
- Institute of Infectious Diseases and Molecular Medicine, Division of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Robert J. Wilkinson
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
- Francis Crick Institute, London, United Kingdom
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - B. Trevor Sewell
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA, usegalaxy.org
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eduan Wilkinson
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science, Stellenbosch University, Stellenbosch, South Africa
| | - Ravindra K. Gupta
- Africa Health Research Institute, Durban, South Africa
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
40
|
Kastenhuber ER, Mercadante M, Nilsson-Payant B, Johnson JL, Jaimes JA, Muecksch F, Weisblum Y, Bram Y, Whittaker GR, tenOever BR, Schwartz RE, Chandar V, Cantley L. Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. eLife 2022; 11:77444. [PMID: 35294338 PMCID: PMC8942469 DOI: 10.7554/elife.77444] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Coagulopathy is a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. While certain host proteases, including TMPRSS2 and furin, are known to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry in the respiratory tract, other proteases may also contribute. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing infection at the stage of viral entry. Coagulation factors increased SARS-CoV-2 infection in human lung organoids. A drug-repurposing screen identified a subset of protease inhibitors that promiscuously inhibited spike cleavage by both transmembrane serine proteases and coagulation factors. The mechanism of the protease inhibitors nafamostat and camostat may extend beyond inhibition of TMPRSS2 to coagulation-induced spike cleavage. Anticoagulation is critical in the management of COVID-19, and early intervention could provide collateral benefit by suppressing SARS-CoV-2 viral entry. We propose a model of positive feedback whereby infection-induced hypercoagulation exacerbates SARS-CoV-2 infectivity.
Collapse
Affiliation(s)
| | - Marisa Mercadante
- Department of Medicine, Weill Cornell Medical College, New York, United States
| | - Benjamin Nilsson-Payant
- Institute of Experimental Virology, TWINCORE Zentrum für Experimentelle und Klinische Infektionsforschung GmbH, Hannover, Germany
| | - Jared L Johnson
- Department of Medicine, Weill Cornell Medical College, New York, United States
| | - Javier A Jaimes
- Department of Microbiology and Immunology, Cornell University, Ithaca, United States
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Yaron Bram
- Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, United States
| | - Benjamin R tenOever
- Department of Microbiology, New York University Langone Medical Center, New York, United States
| | - Robert E Schwartz
- Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Vasuretha Chandar
- Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Lewis Cantley
- Department of Medicine, Weill Cornell Medical College, New York, United States
| |
Collapse
|
41
|
Gomes SC, da Fonseca JG, Miller LM, Manenti L, Angst PDM, Lamers ML, Brum IS, Nunes LN. SARS-CoV-2 RNA in dental biofilms: Supragingival and subgingival findings from inpatients in a COVID-19 intensive care unit. J Periodontol 2022; 93:1476-1485. [PMID: 35239976 PMCID: PMC9088648 DOI: 10.1002/jper.21-0623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Saliva, salivary glands, gingival crevicular fluid, and supragingival biofilms may harbor SARS-CoV-2 RNA. This observational study aimed to investigate the presence and load of SARS-CoV-2 RNA in supragingival, and subgingival biofilms obtained from intensive care unit (ICU) patients. METHODS A convenience sample, composed of 52 COVID-19+ participants (48.6 ± 14.8 years, 26.9% females), were evaluated for pre-existing comorbidities, number of teeth and periodontal data [visible plaque (VPI), bleeding on probing (BOP), periodontal probing depth (PPD), and attachment loss (AL)]. Supragingival and subgingival samples (SubDeep: four sites with the deepest PPD; SubRemain: remaining shallower sites) were analyzed by RT-qPCR with corresponding cycle quantification (Cq). Statistical analyses considered the individual (p = 5%). RESULTS Twenty-six participants tested positive for dental biofilms (Biofilm+) with 96.2% of them being positive for subgingival samples. Pre-existing comorbidities, number of teeth examined, VPI, PPD, AL, and BOP were similar between Biofilm+ and Biofilm-. SubDeep PPD (3.72±0.86), AL (4.34±1.33), and % of BOP (66.0±31.1) values were significantly greater compared to SubRemain values (2.84±0.48, 3.37±0.34, and 20.4±24.1, respectively). Biofilm+ Cqs showed no association with the periodontal condition. Cqs from Nasopharynx/Oropharynx (Naso/Oro; n = 36) were similar between Biofilm+ and Biofilm- participants. Length of time since ICU intake, last Naso/Oro RT-qPCR readings, onset of COVID-19 symptoms, and biofilm samplings were greater for Biofilm-. CONCLUSIONS ICU patients harbored SARS-CoV-2 RNA in supragingival and subgingival biofilms, irrespective of the periodontal condition and systemic viral load. The high number of positive patients highlights the need to better understand this habitat to provide adequate oral care. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sabrina C Gomes
- Department of Conservative Dentistry, Dental School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | | | - Luísa M Miller
- Graduate Student, Dental School, UFRGS, Porto Alegre, RS, Brazil
| | - Luciane Manenti
- Graduate Student, Dental School, UFRGS, Porto Alegre, RS, Brazil
| | - Patrícia Daniela M Angst
- Department of Conservative Dentistry, Dental School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Marcelo L Lamers
- Department of Morphological Sciences, Dental School, UFRGS, Porto Alegre, RS, Brazil
| | - Ilma S Brum
- Department of Physiology, Basic Health Science Institute, UFRGS, Porto Alegre, RS, Brazil
| | - Luciana N Nunes
- Mathematics and Statistics Institute, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
42
|
Molecular basis of receptor binding and antibody neutralization of Omicron. Nature 2022; 604:546-552. [DOI: 10.1038/s41586-022-04581-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/24/2022] [Indexed: 11/08/2022]
|
43
|
Warwicker J. The Physical Basis for pH Sensitivity in Biomolecular Structure and Function, With Application to the Spike Protein of SARS-CoV-2. Front Mol Biosci 2022; 9:834011. [PMID: 35252354 PMCID: PMC8894873 DOI: 10.3389/fmolb.2022.834011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022] Open
Abstract
Since pH sensitivity has a fundamental role in biology, much effort has been committed to establishing physical models to rationalize and predict pH dependence from molecular structures. Two of the key challenges are to accurately calculate ionizable group solvation and hydration and then to apply this modeling to all conformations relevant to the process in question. Explicit solvent methods coupled to molecular dynamics simulation are increasingly complementing lower resolution implicit solvent techniques, but equally, the scale of biological data acquisition leaves a role for high-throughput modeling. Additionally, determination of ranges of structures for a system allows sampling of key stages in solvation. In a review of the area, it is emphasized that pH sensors in biology beyond the most obvious candidate (histidine side chain, with an unshifted pK a near neutral pH) should be considered; that modeling can benefit from other concepts in bioinformatics, in particular modulation of interactions and function in families of homologs; and that it can also be beneficial to incorporate as many experimental structures as possible, to mitigate against small variations in conformation and to analyze larger, functional, conformational changes. These aspects are then demonstrated with new work on the spike protein of SARS-CoV-2, looking at the pH dependence of variants, including prediction of a change in the balance of locked, closed, and open forms at neutral pH for the Omicron variant spike protein.
Collapse
Affiliation(s)
- Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
44
|
Miller NL, Clark T, Raman R, Sasisekharan R. Insights on the mutational landscape of the SARS-CoV-2 Omicron variant receptor-binding domain. Cell Rep Med 2022; 3:100527. [PMID: 35233548 PMCID: PMC8784435 DOI: 10.1016/j.xcrm.2022.100527] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/27/2022]
Abstract
The Omicron variant features enhanced transmissibility and antibody escape. Here, we describe the Omicron receptor-binding domain (RBD) mutational landscape using amino acid interaction (AAI) networks, which are well suited for interrogating constellations of mutations that function in an epistatic manner. Using AAI, we map Omicron mutations directly and indirectly driving increased escape breadth and depth in class 1-4 antibody epitopes. Further, we present epitope networks for authorized therapeutic antibodies and assess perturbations to each antibody's epitope. Since our initial modeling following the identification of Omicron, these predictions have been realized by experimental findings of Omicron neutralization escape from therapeutic antibodies ADG20, AZD8895, and AZD1061. Importantly, the AAI predicted escape resulting from indirect epitope perturbations was not captured by previous sequence or point mutation analyses. Finally, for several Omicron RBD mutations, we find evidence for a plausible role in enhanced transmissibility via disruption of RBD-down conformational stability at the RBDdown-RBDdown interface.
Collapse
Affiliation(s)
- Nathaniel L. Miller
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Singapore-MIT Alliance in Research and Technology (SMART), Singapore 138602, Singapore
| |
Collapse
|
45
|
Martin DP, Lytras S, Lucaci AG, Maier W, Grüning B, Shank SD, Weaver S, MacLean OA, Orton RJ, Lemey P, Boni MF, Tegally H, Harkins G, Scheepers C, Bhiman JN, Everatt J, Amoako DG, San JE, Giandhari J, Sigal A, Williamson C, Hsiao NY, von Gottberg A, De Klerk A, Shafer RW, Robertson DL, Wilkinson RJ, Sewell BT, Lessells R, Nekrutenko A, Greaney AJ, Starr TN, Bloom JD, Murrell B, Wilkinson E, Gupta RK, de Oliveira T, Kosakovsky Pond SL. Selection analysis identifies unusual clustered mutational changes in Omicron lineage BA.1 that likely impact Spike function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.14.476382. [PMID: 35075456 PMCID: PMC8786225 DOI: 10.1101/2022.01.14.476382] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Among the 30 non-synonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (i) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (ii) interactions of Spike with ACE2 receptors, and (iii) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any genomes within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron over all previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.
Collapse
Affiliation(s)
- Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Wolfgang Maier
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany, usegalaxy.eu
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany, usegalaxy.eu
| | - Stephen D Shank
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Steven Weaver
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Richard J Orton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Gordon Harkins
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Cathrine Scheepers
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jinal N Bhiman
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Daniel G Amoako
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town South Africa
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, South Africa
| | - Nei-Yuan Hsiao
- Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
| | - Arne De Klerk
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Robert W Shafer
- Division of Infectious Diseases, Department of medicine, Stanford university, Stanford, CA, USA
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Robert J Wilkinson
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, South Africa
- Francis Crick Institute, Midland Road, London NW1 1AT, UK
- Department of Infectious Diseases, Imperial College London, W12 0NN, UK
| | - B Trevor Sewell
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anton Nekrutenko
- Department Of Biochemistry and Molecular Biology, The Pennsylvania State University, usegalaxy.org
| | - Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA3
| | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eduan Wilkinson
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science, Stellenbosch University
| | - Ravindra K Gupta
- Africa Health Research Institute, Durban, South Africa
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science, Stellenbosch University
| | - Sergei L Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
46
|
Abstract
The spike protein (S-protein) of SARS-CoV-2, the protein that enables the virus to infect human cells, is the basis for many vaccines and a hotspot of concerning virus evolution. Here, we discuss the outstanding progress in structural characterization of the S-protein and how these structures facilitate analysis of virus function and evolution. We emphasize the differences in reported structures and that analysis of structure-function relationships is sensitive to the structure used. We show that the average residue solvent exposure in nearly complete structures is a good descriptor of open vs closed conformation states. Because of structural heterogeneity of functionally important surface-exposed residues, we recommend using averages of a group of high-quality protein structures rather than a single structure before reaching conclusions on specific structure-function relationships. To illustrate these points, we analyze some significant chemical tendencies of prominent S-protein mutations in the context of the available structures. In the discussion of new variants, we emphasize the selectivity of binding to ACE2 vs prominent antibodies rather than simply the antibody escape or ACE2 affinity separately. We note that larger chemical changes, in particular increased electrostatic charge or side-chain volume of exposed surface residues, are recurring in mutations of concern, plausibly related to adaptation to the negative surface potential of human ACE2. We also find indications that the fixated mutations of the S-protein in the main variants are less destabilizing than would be expected on average, possibly pointing toward a selection pressure on the S-protein. The richness of available structures for all of these situations provides an enormously valuable basis for future research into these structure-function relationships.
Collapse
Affiliation(s)
- Rukmankesh Mehra
- Department of Chemistry, Indian Institute
of Technology Bhilai, Sejbahar, Raipur 492015, Chhattisgarh,
India
| | - Kasper P. Kepp
- DTU Chemistry, Technical University of
Denmark, Building 206, 2800 Kongens Lyngby,
Denmark
| |
Collapse
|
47
|
Structural insights in cell-type specific evolution of intra-host diversity by SARS-CoV-2. Nat Commun 2022; 13:222. [PMID: 35017512 PMCID: PMC8752678 DOI: 10.1038/s41467-021-27881-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022] Open
Abstract
As the global burden of SARS-CoV-2 infections escalates, so does the evolution of viral variants with increased transmissibility and pathology. In addition to this entrenched diversity, RNA viruses can also display genetic diversity within single infected hosts with co-existing viral variants evolving differently in distinct cell types. The BriSΔ variant, originally identified as a viral subpopulation from SARS-CoV-2 isolate hCoV-19/England/02/2020, comprises in the spike an eight amino-acid deletion encompassing a furin recognition motif and S1/S2 cleavage site. We elucidate the structure, function and molecular dynamics of this spike providing mechanistic insight into how the deletion correlates to viral cell tropism, ACE2 receptor binding and infectivity of this SARS-CoV-2 variant. Our results reveal long-range allosteric communication between functional domains that differ in the wild-type and the deletion variant and support a view of SARS-CoV-2 probing multiple evolutionary trajectories in distinct cell types within the same infected host.
Collapse
|
48
|
Miller NL, Clark T, Raman R, Sasisekharan R. Insights on the mutational landscape of the SARS-CoV-2 Omicron variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.06.471499. [PMID: 34909771 PMCID: PMC8669838 DOI: 10.1101/2021.12.06.471499] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The SARS-COV2 Omicron variant has sparked global concern due to the possibility of enhanced transmissibility and escape from vaccines and therapeutics. In this study, we describe the mutational landscape of the Omicron variant using amino acid interaction (AAI) networks. AAI network analysis is particularly well suited for interrogating the impact of constellations of mutations as occur on Omicron that may function in an epistatic manner. Our analyses suggest that as compared to previous variants of concern, the Omicron variant has increased antibody escape breadth due to mutations in class 3 and 4 antibody epitopes as well as increased escape depth due to accumulated mutations in class 1 antibody epitopes. We note certain RBD mutations that might further enhance Omicron's escape, and in particular advise careful surveillance of two subclades bearing R346S/K mutations with relevance for certain therapeutic antibodies. Further, AAI network analysis suggests that the function of certain therapeutic monoclonal antibodies may be disrupted by Omicron mutations as a result of the cumulative indirect perturbations to the epitope surface properties, despite point-mutation analyses suggesting these antibodies are tolerant of the set of Omicron mutations in isolation. Finally, for several Omicron mutations that do not appear to contribute meaningfully to antibody escape, we find evidence for a plausible role in enhanced transmissibility via disruption of RBD-down conformational stability at the RBD-RBD interface.
Collapse
Affiliation(s)
- Nathaniel L. Miller
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Singapore-MIT Alliance in Research and Technology (SMART), Singapore 138602, Singapore
| |
Collapse
|
49
|
Almehdi AM, Khoder G, Alchakee AS, Alsayyid AT, Sarg NH, Soliman SSM. SARS-CoV-2 spike protein: pathogenesis, vaccines, and potential therapies. Infection 2021; 49:855-876. [PMID: 34339040 PMCID: PMC8326314 DOI: 10.1007/s15010-021-01677-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE COVID-19 pandemic has emerged as a result of infection by the deadly pathogenic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causing enormous threats to humans. Coronaviruses are distinguished by a clove-like spike (S) protein, which plays a key role in viral pathogenesis, evolutions, and transmission. The objectives of this study are to investigate the distinctive structural features of SARS-CoV-2 S protein, its essential role in pathogenesis, and its use in the development of potential therapies and vaccines. METHODOLOGY A literature review was conducted to summarize, analyze, and interpret the available scientific data related to SARS-CoV-2 S protein in terms of characteristics, vaccines development and potential therapies. RESULTS The data indicate that S protein subunits and their variable conformational states significantly affect the virus pathogenesis, infectivity, and evolutionary mutation. A considerable number of potential natural and synthetic therapies were proposed based on S protein. Additionally, neutralizing antibodies were recently approved for emergency use. Furthermore, several vaccines utilizing the S protein were developed. CONCLUSION A better understanding of S protein features, structure and mutations facilitate the recognition of the importance of SARS-CoV-2 S protein in viral infection, as well as the development of therapies and vaccines. The efficacy and safety of these therapeutic compounds and vaccines are still controversial. However, they may potentially reduce or prevent SARS-CoV-2 infection, leading to a significant reduction of the global health burden of this pandemic.
Collapse
Affiliation(s)
- Ahmed M Almehdi
- College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Ghalia Khoder
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Aminah S Alchakee
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Azizeh T Alsayyid
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Nadin H Sarg
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Sameh S M Soliman
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
| |
Collapse
|
50
|
Shorthouse D, Hall BA. SARS-CoV-2 Variants Are Selecting for Spike Protein Mutations That Increase Protein Stability. J Chem Inf Model 2021; 61:4152-4155. [PMID: 34472347 DOI: 10.1021/acs.jcim.1c00990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of variants of SARS-CoV-2 with mutations in their spike protein are a major cause for concern for the efficacy of vaccines and control of the pandemic. We show that mutations in the spike protein of SARS-CoV-2 are selecting for amino acid changes that result in a more thermodynamically stable protein than expected from background. We suggest that the computationally efficient analysis of mutational stability may aid in early screening of variants.
Collapse
Affiliation(s)
- David Shorthouse
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom WC1E 6BT
| | - Benjamin A Hall
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom WC1E 6BT
| |
Collapse
|