1
|
Fischer MA, Jia L, Edelblum KL. Type I IFN Induces TCR-dependent and -independent Antimicrobial Responses in γδ Intraepithelial Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1380-1391. [PMID: 39311642 PMCID: PMC11493514 DOI: 10.4049/jimmunol.2400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Intraepithelial lymphocytes (IELs) expressing the TCRγδ survey the intestinal epithelium to limit the invasion of microbial pathogens. The production of type I IFN is a central component of an antiviral immune response, yet how these proinflammatory cytokines contribute to γδ IEL effector function remains unclear. Based on the unique activation status of IELs and their ability to bridge innate and adaptive immunity, we investigated the extent to which type I IFN signaling modulates γδ IEL function. Using an ex vivo culture model, we find that type I IFN alone is unable to drive IFN-γ production, yet low-level TCR activation synergizes with type I IFN to induce IFN-γ production in murine γδ IELs. Further investigation into the underlying molecular mechanisms of costimulation revealed that TCRγδ-mediated activation of NFAT and JNK is required for type I IFN to promote IFN-γ expression in a STAT4-dependent manner. Whereas type I IFN rapidly upregulates antiviral gene expression independent of a basal TCRγδ signal, neither tonic TCR triggering nor the presence of a TCR agonist was sufficient to elicit type I IFN-induced IFN-γ production in vivo. However, bypassing proximal TCR signaling events synergized with IFNAR/STAT4 activation to induce γδ IEL IFN-γ production. These findings indicate that γδ IELs contribute to host defense in response to type I IFN by mounting a rapid antimicrobial response independent of TCRγδ signaling, and may produce IFN-γ in a TCR-dependent manner under permissive conditions.
Collapse
Affiliation(s)
- Matthew A Fischer
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Luo Jia
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
2
|
Meyer A. Illuminating the impact of γδ T cells in man and mice in spondylarthritides. Eur J Immunol 2024; 54:e2451071. [PMID: 39077953 DOI: 10.1002/eji.202451071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Spondylarthritides (SpA) are a group of autoinflammatory diseases affecting the spine, peripheral joints, and entheses, including axial spondyloarthritis (axSpA) and psoriatic arthritis. AxSpA has a multifactorial etiology that involves genetic predispositions, such as HLA-B27 and IL-23R. Although HLA-B27 is strongly associated with axSpA, its role remains unclear. GWAS studies have demonstrated that genetic polymorphisms related to the IL-23 pathway occur throughout the spectrum of SpA, including but not limited to axSpA and PsA. IL-23 promotes the production of IL-17, which drives inflammation and tissue damage. This pathway contributes not only to peripheral enthesitis but also to spinal inflammation. γδ T cells in axSpA express IL-23R and RORγt, crucial for their activation, although specific pathogenic cells and factors remain elusive. Despite drug efficacy in PsA, IL-23R inhibition is ineffective in axSpA. Murine models provide valuable insights into the intricate cellular and molecular interactions that contribute to the development and progression of SpA. Those models are useful tools to elucidate the dynamics of γδ T cell involvement, offering insights into disease mechanisms and potential therapeutic targets. This review aims to illuminate the complex interplay between IL-23 and γδ T cells in SpA pathogenesis, emphasizing their roles in chronic inflammation, tissue damage, and disease heterogeneity.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Disease Models, Animal
- Interleukin-23/immunology
- Interleukin-23/metabolism
- Interleukin-23/genetics
- Interleukin-17/immunology
- Interleukin-17/metabolism
- HLA-B27 Antigen/genetics
- HLA-B27 Antigen/immunology
- Genetic Predisposition to Disease
- Spondylarthritis/immunology
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Receptors, Interleukin/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
Collapse
Affiliation(s)
- Anja Meyer
- Center for Molecular Neurobiology Hamburg, Institute for Systems Immunology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Loh L, Carcy S, Krovi HS, Domenico J, Spengler A, Lin Y, Torres J, Prabakar RK, Palmer W, Norman PJ, Stone M, Brunetti T, Meyer HV, Gapin L. Unraveling the phenotypic states of human innate-like T cells: Comparative insights with conventional T cells and mouse models. Cell Rep 2024; 43:114705. [PMID: 39264810 DOI: 10.1016/j.celrep.2024.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
The "innate-like" T cell compartment, known as Tinn, represents a diverse group of T cells that straddle the boundary between innate and adaptive immunity. We explore the transcriptional landscape of Tinn compared to conventional T cells (Tconv) in the human thymus and blood using single-cell RNA sequencing (scRNA-seq) and flow cytometry. In human blood, the majority of Tinn cells share an effector program driven by specific transcription factors, distinct from those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells displays an effector phenotype, while others share transcriptional features with developing Tconv cells, indicating potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not differentiate into multiple effector subsets but develop a mixed type 1/type 17 effector potential. Cross-species analysis uncovers species-specific distinctions, including the absence of type 2 Tinn cells in humans, which implies distinct immune regulatory mechanisms across species.
Collapse
Affiliation(s)
- Liyen Loh
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Salomé Carcy
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Joanne Domenico
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrea Spengler
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yong Lin
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshua Torres
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Rishvanth K Prabakar
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - William Palmer
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul J Norman
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Tonya Brunetti
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hannah V Meyer
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Laurent Gapin
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
4
|
Mühlgrabner V, Peters T, Velasco Cárdenas RMH, Salzer B, Göhring J, Plach A, Höhrhan M, Perez ID, Goncalves VDR, Farfán JS, Lehner M, Stockinger H, Schamel WW, Schober K, Busch DH, Hudecek M, Dushek O, Minguet S, Platzer R, Huppa JB. TCR/CD3-based synthetic antigen receptors (TCC) convey superior antigen sensitivity combined with high fidelity of activation. SCIENCE ADVANCES 2024; 10:eadj4632. [PMID: 39231214 PMCID: PMC11373591 DOI: 10.1126/sciadv.adj4632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Low antigen sensitivity and a gradual loss of effector functions limit the clinical applicability of chimeric antigen receptor (CAR)-modified T cells and call for alternative antigen receptor designs for effective T cell-based cancer immunotherapy. Here, we applied advanced microscopy to demonstrate that TCR/CD3-based synthetic constructs (TCC) outperform second-generation CAR formats with regard to conveyed antigen sensitivities by up to a thousandfold. TCC-based antigen recognition occurred without adverse nonspecific signaling, which is typically observed in CAR-T cells, and did not depend-unlike sensitized peptide/MHC detection by conventional T cells-on CD4 or CD8 coreceptor engagement. TCC-endowed signaling properties may prove critical when targeting antigens in low abundance and aiming for a durable anticancer response.
Collapse
Affiliation(s)
- Vanessa Mühlgrabner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Timo Peters
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Rubí M-H Velasco Cárdenas
- Department of Immunology, Faculty of Biology, University of Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Germany
| | - Benjamin Salzer
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | - Janett Göhring
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Angelika Plach
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Maria Höhrhan
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Iago Doel Perez
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | | | - Jesús Siller Farfán
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Manfred Lehner
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Wolfgang W Schamel
- Department of Immunology, Faculty of Biology, University of Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Germany
| | - Kilian Schober
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, University of Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Germany
| | - René Platzer
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| |
Collapse
|
5
|
Liu X, Shen J, Yan H, Hu J, Liao G, Liu D, Zhou S, Zhang J, Liao J, Guo Z, Li Y, Yang S, Li S, Chen H, Guo Y, Li M, Fan L, Li L, Luo P, Zhao M, Liu Y. Posttransplant complications: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e669. [PMID: 39224537 PMCID: PMC11366828 DOI: 10.1002/mco2.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Posttransplantation complications pose a major challenge to the long-term survival and quality of life of organ transplant recipients. These complications encompass immune-mediated complications, infectious complications, metabolic complications, and malignancies, with each type influenced by various risk factors and pathological mechanisms. The molecular mechanisms underlying posttransplantation complications involve a complex interplay of immunological, metabolic, and oncogenic processes, including innate and adaptive immune activation, immunosuppressant side effects, and viral reactivation. Here, we provide a comprehensive overview of the clinical features, risk factors, and molecular mechanisms of major posttransplantation complications. We systematically summarize the current understanding of the immunological basis of allograft rejection and graft-versus-host disease, the metabolic dysregulation associated with immunosuppressive agents, and the role of oncogenic viruses in posttransplantation malignancies. Furthermore, we discuss potential prevention and intervention strategies based on these mechanistic insights, highlighting the importance of optimizing immunosuppressive regimens, enhancing infection prophylaxis, and implementing targeted therapies. We also emphasize the need for future research to develop individualized complication control strategies under the guidance of precision medicine, ultimately improving the prognosis and quality of life of transplant recipients.
Collapse
Affiliation(s)
- Xiaoyou Liu
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Junyi Shen
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hongyan Yan
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Jianmin Hu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guorong Liao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ding Liu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Song Zhou
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jie Zhang
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Jun Liao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zefeng Guo
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuzhu Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Siqiang Yang
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shichao Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hua Chen
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ying Guo
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Min Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lipei Fan
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Liuyang Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Peng Luo
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ming Zhao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yongguang Liu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
6
|
Ravens S, Tolosa E. Expansion of human γδ T cells in periphery: Lessons learned from development, infections, and compromised thymic function. Eur J Immunol 2024:e2451073. [PMID: 39194409 DOI: 10.1002/eji.202451073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
γδ T cells predominantly develop in the fetal period. Post birth they respond swiftly to environmental insults, pathogens and tumors, especially when other immune effector cells are less ready to function. Most of our understanding of γδ T-cell development, peripheral adaptation, and function derives from murine studies. The recent advancement of immunological methods allows now to decipher human γδ T-cell biology in patient cohorts and tissue samples, and to manipulate them using in vitro systems. In this review, we summarize γδ T-cell development in the human thymus, their functional adaptation to the microbial environment from birth until old age, and their capacity to expand and fill up the peripheral niche under conditions of perturbations of conventional T-cell development.
Collapse
Affiliation(s)
- Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Eva Tolosa
- Institute of Immunology, UKE Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Schamel WW, Zinchenko M, Nguyen T, Fehse B, Briquez PS, Minguet S. The potential of γδ CAR and TRuC T cells: An unearthed treasure. Eur J Immunol 2024:e2451074. [PMID: 39192467 DOI: 10.1002/eji.202451074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Recent years have witnessed the success of αβ T cells engineered to express chimeric antigen receptors (CARs) in treating haematological cancers. CARs combine the tumour antigen binding capability of antibodies with the signalling functions of the T-cell receptor (TCR) ζ chain and co-stimulatory receptors. Despite the success, αβ CAR T cells face limitations. Possible solutions would be the use of γδ T cells and new chimeric receptors, such as TCR fusion constructs (TRuCs). Notably, γδ CAR T cells are gaining traction in pre-clinical and clinical studies, demonstrating a promising safety profile in several pilot studies. This review delves into the current understanding of γδ CAR and TCR fusion construct T cells, exploring the opportunities and challenges they present for cancer treatment.
Collapse
Affiliation(s)
- Wolfgang W Schamel
- Signaling Research Centres BIOSS and CIBSS; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University Clinics Freiburg, Freiburg, Germany
| | - Marina Zinchenko
- Signaling Research Centres BIOSS and CIBSS; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Trang Nguyen
- Signaling Research Centres BIOSS and CIBSS; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, and Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Priscilla S Briquez
- Department of General and Visceral Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Signaling Research Centres BIOSS and CIBSS; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University Clinics Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Herrmann T, Karunakaran MM. Phosphoantigen recognition by Vγ9Vδ2 T cells. Eur J Immunol 2024:e2451068. [PMID: 39148158 DOI: 10.1002/eji.202451068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Vγ9Vδ2 T cells comprise 1-10% of human peripheral blood T cells. As multifunctional T cells with a strong antimicrobial and antitumor potential, they are of strong interest for immunotherapeutic development. Their hallmark is the eponymous Vγ9Vδ2 T-cell antigen receptor (TCR), which mediates activation by so-called "phosphoantigens" (PAg). PAg are small pyrophosphorylated intermediates of isoprenoid synthesis of microbial or host origin, with the latter elevated in some tumors and after administration of aminobisphosphonates. This review summarizes the progress in understanding PAg-recognition, with emphasis on the interaction between butyrophilins (BTN) and PAg and insights gained by phylogenetic studies on BTNs and Vγ9Vδ2 T cells, especially the comparison of human and alpaca. It proposes a composite ligand model in which BTN3A1-A2/A3-heteromers and BTN2A1 homodimers form a Vγ9Vδ2 TCR activating complex. An initiating step is the binding of PAg to the intracellular BTN3A1-B30.2 domain and formation of a complex with the B30.2 domains of BTN2A1. On the extracellular surface this results in BTN2A1-IgV binding to Vγ9-TCR framework determinants and BTN3A-IgV to additional complementarity determining regions of both TCR chains. Unresolved questions of this model are discussed, as well as questions on the structural basis and the physiological consequences of PAg-recognition.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Dept of Medicine, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
9
|
Fiala GJ, Lücke J, Huber S. Pro- and antitumorigenic functions of γδ T cells. Eur J Immunol 2024; 54:e2451070. [PMID: 38803018 DOI: 10.1002/eji.202451070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
γδ T cells are a subset of T cells that are characterized by the expression of a TCR-γδ instead of a TCR-αβ. Despite being outnumbered by their αβ T cell counterpart in many tissues, studies from the last 20 years underline their important and non-redundant roles in tumor and metastasis development. However, whether a γδ T cell exerts pro- or antitumorigenic effects seems to depend on a variety of factors, many of them still incompletely understood today. In this review, we summarize mechanisms by which γδ T cells exert these seemingly contradictory effector functions in mice and humans. Furthermore, we discuss the current view on inducing and inhibiting factors of γδ T cells during cancer development.
Collapse
Affiliation(s)
- Gina J Fiala
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Bettin L, Darbellay J, van Kessel J, Dhar N, Gerdts V. Porcine γδ T cells express cytotoxic cell-associated markers and display killing activity but are not selectively cytotoxic against PRRSV- or swIAV-infected macrophages. Front Immunol 2024; 15:1434011. [PMID: 39144143 PMCID: PMC11321972 DOI: 10.3389/fimmu.2024.1434011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Background Gamma-delta (γδ) T cells are a major immune cell subset in pigs. Approximately 50% of circulating T cells are γδ T cells in young pigs and up to 30% in adult sows. Despite this abundance, the functions of porcine γδ T cells are mostly unidentified. In humans and mice, activated γδ T cells exhibit broad innate cytotoxic activity against a wide variety of stressed, infected, and cancerous cells through death receptor/ligand-dependent and perforin/granzyme-dependent pathways. However, so far, it is unknown whether porcine γδ T cells have the ability to perform cytotoxic functions. Methods In this study, we conducted a comprehensive phenotypic characterization of porcine γδ T cells isolated from blood, lung, and nasal mucosa. To further analyze the cytolytic potential of γδ T cells, in vitro cytotoxicity assays were performed using purified γδ T cells as effector cells and virus-exposed or mock-treated primary porcine alveolar macrophages as target cells. Results Our results show that only CD2+ γδ T cells express cytotoxic markers (CD16, NKp46, perforin) with higher perforin and NKp46 expression in γδ T cells isolated from lung and nasal mucosa. Moreover, we found that γδ T cells can exhibit cytotoxic functions in a cell-cell contact and degranulation-dependent manner. However, porcine γδ T cells did not seem to specifically target Porcine Reproductive and Respiratory Syndrome Virus or swine Influenza A Virus-infected macrophages, which may be due to viral escape mechanisms. Conclusion Porcine γδ T cells express cytotoxic markers and can exhibit cytotoxic activity in vitro. The specific mechanisms by which porcine γδ T cells recognize target cells are not fully understood but may involve the detection of cellular stress signals.
Collapse
MESH Headings
- Animals
- Swine
- Porcine respiratory and reproductive syndrome virus/immunology
- Porcine respiratory and reproductive syndrome virus/physiology
- Cytotoxicity, Immunologic
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/virology
- Porcine Reproductive and Respiratory Syndrome/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Biomarkers
- Orthomyxoviridae Infections/immunology
- Perforin/metabolism
- Perforin/immunology
- Intraepithelial Lymphocytes/immunology
- Cells, Cultured
Collapse
Affiliation(s)
- Leonie Bettin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Jill van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Neeraj Dhar
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Yang AYP, Wistuba-Hamprecht K, Greten TF, Ruf B. Innate-like T cells in liver disease. Trends Immunol 2024; 45:535-548. [PMID: 38879436 DOI: 10.1016/j.it.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 07/14/2024]
Abstract
Mammalian innate-like T cells (ILTCs), including mucosal-associated invariant T (MAIT), natural killer T (NKT), and γδ T cells, are abundant tissue-resident lymphocytes that have recently emerged as orchestrators of hepatic inflammation, tissue repair, and immune homeostasis. This review explores the involvement of different ILTC subsets in liver diseases. We explore the mechanisms underlying the pro- and anti-inflammatory effector functions of ILTCs in a context-dependent manner. We highlight latest findings regarding the dynamic interplay between ILTC functional subsets and other immune and parenchymal cells which may inform candidate immunomodulatory strategies to achieve improved clinical outcomes in liver diseases. We present new insights into how distinct gene expression programs in hepatic ILTCs are induced, maintained, and reprogrammed in a context- and disease stage-dependent manner.
Collapse
Affiliation(s)
- Albert Ying-Po Yang
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology, and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Center for Cancer Research (CCR) Liver Cancer Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Ruf
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Gray JI, Caron DP, Wells SB, Guyer R, Szabo P, Rainbow D, Ergen C, Rybkina K, Bradley MC, Matsumoto R, Pethe K, Kubota M, Teichmann S, Jones J, Yosef N, Atkinson M, Brusko M, Brusko TM, Connors TJ, Sims PA, Farber DL. Human γδ T cells in diverse tissues exhibit site-specific maturation dynamics across the life span. Sci Immunol 2024; 9:eadn3954. [PMID: 38848342 PMCID: PMC11425769 DOI: 10.1126/sciimmunol.adn3954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
During ontogeny, γδ T cells emerge from the thymus and directly seed peripheral tissues for in situ immunity. However, their functional role in humans has largely been defined from blood. Here, we analyzed the phenotype, transcriptome, function, and repertoire of human γδ T cells in blood and mucosal and lymphoid tissues from 176 donors across the life span, revealing distinct profiles in children compared with adults. In early life, clonally diverse Vδ1 subsets predominate across blood and tissues, comprising naïve and differentiated effector and tissue repair functions, whereas cytolytic Vδ2 subsets populate blood, spleen, and lungs. With age, Vδ1 and Vδ2 subsets exhibit clonal expansions and elevated cytolytic signatures, which are disseminated across sites. In adults, Vδ2 cells predominate in blood, whereas Vδ1 cells are enriched across tissues and express residency profiles. Thus, antigenic exposures over childhood drive the functional evolution and tissue compartmentalization of γδ T cells, leading to age-dependent roles in immunity.
Collapse
Affiliation(s)
- Joshua I Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Daniel P Caron
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Rebecca Guyer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Peter Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Daniel Rainbow
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Can Ergen
- Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ksenia Rybkina
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Marissa C Bradley
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032 USA
| | - Rei Matsumoto
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032 USA
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Kalpana Pethe
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032 USA
| | - Masaru Kubota
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Joanne Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel
| | - Mark Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Maigan Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Thomas J Connors
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032 USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032 USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032 USA
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032 USA
| |
Collapse
|
13
|
Sanchez Sanchez G, Emmrich S, Georga M, Papadaki A, Kossida S, Seluanov A, Gorbunova V, Vermijlen D. Invariant γδTCR natural killer-like effector T cells in the naked mole-rat. Nat Commun 2024; 15:4248. [PMID: 38762584 PMCID: PMC11102460 DOI: 10.1038/s41467-024-48652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
The naked mole-rat (Heterocephalus glaber) is a long-lived rodent species showing resistance to the development of cancer. Although naked mole-rats have been reported to lack natural killer (NK) cells, γδ T cell-based immunity has been suggested in this species, which could represent an important arm of the immune system for antitumor responses. Here, we investigate the biology of these unconventional T cells in peripheral tissues (blood, spleen) and thymus of the naked mole-rat at different ages by TCR repertoire profiling and single-cell gene expression analysis. Using our own TCR annotation in the naked mole-rat genome, we report that the γδ TCR repertoire is dominated by a public invariant Vγ4-2/Vδ1-4 TCR, containing the complementary-determining-region-3 (CDR3)γ CTYWDSNYAKKLF / CDR3δ CALWELRTGGITAQLVF that are likely generated by short-homology-repeat-driven DNA rearrangements. This invariant TCR is specifically found in γδ T cells expressing genes associated with NK cytotoxicity and is generated in both the thoracic and cervical thymus of the naked mole-rat until adult life. Our results indicate that invariant Vγ4-2/Vδ1-4 NK-like effector T cells in the naked mole-rat can contribute to tumor immunosurveillance by γδ TCR-mediated recognition of a common molecular signal.
Collapse
MESH Headings
- Animals
- Mole Rats/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Thymus Gland/immunology
- Thymus Gland/cytology
- Killer Cells, Natural/immunology
- Spleen/immunology
- Complementarity Determining Regions/genetics
- Natural Killer T-Cells/immunology
Collapse
Affiliation(s)
- Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Stephan Emmrich
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Maria Georga
- IMGT®, the international ImMunoGenetics information system®, Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Ariadni Papadaki
- IMGT®, the international ImMunoGenetics information system®, Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Sofia Kossida
- IMGT®, the international ImMunoGenetics information system®, Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center and Medicine, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center and Medicine, University of Rochester, Rochester, NY, USA
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
- WELBIO Department, WEL Research Institute, Wavre, Belgium.
| |
Collapse
|
14
|
Xu L, Chen F, Fan W, Saito S, Cao D. The role of γδT lymphocytes in atherosclerosis. Front Immunol 2024; 15:1369202. [PMID: 38774876 PMCID: PMC11106432 DOI: 10.3389/fimmu.2024.1369202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Atherosclerosis poses a significant threat to human health, impacting overall well-being and imposing substantial financial burdens. Current treatment strategies mainly focus on managing low-density lipids (LDL) and optimizing liver functions. However, it's crucial to recognize that Atherosclerosis involves more than just lipid accumulation; it entails a complex interplay of immune responses. Research highlights the pivotal role of lipid-laden macrophages in the formation of atherosclerotic plaques. These macrophages attract lymphocytes like CD4 and CD8 to the inflamed site, potentially intensifying the inflammatory response. γδ T lymphocytes, with their diverse functions in innate and adaptive immune responses, pathogen defense, antigen presentation, and inflammation regulation, have been implicated in the early stages of Atherosclerosis. However, our understanding of the roles of γδ T cells in Atherosclerosis remains limited. This mini-review aims to shed light on the characteristics and functions of γδ T cells in Atherosclerosis. By gaining insights into the roles of γδ T cells, we may uncover a promising strategy to mitigate plaque buildup and dampen the inflammatory response, thereby opening new avenues for effectively managing this condition.
Collapse
Affiliation(s)
- LiMin Xu
- Department of Neurosurgery, Shenzhen Entry-Exit Frontier Inspection Hospital, Shenzhen, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
15
|
McMaster B, Thorpe C, Ogg G, Deane CM, Koohy H. Can AlphaFold's breakthrough in protein structure help decode the fundamental principles of adaptive cellular immunity? Nat Methods 2024; 21:766-776. [PMID: 38654083 DOI: 10.1038/s41592-024-02240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/08/2024] [Indexed: 04/25/2024]
Abstract
T cells are essential immune cells responsible for identifying and eliminating pathogens. Through interactions between their T-cell antigen receptors (TCRs) and antigens presented by major histocompatibility complex molecules (MHCs) or MHC-like molecules, T cells discriminate foreign and self peptides. Determining the fundamental principles that govern these interactions has important implications in numerous medical contexts. However, reconstructing a map between T cells and their antagonist antigens remains an open challenge for the field of immunology, and success of in silico reconstructions of this relationship has remained incremental. In this Perspective, we discuss the role that new state-of-the-art deep-learning models for predicting protein structure may play in resolving some of the unanswered questions the field faces linking TCR and peptide-MHC properties to T-cell specificity. We provide a comprehensive overview of structural databases and the evolution of predictive models, and highlight the breakthrough AlphaFold provided the field.
Collapse
Affiliation(s)
- Benjamin McMaster
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Statistics, University of Oxford, Oxford, UK
| | - Christopher Thorpe
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Graham Ogg
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | | | - Hashem Koohy
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Alan Turning Fellow in Health and Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Cruz de Casas P, Knöpper K, Dey Sarkar R, Kastenmüller W. Same yet different - how lymph node heterogeneity affects immune responses. Nat Rev Immunol 2024; 24:358-374. [PMID: 38097778 DOI: 10.1038/s41577-023-00965-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 05/04/2024]
Abstract
Lymph nodes are secondary lymphoid organs in which immune responses of the adaptive immune system are initiated and regulated. Distributed throughout the body and embedded in the lymphatic system, local lymph nodes are continuously informed about the state of the organs owing to a constant drainage of lymph. The tissue-derived lymph carries products of cell metabolism, proteins, carbohydrates, lipids, pathogens and circulating immune cells. Notably, there is a growing body of evidence that individual lymph nodes differ from each other in their capacity to generate immune responses. Here, we review the structure and function of the lymphatic system and then focus on the factors that lead to functional heterogeneity among different lymph nodes. We will discuss how lymph node heterogeneity impacts on cellular and humoral immune responses and the implications for vaccination, tumour development and tumour control by immunotherapy.
Collapse
Affiliation(s)
- Paulina Cruz de Casas
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Konrad Knöpper
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Rupak Dey Sarkar
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Wolfgang Kastenmüller
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
17
|
Foyle KL, Robertson SA. Gamma delta (γδ) T cells in the female reproductive tract: active participants or indifferent bystanders in reproductive success? DISCOVERY IMMUNOLOGY 2024; 3:kyae004. [PMID: 38863792 PMCID: PMC11165432 DOI: 10.1093/discim/kyae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024]
Abstract
The female reproductive tract accommodates and balances the unique immunological challenges of protection from sexually transmitted pathogens and tolerance of the fetus and placenta in pregnancy. Leukocytes in the female reproductive tract actively engage in extensive maternal adaptations that are imperative for embryo implantation, placental development, and fetal growth support. γδ T cells are abundant at many mucosal sites in the body, where they provide protection against pathogens and cancer, and have roles in tissue renewal and homeostasis. In this review, we summarize studies in humans and rodents showing that γδ T cells are prevalent in the female reproductive tract and fluctuate in response to hormone changes across the reproductive cycle. Emerging evidence points to a link between changes in their abundance and molecular repertoire in the uterus and pregnancy disorders including recurrent miscarriage and preterm birth. However, defining the precise functional role of female reproductive tract γδ T cells and understanding their physiological significance in reproduction and pregnancy have remained elusive. Here, we critically analyze whether reproductive tract γδ T cells could be active participants in reproductive events-or whether their principal function is immune defense, in which case they may compromise pregnancy success unless adequately regulated.
Collapse
Affiliation(s)
- Kerrie L Foyle
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Sarah A Robertson
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
18
|
Chen X, Zhong S, Zhan Y, Zhang X. CRISPR-Cas9 applications in T cells and adoptive T cell therapies. Cell Mol Biol Lett 2024; 29:52. [PMID: 38609863 PMCID: PMC11010303 DOI: 10.1186/s11658-024-00561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
T cell immunity is central to contemporary cancer and autoimmune therapies, encompassing immune checkpoint blockade and adoptive T cell therapies. Their diverse characteristics can be reprogrammed by different immune challenges dependent on antigen stimulation levels, metabolic conditions, and the degree of inflammation. T cell-based therapeutic strategies are gaining widespread adoption in oncology and treating inflammatory conditions. Emerging researches reveal that clustered regularly interspaced palindromic repeats-associated protein 9 (CRISPR-Cas9) genome editing has enabled T cells to be more adaptable to specific microenvironments, opening the door to advanced T cell therapies in preclinical and clinical trials. CRISPR-Cas9 can edit both primary T cells and engineered T cells, including CAR-T and TCR-T, in vivo and in vitro to regulate T cell differentiation and activation states. This review first provides a comprehensive summary of the role of CRISPR-Cas9 in T cells and its applications in preclinical and clinical studies for T cell-based therapies. We also explore the application of CRISPR screen high-throughput technology in editing T cells and anticipate the current limitations of CRISPR-Cas9, including off-target effects and delivery challenges, and envisioned improvements in related technologies for disease screening, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shuhan Zhong
- Department of Hematology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, 310003, China
| | - Yonghao Zhan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
19
|
Fischer MA, Jia L, Edelblum KL. Type I interferon induces TCR-dependent and -independent antimicrobial responses in γδ intraepithelial lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584444. [PMID: 38559228 PMCID: PMC10979951 DOI: 10.1101/2024.03.11.584444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Intraepithelial lymphocytes (IEL) expressing the γδ T cell receptor (TCR) survey the intestinal epithelium to limit the invasion of microbial pathogens. The production of type I interferon (IFN) is a central component of an antiviral immune response, yet how these pro-inflammatory cytokines contribute to γδ IEL effector function remains unclear. Based on the unique activation status of IELs, and their ability to bridge innate and adaptive immunity, we investigated the extent to which type I IFN signaling modulates γδ IEL function. Using an ex vivo culture model, we find that type I IFN alone is unable to drive IFNγ production, yet low level TCR activation synergizes with type I IFN to induce IFNγ production in murine γδ IELs. Further investigation into the underlying molecular mechanisms of co-stimulation revealed that TCRγδ-mediated activation of NFAT and JNK is required for type I IFN to promote IFNγ expression in a STAT4- dependent manner. Whereas type I IFN rapidly upregulates antiviral gene expression independent of a basal TCRγδ signal, neither tonic TCR triggering nor the presence of a TCR agonist was sufficient to elicit type I IFN-induced IFNγ production in vivo . However, bypassing proximal TCR signaling events synergized with IFNAR/STAT4 activation to induce γδ IEL IFNγ production. These findings indicate that γδ IELs contribute to host defense in response to type I IFN by mounting a rapid antimicrobial response independent of TCRγδ signaling, and under permissive conditions, produce IFNγ in a TCR-dependent manner.
Collapse
|
20
|
Revesz IA, Joyce P, Ebert LM, Prestidge CA. Effective γδ T-cell clinical therapies: current limitations and future perspectives for cancer immunotherapy. Clin Transl Immunology 2024; 13:e1492. [PMID: 38375329 PMCID: PMC10875631 DOI: 10.1002/cti2.1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
γδ T cells are a unique subset of T lymphocytes, exhibiting features of both innate and adaptive immune cells and are involved with cancer immunosurveillance. They present an attractive alternative to conventional T cell-based immunotherapy due, in large part, to their lack of major histocompatibility (MHC) restriction and ability to secrete high levels of cytokines with well-known anti-tumour functions. To date, clinical trials using γδ T cell-based immunotherapy for a range of haematological and solid cancers have yielded limited success compared with in vitro studies. This inability to translate the efficacy of γδ T-cell therapies from preclinical to clinical trials is attributed to a combination of several factors, e.g. γδ T-cell agonists that are commonly used to stimulate populations of these cells have limited cellular uptake yet rely on intracellular mechanisms; administered γδ T cells display low levels of tumour-infiltration; and there is a gap in the understanding of γδ T-cell inhibitory receptors. This review explores the discrepancy between γδ T-cell clinical and preclinical performance and offers viable avenues to overcome these obstacles. Using more direct γδ T-cell agonists, encapsulating these agonists into lipid nanocarriers to improve their pharmacokinetic and pharmacodynamic profiles and the use of combination therapies to overcome checkpoint inhibition and T-cell exhaustion are ways to bridge the gap between preclinical and clinical success. Given the ability to overcome these limitations, the development of a more targeted γδ T-cell agonist-checkpoint blockade combination therapy has the potential for success in clinical trials which has to date remained elusive.
Collapse
Affiliation(s)
- Isabella A Revesz
- Clinical Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Paul Joyce
- Clinical Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Lisa M Ebert
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSAAustralia
- School of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Clive A Prestidge
- Clinical Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
21
|
Verkerk T, Pappot AT, Jorritsma T, King LA, Duurland MC, Spaapen RM, van Ham SM. Isolation and expansion of pure and functional γδ T cells. Front Immunol 2024; 15:1336870. [PMID: 38426099 PMCID: PMC10902048 DOI: 10.3389/fimmu.2024.1336870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
γδ T cells are important components of the immune system due to their ability to elicit a fast and strong response against infected and transformed cells. Because they can specifically and effectively kill target cells in an MHC independent fashion, there is great interest to utilize these cells in anti-tumor therapies where antigen presentation may be hampered. Since only a small fraction of T cells in the blood or tumor tissue are γδ T cells, they require extensive expansion to allow for fundamental, preclinical and ex vivo research. Although expansion protocols can be successful, most are based on depletion of other cell types rather than γδ T cell specific isolation, resulting in unpredictable purity of the isolated fraction. Moreover, the primary focus only lies with expansion of Vδ2+ T cells, while Vδ1+ T cells likewise have anti-tumor potential. Here, we investigated whether γδ T cells directly isolated from blood could be efficiently expanded while maintaining function. γδ T cell subsets were isolated using MACS separation, followed by FACS sorting, yielding >99% pure γδ T cells. Isolated Vδ1+ and Vδ2+ T cells could effectively expand immediately after isolation or upon freeze/thawing and reached expansion ratios between 200 to 2000-fold starting from varying numbers using cytokine supported feeder stimulations. MACS/FACS isolated and PHA stimulated γδ T cells expanded as good as immobilized antibody mediated stimulated cells in PBMCs, but delivered purer cells. After expansion, potential effector functions of γδ T cells were demonstrated by IFN-γ, TNF-α and granzyme B production upon PMA/ionomycin stimulation and effective killing capacity of multiple tumor cell lines was confirmed in killing assays. In conclusion, pure γδ T cells can productively be expanded while maintaining their anti-tumor effector functions against tumor cells. Moreover, γδ T cells could be expanded from low starting numbers suggesting that this protocol may even allow for expansion of cells extracted from tumor biopsies.
Collapse
Affiliation(s)
- Tamara Verkerk
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Anouk T Pappot
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Lisa A King
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Mariël C Duurland
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
22
|
Wang C, Lai AY, Baiu DC, Smith KA, Odorico JS, Wilson K, Schreiber T, de Silva S, Gumperz JE. Analysis of Butyrophilin-Mediated Activation of γδ T Cells from Human Spleen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:284-294. [PMID: 37991420 DOI: 10.4049/jimmunol.2300588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
There is considerable interest in therapeutically engaging human γδ T cells. However, due to the unique TCRs of human γδ T cells, studies from animal models have provided limited directly applicable insights, and human γδ T cells from key immunological tissues remain poorly characterized. In this study, we investigated γδ T cells from human spleen tissue. Compared to blood, where Vδ2+Vγ9+ T cells are the dominant subset, splenic γδ T cells included a variety of TCR types, with Vδ1+ T cells typically being the most frequent. Intracellular cytokine staining revealed that IFN-γ was produced by a substantial fraction of splenic γδ T cells, IL-17A by a small fraction, and IL-4 was minimal. Primary splenic γδ T cells frequently expressed NKG2D (NK group 2 member D) and CD16, whereas expression of DNAM-1 (DNAX accessory molecule 1), CD28, PD-1, TIGIT, and CD94 varied according to subset, and there was generally little expression of natural cytotoxicity receptors, TIM-3, LAG-3, or killer Ig-like receptors. In vitro expansion was associated with marked changes in expression of these activating and inhibitory receptors. Analysis of functional responses of spleen-derived Vδ2+Vγ9+, Vδ1+Vγ9+, and Vδ1+Vγ9- T cell lines to recombinant butyrophilin BTN2A1 and BTN3A1 demonstrated that both Vδ2+Vγ9+ and Vδ1+Vγ9+ T cells were capable of responding to the extracellular domain of BTN2A1, whereas the addition of BTN3A1 only markedly enhanced the responses of Vδ2+Vγ9+ T cells. Conversely, Vδ1+Vγ9+ T cells appeared more responsive than Vδ2+Vγ9+ T cells to TCR-independent NKG2D stimulation. Thus, despite shared recognition of BTN2A1, differential effects of BTN3A1 and coreceptors may segregate target cell responses of Vδ2+Vγ9+ and Vδ1+Vγ9+ T cells.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Dana C Baiu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Kelsey A Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jon S Odorico
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | | | | | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
23
|
Schadeck J, Oberg HH, Peipp M, Hedemann N, Schamel WW, Bauerschlag D, Wesch D. Vdelta1 T cells are more resistant than Vdelta2 T cells to the immunosuppressive properties of galectin-3. Front Immunol 2024; 14:1286097. [PMID: 38259448 PMCID: PMC10800970 DOI: 10.3389/fimmu.2023.1286097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Ovarian carcinomas have the highest lethality amongst gynecological tumors. A problem after primary resection is the recurrence of epithelial ovarian carcinomas which is often associated with chemotherapy resistance. To improve the clinical outcome, it is of high interest to consider alternative therapy strategies. Due to their pronounced plasticity, γδ T cells are attractive for T-cell-based immunotherapy. However, tumors might escape by the release of lectin galectin-3, which impairs γδ T-cell function. Hence, we tested the effect of galectin-3 on the different γδ T-cell subsets. After coculture between ovarian tumor cells and Vδ1 or Vδ2 T cells enhanced levels of galectin-3 were released. This protein did not affect the cytotoxicity of both γδ T-cell subsets, but differentially influenced the proliferation of the two γδ T-cell subsets. While increased galectin-3 levels and recombinant galectin-3 inhibited the proliferation of Vδ2 T cells, Vδ1 T cells were unaffected. In contrast to Vδ1 T cells, the Vδ2 T cells strongly upregulated the galectin-3 binding partner α3β1-integrin after their activation correlating with the immunosuppressive properties of galectin-3. In addition, galectin-3 reduced the effector memory compartment of zoledronate-activated Vδ2 T cells. Therefore, our data suggest that an activation of Vδ1 T-cell proliferation as part of a T-cell-based immunotherapy can be of advantage.
Collapse
Affiliation(s)
- Jan Schadeck
- Institute of Immunology, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
| | - Matthias Peipp
- Divison of Antibody-Based Immunotherapy, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
| | - Nina Hedemann
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Wolfgang W. Schamel
- Signalling Research Centre Biological Signalling Studies (BIOSS) and Centre of Integrative Biological Signalling Studies (CIBSS), Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Bauerschlag
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
24
|
Zhao Y, Dong P, He W, Zhang J, Chen H. γδ T cells: Major advances in basic and clinical research in tumor immunotherapy. Chin Med J (Engl) 2024; 137:21-33. [PMID: 37592858 PMCID: PMC10766231 DOI: 10.1097/cm9.0000000000002781] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 08/19/2023] Open
Abstract
ABSTRACT γδ T cells are a kind of innate immune T cell. They have not attracted sufficient attention because they account for only a small proportion of all immune cells, and many basic factors related to these cells remain unclear. However, in recent years, with the rapid development of tumor immunotherapy, γδ T cells have attracted increasing attention because of their ability to exert cytotoxic effects on most tumor cells without major histocompatibility complex (MHC) restriction. An increasing number of basic studies have focused on the development, antigen recognition, activation, and antitumor immune response of γδ T cells. Additionally, γδ T cell-based immunotherapeutic strategies are being developed, and the number of clinical trials investigating such strategies is increasing. This review mainly summarizes the progress of basic research and the clinical application of γδ T cells in tumor immunotherapy to provide a theoretical basis for further the development of γδ T cell-based strategies in the future.
Collapse
Affiliation(s)
- Yueqi Zhao
- Department of Immunology, CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
| | - Wei He
- Department of Immunology, CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jianmin Zhang
- Department of Immunology, CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Hui Chen
- Department of Immunology, CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
25
|
Lee S, Chung YS, Lee KW, Choi M, Sonn CH, Oh WJ, Hong HG, Shim J, Choi K, Kim SJ, Park JB, Kim TJ. Alteration of γδ T cell subsets in non-human primates transplanted with GGTA1 gene-deficient porcine blood vessels. Xenotransplantation 2024; 31:e12838. [PMID: 38112053 DOI: 10.1111/xen.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND αGal-deficient xenografts are protected from hyperacute rejection during xenotransplantation but are still rejected more rapidly than allografts. Despite studies showing the roles of non-Gal antibodies and αβ T cells in xenograft rejection, the involvement of γδ T cells in xenograft rejection has been limitedly investigated. METHODS Six male cynomolgus monkeys were transplanted with porcine vessel xenografts from wild-type (n = 3) or GGTA1 knockout (n = 3) pigs. We measured the proportions and T cell receptor (TCR) repertoires of blood γδ T cells before and after xenotransplant. Grafted porcine vessel-infiltrating immune cells were visualized at the end of experiments. RESULTS Blood γδ T cells expanded and infiltrated into the graft vessel adventitia following xenotransplantation of α-Gal-deficient pig blood vessels. Pre- and post-transplant analysis of γδ TCR repertoire revealed a transition in δ chain usage post-transplantation, with the expansion of several clonotypes of δ1, δ3, or δ7 chains. Furthermore, the distinctions between pre- and post-transplant δ chain usages were more prominent than those observed for γ chain usages. CONCLUSION γδ TCR repertoire was significantly altered by xenotransplantation, suggesting the role of γδ T cells in sustained xenoreactive immune responses.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Yun Shin Chung
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Miran Choi
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Chung Hee Sonn
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Won Jun Oh
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hun Gi Hong
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Sung Joo Kim
- GenNBio Co., Ltd, Pyeongtaek, Gyeonggi-do, Republic of Korea
| | - Jae Berm Park
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae Jin Kim
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
26
|
Loh L, Carcy S, Krovi HS, Domenico J, Spengler A, Lin Y, Torres J, Palmer W, Norman PJ, Stone M, Brunetti T, Meyer HV, Gapin L. Unraveling the Phenotypic States of Human innate-like T Cells: Comparative Insights with Conventional T Cells and Mouse Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570707. [PMID: 38105962 PMCID: PMC10723458 DOI: 10.1101/2023.12.07.570707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The "innate-like" T cell compartment, known as Tinn, represents a diverse group of T cells that straddle the boundary between innate and adaptive immunity, having the ability to mount rapid responses following activation. In mice, this ability is acquired during thymic development. We explored the transcriptional landscape of Tinn compared to conventional T cells (Tconv) in the human thymus and blood using single cell RNA sequencing and flow cytometry. We reveal that in human blood, the majority of Tinn cells, including iNKT, MAIT, and Vδ2+Vγ9+ T cells, share an effector program characterized by the expression of unique chemokine and cytokine receptors, and cytotoxic molecules. This program is driven by specific transcription factors, distinct from those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells displays an effector phenotype, while others share transcriptional features with developing Tconv cells, indicating potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not differentiate into multiple effector subsets but develop a mixed type I/type III effector potential. To conduct a comprehensive cross-species analysis, we constructed a murine Tinn developmental atlas and uncovered additional species-specific distinctions, including the absence of type II Tinn cells in humans, which implies distinct immune regulatory mechanisms across species. The study provides insights into the development and functionality of Tinn cells, emphasizing their role in immune responses and their potential as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Liyen Loh
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Salomé Carcy
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | | | - Yong Lin
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshua Torres
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - William Palmer
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Paul J. Norman
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | | | - Tonya Brunetti
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Hannah V. Meyer
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Laurent Gapin
- University of Colorado Anschutz Medical Campus, Aurora, USA
| |
Collapse
|
27
|
Tognarelli EI, Gutiérrez-Vera C, Palacios PA, Pasten-Ferrada IA, Aguirre-Muñoz F, Cornejo DA, González PA, Carreño LJ. Natural Killer T Cell Diversity and Immunotherapy. Cancers (Basel) 2023; 15:5737. [PMID: 38136283 PMCID: PMC10742272 DOI: 10.3390/cancers15245737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Invariant natural killer T cells (iNKTs), a type of unconventional T cells, share features with NK cells and have an invariant T cell receptor (TCR), which recognizes lipid antigens loaded on CD1d molecules, a major histocompatibility complex class I (MHC-I)-like protein. This interaction produces the secretion of a wide array of cytokines by these cells, including interferon gamma (IFN-γ) and interleukin 4 (IL-4), allowing iNKTs to link innate with adaptive responses. Interestingly, molecules that bind CD1d have been identified that enable the modulation of these cells, highlighting their potential pro-inflammatory and immunosuppressive capacities, as required in different clinical settings. In this review, we summarize key features of iNKTs and current understandings of modulatory α-galactosylceramide (α-GalCer) variants, a model iNKT cell activator that can shift the outcome of adaptive immune responses. Furthermore, we discuss advances in the development of strategies that modulate these cells to target pathologies that are considerable healthcare burdens. Finally, we recapitulate findings supporting a role for iNKTs in infectious diseases and tumor immunotherapy.
Collapse
Affiliation(s)
- Eduardo I. Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Ignacio A. Pasten-Ferrada
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Fernanda Aguirre-Muñoz
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Daniel A. Cornejo
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
28
|
Cheng C, Zhao Z, Liu G. Expression, Purification, and Crystallization of the Vγ9Vδ2 T-cell Receptor Recognizing Protein/Peptide Antigens. Protein J 2023; 42:778-791. [PMID: 37620608 DOI: 10.1007/s10930-023-10151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
γδ T cells, especially Vγ9Vδ2 T cells, play an important role in mycobacterial infection. We have identified some Vγ9Vδ2 T cells that recognize protein/peptide antigens derived from mycobacteria, which may induce protective immune responses to mycobacterial infection. To clarify the structural basis of the molecular recognition mechanism, we tried many methods to express the Vγ9Vδ2 T-cell receptor (TCR). The Vγ9Vδ2 TCR was not expressed well in a prokaryotic expression system or a baculovirus expression system, even after extensive optimization. In a mammalian cell expression system, the Vγ9Vδ2 TCR was expressed in the form of a soluble heterodimer, which was suitable for crystal screening. Reduced-temperature cultivation (cold shock) increased the yield of the recombinant TCR. The recombinant purified TCR was used for crystal trials, and crystals that could be used for X-ray diffraction were obtained. Although we have not yet determined the crystal structure of the Vγ9Vδ2 TCR, we have established a procedure for Vγ9Vδ2 TCR expression and purification, which is useful for basic research and potentially for clinical application.
Collapse
Affiliation(s)
- Chaofei Cheng
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- People's Hospital of Henan University, Zhengzhou, 450003, China
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Guangzhi Liu
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- People's Hospital of Henan University, Zhengzhou, 450003, China.
| |
Collapse
|
29
|
Song Z, Henze L, Casar C, Schwinge D, Schramm C, Fuss J, Tan L, Prinz I. Human γδ T cell identification from single-cell RNA sequencing datasets by modular TCR expression. J Leukoc Biol 2023; 114:630-638. [PMID: 37437101 DOI: 10.1093/jleuko/qiad069] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023] Open
Abstract
Accurately identifying γδ T cells in large single-cell RNA sequencing (scRNA-seq) datasets without additional single-cell γδ T cell receptor sequencing (sc-γδTCR-seq) or CITE-seq (cellular indexing of transcriptomes and epitopes sequencing) data remains challenging. In this study, we developed a TCR module scoring strategy for human γδ T cell identification (i.e. based on modular gene expression of constant and variable TRA/TRB and TRD genes). We evaluated our method using 5' scRNA-seq datasets comprising both sc-αβTCR-seq and sc-γδTCR-seq as references and demonstrated that it can identify γδ T cells in scRNA-seq datasets with high sensitivity and accuracy. We observed a stable performance of this strategy across datasets from different tissues and different subtypes of γδ T cells. Thus, we propose this analysis method, based on TCR gene module scores, as a standardized tool for identifying and reanalyzing γδ T cells from 5'-end scRNA-seq datasets.
Collapse
Affiliation(s)
- Zheng Song
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Lara Henze
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Dorothee Schwinge
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Johannes Fuss
- Center for Translational Neuro- and Behavioral Sciences, Institute of Forensic Psychiatry and Sex Research, University of Duisburg-Essen, Alfredstrasse 68-72, 45130 Essen, Germany
| | - Likai Tan
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
- Department of Anaesthesia and Intensive Care (AIC), Prince of Wales Hospital, Shatin, The Chinese University of Hong Kong, New Territories, 4/F Main Clinical Block and Trauma Centre, Hong Kong, China
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
30
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
31
|
Kurosu T, Okuzaki D, Sakai Y, Kadi MA, Phanthanawiboon S, Ami Y, Shimojima M, Yoshikawa T, Fukushi S, Nagata N, Suzuki T, Kamimura D, Murakami M, Ebihara H, Saijo M. Dengue virus infection induces selective expansion of Vγ4 and Vγ6TCR γδ T cells in the small intestine and a cytokine storm driving vascular leakage in mice. PLoS Negl Trop Dis 2023; 17:e0011743. [PMID: 37939119 PMCID: PMC10659169 DOI: 10.1371/journal.pntd.0011743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Dengue is a major health problem in tropical and subtropical regions. Some patients develop a severe form of dengue, called dengue hemorrhagic fever, which can be fatal. Severe dengue is associated with a transient increase in vascular permeability. A cytokine storm is thought to be the cause of the vascular leakage. Although there are various research reports on the pathogenic mechanism, the complete pathological process remains poorly understood. We previously reported that dengue virus (DENV) type 3 P12/08 strain caused a lethal systemic infection and severe vascular leakage in interferon (IFN)-α/β and γ receptor knockout mice (IFN-α/β/γRKO mice), and that blockade of TNF-α signaling protected mice. Here, we performed transcriptome analysis of liver and small intestine samples collected chronologically from P12/08-infected IFN-α/β/γRKO mice in the presence/absence of blockade of TNF-α signaling and evaluated the cytokine and effector-level events. Blockade of TNF-α signaling mainly protected the small intestine but not the liver. Infection induced the selective expansion of IL-17A-producing Vγ4 and Vγ6 T cell receptor (TCR) γδ T cells in the small intestine, and IL-17A, together with TNF-α, played a critical role in the transition to severe disease via the induction of inflammatory cytokines such as TNF-α, IL-1β, and particularly the excess production of IL-6. Infection also induced the infiltration of neutrophils, as well as neutrophil collagenase/matrix metalloprotease 8 production. Blockade of IL-17A signaling reduced mortality and suppressed the expression of most of these cytokines, including TNF-α, indicating that IL-17A and TNF-α synergistically enhance cytokine expression. Blockade of IL-17A prevented nuclear translocation of NF-κB p65 in stroma-like cells and epithelial cells in the small intestine but only partially prevented recruitment of immune cells to the small intestine. This study provides an overall picture of the pathogenesis of infection in individual mice at the cytokine and effector levels.
Collapse
Affiliation(s)
- Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Suita, Osaka, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mohamad Al Kadi
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Suita, Osaka, Japan
| | | | - Yasusi Ami
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Team of Quantumimmunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
32
|
Kang I, Kim Y, Lee HK. γδ T cells as a potential therapeutic agent for glioblastoma. Front Immunol 2023; 14:1273986. [PMID: 37928546 PMCID: PMC10623054 DOI: 10.3389/fimmu.2023.1273986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Although γδ T cells comprise a small population of T cells, they perform important roles in protecting against infection and suppressing tumors. With their distinct tissue-localizing properties, combined with their various target recognition mechanisms, γδ T cells have the potential to become an effective solution for tumors that do not respond to current therapeutic procedures. One such tumor, glioblastoma (GBM), is a malignant brain tumor with the highest World Health Organization grade and therefore the worst prognosis. The immune-suppressive tumor microenvironment (TME) and immune-evasive glioma stem cells are major factors in GBM immunotherapy failure. Currently, encouraged by the strong anti-tumoral function of γδ T cells revealed at the preclinical and clinical levels, several research groups have shown progression of γδ T cell-based GBM treatment. However, several limitations still exist that block effective GBM treatment using γδ T cells. Therefore, understanding the distinct roles of γδ T cells in anti-tumor immune responses and the suppression mechanism of the GBM TME are critical for successful γδ T cell-mediated GBM therapy. In this review, we summarize the effector functions of γδ T cells in tumor immunity and discuss current advances and limitations of γδ T cell-based GBM immunotherapy. Additionally, we suggest future directions to overcome the limitations of γδ T cell-based GBM immunotherapy to achieve successful treatment of GBM.
Collapse
Affiliation(s)
- In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
33
|
Lv M, Zhang Z, Cui Y. Unconventional T cells in brain homeostasis, injury and neurodegeneration. Front Immunol 2023; 14:1273459. [PMID: 37854609 PMCID: PMC10579804 DOI: 10.3389/fimmu.2023.1273459] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
The interaction between peripheral immune cells and the brain is an important component of the neuroimmune axis. Unconventional T cells, which include natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, γδ T cells, and other poorly defined subsets, are a special group of T lymphocytes that recognize a wide range of nonpolymorphic ligands and are the connection between adaptive and innate immunity. Recently, an increasing number of complex functions of these unconventional T cells in brain homeostasis and various brain disorders have been revealed. In this review, we describe the classification and effector function of unconventional T cells, review the evidence for the involvement of unconventional T cells in the regulation of brain homeostasis, summarize the roles and mechanisms of unconventional T cells in the regulation of brain injury and neurodegeneration, and discuss immunotherapeutic potential as well as future research goals. Insight of these processes can shed light on the regulation of T cell immunity on brain homeostasis and diseases and provide new clues for therapeutic approaches targeting brain injury and neurodegeneration.
Collapse
Affiliation(s)
- Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Sandoz PA, Kuhnigk K, Szabo EK, Thunberg S, Erikson E, Sandström N, Verron Q, Brech A, Watzl C, Wagner AK, Alici E, Malmberg KJ, Uhlin M, Önfelt B. Modulation of lytic molecules restrain serial killing in γδ T lymphocytes. Nat Commun 2023; 14:6035. [PMID: 37758698 PMCID: PMC10533871 DOI: 10.1038/s41467-023-41634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
γδ T cells play a pivotal role in protection against various types of infections and tumours, from early childhood on and throughout life. They consist of several subsets characterised by adaptive and innate-like functions, with Vγ9Vδ2 being the largest subset in human peripheral blood. Although these cells show signs of cytotoxicity, their modus operandi remains poorly understood. Here we explore, using live single-cell imaging, the cytotoxic functions of γδ T cells upon interactions with tumour target cells with high temporal and spatial resolution. While γδ T cell killing is dominated by degranulation, the availability of lytic molecules appears tightly regulated in time and space. In particular, the limited co-occurrence of granzyme B and perforin restrains serial killing of tumour cells by γδ T cells. Thus, our data provide new insights into the cytotoxic arsenal and functions of γδ T cells, which may guide the development of more efficient γδ T cell based adoptive immunotherapies.
Collapse
Affiliation(s)
- Patrick A Sandoz
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Kyra Kuhnigk
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Edina K Szabo
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sarah Thunberg
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elina Erikson
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Niklas Sandström
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Quentin Verron
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Andreas Brech
- Cancell, Centre for Cancer Cell Reprogramming, Department for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University, Oslo, Norway
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Dortmund, Germany
| | - Arnika K Wagner
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Evren Alici
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karl-Johan Malmberg
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Michael Uhlin
- CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
35
|
Kang I, Kim Y, Lee HK. Double-edged sword: γδ T cells in mucosal homeostasis and disease. Exp Mol Med 2023; 55:1895-1904. [PMID: 37696894 PMCID: PMC10545763 DOI: 10.1038/s12276-023-00985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 09/13/2023] Open
Abstract
The mucosa is a tissue that covers numerous body surfaces, including the respiratory tract, digestive tract, eye, and urogenital tract. Mucosa is in direct contact with pathogens, and γδ T cells perform various roles in the tissue. γδ T cells efficiently defend the mucosa from various pathogens, such as viruses, bacteria, and fungi. In addition, γδ T cells are necessary for the maintenance of homeostasis because they select specific organisms in the microbiota and perform immunoregulatory functions. Furthermore, γδ T cells directly facilitate pregnancy by producing growth factors. However, γδ T cells can also play detrimental roles in mucosal health by amplifying inflammation, thereby worsening allergic responses. Moreover, these cells can act as major players in autoimmune diseases. Despite their robust roles in the mucosa, the application of γδ T cells in clinical practice is lacking because of factors such as gaps between mice and human cells, insufficient knowledge of the target of γδ T cells, and the small population of γδ T cells. However, γδ T cells may be attractive targets for clinical use due to their effector functions and low risk of inducing graft-versus-host disease. Therefore, robust research on γδ T cells is required to understand the crucial features of these cells and apply these knowledges to clinical practices.
Collapse
Affiliation(s)
- In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
36
|
Choi H, Kim TG, Jeun SS, Ahn S. Human gamma-delta (γδ) T cell therapy for glioblastoma: A novel alternative to overcome challenges of adoptive immune cell therapy. Cancer Lett 2023; 571:216335. [PMID: 37544475 DOI: 10.1016/j.canlet.2023.216335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/01/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Glioblastoma is the most common brain malignancy with devastating prognosis. Numerous clinical trials using various target therapeutic agents have failed and recent clinical trials using check point inhibitors also failed to provide survival benefits for glioblastoma patients. Adoptive T cell transfer is suggested as a novel therapeutic approach that has exhibited promise in preliminary clinical studies. However, the clinical outcomes are inconsistent, and there are several limitations of current adoptive T cell transfer strategies for glioblastoma treatment. As an alternative cell therapy, gamma-delta (γδ) T cells have been recently introduced for several cancers including glioblastoma. Since the leading role of γδ T cells is immune surveillance by recognizing a broad range of ligands including stress molecules, phosphoantigens, or lipid antigens, recent studies have suggested the potential benefits of γδ T cell transfer against glioblastomas. However, γδ T cells, as a small subset (1-5%) of T cells in human peripheral blood, are relatively unknown compared to conventional alpha-beta (αβ) T cells. In this context, our study introduced γδ T cells as an alternative and novel option to overcome several challenges regarding immune cell therapy in glioblastoma treatment. We described the unique characteristics and advantages of γδ T cells compared to conventional αβ T cells and summarize several recent preclinical studies using human gamma-delta T cell therapy for glioblastomas. Finally, we suggested future direction of human γδ T cell therapy for glioblastomas.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Rebpulic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Rebpulic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Li GQ, Xia J, Zeng W, Luo W, Liu L, Zeng X, Cao D. The intestinal γδ T cells: functions in the gut and in the distant organs. Front Immunol 2023; 14:1206299. [PMID: 37398661 PMCID: PMC10311558 DOI: 10.3389/fimmu.2023.1206299] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Located in the frontline against the largest population of microbiota, the intestinal mucosa of mammals has evolved to become an effective immune system. γδ T cells, a unique T cell subpopulation, are rare in circulation blood and lymphoid tissues, but rich in the intestinal mucosa, particularly in the epithelium. Via rapid production of cytokines and growth factors, intestinal γδ T cells are key contributors to epithelial homeostasis and immune surveillance of infection. Intriguingly, recent studies have revealed that the intestinal γδ T cells may play novel exciting functions ranging from epithelial plasticity and remodeling in response to carbohydrate diets to the recovery of ischemic stroke. In this review article, we update regulatory molecules newly defined in lymphopoiesis of the intestinal γδ T cells and their novel functions locally in the intestinal mucosa, such as epithelial remodeling, and distantly in pathological setting, e.g., ischemic brain injury repair, psychosocial stress responses, and fracture repair. The challenges and potential revenues in intestinal γδ T cell studies are discussed.
Collapse
Affiliation(s)
- Guo-Qing Li
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiliang Xia
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weihong Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Deliang Cao
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
38
|
Ruf B, Greten TF, Korangy F. Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity. Nat Rev Cancer 2023; 23:351-371. [PMID: 37081117 DOI: 10.1038/s41568-023-00562-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Immunotherapies targeting conventional T cells have revolutionized systemic treatment for many cancers, yet only a subset of patients benefit from these approaches. A better understanding of the complex immune microenvironment of tumours is needed to design the next generation of immunotherapeutics. Innate lymphoid cells (ILCs) and innate-like T cells (ILTCs) are abundant, tissue-resident lymphocytes that have recently been shown to have critical roles in many types of cancers. ILCs and ILTCs rapidly respond to changes in their surrounding environment and act as the first responders to bridge innate and adaptive immunity. This places ILCs and ILTCs as pivotal orchestrators of the final antitumour immune response. In this Review, we outline hallmarks of ILCs and ILTCs and discuss their emerging role in antitumour immunity, as well as the pathophysiological adaptations leading to their pro-tumorigenic function. We explore the pleiotropic, in parts redundant and sometimes opposing, mechanisms that underlie the delicate interplay between the different subsets of ILCs and ILTCs. Finally, we highlight their role in amplifying and complementing conventional T cell functions and summarize immunotherapeutic strategies for targeting ILCs and ILTCs in cancer.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
39
|
Tippalagama R, Chihab LY, Kearns K, Lewis S, Panda S, Willemsen L, Burel JG, Lindestam Arlehamn CS. Antigen-specificity measurements are the key to understanding T cell responses. Front Immunol 2023; 14:1127470. [PMID: 37122719 PMCID: PMC10140422 DOI: 10.3389/fimmu.2023.1127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Antigen-specific T cells play a central role in the adaptive immune response and come in a wide range of phenotypes. T cell receptors (TCRs) mediate the antigen-specificities found in T cells. Importantly, high-throughput TCR sequencing provides a fingerprint which allows tracking of specific T cells and their clonal expansion in response to particular antigens. As a result, many studies have leveraged TCR sequencing in an attempt to elucidate the role of antigen-specific T cells in various contexts. Here, we discuss the published approaches to studying antigen-specific T cells and their specific TCR repertoire. Further, we discuss how these methods have been applied to study the TCR repertoire in various diseases in order to characterize the antigen-specific T cells involved in the immune control of disease.
Collapse
|
40
|
Prinz I, Koenecke C. Antigen-specific γδ T cells contribute to cytomegalovirus control after stem cell transplantation. Curr Opin Immunol 2023; 82:102303. [PMID: 36947903 DOI: 10.1016/j.coi.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/24/2023]
Abstract
γδ T cells support the immunological control of viral infections, in particular during cytomegalovirus (CMV) reactivation in immunocompromised patients after allogeneic hematopoietic stem cell transplantation. It is unclear how γδ T cells sense CMV-infection and whether this involves specific T cell receptor (TCR)-ligand interaction. Here we summarize recent findings that revealed an adaptive-like anti-CMV immune response of γδ T cells, characterized by acquisition of effector functions and long-lasting clonal expansion. We propose that rather CMV-induced self-antigen than viral antigens trigger γδ TCRs during CMV reactivation. Given that the TCRs of CMV-activated γδ T cells are often cross-reactive to tumor cells, these findings pinpoint γδ T cells and their γδ TCRs as attractive multipurpose tools for antiviral and antitumor therapy.
Collapse
Affiliation(s)
- Immo Prinz
- Institute of Immunology, Hannover Medical School (MHH), Germany; Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Germany.
| | - Christian Koenecke
- Institute of Immunology, Hannover Medical School (MHH), Germany; Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, MHH, Germany
| |
Collapse
|
41
|
Hahn AM, Vogg L, Brey S, Schneider A, Schäfer S, Palmisano R, Pavlova A, Sandrock I, Tan L, Fichtner AS, Prinz I, Ravens S, Winkler TH. A monoclonal Trd chain supports the development of the complete set of functional γδ T cell lineages. Cell Rep 2023; 42:112253. [PMID: 36920908 DOI: 10.1016/j.celrep.2023.112253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/14/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
The clonal selection theory describes key features of adaptive immune responses of B and T cells. For αβ T cells and B cells, antigen recognition and selection principles are known at a detailed molecular level. The precise role of the antigen receptor in γδ T cells remains less well understood. To better understand the role of the γδ T cell receptor (TCR), we generate an orthotopic TCRδ transgenic mouse model. We demonstrate a multi-layered functionality of γδ TCRs and diverse roles of CDR3δ-mediated selection during γδ T cell development. Whereas epithelial populations using Vγ5 or Vγ7 chains are almost unaffected in their biology in the presence of the transgenic TCRδ chain, pairing with Vγ1 positively selects γδ T cell subpopulations with distinct programs in several organs, thereby distorting the repertoire. In conclusion, our data support dictation of developmental tropism together with adaptive-like recognition principles in a single antigen receptor.
Collapse
Affiliation(s)
- Anne M Hahn
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Lisa Vogg
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Stefanie Brey
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Andrea Schneider
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Simon Schäfer
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Ralph Palmisano
- Optical Imaging Centre Erlangen (OICE), Competence Unit, FAU, 91058 Erlangen, Germany
| | - Anna Pavlova
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | | | - Likai Tan
- Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Immo Prinz
- Medizinische Hochschule Hannover, Hannover, Germany; Institute for Systems Immunology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Thomas H Winkler
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|
42
|
Abstract
Current cancer immunotherapies are primarily predicated on αβ T cells, with a stringent dependence on MHC-mediated presentation of tumour-enriched peptides or unique neoantigens that can limit their efficacy and applicability in various contexts. After two decades of preclinical research and preliminary clinical studies involving very small numbers of patients, γδ T cells are now being explored as a viable and promising approach for cancer immunotherapy. The unique features of γδ T cells, including their tissue tropisms, antitumour activity that is independent of neoantigen burden and conventional MHC-dependent antigen presentation, and combination of typical properties of T cells and natural killer cells, make them very appealing effectors in multiple cancer settings. Herein, we review the main functions of γδ T cells in antitumour immunity, focusing on human γδ T cell subsets, with a particular emphasis on the differences between Vδ1+ and Vδ2+ γδ T cells, to discuss their prognostic value in patients with cancer and the key therapeutic strategies that are being developed in an attempt to improve the outcomes of these patients.
Collapse
|
43
|
NKG2A Immune Checkpoint in Vδ2 T Cells: Emerging Application in Cancer Immunotherapy. Cancers (Basel) 2023; 15:cancers15041264. [PMID: 36831606 PMCID: PMC9954046 DOI: 10.3390/cancers15041264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Immune regulation has revolutionized cancer treatment with the introduction of T-cell-targeted immune checkpoint inhibitors (ICIs). This successful immunotherapy has led to a more complete view of cancer that now considers not only the cancer cells to be targeted and destroyed but also the immune environment of the cancer cells. Current challenges associated with the enhancement of ICI effects are increasing the fraction of responding patients through personalized combinations of multiple ICIs and overcoming acquired resistance. This requires a complete overview of the anti-tumor immune response, which depends on a complex interplay between innate and adaptive immune cells with the tumor microenvironment. The NKG2A was revealed to be a key immune checkpoint for both Natural Killer (NK) cells and T cells. Monalizumab, a humanized anti-NKG2A antibody, enhances NK cell activity against various tumor cells and rescues CD8 αβ T cell function in combination with PD-1/PD-L1 blockade. In this review, we discuss the potential for targeting NKG2A expressed on tumor-sensing human γδ T cells, mostly on the specific Vδ2 T cell subset, in order to emphasize its importance and potential in the development of new ICI-based therapeutic approaches.
Collapse
|
44
|
Sanchez Sanchez G, Tafesse Y, Papadopoulou M, Vermijlen D. Surfing on the waves of the human γδ T cell ontogenic sea. Immunol Rev 2023; 315:89-107. [PMID: 36625367 DOI: 10.1111/imr.13184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
While γδ T cells are present virtually in all vertebrates, there is a remarkable lack of conservation of the TRG and TRD loci underlying the generation of the γδ T cell receptor (TCR), which is associated with the generation of species-specific γδ T cells. A prominent example is the human phosphoantigen-reactive Vγ9Vδ2 T cell subset that is absent in mice. Murine γδ thymocyte cells were among the first immune cells identified to follow a wave-based layered development during embryonic and early life, and since this initial observation, in-depth insight has been obtained in their thymic ontogeny. By contrast, less is known about the development of human γδ T cells, especially regarding the generation of γδ thymocyte waves. Here, after providing an overview of thymic γδ wave generation in several vertebrate classes, we review the evidence for γδ waves in the human fetal thymus, where single-cell technologies have allowed the breakdown of human γδ thymocytes into functional waves with important TCR associations. Finally, we discuss the possible mechanisms contributing to the generation of waves of γδ thymocytes and their possible significance in the periphery.
Collapse
Affiliation(s)
- Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Yohannes Tafesse
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
45
|
Lulla PD, Brenner M. Emerging Challenges to Cellular Therapy of Cancer. Cancer J 2023; 29:20-27. [PMID: 36693154 PMCID: PMC9881841 DOI: 10.1097/ppo.0000000000000637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ABSTRACT Cellular immunotherapy of cancer in the form of chimeric antigen receptor-modified T-cell therapy has become a standard treatment for lymphoid and more recently plasma cell malignancies. Although their successes in these cancers represent a breakthrough for adoptive cell therapy, there are several challenges to their continued growth in the field of cancer medicine. In this review, we discuss the progress made thus far toward achieving "off-the-shelf" accessibility of cell therapies that has the potential to greatly offset the costs associated with the current practice of making patient-specific products. We also review the innovations under investigation that attempt to make cellular therapy applicable to solid tumors as well.
Collapse
Affiliation(s)
- Premal D Lulla
- From the Center for Cell and Gene Therapy at Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, Houston, TX
| | | |
Collapse
|
46
|
Langan D, Wang R, Tidwell K, Mitiku S, Farrell A, Johnson C, Parks A, Suarez L, Jain S, Kim S, Jones K, Oelke M, Zeldis J. AIM™ platform: A new immunotherapy approach for viral diseases. Front Med (Lausanne) 2022; 9:1070529. [PMID: 36619639 PMCID: PMC9822776 DOI: 10.3389/fmed.2022.1070529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
In addition to complications of acute diseases, chronic viral infections are linked to both malignancies and autoimmune disorders. Lack of adequate treatment options for Epstein-Barr virus (EBV), Human T-lymphotropic virus type 1 (HTLV-1), and human papillomavirus (HPV) remains. The NexImmune Artificial Immune Modulation (AIM) nanoparticle platform can be used to direct T cell responses by mimicking the dendritic cell function. In one application, AIM nanoparticles are used ex vivo to enrich and expand (E+E) rare populations of multi-antigen-specific CD8+ T cells for use of these cells as an AIM adoptive cell therapy. This study has demonstrated using E+E CD8+ T cells, the functional relevance of targeting EBV, HTLV-1, and HPV. Expanded T cells consist primarily of effector memory, central memory, and self-renewing stem-like memory T cells directed at selected viral antigen peptides presented by the AIM nanoparticle. T cells expanded against either EBV- or HPV-antigens were highly polyfunctional and displayed substantial in vitro cytotoxic activity against cell lines expressing the respective antigens. Our initial work was in the context of exploring T cells expanded from healthy donors and restricted to human leukocyte antigen (HLA)-A*02:01 serotype. AIM Adoptive Cell Therapies (ACT) are also being developed for other HLA class I serotypes. AIM adoptive cell therapies of autologous or allogeneic T cells specific to antigens associated with acute myeloid leukemia and multiple myeloma are currently in the clinic. The utility and flexibility of the AIM nanoparticle platform will be expanded as we advance the second application, an AIM injectable off-the-shelf nanoparticle, which targets multiple antigen-specific T cell populations to either activate, tolerize, or destroy these targeted CD8+ T cells directly in vivo, leaving non-target cells alone. The AIM injectable platform offers the potential to develop new multi-antigen specific therapies for treating infectious diseases, cancer, and autoimmune diseases.
Collapse
|
47
|
Yu ED, Wang E, Garrigan E, Sutherland A, Khalil N, Kearns K, Pham J, Schulten V, Peters B, Frazier A, Sette A, da Silva Antunes R. Ex vivo assays show human gamma-delta T cells specific for common allergens are Th1-polarized in allergic donors. CELL REPORTS METHODS 2022; 2:100350. [PMID: 36590684 PMCID: PMC9795325 DOI: 10.1016/j.crmeth.2022.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/15/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
Abstract
Gamma-delta (γδ) T cells contribute to the pathology of many immune-related diseases; however, no ex vivo assays to study their activities are currently available. Here, we established a methodology to characterize human allergen-reactive γδ T cells in peripheral blood using an activation-induced marker assay targeting upregulated 4-1BB and CD69 expression. Broad and reproducible ex vivo allergen-reactive γδ T cell responses were detected in donors sensitized to mouse, cockroach, house dust mite, and timothy grass, but the response did not differ from that in non-allergic participants. The reactivity to 4 different allergen extracts was readily detected in 54.2%-100% of allergic subjects in a donor- and allergen-specific pattern and was abrogated by T cell receptor (TCR) blocking. Analysis of CD40L upregulation and intracellular cytokine staining revealed a T helper type 1 (Th1)-polarized response against mouse and cockroach extract stimulation. These results support the existence of allergen-reactive γδ T cells and their potential use in rebalancing dysregulated Th2 responses in allergic diseases.
Collapse
Affiliation(s)
- Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Eric Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Emily Garrigan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Natalie Khalil
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Kendall Kearns
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - John Pham
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Veronique Schulten
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| |
Collapse
|
48
|
Deseke M, Rampoldi F, Sandrock I, Borst E, Böning H, Ssebyatika GL, Jürgens C, Plückebaum N, Beck M, Hassan A, Tan L, Demera A, Janssen A, Steinberger P, Koenecke C, Viejo-Borbolla A, Messerle M, Krey T, Prinz I. A CMV-induced adaptive human Vδ1+ γδ T cell clone recognizes HLA-DR. J Exp Med 2022; 219:213357. [PMID: 35852466 PMCID: PMC9301659 DOI: 10.1084/jem.20212525] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/02/2022] [Accepted: 06/30/2022] [Indexed: 01/21/2023] Open
Abstract
The innate and adaptive roles of γδ T cells and their clonal γδ T cell receptors (TCRs) in immune responses are still unclear. Recent studies of γδ TCR repertoire dynamics showed massive expansion of individual Vδ1+ γδ T cell clones during viral infection. To judge whether such expansion is random or actually represents TCR-dependent adaptive immune responses, information about their cognate TCR ligands is required. Here, we used CRISPR/Cas9-mediated screening to identify HLA-DRA, RFXAP, RFX5, and CIITA as required for target cell recognition of a CMV-induced Vγ3Vδ1+ TCR, and further characterization revealed a direct interaction of this Vδ1+ TCR with the MHC II complex HLA-DR. Since MHC II is strongly upregulated by interferon-γ, these results suggest an inflammation-induced MHC-dependent immune response of γδ T cells.
Collapse
Affiliation(s)
- Malte Deseke
- Institute of Immunology, Hannover Medical School, Hannover, Germany,Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
| | | | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Eva Borst
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Heike Böning
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - George Liam Ssebyatika
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
| | - Carina Jürgens
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Nina Plückebaum
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Maleen Beck
- Institute of Immunology, Hannover Medical School, Hannover, Germany,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Ahmed Hassan
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Likai Tan
- Institute of Immunology, Hannover Medical School, Hannover, Germany,Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Abdi Demera
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Peter Steinberger
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Koenecke
- Institute of Immunology, Hannover Medical School, Hannover, Germany,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, Germany,German Center for Infection Research, Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany,German Center for Infection Research, Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
| | - Thomas Krey
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany,Institute of Virology, Hannover Medical School, Hannover, Germany,Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany,Center for Structural Systems Biology, Hamburg, Germany,German Center for Infection Research, Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany,Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany,Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Correspondence to Immo Prinz:
| |
Collapse
|
49
|
Van Kaer L, Postoak JL, Song W, Wu L. Innate and Innate-like Effector Lymphocytes in Health and Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:199-207. [PMID: 35821102 PMCID: PMC9285656 DOI: 10.4049/jimmunol.2200074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 04/20/2023]
Abstract
Lymphocytes can be functionally partitioned into subsets belonging to the innate or adaptive arms of the immune system. Subsets of innate and innate-like lymphocytes may or may not express Ag-specific receptors of the adaptive immune system, yet they are poised to respond with innate-like speed to pathogenic insults but lack the capacity to develop classical immunological memory. These lymphocyte subsets display a number of common properties that permit them to integrate danger and stress signals dispatched by innate sensor cells to facilitate the generation of specialized effector immune responses tailored toward specific pathogens or other insults. In this review, we discuss the functions of distinct subsets of innate and innate-like lymphocytes. A better understanding of the mechanisms by which these cells are activated in different contexts, their interactions with other immune cells, and their role in health and disease may inform the development of new or improved immunotherapies.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - J Luke Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Wenqiang Song
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
50
|
Matsuyama-Kato A, Boodhoo N, Iseki H, Abdul-Careem MF, Plattner BL, Behboudi S, Sharif S. Differential activation of chicken gamma delta T cells from different tissues by Toll-like receptor 3 or 21 ligands. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104391. [PMID: 35271861 DOI: 10.1016/j.dci.2022.104391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Gamma delta (γδ) T cells are highly enriched in mucosal barrier sites including intestinal tissues where microbial infections and tumors often originate in mammals. Human γδ T cells recognize stress antigens and microbial signals via their T cell receptor (TCR), natural killer (NK) receptors, and pattern recognition receptors. However, little is known about antigens or ligands capable of stimulating chicken γδ T cells. The results of the present study demonstrated that polyinosinic-polycytidylic acid (poly(I:C)), a Toll-like receptor (TLR)3 ligand, significantly induced upregulation of CD8α molecules on circulating and lung γδ T cells. Moreover, poly(I:C) stimulation induced interferon (IFN)-γ production from splenic and lung CD8α+ γδ T cells while Cytosine-phosphate-Guanine oligodeoxynucleotides (CpG-ODN) 2007, a TLR21 ligand, stimulation induced IFN-γ production by circulating γδ T cells. Neither poly(I:C) nor CpG-ODN 2007 stimulation elicited degranulation of γδ T cells. Additionally, the results revealed that CpG-ODN 2007 induced IFN-γ production from TCR-stimulated γδ T cells sorted from spleen. In our experiments, isopentenyl pyrophosphate (IPP), 4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), or zoledronate (Zol) stimulation did not induce IFN-γ production or degranulation in γδ T cells. Taken together, a combination of CpG-ODN 2007 and anti-CD3ε monoclonal antibodies (mAbs) can stimulate chicken γδ T cells and induce production of IFN-γ by these cells while IFN-γ production by γδ T cells induced by stimulation of poly(I:C) needs signals from other cells. These results suggest that chicken γδ T cells can sense invading pathogens via TLRs and produce IFN-γ as a first line of defense.
Collapse
Affiliation(s)
- Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Hiroshi Iseki
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 3050856, Japan
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and Public Health, University of CalgaryFaculty of Veterinary Medicine, Calgary, Alberta, T2N 1N4, Canada
| | - Brandon L Plattner
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506-5802, USA
| | - Shahriar Behboudi
- Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom; The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NE, United Kingdom
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|