1
|
Klaimi C, Kong W, Blériot C, Haas JT. The immunological interface: dendritic cells as key regulators in metabolic dysfunction-associated steatotic liver disease. FEBS Lett 2024. [PMID: 39668616 DOI: 10.1002/1873-3468.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) refers to a broad spectrum of conditions associating fat accumulation in the liver (steatosis) with varying degrees of inflammation (hepatitis) and fibrosis, which can progress to cirrhosis and potentially cancer (hepatocellular carcinoma). The first stages of these diseases are reversible and the immune system, together with metabolic factors (obesity, insulin resistance, Western diet, etc.), can influence the disease trajectory leading to progression or regression. Dendritic cells are professional antigen-presenting cells that constantly sense environmental stimuli and orchestrate immune responses. Herein, we discuss the existing literature on the heterogeneity of dendritic cell lineages, states, and functions, to provide a comprehensive overview of how liver dendritic cells influence the onset and evolution of MASLD.
Collapse
Affiliation(s)
- Camilla Klaimi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | | | - Camille Blériot
- Gustave Roussy, CNRS UMR9018, Metabolic and Systemic Aspects of Oncogenesis for New Therapeutic Approaches, Université Paris-Saclay, Villejuif, France
- Institut Necker Enfants Malades, CNRS, INSERM, Université Paris Cité, France
| | - Joel T Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
2
|
Ren Y, Huang P, Zhang L, Tang Y, He S, Li H, Huang X, Ding Y, Liu L, Liu L, He X. Multi-omics landscape of childhood simple obesity: novel insights into pathogenesis and biomarkers discovery. Cell Biosci 2024; 14:145. [PMID: 39609876 PMCID: PMC11606102 DOI: 10.1186/s13578-024-01322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The increasing incidence of childhood obesity annually has led to a surge in physical and mental health risks, making it a significant global public health concern. This study aimed to discover novel biomarkers of childhood simple obesity through integrative multi-omics analysis, uncovering their potential connections and providing fresh research directions for the complex pathogenesis and treatment strategies. METHODS Transcriptome, untargeted metabolome, and 16 S rDNA sequencing were conducted on subjects to examine transcripts, metabolites in blood, and gut microflora in stool. RESULTS Transcriptomic analysis identified 599 differentially expressed genes (DEGs), of which 25 were immune-related genes, and participated in immune pathways such as antimicrobial peptides, neutrophil degranulation, and interferons. The optimal random forest model based on these genes exhibited an AUC of 0.844. The metabolomic analysis examined 71 differentially expressed metabolites (DEMs), including 12 immune-related metabolites. Notably, lauric acid showed an extremely strong positive correlation with BMI and showed a good discriminative power for obesity (AUC = 0.82). DEMs were found to be significantly enriched in four metabolic pathways, namely "Aminoacyl-tRNA biosynthesis", "Valine leucine and isoleucine biosynthesis, and Glycine", "Serine and threonine metabolism", and "Biosynthesis of unsaturated fatty acids". Microbiome analysis revealed 12 differential gut microbiotas (DGMs) at the phylum and genus levels, with p_Firmicutes dominating in the obese group and g_Escherichia-Shigella in the normal group. Subsequently, a Random Forest model was developed based on the DEMs, immune-related DEGs, and metabolites with an AUC value of 0.912. The 14 indicators identified by this model could potentially serve as a set of biomarkers for obesity. The analysis of the inter-omics correlation network found 233 pairs of significant correlations. DEGs BPIFA1, BPI, and SAA1, DEMs Dimethy(tetradecyl)amine, Deoxycholic acid, Pathalic anhydride, and DL-Alanine, and DGMs g_Intestinimonas and g_Turicibacter showed strong connectivity within the network, constituting a large proportion of interactions. CONCLUSION This study presents the first comprehensive description of the multi-omics characteristics of childhood simple obesity, recognizing promising biomarkers. Immune-related markers offer a new perspective for researching the immunological mechanisms underlying obesity and its associated complications. The revealed interactions among these biomarkers contribute to a deeper understanding the intricate biological regulatory networks associated with obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou, 570100, China
- Department of Pediatrics, Hainan Modern Women and Children's. Medical, Haikou, 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Siyi He
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, 570311, China
- Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, China
| | - HaiDan Li
- Department of Pediatrics, Hainan Women and Children's Medical Center, Hainan, 570100, China
| | - XiaoYan Huang
- Department of Pediatrics, Hainan Women and Children's Medical Center, Hainan, 570100, China
| | - Yan Ding
- Department of Dermatology, Hospital of Hainan Medical University, Haikou, Hainan, 570311, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Xiaojie He
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Laboratory of Pediatric Nephrology, Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
3
|
Sinton MC, Kajimura S. From fat storage to immune hubs: the emerging role of adipocytes in coordinating the immune response to infection. FEBS J 2024. [PMID: 39428707 DOI: 10.1111/febs.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Adipose tissue is a rich source of diverse cell populations, including immune cells, adipocytes and stromal cells. Interactions between these different cell types are now appreciated to be critical for maintaining tissue structure and function, by governing processes such as adipogenesis, lipolysis and differentiation of white to beige adipocytes. Interactions between these cells also drive inflammation in obesity, leading to an expansion of adipose tissue immune cells, and the secretion of proinflammatory cytokines from immune cells and from adipocytes themselves. However, in evolutionary terms, obesity is a recent phenomenon, raising the question of why adipocytes evolved to express factors that influence the immune response. Studies of various pathogens indicate that adipocytes are highly responsive to infection, altering their metabolic profiles in a way that can be used to release nutrients and fuel the immune response. In the case of infection with the extracellular parasite Trypanosoma brucei, attenuating the ability of adipocytes to sense the cytokine IL-17 results in a loss of control of the local immune response and an increased pathogen load. Intriguingly, comparisons of the adipocyte response to infection suggest that the immune responses of these cells occur in a pathogen-dependent manner, further confirming their complexity. Here, with a focus on murine adipose tissue, we discuss the emerging concept that, in addition to their canonical function, adipocytes are immune signalling hubs that integrate and disseminate signals from the immune system to generate a local environment conducive to pathogen clearance.
Collapse
Affiliation(s)
- Matthew C Sinton
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, UK
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
4
|
Zhang Y, Jiang Y, Yang X, Huang Y, Pan A, Liao Y. Adipose tissue senescence: Biological changes, hallmarks and therapeutic approaches. Mech Ageing Dev 2024; 222:111988. [PMID: 39265709 DOI: 10.1016/j.mad.2024.111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Adipose tissue (AT), the largest energy storage reservoir and endocrine organ, plays a crucial role in regulating systemic energy metabolism. As one of the most vulnerable tissues during aging, the plasticity of AT is impaired. With age, AT undergoes redistribution, characterized by expansion of visceral adipose tissue (VAT) and reduction of peripheral subcutaneous adipose tissue (SAT). Additionally, age-related changes in AT include reduced adipogenesis of white adipocytes, decreased proliferation and differentiation capacity of mesenchymal stromal/stem cells (MSCs), diminished thermogenic capacity in brown/beige adipocytes, and dysregulation of immune cells. Specific and sensitive hallmarks enable the monitoring and evaluation of the biological changes associated with aging. In this study, we have innovatively proposed seven characteristic hallmarks of AT senescence, including telomere attrition, epigenetic alterations, genomic instability, mitochondrial dysfunction, disabled macroautophagy, cellular senescence, and chronic inflammation, which are intricately interconnected and mutually regulated. Finally, we discussed anti-aging strategies targeting AT, offering insights into mitigating or delaying metabolic disturbances caused by AT senescence.
Collapse
Affiliation(s)
- Yajuan Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yaoyao Jiang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiaoyue Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yumei Huang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China.
| |
Collapse
|
5
|
Satoh M, Iwabuchi K. Contribution of NKT cells and CD1d-expressing cells in obesity-associated adipose tissue inflammation. Front Immunol 2024; 15:1365843. [PMID: 38426085 PMCID: PMC10902011 DOI: 10.3389/fimmu.2024.1365843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Natural killer T (NKT) cell are members of the innate-like T lymphocytes and recognizes lipid antigens presented by CD1d-expressing cells. Obesity-associated inflammation in adipose tissue (AT) leads to metabolic dysfunction, including insulin resistance. When cellular communication is properly regulated among AT-residing immune cells and adipocytes during inflammation, a favorable balance of Th1 and Th2 immune responses is achieved. NKT cells play crucial roles in AT inflammation, influencing the development of diet-induced obesity and insulin resistance. NKT cells interact with CD1d-expressing cells in AT, such as adipocytes, macrophages, and dendritic cells, shaping pro-inflammatory or anti-inflammatory microenvironments with distinct characteristics depending on the antigen-presenting cells. Additionally, CD1d may be involved in the inflammatory process independently of NKT cells. In this mini-review, we provide a brief overview of the current understanding of the interaction between immune cells, focusing on NKT cells and CD1d signaling, which control AT inflammation both in the presence and absence of NKT cells. We aim to enhance our understanding of the mechanisms of obesity-associated diseases.
Collapse
Affiliation(s)
- Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | | |
Collapse
|
6
|
Bradley D, Deng T, Shantaram D, Hsueh WA. Orchestration of the Adipose Tissue Immune Landscape by Adipocytes. Annu Rev Physiol 2024; 86:199-223. [PMID: 38345903 DOI: 10.1146/annurev-physiol-042222-024353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Obesity is epidemic and of great concern because of its comorbid and costly inflammatory-driven complications. Extensive investigations in mice have elucidated highly coordinated, well-balanced interactions between adipocytes and immune cells in adipose tissue that maintain normal systemic metabolism in the lean state, while in obesity, proinflammatory changes occur in nearly all adipose tissue immune cells. Many of these changes are instigated by adipocytes. However, less is known about obesity-induced adipose-tissue immune cell alterations in humans. Upon high-fat diet feeding, the adipocyte changes its well-known function as a metabolic cell to assume the role of an immune cell, orchestrating proinflammatory changes that escalate inflammation and progress during obesity. This transformation is particularly prominent in humans. In this review, we (a) highlight a leading and early role for adipocytes in promulgating inflammation, (b) discuss immune cell changes and the time course of these changes (comparing humans and mice when possible), and (c) note how reversing proinflammatory changes in most types of immune cells, including adipocytes, rescues adipose tissue from inflammation and obese mice from insulin resistance.
Collapse
Affiliation(s)
- David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Pennsylvania State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA;
| | - Tuo Deng
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Dharti Shantaram
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
7
|
Hildreth AD, Padilla ET, Gupta M, Wong YY, Sun R, Legala AR, O'Sullivan TE. Adipose cDC1s contribute to obesity-associated inflammation through STING-dependent IL-12 production. Nat Metab 2023; 5:2237-2252. [PMID: 37996702 DOI: 10.1038/s42255-023-00934-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Obesity is associated with chronic low-grade white adipose tissue (WAT) inflammation that can contribute to the development of insulin resistance in mammals. Previous studies have identified interleukin (IL)-12 as a critical upstream regulator of WAT inflammation and metabolic dysfunction during obesity. However, the cell types and mechanisms that initiate WAT IL-12 production remain unclear. Here we show that conventional type 1 dendritic cells (cDC1s) are the cellular source of WAT IL-12 during obesity through analysis of mouse and human WAT single-cell transcriptomic datasets, IL-12 reporter mice and IL-12p70 protein levels by enzyme-linked immunosorbent assay. We demonstrate that cDC1s contribute to obesity-associated inflammation by increasing group 1 innate lymphocyte interferon-γ production and inflammatory macrophage accumulation. Inducible depletion of cDC1s increased WAT insulin sensitivity and systemic glucose tolerance during diet-induced obesity. Mechanistically, endocytosis of apoptotic bodies containing self-DNA by WAT cDC1s drives stimulator of interferon genes (STING)-dependent IL-12 production. Together, these results suggest that WAT cDC1s act as critical regulators of adipose tissue inflammation and metabolic dysfunction during obesity.
Collapse
Affiliation(s)
- Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eddie T Padilla
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Meha Gupta
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yung Yu Wong
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ryan Sun
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Akshara R Legala
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Zhao Q, Wu J, Ding Y, Pang Y, Jiang C. Gut microbiota, immunity, and bile acid metabolism: decoding metabolic disease interactions. LIFE METABOLISM 2023; 2. [DOI: 10.1093/lifemeta/load032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
In recent decades, the global prevalence of metabolic syndrome has surged, posing a significant public health challenge. Metabolic disorders, encompassing diabetes, obesity, nonalcoholic fatty liver disease, and polycystic ovarian syndrome, have been linked to alterations in the gut microbiota. Nonetheless, the connection between gut microbiota and host metabolic diseases warrants further investigation. In this review, we delve into the associations between various metabolic disorders and the gut microbiota, focusing on immune responses and bile acid (BA) metabolism. Notably, T helper cells, innate lymphoid cells, macrophages, and dendritic cells have been shown to modulate host metabolism through interactions with intestinal microorganisms and the release of cytokines. Furthermore, secondary BA metabolites, derived from the microbiota, are involved in the pathogenesis of metabolic diseases via the farnesoid X receptor and Takeda G protein-coupled receptor 5. By covering both aspects of this immune system-microorganism axis, we present a comprehensive overview of the roles played by the gut microbiota, microbiota-derived BA metabolites, and immune responses in metabolic diseases, as well as the interplay between these systems.
Collapse
Affiliation(s)
- Qixiang Zhao
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital , Beijing 100191 , China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University , Beijing 100191 , China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University , Beijing 100191 , China
| | - Jiayu Wu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital , Beijing 100191 , China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University , Beijing 100191 , China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University , Beijing 100191 , China
| | - Yong Ding
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital , Beijing 100191 , China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University , Beijing 100191 , China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University , Beijing 100191 , China
| | - Yanli Pang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital , Beijing 100191 , China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital , Beijing 100191 , China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University , Beijing 100191 , China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University , Beijing 100191 , China
| |
Collapse
|
9
|
Sánchez‐Cerrillo I, Calzada‐Fraile D, Triguero‐Martínez A, Calvet‐Mirabent M, Popova O, Delgado‐Arévalo C, Valdivia‐Mazeyra M, Ramírez‐Huesca M, de Luis EV, Benguría A, Aceña‐Gonzalo T, Moreno‐Vellisca R, de Llano MA, de la Fuente H, Tsukalov I, Delgado‐Wicke P, Fernández‐Ruiz E, Roy‐Vallejo E, Tejedor‐Lázaro R, Ramiro A, Iborra S, Sánchez‐Madrid F, Dopazo A, Álvaro IG, Castañeda S, Martin‐Gayo E. MICa/b-dependent activation of natural killer cells by CD64 + inflammatory type 2 dendritic cells contributes to autoimmunity. EMBO J 2023; 42:e113714. [PMID: 37916875 PMCID: PMC10690448 DOI: 10.15252/embj.2023113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is an inflammatory autoimmune disorder largely mediated by type I and II interferon (IFN). The potential contribution of innate immune cells, such as natural killer (NK) cells and dendritic cells (DC), to the pSS pathology remains understudied. Here, we identified an enriched CD16+ CD56hi NK cell subset associated with higher cytotoxic function, as well as elevated proportions of inflammatory CD64+ conventional dendritic cell (cDC2) subtype that expresses increased levels of MICa/b, the ligand for the activating receptor NKG2D, in pSS individuals. Circulating cDC2 from pSS patients efficiently induced activation of cytotoxic NK cells ex vivo and were found in proximity to CD56+ NK cells in salivary glands (SG) from pSS patients. Interestingly, transcriptional activation of IFN signatures associated with the RIG-I/DDX60 pathway, IFN I receptor, and its target genes regulate the expression of NKG2D ligands on cDC2 from pSS patients. Finally, increased proportions of CD64hi RAE-1+ cDC2 and NKG2D+ CD11b+ CD27+ NK cells were present in vivo in the SG after poly I:C injection. Our study provides novel insight into the contribution and interplay of NK and cDC2 in pSS pathology and identifies new potential therapy targets.
Collapse
Affiliation(s)
- Ildefonso Sánchez‐Cerrillo
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Diego Calzada‐Fraile
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
- Vascular Pathophysiology DepartmentCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Ana Triguero‐Martínez
- Rheumatology UnitHospital Universitario La Princesa, Instituto de Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Marta Calvet‐Mirabent
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Olga Popova
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Cristina Delgado‐Arévalo
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | | | - Marta Ramírez‐Huesca
- Vascular Pathophysiology DepartmentCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | | | - Alberto Benguría
- Genomic UnitCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Teresa Aceña‐Gonzalo
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | | | | | - Hortensia de la Fuente
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
- CIBER Cardiovascular, Instituto de Salud Carlos IIIMadridSpain
| | - Ilya Tsukalov
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Pablo Delgado‐Wicke
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Elena Fernández‐Ruiz
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Emilia Roy‐Vallejo
- Rheumatology UnitHospital Universitario La Princesa, Instituto de Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Reyes Tejedor‐Lázaro
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Almudena Ramiro
- Vascular Pathophysiology DepartmentCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Salvador Iborra
- Vascular Pathophysiology DepartmentCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Francisco Sánchez‐Madrid
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
- Vascular Pathophysiology DepartmentCentro Nacional de Investigaciones CardiovascularesMadridSpain
- CIBER Cardiovascular, Instituto de Salud Carlos IIIMadridSpain
| | - Ana Dopazo
- Vascular Pathophysiology DepartmentCentro Nacional de Investigaciones CardiovascularesMadridSpain
- Genomic UnitCentro Nacional de Investigaciones CardiovascularesMadridSpain
- CIBER Cardiovascular, Instituto de Salud Carlos IIIMadridSpain
| | - Isidoro González Álvaro
- Rheumatology UnitHospital Universitario La Princesa, Instituto de Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Santos Castañeda
- Rheumatology UnitHospital Universitario La Princesa, Instituto de Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
- Cátedra UAM‐Roche, EPID‐Future, Department of MedicineUniversidad Autónoma de Madrid (UAM)MadridSpain
| | - Enrique Martin‐Gayo
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
- CIBER Enfermedades Infecciosas (CIBERINFECC), Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
10
|
Zhou HY, Feng X, Wang LW, Zhou R, Sun H, Chen X, Lu RB, Huang Y, Guo Q, Luo XH. Bone marrow immune cells respond to fluctuating nutritional stress to constrain weight regain. Cell Metab 2023; 35:1915-1930.e8. [PMID: 37703873 DOI: 10.1016/j.cmet.2023.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
Weight regain after weight loss is a major challenge in the treatment of obesity. Immune cells adapt to fluctuating nutritional stress, but their roles in regulating weight regain remain unclear. Here, we identify a stem cell-like CD7+ monocyte subpopulation accumulating in the bone marrow (BM) of mice and humans that experienced dieting-induced weight loss. Adoptive transfer of CD7+ monocytes suppresses weight regain, whereas inducible depletion of CD7+ monocytes accelerates it. These cells, accumulating metabolic memories via epigenetic adaptations, preferentially migrate to the subcutaneous white adipose tissue (WAT), where they secrete fibrinogen-like protein 2 (FGL2) to activate the protein kinase A (PKA) signaling pathway and facilitate beige fat thermogenesis. Nevertheless, CD7+ monocytes gradually enter a quiescent state after weight loss, accompanied by increased susceptibility to weight regain. Notably, administration of FMS-like tyrosine kinase 3 ligand (FLT3L) remarkably rejuvenates CD7+ monocytes, thus ameliorating rapid weight regain. Together, our findings identify a unique bone marrow-derived metabolic-memory immune cell population that could be targeted to combat obesity.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Xu Feng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Li-Wen Wang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Heng Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Xin Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Ren-Bin Lu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, China.
| |
Collapse
|
11
|
Guo C, Chi H. Immunometabolism of dendritic cells in health and disease. Adv Immunol 2023; 160:83-116. [PMID: 38042587 PMCID: PMC11086980 DOI: 10.1016/bs.ai.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
Dendritic cells (DCs) are crucial mediators that bridge the innate and adaptive immune responses. Cellular rewiring of metabolism is an emerging regulator of the activation, migration, and functional specialization of DC subsets in specific microenvironments and immunological conditions. DCs undergo metabolic adaptation to exert immunogenic or tolerogenic effects in different contexts. Also, beyond their intracellular metabolic and signaling roles, metabolites and nutrients mediate the intercellular crosstalk between DCs and other cell types, and such crosstalk orchestrates DC function and immune responses. Here, we provide a comprehensive review of the metabolic regulation of DC biology in various contexts and summarize the current understanding of such regulation in directing immune homeostasis and inflammation, specifically with respect to infections, autoimmunity, tolerance, cancer, metabolic diseases, and crosstalk with gut microbes. Understanding context-specific metabolic alterations in DCs may identify mechanisms for physiological and pathological functions of DCs and yield potential opportunities for therapeutic targeting of DC metabolism in many diseases.
Collapse
Affiliation(s)
- Chuansheng Guo
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States.
| |
Collapse
|
12
|
Mazitova AM, Márquez-Sánchez AC, Koltsova EK. Fat and inflammation: adipocyte-myeloid cell crosstalk in atherosclerosis. Front Immunol 2023; 14:1238664. [PMID: 37781401 PMCID: PMC10540690 DOI: 10.3389/fimmu.2023.1238664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Adipose tissue inflammation has been implicated in various chronic inflammatory diseases and cancer. Perivascular adipose tissue (PVAT) surrounds the aorta as an extra layer and was suggested to contribute to atherosclerosis development. PVAT regulates the function of endothelial and vascular smooth muscle cells in the aorta and represent a reservoir for various immune cells which may participate in aortic inflammation. Recent studies demonstrate that adipocytes also express various cytokine receptors and, therefore, may directly respond to inflammatory stimuli. Here we will summarize current knowledge on immune mechanisms regulating adipocyte activation and the crosstalk between myeloid cells and adipocytes in pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Aleksandra M. Mazitova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ana Cristina Márquez-Sánchez
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ekaterina K. Koltsova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
13
|
Hao L, Zhong W, Woo J, Wei X, Ma H, Dong H, Guo W, Sun X, Yue R, Zhao J, Zhang Q, Zhou Z. Conventional type 1 dendritic cells protect against gut barrier disruption via maintaining Akkermansia muciniphila in alcoholic steatohepatitis. Hepatology 2023; 78:896-910. [PMID: 36626632 PMCID: PMC11140646 DOI: 10.1097/hep.0000000000000019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/07/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Alcohol-perturbed gut immune homeostasis is associated with the development of alcoholic liver disease (ALD). However, the role of intestinal dendritic cells (DCs) in ALD progression is still unknown. This study aimed to investigate the cellular and molecular mechanisms through which intestinal DCs respond to alcohol exposure and contribute to the pathogenesis of ALD. APPROACH AND RESULTS After 8 weeks of alcohol consumption, the number of basic leucine zipper transcription factor ATF-like 3 ( Batf3 )-dependent conventional type 1 DCs (cDC1s) was dramatically decreased in the intestine but not the liver. cDC1 deficient Batf3 knockout mice along with wild-type mice were subjected to chronic-binge ethanol feeding to determine the role of intestinal cDC1s reduction in ALD. cDC1s deficiency exacerbated alcohol-induced gut barrier disruption, bacterial endotoxin translocation into the circulation, and liver injury. Adoptive transfer of cDC1s to alcohol-fed mice ameliorated alcohol-mediated gut barrier dysfunction and liver injury. Further studies revealed that intestinal cDC1s serve as a positive regulator of Akkermansia muciniphila ( A. muciniphila ). Oral administration of A. muciniphila markedly reversed alcoholic steatohepatitis in mice. Mechanistic studies revealed that cDC1s depletion exacerbated alcohol-downregulated intestinal antimicrobial peptides which play a crucial role in maintaining A. muciniphila abundance, by disrupting the IL-12-interferon gamma signaling pathway. Lastly, we identified that intestinal cDC1s were required for the protective role of Lactobacillus reuteri in alcoholic steatohepatitis. CONCLUSIONS This study demonstrated that cDC1s protect alcohol-induced liver injury by maintaining A. muciniphila abundance in mice. Targeting cDC1s may serve as a promising therapeutic approach for treating ALD.
Collapse
Affiliation(s)
- Liuyi Hao
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
- Department of Nutrition, Kannapolis, North Carolina, USA
| | - Jongmin Woo
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
| | - Xiaoyuan Wei
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Hao Ma
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Haibo Dong
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
| | - Wei Guo
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
| | - Xinguo Sun
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
| | - Ruichao Yue
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
- Department of Nutrition, Kannapolis, North Carolina, USA
| |
Collapse
|
14
|
Liu S, Jiang W, Liu C, Guo S, Wang H, Chang X. Chinese chestnut shell polyphenol extract regulates the JAK2/STAT3 pathway to alleviate high-fat diet-induced, leptin-resistant obesity in mice. Food Funct 2023; 14:4807-4823. [PMID: 37128963 DOI: 10.1039/d3fo00604b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chinese chestnut shell is a by-product of chestnut food processing and is rich in polyphenols. This study sought to investigate the effect of chestnut shell polyphenol extract (CSP) on weight loss and lipid reduction in a 12-week high-fat diet (HFD)-induced murine obesity model. CSP (300 mg per kg body weight) was administered intragastrically daily. AG490, a JAK2 protein tyrosine kinase inhibitor, was also intraperitoneally injected. The results showed that an HFD induced leptin resistance (LR). Compared to corresponding values in the HFD group, CSP treatment improved blood lipid levels, weight, and leptin levels in obese mice (p < 0.01). Additionally, CSP treatment enhanced enzyme activity by improving total antioxidant capacity, attenuating oxidative stress, and reducing fat droplet accumulation and inflammation in the liver, epididymal, and retroperitoneal adipose tissue. CSP also activated the LEPR-JAK2/STAT3-PTP1B-SOCS-3 signal transduction pathway in hypothalamus tissue and improved LR while regulating the expression of proteins related to lipid metabolism (PPARγ, FAS, and LPL) in white adipose tissue in the retroperitoneal cavity. However, the amelioration of lipid metabolism by CSP was dependent on JAK2. Molecular docking simulation further demonstrated the strong binding affinity of procyanidin C1 (-10.3983297 kcal mol-1) and procyanidin B1 (-9.12686729 kcal mol-1) to the crystal structure of JAK2. These results suggest that CSP may be used to reduce HFD-induced obesity with potential application as a functional food additive.
Collapse
Affiliation(s)
- Suwen Liu
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
- Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
| | - Wenhong Jiang
- Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
- Cofco Great Wall Wine (Ningxia) Co., Ltd, Yinchuan, Ningxia, 750100, China
| | - Chang Liu
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
| | - Shuo Guo
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Xuedong Chang
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
- Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
| |
Collapse
|
15
|
Redondo-Urzainqui A, Hernández-García E, Cook ECL, Iborra S. Dendritic cells in energy balance regulation. Immunol Lett 2023; 253:19-27. [PMID: 36586424 DOI: 10.1016/j.imlet.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Besides their well-known role in initiating adaptive immune responses, several groups have studied the role of dendritic cells (DCs) in the context of chronic metabolic inflammation, such as in diet-induced obesity (DIO) or metabolic-associated fatty liver disease. DCs also have an important function in maintaining metabolic tissue homeostasis in steady-state conditions. In this review, we will briefly describe the different DC subsets, the murine models available to assess their function, and discuss the role of DCs in regulating energy balance and maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Ana Redondo-Urzainqui
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Elena Hernández-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Emma Clare Laura Cook
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| |
Collapse
|
16
|
Zhang YX, Ou MY, Yang ZH, Sun Y, Li QF, Zhou SB. Adipose tissue aging is regulated by an altered immune system. Front Immunol 2023; 14:1125395. [PMID: 36875140 PMCID: PMC9981968 DOI: 10.3389/fimmu.2023.1125395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Adipose tissue is a widely distributed organ that plays a critical role in age-related physiological dysfunctions as an important source of chronic sterile low-grade inflammation. Adipose tissue undergoes diverse changes during aging, including fat depot redistribution, brown and beige fat decrease, functional decline of adipose progenitor and stem cells, senescent cell accumulation, and immune cell dysregulation. Specifically, inflammaging is common in aged adipose tissue. Adipose tissue inflammaging reduces adipose plasticity and pathologically contributes to adipocyte hypertrophy, fibrosis, and ultimately, adipose tissue dysfunction. Adipose tissue inflammaging also contributes to age-related diseases, such as diabetes, cardiovascular disease and cancer. There is an increased infiltration of immune cells into adipose tissue, and these infiltrating immune cells secrete proinflammatory cytokines and chemokines. Several important molecular and signaling pathways mediate the process, including JAK/STAT, NFκB and JNK, etc. The roles of immune cells in aging adipose tissue are complex, and the underlying mechanisms remain largely unclear. In this review, we summarize the consequences and causes of inflammaging in adipose tissue. We further outline the cellular/molecular mechanisms of adipose tissue inflammaging and propose potential therapeutic targets to alleviate age-related problems.
Collapse
Affiliation(s)
- Yi-Xiang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Yi Ou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Han Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Anti-Inflammatory Mechanisms of Dietary Flavones: Tapping into Nature to Control Chronic Inflammation in Obesity and Cancer. Int J Mol Sci 2022; 23:ijms232415753. [PMID: 36555392 PMCID: PMC9779861 DOI: 10.3390/ijms232415753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Flavones are natural phytochemicals broadly distributed in our diet. Their anti-inflammatory properties provide unique opportunities to control the innate immune system and inflammation. Here, we review the role of flavones in chronic inflammation with an emphasis on their impact on the molecular mechanisms underlying inflammatory diseases including obesity and cancer. Flavones can influence the innate immune cell repertoire restoring the immune landscape. Flavones impinge on NF-κB, STAT, COX-2, or NLRP3 inflammasome pathways reestablishing immune homeostasis. Devoid of adverse side effects, flavones could present alternative opportunities for the treatment and prevention of chronic inflammation that contributes to obesity and cancer.
Collapse
|
18
|
Cook ECL, Redondo-Urzainqui A, Iborra S. Obesity can turn a therapy into an antitherapy in atopic dermatitis. Allergy 2022; 77:3473-3475. [PMID: 35989563 DOI: 10.1111/all.15482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Emma C L Cook
- Department of Immunology, Ophthalmology and ENT, School of Medicine, 2 de Octubre Health Research Institute (imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Redondo-Urzainqui
- Department of Immunology, Ophthalmology and ENT, School of Medicine, 2 de Octubre Health Research Institute (imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, 2 de Octubre Health Research Institute (imas12), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Hamade H, Stamps JT, Stamps DT, More SK, Thomas LS, Blackwood AY, Lahcene NL, Castanon SL, Salumbides BC, Shimodaira Y, Goodridge HS, Targan SR, Michelsen KS. BATF3 Protects Against Metabolic Syndrome and Maintains Intestinal Epithelial Homeostasis. Front Immunol 2022; 13:841065. [PMID: 35812447 PMCID: PMC9257242 DOI: 10.3389/fimmu.2022.841065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The intestinal immune system and microbiota are emerging as important contributors to the development of metabolic syndrome, but the role of intestinal dendritic cells (DCs) in this context is incompletely understood. BATF3 is a transcription factor essential in the development of mucosal conventional DCs type 1 (cDC1). We show that Batf3-/- mice developed metabolic syndrome and have altered localization of tight junction proteins in intestinal epithelial cells leading to increased intestinal permeability. Treatment with the glycolysis inhibitor 2-deoxy-D-glucose reduced intestinal inflammation and restored barrier function in obese Batf3-/- mice. High-fat diet further enhanced the metabolic phenotype and susceptibility to dextran sulfate sodium colitis in Batf3-/- mice. Antibiotic treatment of Batf3-/- mice prevented metabolic syndrome and impaired intestinal barrier function. Batf3-/- mice have altered IgA-coating of fecal bacteria and displayed microbial dysbiosis marked by decreased obesity protective Akkermansia muciniphila, and Bifidobacterium. Thus, BATF3 protects against metabolic syndrome and preserves intestinal epithelial barrier by maintaining beneficial microbiota.
Collapse
Affiliation(s)
- Hussein Hamade
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jasmine T. Stamps
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dalton T. Stamps
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Shyam K. More
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lisa S. Thomas
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Anna Y. Blackwood
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nawele L. Lahcene
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sofi L. Castanon
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Brenda C. Salumbides
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosuke Shimodaira
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Helen S. Goodridge
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephan R. Targan
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kathrin S. Michelsen
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|