1
|
Shi X, Askari Rizvi SF, Yang Y, Liu G. Emerging nanomedicines for macrophage-mediated cancer therapy. Biomaterials 2025; 316:123028. [PMID: 39693782 DOI: 10.1016/j.biomaterials.2024.123028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Tumor-associated macrophages (TAMs) contribute to tumor progression by promoting angiogenesis, remodeling the tumor extracellular matrix, inducing tumor invasion and metastasis, as well as immune evasion. Due to the high plasticity of TAMs, they can polarize into different phenotypes with distinct functions, which are primarily categorized as the pro-inflammatory, anti-tumor M1 type, and the anti-inflammatory, pro-tumor M2 type. Notably, anti-tumor macrophages not only directly phagocytize tumor cells, but also present tumor-specific antigens and activate adaptive immunity. Therefore, targeted regulation of TAMs to unleash their potential anti-tumor capabilities is crucial for improving the efficacy of cancer immunotherapy. Nanomedicine serves as a promising vehicle and can inherently interact with TAMs, hence, emerging as a new paradigm in cancer immunotherapy. Due to their controllable structures and properties, nanomedicines offer a plethora of advantages over conventional drugs, thus enhancing the balance between efficacy and toxicity. In this review, we provide an overview of the hallmarks of TAMs and discuss nanomedicines for targeting TAMs with a focus on inhibiting recruitment, depleting and reprogramming TAMs, enhancing phagocytosis, engineering macrophages, as well as targeting TAMs for tumor imaging. We also discuss the challenges and clinical potentials of nanomedicines for targeting TAMs, aiming to advance the exploitation of nanomedicine for cancer immunotherapy.
Collapse
Affiliation(s)
- Xueying Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular, Imaging and Translational Medicine, School of Public Health, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China
| | - Syed Faheem Askari Rizvi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular, Imaging and Translational Medicine, School of Public Health, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China; Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54000, Punjab, Pakistan
| | - Yinxian Yang
- School of Pharmaceutical Sciences, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular, Imaging and Translational Medicine, School of Public Health, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China.
| |
Collapse
|
2
|
D'Angelo E, Rampado R, Sensi F, Marangio A, Rossi AD, Repetto O, Steffan A, Corallo D, Aveic S, Bianchi G, Collino F, Caliceti P, Spolverato G, Agostini M. Tumor microenvironment-mimicking macrophage nanovesicles as a targeted therapy platform for colorectal cancer. Int J Pharm 2025; 670:125169. [PMID: 39756598 DOI: 10.1016/j.ijpharm.2025.125169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Macrophages are a pivotal immune cell population in the tumor microenvironment of colorectal cancer (CRC). Differently-polarized macrophages could be exploited to yield naturally-tailored biomimetic nanoparticles for CRC targeting. Here, membrane proteins were isolated from the THP-1 cell line, and anti-tumor macrophages (M1) were obtained from differentiation of THP-1. Membrane proteins were isolated from THP-1 and M1 and used to produce lipid nanovesicles (LNVs; T-LNVs and M1-LNVs) by microfluidic process, which were loaded with doxorubicin (DOXO). The DOXO loaded T-LNVs and M1-LNVs showed similar size (120-145 nm), PDI (0.11-0.28), zeta potential (-15 to -30 mV) and drug loading efficiency (65-75 %). Mass-spectrometry confirmed the presence of the membrane proteins in the LNVs. The abundance of proteins related to stealth properties, cancer targeting, endothelial adhesion and immune-related markers was significantly different in T-LNVs and M1-LNVs. Cell culture studies showed that M1-LNVs possessed higher cancer cell targeting, uptake and cytotoxicity compared to T-LNVs. In vivo studies performed with zebrafish embryos showed that M1-LNVs yielded higher cancer cell targeting and cytotoxicity while systemic cytotoxicity was lower compared to free DOXO. These findings confirm the potentiality and versatility of M1-LNVs for cancer treatment, which could be exploited as new avenue of nanoparticles-based therapies for precision medicine.
Collapse
Affiliation(s)
- Edoardo D'Angelo
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, 35128 Padua, Italy; NanoInspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.
| | - Riccardo Rampado
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer, Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Francesca Sensi
- NanoInspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy; Department of Women and Children's Health, University of Padova, via Giustiniani 2, 35128 Padua, Italy
| | - Asia Marangio
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, 35128 Padua, Italy
| | - Anna De Rossi
- Department of Women and Children's Health, University of Padova, via Giustiniani 2, 35128 Padua, Italy
| | - Ombretta Repetto
- Immunopathology and Cancer Biomarkers, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Gaia Bianchi
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milano, Milan, Italy
| | - Federica Collino
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milano, Milan, Italy; Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Gaya Spolverato
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, 35128 Padua, Italy
| | - Marco Agostini
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, 35128 Padua, Italy; NanoInspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| |
Collapse
|
3
|
Summer M, Riaz S, Ali S, Noor Q, Ashraf R, Khan RRM. Understanding the Dual Role of Macrophages in Tumor Growth and Therapy: A Mechanistic Review. Chem Biodivers 2025:e202402976. [PMID: 39869825 DOI: 10.1002/cbdv.202402976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Macrophages are heterogeneous cells that are the mediators of tissue homeostasis. These immune cells originated from monocytes and are classified into two basic categories, M1 and M2 macrophages. M1 macrophages exhibit anti-tumorous inflammatory reactions due to the behavior of phagocytosis. M2 macrophages or tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and have a basic role in tumor progression by interacting with other immune cells in TME. By the expression of various cytokines, chemokines, and growth factors, TAMs lead to strengthening tumor cell proliferation, angiogenesis, and suppression of the immune system which further support invasion and metastasis. This review discusses recent and updated mechanisms regarding tumor progression by M2 macrophages. Moreover, the current therapeutic approaches targeting TAMs, their advantages, and limitations are also summarized, and further treatment approaches are outlined along with an elaboration of the tumor regression role of macrophages. This comprehensive review article possibly helps to understand the mechanisms underlying the tumor progression and regression role of macrophages in a comparative way from a basic level to the advanced one.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Saima Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Qudsia Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Ashraf
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rana Rashad Mahmood Khan
- Faculty of Chemistry and Life Sciences, Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
4
|
Karadima E, Chavakis T, Alexaki VI. Arginine metabolism in myeloid cells in health and disease. Semin Immunopathol 2025; 47:11. [PMID: 39863828 PMCID: PMC11762783 DOI: 10.1007/s00281-025-01038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses. Conversely, the arginase 1 (ARG1)-dependent switch between the branch of NO production and polyamine synthesis downregulates inflammation and promotes recovery of tissue homeostasis. Creatine metabolism is key for energy supply and proline metabolism is required for collagen synthesis. Myeloid ARG1 also regulates extracellular arginine availability and T cell responses in parasitic diseases and cancer. Cancer, surgery, sepsis and persistent inflammation in chronic inflammatory diseases, such as neuroinflammatory diseases or arthritis, are associated with dysregulation of arginine metabolism in myeloid cells. Here, we review current knowledge on arginine metabolism in different myeloid cell types, such as macrophages, neutrophils, microglia, osteoclasts, tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs) and myeloid-derived suppressor cells (MDSCs). A deeper understanding of the function of arginine metabolism in myeloid cells will improve our knowledge on the pathology of several diseases and may set the platform for novel therapeutic applications.
Collapse
Affiliation(s)
- Eleftheria Karadima
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
5
|
Galvani RGA, Rojas A, Matuck BF, Rupp BT, Kumar N, Huynh K, de Biagi CAO, Liu J, Sheth S, Krol JMM, Maracaja-Coutinho V, Byrd KM, Severino P. The Single-Cell Landscape of Peripheral and Tumor-infiltrating Immune Cells in HPV- HNSCC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632928. [PMID: 39868329 PMCID: PMC11760799 DOI: 10.1101/2025.01.14.632928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. HPV-negative HNSCC, which arises in the upper airway mucosa, is particularly aggressive, with nearly half of patients succumbing to the disease within five years and limited response to immune checkpoint inhibitors compared to other cancers. There is a need to further explore the complex immune landscape in HPV-negative HNSCC to identify potential therapeutic targets. Here, we integrated two single-cell RNA sequencing datasets from 29 samples and nearly 300,000 immune cells to investigate immune cell dynamics across tumor progression and lymph node metastasis. Notable shifts toward adaptative immune cell populations were observed in the 14 distinct HNSCC-associated peripheral blood mononuclear (PBMCs) and 21 tumor-infiltrating immune cells (TICs) considering disease stages. All PBMCs and TICs revealed unique molecular signatures correlating with lymph node involvement; however, broadly, TICs increased ligand expression among effector cytokines, growth factors, and interferon-related genes. Pathway analysis comparing PBMCs and TICs further confirmed active cell signaling among Monocyte-Macrophage, Dendritic cell, Natural Killer (NK), and T cell populations. Receptor-ligand analysis revealed significant communication patterns shifts among TICs, between CD8+ T cells and NK cells, showing heightened immunosuppressive signaling that correlated with disease progression. In locally invasive HPV-negative HNSCC samples, highly multiplexed immunofluorescence assays highlighted peri-tumoral clustering of exhausted CD8+ T and NK cells, alongside their exclusion from intra-tumoral niches. These findings emphasize cytotoxic immune cells as valuable biomarkers and therapeutic targets, shedding light on the mechanisms by which the HNSCC sustainably evades immune responses.
Collapse
Affiliation(s)
- Rômulo Gonçalves Agostinho Galvani
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Brazil
| | | | - Bruno F. Matuck
- Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, USA
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Brittany T. Rupp
- Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, USA
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Nikhil Kumar
- Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Khoa Huynh
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Siddharth Sheth
- Division of Medical Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Kevin Matthew Byrd
- Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, USA
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Brazil
| |
Collapse
|
6
|
Zhang S, Dong H, Jin X, Sun J, Li Y. The multifaceted roles of macrophages in the transition from hepatitis to hepatocellular carcinoma: From mechanisms to therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167676. [PMID: 39828046 DOI: 10.1016/j.bbadis.2025.167676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Macrophages are central to the progression from hepatitis to hepatocellular carcinoma (HCC), with their remarkable plasticity and ability to adapt to the changing liver microenvironment. Chronic inflammation, fibrosis, and ultimately tumorigenesis are driven by macrophage activation, making them key regulators of liver disease progression. This review explores the diverse roles of macrophages in the transition from hepatitis to HCC. In the early stages of hepatitis, macrophages are essential for pathogen clearance and tissue repair. However, chronic activation leads to prolonged inflammation, which exacerbates liver damage and promotes fibrosis. As the disease progresses to liver fibrosis, macrophages interact with hepatic stellate cells, fostering a pro-tumorigenic microenvironment that supports HCC development. In hepatocarcinogenesis, macrophages contribute to tumor initiation, growth, metastasis, immune evasion, cancer stem cell maintenance, and angiogenesis. Their functional plasticity enables them to adapt to the tumor microenvironment, thereby promoting tumor progression and resistance to therapy. Targeting macrophages represents a promising strategy for preventing and treating HCC. Therapeutic approaches, including reprogramming macrophage phenotypes to enhance anti-tumor immunity, blocking macrophage recruitment and activation, and utilizing nanoparticle-based drug delivery systems, may provide new avenues for combating HCC by modulating macrophage functions and tumor microenvironment dynamics.
Collapse
Affiliation(s)
- Shuairan Zhang
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Hang Dong
- Phase I Clinical Trials Center, The People's Hospital of China Medical University, Shenyang, PR China
| | - Xiuli Jin
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Jing Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Yiling Li
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
7
|
Taghavi-Farahabadi M, Mahmoudi M, Mojtabavi N, Noorbakhsh F, Ghanbarian H, Koochaki A, Hashemi SM, Rezaei N. Enhancing the anti-tumor activity and reprogramming M2 macrophages by delivering siRNAs against SIRPα and STAT6 via M1 exosomes and combining with anti-PD-L1. Life Sci 2025; 361:123311. [PMID: 39675552 DOI: 10.1016/j.lfs.2024.123311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND The invasive property of breast cancer and the complex composition of the tumor microenvironment (TME) antibodies like anti-PD-L1, can inhibit tumor growth by promoting macrophage phagocytosis. In this research, we used anti-PD-L1 antibody and siRNAs targeting SIRPα (siSIRPα) and STAT6 (siSTAT6). The siRNAs were transported to macrophages using M1-derived exosomes. METHODS For this purpose, exosomes were isolated from the supernatant of lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Next, siSIRPα and siSTAT6 were electroporated into the M1-exosomes. M1-exosomes without siRNA or loaded with different siRNAs were used to treat M2 macrophages. Then, the polarization of macrophages was evaluated. By co-culturing of treated macrophages with 4T1 cells, anti-tumor functions of macrophages were assessed. RESULTS It was demonstrated that siRNA-loaded M1-exosomes induced macrophage polarization into an M1 phenotype and promoted the anti-tumor effects of macrophages as shown by a reduction in migration, invasion and proliferation of 4T1 cells, as well as an enhancement of phagocytosis of 4T1 cells by macrophages. CONCLUSION This study demonstrated the potential of a multifaceted therapeutic approach targeting TAMs to enhance anti-tumor immune responses in breast cancer.
Collapse
Affiliation(s)
- Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran.
| |
Collapse
|
8
|
Mahmoudi M, Taghavi-Farahabadi M, Hashemi SM, Ghanbarian H, Noorbakhsh F, Mousavizadeh K, Mojtabavi N, Rezaei N. Dual Checkpoint Inhibition in M2 Macrophages via Anti-PD-L1 and siRNA-Loaded M1-Exosomes: Enhancing Tumor Immunity through RNA-Targeting Strategies. Eur J Pharmacol 2025:177271. [PMID: 39800253 DOI: 10.1016/j.ejphar.2025.177271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/14/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
The interaction between a cluster of differentiation 47 (CD47) on cancer cells and signal regulatory protein alpha (SIRPα) on macrophages is thought to hinder macrophage phagocytic activity, which can be blocked by combining siRNAs targeting SIRPα (siSIRPα) with simultaneous involvement of activating receptors like FcRs (Fc receptors) anti-programmed death-ligand 1 (anti-PD-L1). For this study, M1 macrophage-derived exosomes were used to deliver the siRNAs, isolated from lipopolysaccharide (LPS)-stimulated RAW264.7 cells and electroporated with siSIRPα. The exosomes were characterized and used to treat M2 macrophages (RAW264.7 cells triggered by interleukin-4 (IL-4)), and the polarization of macrophages was evaluated using flow cytometry, real-time PCR, ELISA, and phagocytosis assays. The anti-tumor functions of treated macrophages were assessed by co-culturing them with 4T1 cells, evaluating the migration and invasion of 4T1 cells, and phagocytosis of 4T1 cells by macrophages. The results showed that siSIRPα-loaded M1-exosomes caused polarization of M2 macrophage toward M1 phenotype and enhanced anti-tumor effects by reducing migration and invasion of 4T1 cells and enhancing phagocytosis of 4T1 cells by macrophages, especially with combination of anti-PD-L1. This study suggests that blocking the SIRPα-CD47 interaction and the PD-1/PD-L1 pathway in M2 macrophages could be a promising therapeutic approach to enhance anti-tumor immune responses.
Collapse
Affiliation(s)
- Mohammad Mahmoudi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Mousavizadeh
- Department of Pharmacology school of medicine, Iran University of medical sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran.
| |
Collapse
|
9
|
Ma C, Li Y, Li M, Lv C, Tian Y. Targeting immune checkpoints on myeloid cells: current status and future directions. Cancer Immunol Immunother 2025; 74:40. [PMID: 39751898 PMCID: PMC11699031 DOI: 10.1007/s00262-024-03856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 01/04/2025]
Abstract
Myeloid cells accumulate extensively in most tumors and play a critical role in immunosuppression of the tumor microenvironment (TME). Like T cells, myeloid cells also express immune checkpoint molecules, which induce the immunosuppressive phenotype of these cells. In this review, we summarize the tumor-promoting function and immune checkpoint expression of four types of myeloid cells: macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, which are the main components of the TME. By summarizing the research status of myeloid checkpoints, we propose that blocking immune checkpoints on myeloid cells might be an effective strategy to reverse the immunosuppressive status of the TME. Moreover, combining nanotechnology, cellular therapy, and bispecific antibodies to achieve precise targeting of myeloid immune checkpoints can help to avoid the adverse effects of systemic administration, ultimately achieving a balance between efficacy and safety in cancer therapy.
Collapse
Affiliation(s)
- Chuhan Ma
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China
| | - Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China
| | - Min Li
- Department of Mammary Gland, Dalian Women and Children's Medical Center (Group), DalianLiaoning Province, 116000, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.
| |
Collapse
|
10
|
Bao C, Ma Q, Ying X, Wang F, Hou Y, Wang D, Zhu L, Huang J, He C. Histone lactylation in macrophage biology and disease: from plasticity regulation to therapeutic implications. EBioMedicine 2025; 111:105502. [PMID: 39662177 PMCID: PMC11697715 DOI: 10.1016/j.ebiom.2024.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Epigenetic modifications have been identified as critical molecular determinants influencing macrophage plasticity and heterogeneity. Among these, histone lactylation is a recently discovered epigenetic modification. Research examining the effects of histone lactylation on macrophage activation and polarization has grown substantially in recent years. Evidence increasingly suggests that lactate-mediated changes in histone lactylation levels within macrophages can modulate gene transcription, thereby contributing to the pathogenesis of various diseases. This review provides a comprehensive analysis of the role of histone lactylation in macrophage activation, exploring its discovery, effects, and association with macrophage diversity and phenotypic variability. Moreover, it highlights the impact of alterations in macrophage histone lactylation in diverse pathological contexts, such as inflammation, tumorigenesis, neurological disorders, and other complex conditions, and demonstrates the therapeutic potential of drugs targeting these epigenetic modifications. This mechanistic understanding provides insights into the underlying disease mechanisms and opens new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xihong Ying
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Fengsheng Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Yue Hou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Dun Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Linsen Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
11
|
Vickram S, Infant SS, Manikandan S, Jenila Rani D, Mathan Muthu CM, Chopra H. Immune biomarkers and predictive signatures in gastric cancer: Optimizing immunotherapy responses. Pathol Res Pract 2025; 265:155743. [PMID: 39616978 DOI: 10.1016/j.prp.2024.155743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024]
Abstract
Gastric cancer is a malignant disease with a poor prognosis and few therapeutic options once it has advanced. Immunotherapy using ICIs has emerged as a viable therapeutic method; nevertheless, reliable immunological biomarkers are required to identify who may benefit from these therapies. It focuses on key immune biomarkers and predictive signatures in gastric cancer, such as PD-L1 expression, microsatellite instability (MSI), tumor mutational burden (TMB), and Epstein-Barr virus (EBV) status, to optimize gastric cancer patients' immunotherapy responses. PD-L1 expression is a popular biomarker for ICI effectiveness. Tumors with high MSI-H and TMB are the most susceptible to ICIs because they are highly immunogenic. EBV-positive stomach tumors are highly immunogenic, and immunotherapy has a high response rate. Combining composite biomarker panels with multi-omics-based techniques improved patient selection accuracy. In recent years, machine learning models have been integrated into next-generation sequencing. Dynamic, real-time-monitorable biomarkers for real-time immune response monitoring are also being considered. Thus, enhancing biomarker-driven immunotherapy is critical for improving clinical outcomes with gastric cancer. There is still more work to be done in this field, and verifying developing biomarkers will be an important component in the future of customized cancer therapy.
Collapse
Affiliation(s)
- Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Shofia Saghya Infant
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - D Jenila Rani
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - C M Mathan Muthu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
12
|
Yan Z, Wang B, Shen Y, Ren J, Chen M, Jiang Y, Wu H, Dai W, Zhang H, Wang X, Zhang Q, Yang W, He B. Bisphosphonate-mineralized nano-IFNγ suppresses residual tumor growth caused by incomplete radiofrequency ablation through metabolically remodeling tumor-associated macrophages. Theranostics 2025; 15:1057-1076. [PMID: 39776793 PMCID: PMC11700868 DOI: 10.7150/thno.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Rationale: Radiofrequency ablation (RFA), as a minimally invasive surgery strategy based on local thermal-killing effect, is widely used in the clinical treatment of multiple solid tumors. Nevertheless, RFA cannot achieve the complete elimination of tumor lesions with larger burden or proximity to blood vessels. Incomplete RFA (iRFA) has even been validated to promote residual tumor growth due to the suppressive tumor immune microenvironment (TIME). Therefore, exploring strategies to remodel TIME is a key issue for the development of RFA therapy. Methods: The negative effect of iRFA on colorectal cancer therapy was firstly investigated. Then a zoledronate-mineralized nanoparticle loaded with IFNγ (Nano-IFNγ/Zole) was designed and its tumor suppressive efficacy was evaluated. Finally, the metabolic reprogramming mechanism of Nano-IFNγ/Zole on tumor-associated macrophages (TAMs) was studied in detail. Results: We found iRFA dynamically altered TIME and promoted TAM differentiation from M1 to M2. Nano-IFNγ/Zole was fabricated to metabolically remodel TAMs. IFNγ in Nano-IFNγ/Zole concentrated in the ablation site to play a long-term remodeling role. Acting on mevalonate pathway, Nano-IFNγ/Zole was discovered to reduce lysosomal acidification and activate transcription factor TFEB by inhibiting isoprene modification of the Rab protein family. These mechanisms, in conjunction with IFNγ-activated JAK/STAT1 signaling, accelerated the reprogramming of TAMs from M2 to M1, and suppressed tumor recurrence after iRFA. Conclusions: This study elaborates the synergistic mechanism of zoledronate and IFNγ in Nano-IFNγ/Zole to reshape suppressive TIME caused by iRFA by remodeling TAMs, and highlights the important value of metabolically induced cellular reprogramming. Since both zoledronate and IFNγ have already been approved in clinics, this integrative nano-drug delivery system establishes an effective strategy with great translational promise to overcome the poor prognosis after clinically incomplete RFA.
Collapse
Affiliation(s)
- Zhicheng Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, China
| | - Yuhan Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, China
| | - Junji Ren
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Meifang Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yunhui Jiang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
13
|
Huang T, Wei L, Zhou H, Liu J. Macrophage Infiltration and ITGB2 Expression in ESCC: A Novel Correlation. Cancer Med 2025; 14:e70604. [PMID: 39825491 PMCID: PMC11742006 DOI: 10.1002/cam4.70604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/22/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent and lethal malignancies worldwide. Despite progress in immunotherapy for cancer treatment, its application and efficacy in ESCC remain limited. Therefore, there is an ongoing need to explore potential molecules and therapeutic strategies related to tumor immunity in ESCC. METHODS In this study, we integrated high-throughput sequencing data, gene chip data, single-cell sequencing data, and various bioinformatics analysis methods along with experimental approaches to identify key genes involved in immune infiltration in ESCC and investigate their relationship with immune cell development, as well as the potential of these key genes in immunotherapy. RESULTS We discovered and validated a positive correlation between macrophage infiltration and ITGB2 expression in ESCC. ITGB2 is overexpressed in ESCC and has potential as a prognostic biomarker for the disease. We present for the first time the finding that the expression of ITGB2 in infiltrating macrophages increases as these macrophages polarize toward a tumor-promoting phenotype in ESCC. Moreover, during the progression of ESCC, ITGB2 expression in infiltrating macrophages is upregulated. The higher the expression of ITGB2, the more feasible it is to target macrophages. Additionally, we found that evaluating immune therapy responses in ESCC patients through ITGB2 expression is a viable approach. Furthermore, we identified three miRNAs associated with abnormal ITGB2 expression, providing insights into the upstream molecular interactions of ITGB2. CONCLUSIONS Macrophage infiltration in ESCC is closely associated with ITGB2, which holds significant potential for immunotherapy applications in ESCC. Based on our findings and prior studies, we propose a novel hypothesis: inducing M1 macrophages in vitro, knocking out ITGB2, and then reinfusing these ITGB2-knockout M1 macrophages into ESCC patients may represent a promising new immunotherapy strategy, providing a new avenue for ESCC immunotherapy.
Collapse
Affiliation(s)
- Tao Huang
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Longqian Wei
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Huafu Zhou
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Jun Liu
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| |
Collapse
|
14
|
Neumeyer S, Tagawa T. The Kaposi sarcoma herpesvirus control of monocytes, macrophages, and the tumour microenvironment. Virology 2025; 601:110286. [PMID: 39541833 DOI: 10.1016/j.virol.2024.110286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Kaposi sarcoma herpesvirus (KSHV) is an oncogenic DNA virus associated with various malignancies, including tumours like Kaposi sarcoma and Primary effusion lymphoma. Recently, the importance of the tumour microenvironment in KSHV-associated tumours is being studied. New studies utilizing human primary cells, co-culture experiments with KSHV-infected cells, and modern techniques like time-resolved single cell analysis, have significantly advanced the understanding of KSHV interactions with monocytes and macrophages. These cells play key roles in shaping the tumour microenvironment. It has become clear that KSHV-infected endothelial cells regulate the growth and the differentiation of monocytes and macrophages. Monocytes and macrophages, in turn, can regulate KSHV-infected cells in tumorigenesis and cytokine secretion, leading to the pro-tumour microenvironment. Further investigations into the viral regulation of monocytes and macrophages thus have potential to lead to the discovery of novel antitumour therapeutics.
Collapse
Affiliation(s)
- Sarah Neumeyer
- The Institute of Quantitative Biology, Biochemistry and Biotechnology (IQB3), School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK; The Institute of Infection and Immunology Research (IIIR), School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Takanobu Tagawa
- The Institute of Quantitative Biology, Biochemistry and Biotechnology (IQB3), School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK; The Institute of Infection and Immunology Research (IIIR), School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
15
|
Zhao L, Wang Z, Tan Y, Ma J, Huang W, Zhang X, Jin C, Zhang T, Liu W, Yang YG. IL-17A/CEBPβ/OPN/LYVE-1 axis inhibits anti-tumor immunity by promoting tumor-associated tissue-resident macrophages. Cell Rep 2024; 43:115039. [PMID: 39643970 DOI: 10.1016/j.celrep.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a critical component of the immunosuppressive tumor microenvironment, comprising monocyte-derived macrophages (MDM-TAMs) and tissue-resident macrophages (TRM-TAMs). Here, we discovered that TRM-TAMs mediate the pro-tumor effects of interleukin (IL)-17A and that IL-17A-driven tumor progression requires tumor cell production of osteopontin (OPN). Mechanistically, we identified CEBPβ as a transcription factor downstream of IL-17A in tumor cells and LYVE-1 as an OPN receptor on TRM-TAMs. IL-17A stimulates tumor cell production of OPN, and OPN/LYVE-1 signaling activates the JNK/c-Jun pathway, leading to the proliferation of immunosuppressive LYVE-1+ TRM-TAMs. Unlike its effect on LYVE-1+ TRM-TAMs, OPN interacts with α4β1 to promote the chemotaxis of LYVE-1- MDM-TAMs toward tumors. IL-17A neutralization, OPN inactivation in tumor cells, or LYVE-1 deletion in macrophages inhibited TAMs and enhanced anti-tumor immune responses and anti-PDL1 therapy. Thus, the IL-17A/CEBPβ/OPN/LYVE-1 axis offers a mechanism suppressing anti-tumor immune responses and, hence, an effective therapeutic target for cancer.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Zonghan Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Yuying Tan
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Jianan Ma
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Wei Huang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Xiaoying Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Chunhui Jin
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China; Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Ting Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China; International Center of Future Science, Jilin University, Changchun, China.
| |
Collapse
|
16
|
Song Z, Chen H, Wang X, Zhang Z, Li H, Zhao H, Liu Y, Han Q, Zhang J. Napabucasin-loaded PLGA nanoparticles trigger anti-HCC immune responses by metabolic reprogramming of tumor-associated macrophages. J Transl Med 2024; 22:1125. [PMID: 39707412 DOI: 10.1186/s12967-024-05917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND JAK/STAT3 is one of the critical signaling pathways involved in the occurrence and development of hepatocellular carcinoma (HCC). BBI608 (Napabucasin), as a novel small molecule inhibitor of STAT3, has shown previously excellent anti-HCC effects in vitro and in mouse models. However, low bioavailability, high cytotoxicity and other shortcomings limit its clinical application. In this study, PLGA was selected to prepare Napabucasin PLGA nanoparticles (NPs) by solvent evaporation method, overcoming these limitations and improving the passive targeting effect that nanoparticle mediated. Base on this, we systematically evaluated the anti-HCC effect of Napabucasin-PLGA NPs and explored the underlying mechanisms. METHODS Napabucasin-PLGA NPs were prepared by solvent evaporation method. CCK-8 assay, Annexin V/PI double staining, RT-qPCR, colony formation assay, and Western blotting were performed to evaluate the anti-HCC effect of Napabucasin-PLGA NPs in vitro. Proliferation assay and migration assay were used to detect the effects of Napabucasin-PLGA NPs-treated HCC-TAMs on tumor biological characteristics of HCC cells. Flow cytometry was used to detect anti-HCC immune responses induced by Napabucasin-PLGA NPs in vivo. RESULTS Our results demonstrated that Napabucasin-PLGA NPs could improve the bioavailability of Napabucasin and enhance Napabucasin-mediated the anti-HCC effects in vitro and in vivo with no significant drug toxicity. In addition to the direct inhibitory effects on the tumor biological characteristics of HCC cells, Napabucasin-PLGA NPs could promote the polarization of macrophages from tumor-promoting M2-type to anti-tumor M1-type, improving the tumor immune microenvironment and augmenting T cell-mediated anti-tumor responses. The underlining mechanisms showed Napabucasin-PLGA NPs suppressed the STAT3/FAO signaling axis in HCC-induced tumor-associated macrophages (TAMs). CONCLUSIONS These findings demonstrated Napabucasin-PLGA NPs is a potential therapeutic candidate for HCC, and provided a new theoretical and experimental basis for further development and clinical application of Napabucasin.
Collapse
Affiliation(s)
- Zhenwei Song
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hongfei Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xueyao Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yang Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
17
|
Wang Z, Ou Q, Liu Y, Liu Y, Zhu Q, Feng J, Han F, Gao L. Adipocyte-derived CXCL10 in obesity promotes the migration and invasion of ovarian cancer cells. J Ovarian Res 2024; 17:245. [PMID: 39702497 DOI: 10.1186/s13048-024-01568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND As a widespread epidemic, obesity poses a significant risk to health and leads to physiological abnormalities, including diabetes mellitus and inflammation. Obesity-induced inflammation can accelerate the development of various cancers; however, the role of obesity in the migration of ovarian carcinoma is still unclear. RESULTS Twenty-four commonly upregulated genes were identified from single-cell RNA sequencing datasets of both ovarian carcinoma and adipose tissue of obese humans, with the chemokine CXCL10 showing a significant increase in adipose tissues associated with obesity. And CXCL10 treated primed macrophages exhibit both direct and indirect effects on the proliferation, apoptosis, migration, and invasion of ovarian adenocarcinoma cells. The treatment of CXCL10 on the SKOV3 cells enhances FAK expression and phosphorylation, thereby accelerating the migration and invasion of ovarian cancer cells. Conditioned medium-derived from CXCL10-treated THP-1 cells significantly promoted ovarian cancer cell migration and invasion, which may be attributed to the increased expression of C1QA, C1QC, CCL24, and IL4R in macrophages. CONCLUSIONS Obesity exacerbates the production of CXCL10 from adipose tissues in obese women. CXCL10 is a key hub factor between developments of ovarian cancer and adipose tissues in obese. Targeting adipose-derived CXCL10 or its downstream macrophages may be a potential strategy to alleviate ovarian cancer accompanied by obesity.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Qingjian Ou
- Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Ying Liu
- School of Life Sciences, Bengbu Medical University, Anhui, 233030, China
| | - Yuanyuan Liu
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Qingwei Zhu
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Jingqiu Feng
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Fengze Han
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Lu Gao
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200433, China.
| |
Collapse
|
18
|
Kim MS, Kang H, Baek JH, Cho MG, Chung EJ, Kim SJ, Chung JY, Chun KH. Disrupting Notch signaling related HES1 in myeloid cells reinvigorates antitumor T cell responses. Exp Hematol Oncol 2024; 13:122. [PMID: 39702544 DOI: 10.1186/s40164-024-00588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are immunosuppressive cells within the tumor microenvironment (TME) that hinder anti-tumor immunity. Notch signaling is a pathway crucial for TAM differentiation and function. Here, we investigate the role of HES1, a downstream target of Notch signaling, in TAM-mediated immunosuppression and explore its potential as a target for cancer immunotherapy. METHODS In this work, we constructed conditional Hes1 knockout mice to selectively delete Hes1 in TAMs. We further analyzed the TME composition, T cell infiltration and activation, and anti-tumor effects in these mice, both alone and in combination with PD-1 checkpoint blockade. RESULTS Our study showed that expression levels of Notch target Hes1 were increase in TAMs and mice with conditional knockout of Hes1 gene in TAMs exhibited decreased tumor growth, with increased infiltration and activation of cytotoxic T cells in tumors. Expression of tumor promoting factors was critically altered in Hes1-conditional KO TAMs, leading to the improved tumor microenvironment. Notably, arginase-1 expression was decreased in Hes1-conditional KO mice. Arg1 is known to deplete arginine and deactivate T cells in the TME. Administration of anti-PD-1 monoclonal antibody inhibited tumor growth to a greater extent in Hes1-conditional KO mice than in WT mice. CONCLUSIONS We identified a pivotal role for the Notch signaling pathway in shaping TAM function, suggesting that T-cell dysfunction in the TME is caused when the Notch target, HES1, in TAMs is upregulated by tumor-associated factors (TAFs), which, in turn, increases the expression of arginase-1. Targeting HES1 in TAMs appears to be a promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Myung Sup Kim
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyeokgu Kang
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jung-Hwan Baek
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moon-Gyu Cho
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seok-Jun Kim
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyung-Hee Chun
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Affiliate Faculty, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
19
|
Song M, Ivkov R, Korangath P. Dendritic cell activation by iron oxide nanoparticles depends on the extracellular environment. NANOSCALE ADVANCES 2024; 7:209-218. [PMID: 39569333 PMCID: PMC11575603 DOI: 10.1039/d4na00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Nanoparticles can exert immune modulating effects in a host depending on composition, mode of administration, and type of disease. Although the specific mechanisms of nanoparticle-induced immune responses remain unclear, their uptake by macrophages and other phagocytic innate immune cells is considered to be a key event. Our objective here was to ascertain if nanoparticle-mediated activation of dendritic cells (DCs) occurs in vitro or in vivo when exposed to hydroxyethyl starch-coated iron oxide nanoparticles. For the present studies, our choice of nanoparticles, animal model, and experimental design is motivated by our previously published observations that systemic exposure can induce antitumor adaptive immune responses in mouse models of metastatic breast cancer. Here, we began by assessing the potential toxicity of systemic exposure to commercially available starch-coated Bionized Nanoferrite® nanoparticles (BP) by measuring body weight, complete blood count, and enzyme parameters in healthy FVB/NJ mice after repeated BP dosing. We observed no evidence of toxicity at doses up to 25 mg Fe per mouse, five-fold higher than those used in subsequent in vivo experiments. We then measured the expression of surface maturation markers (CD86, MHC II) in DCs incubated with BP in vitro. Although DCs cultured with BP revealed high levels of nanoparticle uptake, neither JAWSII dendritic cells nor bone marrow derived dendritic cells (BMDCs) showed significant changes in marker expression to indicate stimulation of maturation and effector function. To assess whether BP interactions in vivo produced different effects, we analyzed CD80, CD86, and MHC II expression of DCs recovered from the livers, spleens, bone marrows, and lymph nodes of mice injected once with BP (5 mg Fe). Interestingly, only DCs in spleens and bone marrow cells responded to BP exposure. DCs recovered from other organs showed no evidence of increased activation. These findings highlight complex interactions between living systems and nanoparticles, and their potential to mediate context-specific and selective activation of innate immune cells. Our study also emphasizes that results obtained from in vitro experiments must be interpreted with caution, as they may not faithfully represent responses in living systems.
Collapse
Affiliation(s)
- Mason Song
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University Baltimore 21218 USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University 1550 Orleans Street, Cancer Research Building - II, Rm 416 Baltimore MD 21231 USA
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University Baltimore MD 21231 USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University Baltimore 21218 USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University Baltimore 21218 USA
| | - Preethi Korangath
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University 1550 Orleans Street, Cancer Research Building - II, Rm 416 Baltimore MD 21231 USA
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University Baltimore MD 21231 USA
| |
Collapse
|
20
|
Teodoro L, Carreira ACO, Sogayar MC. Exploring the Complexity of Pan-Cancer: Gene Convergences and in silico Analyses. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:913-934. [PMID: 39691553 PMCID: PMC11651076 DOI: 10.2147/bctt.s489246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024]
Abstract
Cancer is a complex and multifaceted group of diseases characterized by highly intricate mechanisms of tumorigenesis and tumor progression, which complicates diagnosis, prognosis, and treatment. In recent years, targeted therapies have gained prominence by focusing on specific mutations and molecular features unique to each tumor type, offering more effective and personalized treatment options. However, it is equally critical to explore the genetic commonalities across different types of cancer, which has led to the rise of pan-cancer studies. These approaches help identify shared therapeutic targets across various tumor types, enabling the development of broader and potentially more widely applicable treatment strategies. This review aims to provide a comprehensive overview of key concepts related to tumors, including tumorigenesis processes, the tumor microenvironment, and the role of extracellular vesicles in tumor biology. Additionally, we explore the molecular interactions and mechanisms driving tumor progression, with a particular focus on the pan-cancer perspective. To achieve this, we conducted an in silico analysis using publicly available datasets, which facilitated the identification of both common and divergent genetic and molecular patterns across different tumor types. By integrating these diverse areas, this review offers a clearer and deeper understanding of the factors influencing tumorigenesis and highlights potential therapeutic targets.
Collapse
Affiliation(s)
- Leandro Teodoro
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| | - Ana Claudia O Carreira
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Center of Human and Natural Sciences, Federal University of ABC, Santo André, São Paulo, 09280-560, Brazil
| | - Mari C Sogayar
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| |
Collapse
|
21
|
Bai B, Xie S, Wang Y, Wu F, Chen Y, Bian J, Gao X. Development of anti-cancer drugs for tumor-associated macrophages: a comprehensive review and mechanistic insights. Front Mol Biosci 2024; 11:1463061. [PMID: 39717759 PMCID: PMC11663717 DOI: 10.3389/fmolb.2024.1463061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/21/2024] [Indexed: 12/25/2024] Open
Abstract
This review provides an in-depth summary of the development of anti-cancer drugs for tumor-associated macrophages (TAMs), with a particular focus on the development and tissue specialization of macrophages, and factors influencing the polarization of M1 and M2 macrophages, and mechanistic insights underlying the targeting therapeutic approaches. TAMs, pivotal in the tumor microenvironment, exhibit notable plasticity and diverse functional roles. Influenced by the complex milieu, TAMs polarize into M1-type, which suppresses tumors, and M2-type, which promotes metastasis. Notably, targeting M2-TAMs is a promising strategy for tumor therapy. By emphasizing the importance of macrophages as a therapeutic target of anti-cancer drugs, this review aims to provide valuable insights and research directions for clinicians and researchers.
Collapse
Affiliation(s)
- Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shangzhi Xie
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ya Wang
- Department of Hospital Infection-Control, Zhejiang Cancer Hospital, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Bian
- Department of Gynecology and Obstetrics, The Affiliated People’s Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xing Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
22
|
Min T, Yang C, Zhang M, Hu P, Shi J. Mild Magnetothermal Immunotherapy for Malignant Pleural Effusion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407734. [PMID: 39648567 DOI: 10.1002/smll.202407734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/05/2024] [Indexed: 12/10/2024]
Abstract
Malignant pleural effusion (MPE) is one of the most difficult complications of cancer to cure, usually indicating poor prognosis in late-stage cancer patients. Due to the presence of a large number of tumor-associated immune cells with the tumor promoting phenotype in MPE and pleural tumors, current clinical therapy offers limited effectiveness. Here, a mild magnetothermal regulation strategy is proposed based on a magnetic nanocatlytic nanoplatform ZCMF@PEG-AF (ZCMF-AF) constructed by surface-modifying anti-F4/80 antibody (AF) on ZnCoFe2O4@ZnMnFe2O4 magnetic nanoparticles (ZCMF) to target and polarize tumor-associated macrophages. Under alternating magnetic field-induced hyperthermia (41-42 °C), ZCMF-AF exhibits in situ nanocatalytic production of hydroxyl radicals via released iron ions under acidic cellular environment, which induces repolarization from the immunosuppressed M2 phenotype to the M1 phenotype. More importantly, the tumor cell damage induced by M1 macrophages and magnetic hyperthermia promote the maturation of dendritic cells, which subsequently awakens cytotoxic T lymphocytes to combat tumor cells. The integrated innate and adaptive immunity activations based on ZCMF-AF nano-immunomedicine through intrapleural administration elicit substantially regulated immune microenvironment of MPE and pleural tumors. Moreover, the interpleural magnetic nanoparticle-based immunotherapy effectively reduced the MPE volume and inhibited tumor growth in the pleural cavity, significantly prolonging the survival of the MPE-bearing mice.
Collapse
Affiliation(s)
- Tao Min
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Chunzheng Yang
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Minghui Zhang
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Ping Hu
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, P. R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, P. R. China
| |
Collapse
|
23
|
Han C, Zhang R, He X, Fang Y, Cen G, Wu W, Huang C, Chen X. A digital manufactured microfluidic platform for flexible construction of 3D co-culture tumor model with spatiotemporal resolution. Biofabrication 2024; 17:015029. [PMID: 39577087 DOI: 10.1088/1758-5090/ad9636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
The specific spatiotemporal distribution of diverse components in tumor microenvironment plays a crucial role in the cancer progression.In vitrothree-dimensional (3D) tumor models with polydimethylsiloxane (PDMS) based microfluidic platform have been applied as useful tool to conduct studies from cancer biology to drug screening. However, PDMS has not been welcomed as a standardized commercial application for preclinical screening due to inherent limitations in scale-up production and molecule absorption. Here, we present a novel microfluidic platform to flexibly construct 3D co-culture models with spatiotemporal resolution by using multiple digital manufacturing technologies. The platform, which consist of reduplicative microfluidic chips, is made of biocompatible poly methyl methacrylate by fast laser cutting. Each replica includes a simple microfluidic chamber without internal structures which can be flexibly post-fabricated according to various research requirements. Digital light processing based 3D bioprinting was used to pattern fine hydrogel structures for post-fabrication on-chip. By multi-step bioprinting and automatic image alignment, we show that this approach provides sufficient design flexibility to construct 3D co-culture tumor model with spatiotemporal resolution to replicate microarchitecture of tumor microtissuein situ. And the tumor model has the potential to mimic tumor biology behaviors which can be used for mechanism study and drug test. Our microengineered tumor model may serve as an enabling tool to recapitulate pathophysiological complexity of tumor, and to systematically examine the contribution of the tumor microenvironment to the cancer progression. The proposed strategy can also be applied to help engineer diverse meaningfulin vitromodels for extensive biomedical applications, from physiology and disease study to therapy evaluation.
Collapse
Affiliation(s)
- Chao Han
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Renchao Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Xiwen He
- Aerospace Laser Technology and Systems Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Yuan Fang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Gang Cen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Weidong Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Xiang Chen
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
24
|
Tang R, Liu XQ. Modeling development of breast cancer: from tumor microenvironment to preclinical applications. Front Pharmacol 2024; 15:1466017. [PMID: 39697553 PMCID: PMC11652193 DOI: 10.3389/fphar.2024.1466017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Breast cancer is a complex disease and its progression is related not only to tumor cells but also to its microenvironment, which can not be sufficiently reflected by the traditional monolayer cell culture manner. The novel human cancer models comprising tumor microenvironment (TME), such as tumor organoids and organs-on-a-chip, has been established in recent years to help elucidate the underlying mechanisms of tumorigenesis and promote the development of cancer therapies. In this review, we first discuss the current state of breast cancer and their treatment strategies, and elucidates the complex properties of TME of breast cancer in vivo. The culture models used in breast cancer research are then summarized with insights into recent development. Finally, we also conclude by discussing the current limitations and future directions of culture models in breast cancer research for providing a preclinical reference for the precise treatment of cancer patients.
Collapse
Affiliation(s)
- Ruizhi Tang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Bates SM, Evans KV, Delsing L, Wong R, Cornish G, Bahjat M. Immune safety challenges facing the preclinical assessment and clinical progression of cell therapies. Drug Discov Today 2024; 29:104239. [PMID: 39521331 DOI: 10.1016/j.drudis.2024.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The promise of curative outcomes for life-limiting diseases using cell therapies is starting to become a reality, not only for patients with end-stage cancer, but also increasingly for regenerative therapies, including dentistry, ocular, neurodegenerative, and cardiac diseases. The introduction of often genetically modified cells into a patient can come with an extensive range of safety considerations. From an immune perspective, cell-based therapies carry inherent consequences and consideration of factors, such as the cell source (donor-derived autologous cells versus allogeneic cells), the intrinsic cellular nature of the therapy, and engineering/manufacturing methods, all of which influence the likelihood of inducing unwanted immune responses. Here, we provide an overview of the potential immune safety risks associated with cell therapies and explore possible mitigation approaches.
Collapse
Affiliation(s)
- Stephanie M Bates
- Safety Innovation, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Kelly V Evans
- Safety Innovation, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Louise Delsing
- Cell and Gene Therapy Safety, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ryan Wong
- Cell and Gene Therapy Safety, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Georgina Cornish
- Oncology Safety, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mahnoush Bahjat
- Safety Innovation, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
26
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
27
|
Li Q, He G, Yu Y, Li X, Peng X, Yang L. Exosome crosstalk between cancer stem cells and tumor microenvironment: cancer progression and therapeutic strategies. Stem Cell Res Ther 2024; 15:449. [PMID: 39578849 PMCID: PMC11583673 DOI: 10.1186/s13287-024-04061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
Cancer stem cells (CSCs) represent a small yet pivotal subset of tumor cells endowed with self-renewal capabilities. These cells are intricately linked to tumor progression and are central to drug resistance, metastasis, and recurrence. The tumor microenvironment (TME) encompasses the cancer cells and their surrounding milieu, including immune and inflammatory cells, cancer-associated fibroblasts, adjacent stromal tissues, tumor vasculature, and a variety of cytokines and chemokines. Within the TME, cells such as immune and inflammatory cells, endothelial cells, adipocytes, and fibroblasts release growth factors, cytokines, chemokines, and exosomes, which can either sustain or disrupt CSCs, thereby influencing tumor progression. Conversely, CSCs can also secrete cytokines, chemokines, and exosomes, affecting various components of the TME. Exosomes, a subset of extracellular vesicles (EVs), carry a complex cargo of nucleic acids, proteins, and lipids, playing a crucial role in the communication between CSCs and the TME. This review primarily focuses on the impact of exosomes secreted by CSCs (CSC-exo) on tumor progression, including their roles in maintaining stemness, promoting angiogenesis, facilitating metastasis, inducing immune suppression, and contributing to drug resistance. Additionally, we discuss how exosomes secreted by different cells within the TME affect CSCs. Finally, we explore the potential of utilizing exosomes to mitigate the detrimental effects of CSCs or to target and eliminate them. A thorough understanding of the exosome-mediated crosstalk between CSCs and the TME could provide valuable insights for developing targeted therapies against CSCs.
Collapse
Affiliation(s)
- Qi Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yifan Yu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
28
|
Scortegagna M, Murad R, Bina P, Feng Y, Porritt R, Terskikh A, Tian X, Adams PD, Vuori K, Ronai ZA. Age-associated modulation of TREM1/2- expressing macrophages promotes melanoma progression and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624563. [PMID: 39605514 PMCID: PMC11601507 DOI: 10.1101/2024.11.20.624563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Aging is a known risk factor for melanoma, yet mechanisms underlying melanoma progression and metastasis in older populations remain largely unexplored. Among the current knowledge gaps is how aging alters phenotypes of cells in the melanoma microenvironment. Here we demonstrate that age enriches the immunosuppressor tumor microenvironment, which is linked to phenotypes associated with melanoma metastasis. Among cellular populations enriched by aging were macrophages with a tolerogenic phenotype expressing TREM2 and dysfunctional CD8-positive cells with an exhausted phenotype, while macrophages with profibrotic phenotype expressing TREM1 were depleted. Notably, TREM1 inhibition decreased melanoma growth in young but not old mice, whereas TREM2 inhibition prevented lung metastasis in aged mice. These data identify novel targets associated with melanoma metastasis and may guide aged-dependent immunotherapies.
Collapse
|
29
|
Wang Y, Liu C, Ma X, Filppula A, Cui Y, Ye J, Zhang H. Encapsulated mitochondria to reprogram the metabolism of M2-type macrophages for anti-tumor therapy. NANOSCALE 2024; 16:20925-20939. [PMID: 39469868 DOI: 10.1039/d4nr02471k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
M2-type macrophages (M2Φ) play a pro-tumorigenic role and are closely associated with tumor development, where metabolic dysregulation exacerbates the immunosuppressive tumor microenvironment and fosters tumor growth. Mitochondria serve as the regulatory center of cellular metabolism, yet effective methods to modulate M2Φ mitochondria within the tumor microenvironment remain lacking. In this study, we developed a technique utilizing the bio-encapsulation of mitochondria in Zeolitic Imidazolate Framework-8 (ZiF-8), referred to as Mito@ZiF-8. Our findings demonstrated that this coating protects intact mitochondria and preserves their bioactivity over an extended period after isolation. We successfully delivered Mito@ZiF-8 into M2Φ, which inhibited the secretion of pro-inflammatory factors, promoted the release of anti-inflammatory factors, and reprogrammed M2Φ metabolism. This innovative approach has the potential to reduce breast cancer cell metastasis and enhance sensitivity to chemotherapy drugs such as 6-thioguanine, cisplatin, and doxorubicin (Dox). Mito@ZiF-8 aims to reprogram the M2Φ microenvironment to support anti-tumor therapies, offering a novel strategy for improving the effectiveness of breast cancer treatment.
Collapse
Affiliation(s)
- Yonghui Wang
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland.
| | - Chang Liu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland.
| | - Xiaodong Ma
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland.
| | - Anne Filppula
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland.
| | - Youbin Cui
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, China
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Hongbo Zhang
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| |
Collapse
|
30
|
Zhu C, Liao JY, Liu YY, Chen ZY, Chang RZ, Chen XP, Zhang BX, Liang JN. Immune dynamics shaping pre-metastatic and metastatic niches in liver metastases: from molecular mechanisms to therapeutic strategies. Mol Cancer 2024; 23:254. [PMID: 39543660 PMCID: PMC11562679 DOI: 10.1186/s12943-024-02171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Liver metastases are commonly detected in the advanced stages of various malignant tumors, representing a significant clinical challenge. Throughout the process of liver metastases formation, immune cells play a pivotal role, particularly in the pre-metastatic and metastatic niches within the liver. Immune cells establish extensive and intricate interactions with tumor cells and other components in the liver, collectively promoting and sustaining the growth of liver metastases. Despite the limited efficacy of existing therapeutic modalities against some advanced liver metastases, novel immune-based treatment approaches are continuously being explored and validated. Building on the systematic elucidation of the immunosuppressive characteristics of liver metastases, we explored the potential of novel immunotherapies applicable to patients with liver metastases from multiple dimensions.
Collapse
Affiliation(s)
- Chang Zhu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jing-Yu Liao
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yi-Yang Liu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ze-Yu Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Rui-Zhi Chang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| | - Jun-Nan Liang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| |
Collapse
|
31
|
Yang Y, Wang Y, Zou H, Li Z, Chen W, Huang Z, Weng Y, Yu X, Xu J, Zheng L. GPER1 signaling restricts macrophage proliferation and accumulation in human hepatocellular carcinoma. Front Immunol 2024; 15:1481972. [PMID: 39582864 PMCID: PMC11582010 DOI: 10.3389/fimmu.2024.1481972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Background Sex hormones and their related receptors have been reported to impact the development and progression of tumors. However, their influence on the composition and function of the tumor microenvironment is not well understood. We aimed to investigate the influence of sex disparities on the proliferation and accumulation of macrophages, one of the major components of the tumor microenvironment, in hepatocellular carcinoma (HCC). Methods Immunohistochemistry was applied to assess the density of immune cells in HCC tissues. The role of sex hormone related signaling in macrophage proliferation was determined by immunofluorescence and flow cytometry. The underlying regulatory mechanisms were examined with both in vitro experiments and murine HCC models. Results We found higher levels of macrophage proliferation and density in tumor tissues from male patients compared to females. The expression of G protein-coupled estrogen receptor 1 (GPER1), a non-classical estrogen receptor, was significantly decreased in proliferating macrophages, and was inversely correlated with macrophage proliferation in HCC tumors. Activation of GPER1 signaling with a selective agonist G-1 suppressed macrophage proliferation by downregulating the MEK/ERK pathway. Additionally, G-1 treatment reduced PD-L1 expression on macrophages and delayed tumor growth in mice. Moreover, patients with a higher percentage of GPER1+ macrophages exhibited longer overall survival and recurrence-free survival compared to those with a lower level. Conclusions These findings reveal a novel role of GPER1 signaling in regulating macrophage proliferation and function in HCC tumors and may offer a potential strategy for designing therapies based on understanding sex-related disparities of patients.
Collapse
Affiliation(s)
- Yanyan Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongchun Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhixiong Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weibai Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhijie Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yulan Weng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xingjuan Yu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
32
|
Zhao C, Zhu H, Tian Y, Sun Y, Zhang Z. SPINK5 is a key regulator of eosinophil extracellular traps in head and neck squamous cell carcinoma. Discov Oncol 2024; 15:627. [PMID: 39508915 PMCID: PMC11543977 DOI: 10.1007/s12672-024-01513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
Enhanced infiltration of eosinophils is observed surrounding solid tumors. Some studies indicate that Eosinophil extracellular traps (EETs) play a crucial role in tumor progression and metastasis. However, its specific role in head and neck squamous cell carcinoma (HNSCC) remains unclear. This study established a gene set associated with eosinophil differentiation, chemotaxis, and EETs release from previous research. Employing bioinformatics techniques, the expression and biological significance of these genes in HNSCC were analyzed. Briefly, unsupervised clustering based on expression patterns of 133 EETs-related genes to classify TCGA-HNSCC patients. Immune cell infiltration patterns were assessed using "ImmuCellAI" package. A prognostic model was constructed using ten algorithms, with EETs-related gene sets as input features. Here, unsupervised clustering of samples into two types revealed worse prognosis for Cluster 1 (C1) patients after the first year. Cluster 2 (C2) exhibited higher ImmuneScore, but with a distinct immune cell infiltration pattern from the C1. Additionally, high eosinophil abundance only in the C2 had a positive prognostic impact. Serine peptidase inhibitor kazal type 5 (SPINK5) emerged as a potential key gene mediating the formation of EETs in HNSCC. EETs not only exhibit a positive correlation with diverse anti-cancer pathways but also demonstrate positive associations with processes such as proliferation, migration, and other critical pathways. The random survival forest (RSF) model was identified as the optimal eosinophil-related prognostic model. Collectively, this study elucidates the potential impact and mediating pathways of EETs on tumors, providing a reference for targeted therapy based on EETs-related genes.
Collapse
Affiliation(s)
- Chifeng Zhao
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), No.999, Donghai Avenue, Taizhou, 318000, Zhejiang, People's Republic of China
| | - Haoran Zhu
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Yu Tian
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Yuewen Sun
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Zhenxing Zhang
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), No.999, Donghai Avenue, Taizhou, 318000, Zhejiang, People's Republic of China.
| |
Collapse
|
33
|
Low JT, Ho PC, Matsushita M. TAM-tastic: from resistance to resilience in cancer. Trends Pharmacol Sci 2024; 45:953-954. [PMID: 39358174 DOI: 10.1016/j.tips.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Overcoming resistance to immunotherapy in cancer is challenging due, in part, to tumor-associated macrophages (TAMs) co-expressing T cell immunoglobulin and mucin domain-containing 3 (TIM3) and V-domain immunoglobulin suppressor of T cell activation (VISTA) in tumor microenvironments (TME) with sparse T cell infiltration. In a recent article, Vanmeerbeek et al. found that blocking TIM3 or VISTA on IL-4-supported TAMs, in combination with paclitaxel (PTX), reprogrammed TAMs to attack cancer cells, highlighting a potential new therapeutic strategy.
Collapse
Affiliation(s)
- Jie Ting Low
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| | - Mai Matsushita
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
34
|
Zhang S, Huang Q, Ji T, Li Q, Hu C. Copper homeostasis and copper-induced cell death in tumor immunity: implications for therapeutic strategies in cancer immunotherapy. Biomark Res 2024; 12:130. [PMID: 39482784 PMCID: PMC11529036 DOI: 10.1186/s40364-024-00677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Copper is an important trace element for maintaining key biological functions such as cellular respiration, nerve conduction, and antioxidant defense. Maintaining copper homeostasis is critical for human health, and its imbalance has been linked to various diseases, especially cancer. Cuproptosis, a novel mechanism of copper-induced cell death, provides new therapeutic opportunities for metal ion regulation to interact with cell fate. This review provides insights into the complex mechanisms of copper metabolism, the molecular basis of cuproptosis, and its association with cancer development. We assess the role of cuproptosis-related genes (CRGs) associated with tumorigenesis, their importance as prognostic indicators and therapeutic targets, and the impact of copper homeostasis on the tumor microenvironment (TME) and immune response. Ultimately, this review highlights the complex interplay between copper, cuproptosis, and cancer immunotherapy.
Collapse
Affiliation(s)
- Suhang Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China
| | - Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tuo Ji
- School of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| |
Collapse
|
35
|
Xu X, Xu Z, Cai Y, Chen X, Huang C. CKIP-1 inhibits M2 macrophage polarization to suppress the progression of gastric cancer by inactivating JAK/STAT3 signaling. Cell Biochem Biophys 2024:10.1007/s12013-024-01562-9. [PMID: 39470944 DOI: 10.1007/s12013-024-01562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/01/2024]
Abstract
Gastric cancer (GC) is a frequently occurring malignancy with poor prognosis. Casein kinase 2 interacting protein-1 (CKIP-1) is a PH domain-containing protein implicated in regulating tumorigenesis and macrophage homeostasis. This study aimed to elucidate the role and potential mechanism of CKIP-1 in the progression of GC. CKIP-1 expression in GC tumor and para-carcinoma tissues was detected using RT-qPCR. Then, human monocyte cell line THP-1 was treated with PMA, interleukin (IL)-4 and IL-13 to induce M2-polarized macrophages. CD206, arginase-1 (Arg-1) and transforming growth factorβ1 (TGFβ1) expression in M2-polarized macrophages with or without CKIP-1 overexpression was evaluated. Moreover, GC cell lines (MKN45 and HGC27 cells) were co-cultured with CKIP-1-overexpressed M2-polarized macrophages, and the viability, migration and invasion of GC cells were measured. Additionally, immunoblotting assessed the expression of JAK/STAT3 signaling-related proteins and STAT3 agonist Colivelin was used to treat GC cells to perform the rescue experiments to analyze the changes of malignant phenotypes of GC cells. Results showed that CKIP-1 was downregulated in GC tissues and M2-polarized macrophages. CKIP-1 overexpression inhibited M2 macrophage polarization and decreased TGFβ1 secretion. Besides, elevated CKIP-1 expression in M2-polarized macrophages inhibited the viability, migration and invasion of GC cells. Furthermore, CKIP-1 overexpression inactivated JAK2/STAT3 signaling in GC cells by inhibiting TGFβ1 level. Specifically, Colivelin treatment abrogated the influences of CKIP-1 upregulation on the malignant phenotypes of GC cells. Collectively, CKIP-1 inhibits M2 macrophage polarization to suppress the progression of GC by inactivating JAK/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xuefeng Xu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Department of Gastrointestinal Surgery, The First Hospital of Putian City, Putian, Fujian, 351100, China
- Cardia Cancer Institute, Putian University, Putian, Fujian, 351100, China
| | - Zihong Xu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Yaowu Cai
- Department of Gastrointestinal Surgery, The First Hospital of Putian City, Putian, Fujian, 351100, China
- Cardia Cancer Institute, Putian University, Putian, Fujian, 351100, China
| | - Xintong Chen
- Department of Gastrointestinal Surgery, The First Hospital of Putian City, Putian, Fujian, 351100, China
- Cardia Cancer Institute, Putian University, Putian, Fujian, 351100, China
| | - Chaoqing Huang
- Department of Gastrointestinal Surgery, The First Hospital of Putian City, Putian, Fujian, 351100, China.
- Cardia Cancer Institute, Putian University, Putian, Fujian, 351100, China.
| |
Collapse
|
36
|
Oleksiewicz U, Kuciak M, Jaworska A, Adamczak D, Bisok A, Mierzejewska J, Sadowska J, Czerwinska P, Mackiewicz AA. The Roles of H3K9me3 Writers, Readers, and Erasers in Cancer Immunotherapy. Int J Mol Sci 2024; 25:11466. [PMID: 39519018 PMCID: PMC11546771 DOI: 10.3390/ijms252111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The interplay between cancer and the immune system has captivated researchers for a long time. Recent developments in cancer immunotherapy have substantiated this interest with a significant benefit to cancer patients. Tumor and immune cells are regulated via a wide range of molecular mechanisms involving intricate transcriptional and epigenetic networks. Epigenetic processes influence chromatin structure and accessibility, thus governing gene expression, replication, and DNA damage repair. However, aberrations within epigenetic signatures are frequently observed in cancer. One of the key epigenetic marks is the trimethylation of histone 3 at lysine 9 (H3K9me3), confined mainly within constitutive heterochromatin to suppress DNA accessibility. It is deposited at repetitive elements, centromeric and telomeric loci, as well as at the promoters of various genes. Dysregulated H3K9me3 deposition disrupts multiple pathways, including immune signaling. Consequently, altered H3K9me3 dynamics may modify the efficacy of immunotherapy. Indeed, growing evidence highlights the pivotal roles of various proteins mediating H3K9me3 deposition (SETDB1/2, SUV39H1/2), erasure (KDM3, KDM4 families, KDM7B, LSD1) and interpretation (HP1 proteins, KAP1, CHD4, CDYL, UHRF1) in modulating immunotherapy effectiveness. Here, we review the existing literature to synthesize the available information on the influence of these H3K9me3 writers, erasers, and readers on the response to immunotherapy.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Monika Kuciak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Anna Jaworska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Dominika Adamczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Anna Bisok
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Julia Mierzejewska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Justyna Sadowska
- Department of Health Sciences, The Jacob of Paradies University, 66-400 Gorzow Wielkopolski, Poland
| | - Patrycja Czerwinska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Andrzej A. Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| |
Collapse
|
37
|
Mastrogiovanni M, Donnadieu E, Pathak R, Di Bartolo V. Subverting Attachment to Prevent Attacking: Alteration of Effector Immune Cell Migration and Adhesion as a Key Mechanism of Tumor Immune Evasion. BIOLOGY 2024; 13:860. [PMID: 39596815 PMCID: PMC11591779 DOI: 10.3390/biology13110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Cell adhesion regulates specific migratory patterns, location, communication with other cells, physical interactions with the extracellular matrix, and the establishment of effector programs. Proper immune control of cancer strongly depends on all these events occurring in a highly accurate spatiotemporal sequence. In response to cancer-associated inflammatory signals, effector immune cells navigating the bloodstream shift from their patrolling exploratory migration mode to establish adhesive interactions with vascular endothelial cells. This interaction enables them to extravasate through the blood vessel walls and access the cancer site. Further adhesive interactions within the tumor microenvironment (TME) are crucial for coordinating their distribution in situ and for mounting an effective anti-tumor immune response. In this review, we examine how alterations of adhesion cues in the tumor context favor tumor escape by affecting effector immune cell infiltration and trafficking within the TME. We discuss the mechanisms by which tumors directly modulate immune cell adhesion and migration patterns to affect anti-tumor immunity and favor tumor evasion. We also explore indirect immune escape mechanisms that involve modifications of TME characteristics, such as vascularization, immunogenicity, and structural topography. Finally, we highlight the significance of these aspects in designing more effective drug treatments and cellular immunotherapies.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emmanuel Donnadieu
- Equipe Labellisée Ligue Contre le Cancer, CNRS, INSERM, Institut Cochin, Université Paris Cité, F-75014 Paris, France;
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Vincenzo Di Bartolo
- Immunoregulation Unit, Institut Pasteur, Université Paris Cité, F-75015 Paris, France;
| |
Collapse
|
38
|
Liu L, Wang R, Alifu A, Xiao Y, Liu Y, Qian C, Zhao M, Tang X, Xie Y, Shi Y, Zou Y, Xiao H, Yang K, Liu H. Hypoxia-driven M2-polarized macrophages facilitate the epithelial-mesenchymal transition of glioblastoma via extracellular vesicles. Theranostics 2024; 14:6392-6408. [PMID: 39431006 PMCID: PMC11488104 DOI: 10.7150/thno.95766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Rationale: M2-like tumor-associated macrophages (TAMs) promote the malignant progression of glioblastomas. However, the mechanisms responsible for this phenomenon remain unclear. Methods: RT-PCR, Western blot and flow cytometry were used to evaluate the polarization status of macrophages. RT-PCR, western blot or/and immunohistochemistry was used to determine the expression of circ_0003137, PTBP1, PLOD3 and epithelial-mesenchymal transition (EMT) markers. Transwell assay was used to assess migration and invasion ability of tumor cells. RNA sequencing, bioinformatic analysis and Pearson correlation coefficient was performed to explore the relation between PTBP1 and circ_003137/PLOD3. In vivo experiment was used to determine the role of sh-circ_0003137-loaded nanoplatform. Results: Hypoxia promoted the polarization of macrophages towards M2-like TAMs in an HIF1α dependent manner. Then, M2-like TAMs could transport circ_0003137 enriched extracellular vesicles (EVs) to glioblastoma cells, upregulating circ_0003137 in glioblastoma cells. The circ_0003137 overexpression promoted the EMT of glioblastoma cells in vitro and in vivo. Mechanistically, circ_0003137 physically binds to polypyrimidine tract binding protein 1 (PTBP1), enhancing the stability of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) and promoting the EMT of glioblastoma cells. Moreover, a liposome-based nanoplatform that delivers shRNAs was established and used to encapsulate sh-circ_0003137. The fluorescence microscope tracer and cell co-culture assays demonstrated that the nanoplatform encapsulated with sh-circ_0003137 was stable and could penetrate the blood-brain barrier (BBB), finally reaching the central nervous system (CNS). The intracranial in situ tumor model showed that injecting the sh-circ_0003137-loaded nanoplatform via the tail vein significantly inhibited glioblastoma progression and improved the nude mice's survival. Conclusions: Hypoxia can drive macrophage polarization towards M2-like TAMs. Polarized M2-like TAMs can transport circ_0003137 to glioblastoma cells through EVs. Then, circ_0003137 promotes the EMT of glioblastomas by targeting the PTBP1/PLOD3 axis. Hence, targeting circ_0003137 might be a novel therapeutic strategy against glioblastoma.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ran Wang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Aogesi Alifu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yong Xiao
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yong Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Chunfa Qian
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Mengjie Zhao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xianglong Tang
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yandong Xie
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yan Shi
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yuanjie Zou
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Kun Yang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
39
|
Ward MB, Jones AB, Krenciute G. Therapeutic advantage of combinatorial CAR T cell and chemo-therapies. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001070. [PMID: 39375047 DOI: 10.1124/pharmrev.124.001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have transformed outcomes for many patients with hematological malignancies. However, some patients do not respond to CAR T cell treatment, and adapting CAR T cells for solid and brain tumors has been met with many challenges including a hostile tumor microenvironment and poor CAR T cell persistence. Thus, it is unlikely that CAR T cell therapy alone will be sufficient for consistent, complete tumor clearance across cancer patients. Combinatorial therapies of CAR T cells and chemotherapeutics are a promising approach for overcoming this as chemotherapeutics could augment CAR T cells for improved anti-tumor activity or work in tandem with CAR T cells to clear tumors. Herein, we review efforts towards achieving successful CAR T cell and chemical drug combination therapies. We focus on combination therapies with approved chemotherapeutics as these will be more easily translated to the clinic, but also review non-approved chemotherapeutics and drug screens designed to reveal promising new CAR T cell and chemical drug combinations. Together, this review highlights the promise of CAR T cell and chemotherapy combinations with specific focus on how combinatorial therapy overcomes challenges faced by either monotherapy and supports the potential of this therapeutic strategy to improve outcomes for cancer patients. Significance Statement Improving currently available CAR T cell products via combinatorial therapy with chemotherapeutics has the potential to drastically expand the types of cancers and number of patients that could benefit from these therapies when neither alone has been sufficient to achieve tumor clearance. Herein, we provide a thorough review of the current efforts towards studying CAR T and chemotherapy combinatorial therapies and provide perspectives on optimal ways to identify new and effective combinations moving forward.
Collapse
Affiliation(s)
- Meghan B Ward
- St. Jude Children's Research Hospital, United States
| | - Amber B Jones
- St. Jude Children's Research Hospital, United States
| | | |
Collapse
|
40
|
Ansari A, Bhattacharyya T, Das P, Chandra Y, Kundu TK, Banerjee R. Lipid-Conjugated Reduced Haloperidol in Association with Glucose-Based Nanospheres: A Strategy for Glioma Treatment. Mol Pharm 2024; 21:5053-5070. [PMID: 39302161 DOI: 10.1021/acs.molpharmaceut.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Aggressive glioma exhibits a poor survival rate. Increased tumor aggression is linked to both tumor cells and tumor-associated macrophages (TAMs), which induce pro-aggression, invasion, and metastasis. Imperatively, for effective treatment, it is important to target both glioma cells and TAMs. Haloperidol, a neuropsychotic drug, avidly targets the sigma receptor (SR), which is expressed in higher levels in both the cell types. Herein, we present the development of a novel cationic lipid-conjugated reduced haloperidol (±RHPC8), which aims to mediate the SR-targeted antiglioma effect. Hypothetically, ±RHPC8 would act simultaneously as an SR-targeting ligand and anticancer agent. As the blood-brain barrier (BBB) obstructs direct targeting of in situ glioma, we used BBB-crossing glucose-based carbon nanospheres (CSPs) to deliver ±RHPC8 within the glioma tumor-bearing mouse brain. The resultant ±RHPC8-CSP nanoconjugate targeted SR-expressing glioma cells. In both orthotopic and subcutaneous mouse tumor models, ±RHPC8-CSP prolonged survival and regressed tumors compared to other treated groups. Notably, ±RHPC8-CSP was significantly taken up by SR-expressing TAMs thus resulting in macrophage polarization from M2 to M1, as exhibited by markedly reduced expression of immunosuppressive cytokines released by TAMs, including TGF-β, IL-10, and VEGF. In conclusion, the designed ±RHPC8-CSP nanoconjugate presented an effective nanodrug delivery system for brain cancer treatment.
Collapse
Affiliation(s)
- Aasia Ansari
- Department of Oils, Lipid, Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Tithi Bhattacharyya
- Department of Oils, Lipid, Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Pritam Das
- Department of Oils, Lipid, Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Yogesh Chandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560 064, India
| | - Rajkumar Banerjee
- Department of Oils, Lipid, Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| |
Collapse
|
41
|
Cruz LS, Robinson M, Stevenson D, Amador IC, Jordan GJ, Valencia S, Navarrete C, House CD. Chemotherapy Enriches for Proinflammatory Macrophage Phenotypes that Support Cancer Stem-Like Cells and Disease Progression in Ovarian Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:2638-2652. [PMID: 39287565 PMCID: PMC11464072 DOI: 10.1158/2767-9764.crc-24-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
High-grade serous ovarian cancer remains a poorly understood disease with a high mortality rate. Although most patients respond to cytotoxic therapies, a majority will experience recurrence. This may be due to a minority of drug-resistant cancer stem-like cells (CSC) that survive chemotherapy and are capable of repopulating heterogeneous tumors. It remains unclear how CSCs are supported in the tumor microenvironment (TME) particularly during chemotherapy exposure. Tumor-associated macrophages (TAM) make up half of the immune population of the ovarian TME and are known to support CSCs and contribute to cancer progression. TAMs are plastic cells that alter their phenotype in response to environmental stimuli and thus may influence CSC maintenance during chemotherapy. Given the plasticity of TAMs, we studied the effects of carboplatin on macrophage phenotypes using both THP1- and peripheral blood mononuclear cell (PBMC)-derived macrophages and whether this supports CSCs and ovarian cancer progression following treatment. We found that carboplatin exposure induces an M1-like proinflammatory phenotype that promotes SOX2 expression, spheroid formation, and CD117+ ovarian CSCs, and that macrophage-secreted CCL2/MCP-1 is at least partially responsible for this effect. Depletion of TAMs during carboplatin exposure results in fewer CSCs and prolonged survival in a xenograft model of ovarian cancer. This study supports a role for platinum-based chemotherapies in promoting a transient proinflammatory M1-like TAM that enriches for CSCs during treatment. Improving our understanding of TME responses to cytotoxic drugs and identifying novel mechanisms of CSC maintenance will enable the development of better therapeutic strategies for high-grade serous ovarian cancer. Significance: We show that chemotherapy enhances proinflammatory macrophage phenotypes that correlate with ovarian cancer progression. Given that macrophages are the most prominent immune cell within these tumors, this work provides the foundation for future translational studies targeting specific macrophage populations during chemotherapy, a promising approach to prevent relapse in ovarian cancer.
Collapse
Affiliation(s)
- Luisjesus S. Cruz
- Department of Biology, San Diego State University, San Diego, California.
| | - Mikella Robinson
- Department of Biology, San Diego State University, San Diego, California.
| | - Denay Stevenson
- Department of Biology, San Diego State University, San Diego, California.
| | - Isabella C. Amador
- Department of Biology, San Diego State University, San Diego, California.
| | - Gregory J. Jordan
- Department of Biology, San Diego State University, San Diego, California.
| | - Sofia Valencia
- Department of Biology, San Diego State University, San Diego, California.
| | - Carolina Navarrete
- Department of Biology, San Diego State University, San Diego, California.
| | - Carrie D. House
- Department of Biology, San Diego State University, San Diego, California.
- Moores Cancer Center, University of California San Diego, San Diego, California.
| |
Collapse
|
42
|
Li X, Chen T, Li X, Zhang H, Li Y, Zhang S, Luo S, Zheng T. Therapeutic targets of armored chimeric antigen receptor T cells navigating the tumor microenvironment. Exp Hematol Oncol 2024; 13:96. [PMID: 39350256 PMCID: PMC11440706 DOI: 10.1186/s40164-024-00564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, which targets tumors with high specificity through the recognition of particular antigens, has emerged as one of the most rapidly advancing modalities in immunotherapy, demonstrating substantial success against hematological malignancies. However, previous generations of CAR-T cell therapy encountered numerous challenges in treating solid tumors, such as the lack of suitable targets, high immunosuppression, suboptimal persistence, and insufficient infiltration owing to the complexities of the tumor microenvironment, all of which limited their efficacy. In this review, we focus on the current therapeutic targets of fourth-generation CAR-T cells, also known as armored CAR-T cells, and explore the mechanisms by which these engineered cells navigate the tumor microenvironment by targeting its various components. Enhancing CAR-T cells with these therapeutic targets holds promise for improving their effectiveness against solid tumors, thus achieving substantial clinical value and advancing the field of CAR-T cell therapy. Additionally, we discuss potential strategies to overcome existing challenges and highlight novel targets that could further enhance the efficacy of CAR-T cell therapy in treating solid tumors.
Collapse
Affiliation(s)
- Xianjun Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tianjun Chen
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Xuehan Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Hanyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingjing Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shuyuan Zhang
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shengnan Luo
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tongsen Zheng
- Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China.
| |
Collapse
|
43
|
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J, Yang S. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther 2024; 9:236. [PMID: 39317708 PMCID: PMC11422510 DOI: 10.1038/s41392-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Distant metastasis is a primary cause of mortality and contributes to poor surgical outcomes in cancer patients. Before the development of organ-specific metastasis, the formation of a pre-metastatic niche is pivotal in promoting the spread of cancer cells. This review delves into the intricate landscape of the pre-metastatic niche, focusing on the roles of tumor-derived secreted factors, extracellular vesicles, and circulating tumor cells in shaping the metastatic niche. The discussion encompasses cellular elements such as macrophages, neutrophils, bone marrow-derived suppressive cells, and T/B cells, in addition to molecular factors like secreted substances from tumors and extracellular vesicles, within the framework of pre-metastatic niche formation. Insights into the temporal mechanisms of pre-metastatic niche formation such as epithelial-mesenchymal transition, immunosuppression, extracellular matrix remodeling, metabolic reprogramming, vascular permeability and angiogenesis are provided. Furthermore, the landscape of pre-metastatic niche in different metastatic organs like lymph nodes, lungs, liver, brain, and bones is elucidated. Therapeutic approaches targeting the cellular and molecular components of pre-metastatic niche, as well as interventions targeting signaling pathways such as the TGF-β, VEGF, and MET pathways, are highlighted. This review aims to enhance our understanding of pre-metastatic niche dynamics and provide insights for developing effective therapeutic strategies to combat tumor metastasis.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yabing Yang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
44
|
Zhang X, Yue L, Cao L, Liu K, Yang S, Liang S, Liu L, Zhao C, Wu D, Wang Z, Tian R, Rao L. Tumor microenvironment-responsive macrophage-mediated immunotherapeutic drug delivery. Acta Biomater 2024; 186:369-382. [PMID: 39097127 DOI: 10.1016/j.actbio.2024.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Immunotherapy, as a promising treatment strategy for cancer, has been widely employed in clinics, while its efficiency is limited by the immunosuppression of tumor microenvironment (TME). Tumor-associate macrophages (TAMs) are the most abundant immune cells infiltrating the TME and play a crucial role in immune regulation. Herein, a M0-type macrophage-mediated drug delivery system (PR-M) was designed for carrying Toll-like receptors (TLRs) agonist-loaded nanoparticles. When TLR agonist R848 was released by responding to the TME, the PR-Ms were polarized from M0-type to M1-type and TAMs were also stimulated from M2-type to M1-type, which eventually reversed the immunosuppressive states of TME. By synergizing with the released R848 agonists, the PR-M significantly activated CD4+ and CD8+ T cells in the TME and turned the 'cold' tumor into 'hot' tumor by regulating the secretion of cytokines including IFN-γ, TNF-α, IL-10, and IL-12, thus ultimately promoting the activation of antitumor immunity. In a colorectal cancer mouse model, the PR-M treatment effectively accumulated at the tumor site, with a 5.47-fold increase in M1-type and a 65.08 % decrease in M2-type, resulting in an 85.25 % inhibition of tumor growth and a 87.55 % reduction of tumor volume compared with the non-treatment group. Our work suggests that immune cell-mediated drug delivery systems can effectively increase drug accumulation at the tumor site and reduce toxic side effects, resulting in a strong immune system for tumor immunotherapy. STATEMENT OF SIGNIFICANCE: The formation of TME and the activation of TAMs create an immunosuppressive network that allows tumor to escape the immune system and promotes its growth and spread. In this study, we designed an M0-type macrophage-mediated drug delivery system (PR-M). It leverages the synergistic effect of macrophages and agonists to improve the tumor immunosuppressive micro-environment by increasing M1-type macrophages and decreasing M2-type macrophages. As part of the treatment, the drug-loaded macrophages endowed the system with excellent tumor targeting. Furthermore, loading R848 into TME-responsive nanoparticles could protect macrophages and reduce the potential toxicity of agonists. Further investigations demonstrated that the designed PR-M could be a feasible strategy with high efficacy in tumor targeting, drug loading, autoimmunity activation, and lower side effects.
Collapse
Affiliation(s)
- Xueyang Zhang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China; Shenzhen Bay Laboratory, Shenzhen 518132, China; School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Ludan Yue
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lei Cao
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Kun Liu
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Shengren Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lujie Liu
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China; Shenzhen Bay Laboratory, Shenzhen 518132, China
| | | | - Dudu Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Lang Rao
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China; Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
45
|
Quoniou R, Moreau E, Cachin F, Blavignac C, Bortoli E, Chautard E, Peyrode C. Chondrosarcoma Co-Culture 3D Model─An Insight to Evaluate Drugs Acting on TAMs. ACS Biomater Sci Eng 2024; 10:5832-5843. [PMID: 39121344 DOI: 10.1021/acsbiomaterials.4c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Chondrosarcoma (CHS), also known as malignant cartilage tumors, is the second most common bone cancer after osteosarcoma. This tumor is particularly chemo- and radioresistant, and the only therapeutic alternative is surgery with wide margins. The tumor immune microenvironment reveals an infiltration of tumor-associated macrophages (TAMs) sometimes approaching 50% of the tumor mass, mainly differentiated into M2-like phenotype and correlated with poor prognosis and metastasis. Thus, macrophage-targeting therapies could have an interest in the management of CHS. To evaluate these strategies, we propose here the development of a three-dimensional (3D) tumoroid co-culture model between two human CHS cell lines (JJ012 and CH2879) and a human leukemia monocytic cell line (THP-1) in a methylcellulose matrix. These two models were compared to the in vivo xenograft models in terms of macrophage phenotypes, proteoglycans, MMP-9, and COX-2 expression. Finally, mifamurtide, an immunomodulator acting on TAMs, was evaluated on the most in vitro relevant model: 3D co-culture CH2879 model. Our results showed that it is now possible to develop 3D models that very accurately mimic what is found in vivo with the possibility of evaluating treatments specific to a tumor cell component.
Collapse
Affiliation(s)
- Rohan Quoniou
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| | - Emmanuel Moreau
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| | - Florent Cachin
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
- Service de Médecine Nucléaire, Centre Jean PERRIN, 63000 Clermont-Ferrand, France
| | | | - Elisa Bortoli
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| | - Emmanuel Chautard
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
- Service de Pathologie, Centre Jean PERRIN, 63000 Clermont-Ferrand, France
| | - Caroline Peyrode
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| |
Collapse
|
46
|
Li JR, Shaw V, Lin Y, Wang X, Aminu M, Li Y, Wu J, Zhang J, Amos CI, Cheng C. The prognostic effect of infiltrating immune cells is shaped by proximal M2 macrophages in lung adenocarcinoma. Mol Cancer 2024; 23:185. [PMID: 39232758 PMCID: PMC11373246 DOI: 10.1186/s12943-024-02080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
The spatial arrangement of immune cells within the tumor microenvironment (TME) and their interactions play critical roles in the initiation and development of cancer. Several advanced technologies such as imaging mass cytometry (IMC) providing the immunological landscape of the TME with single-cell resolution. In this study, we develop a new method to quantify the spatial proximity between different cell types based on single-cell spatial data. Using this method on IMC data from 416 lung adenocarcinoma patients, we show that the proximity between different cell types is more correlated with patient prognosis compared to the traditional features such immune cell density and fractions. Consistent with previous reports, our results validate that proximity of T helper (Th) and B cells to cancer cells is associated with survival benefits. More importantly, we discover that the proximity of M2 macrophages to multiple immune cells is associated with poor prognosis. When Th/B cells are stratified into M2-distal and M2-proximal, the abundance of the former but not the latter category of Th/B cells is correlated with enhanced patient survival. Additionally, the abundance of M2-distal and M2-proximal cytotoxic T cells (Tc) is respectively associated with good and poor prognosis. Our results indicate that the prognostic effect of Th, Tc, and B cells in the tumor microenvironment is modulated by the nearby M2 macrophages. The proposed new method proposed can be readily applied to all single-cell spatial data for revealing functional impact of immune cell interactions.
Collapse
Affiliation(s)
- Jian-Rong Li
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vikram Shaw
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yupei Lin
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiang Wang
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Quantitative and Computational Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Muhammad Aminu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yong Li
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chao Cheng
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA.
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
47
|
Zhang S, Yu B, Sheng C, Yao C, Liu Y, Wang J, Zeng Q, Mao Y, Bei J, Zhu B, Chen S. SHISA3 Reprograms Tumor-Associated Macrophages Toward an Antitumoral Phenotype and Enhances Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403019. [PMID: 39054639 PMCID: PMC11423144 DOI: 10.1002/advs.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/22/2024] [Indexed: 07/27/2024]
Abstract
The main challenge for immune checkpoint blockade (ICB) therapy lies in immunosuppressive tumor microenvironment (TME). Repolarizing M2-like tumor-associated macrophages (TAMs) into inflammatory M1 phenotype is a promising strategy for cancer immunotherapy. Here, this study shows that the tumor suppressive protein SHISA3 regulates the antitumor functions of TAMs. Local delivery of mRNA encoding Shisa3 enables cancer immunotherapy by reprogramming TAMs toward an antitumoral phenotype, thus enhancing the efficacy of programmed cell death 1 (PD-1) antibody. Enforced expression of Shisa3 in TAMs increases their phagocytosis and antigen presentation abilities and promotes CD8+ T cell-mediated antitumor immunity. The expression of SHISA3 is induced by damage/pathogen-associated molecular patterns (DAMPs/PAMPs) in macrophages via nuclear factor-κB (NF-κB) transcription factors. Reciprocally, SHISA3 forms a complex with heat shock protein family A member 8 (HSPA8) to activate NF-κB signaling thus maintaining M1 polarization of macrophages. Knockout Shisa3 largely abolishes the antitumor efficacy of combination immunotherapy with Toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) and PD-1 antibody. It further found that higher expression of SHISA3 in antitumoral TAMs is associated with better overall survival in lung cancer patients. Taken together, the findings describe the role of SHISA3 in reprogramming TAMs that ameliorate cancer immunotherapy.
Collapse
Affiliation(s)
- Shimeng Zhang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Bingbing Yu
- Key Laboratory of Molecular Biophysicsthe Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Chunjie Sheng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Chen Yao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yang Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Jing Wang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Qi Zeng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yizhi Mao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Jinxin Bei
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Bin Zhu
- Key Laboratory of Molecular Biophysicsthe Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhen518063P. R. China
| | - Shuai Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
48
|
Bai H, Feng L, Schmid F. Macrophage-based cancer immunotherapy: Challenges and opportunities. Exp Cell Res 2024; 442:114198. [PMID: 39103071 DOI: 10.1016/j.yexcr.2024.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Macrophages play crucial roles in the tumor microenvironment (TME), exerting diverse functions ranging from promoting tumor growth and metastasis to orchestrating anti-tumor immune responses. Their plasticity allows them to adopt distinct activation states, often called M1-like (pro-inflammatory) and M2-like (anti-inflammatory or pro-tumoral), significantly influencing tumor progression and response to therapy. Harnessing the potential of macrophages in cancer immunotherapy has emerged as a promising strategy, with increasing interest in targeting these cells directly or modulating their functions within the TME. This review explores the intricate interplay between macrophages, the TME, and immunotherapeutic approaches. We discuss the dynamic phenotypic and functional heterogeneity of tumor-associated macrophages (TAMs), their impact on disease progression, and the mechanisms underlying their response to immunotherapy. Furthermore, we highlight recent advancements in macrophage-based immunotherapeutic strategies, including macrophage-targeting agents, adoptive cell transfer, and engineering approaches. Understanding the complex crosstalk between macrophages and the TME is essential for developing effective immunotherapeutic interventions that exploit the immunomodulatory functions of macrophages to enhance anti-tumor immunity and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Haotian Bai
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215316, China; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| | - Li Feng
- Emergency Department, People's Hospital Affiliated to Shandong First Medical University, Jinan, 271100, Shandong Province, China.
| | - Felix Schmid
- School of Biomedical Sciences, Carleton University, Ottawa, Canada.
| |
Collapse
|
49
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
50
|
Bisht A, Dey S, Kulshreshtha R. Integrated meta-analyses of genome-wide effects of PM 2.5 in human cells identifies widespread dysregulation of genes and pathways associated with cancer progression and patient survival. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173448. [PMID: 38797421 DOI: 10.1016/j.scitotenv.2024.173448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Epidemiological studies have consistently shown a positive association between exposure to ambient PM2.5, a major component of air pollution, and various types of cancer. Previous biological research has primarily focused on the association between PM2.5 and lung cancer, with limited investigation into other cancer types. In this study, we conducted a meta-analysis on multiple PM2.5-treated normal human cell lines to identify potential molecular targets and pathways of PM2.5. Our analysis revealed 310 common differentially expressed genes (DEGs) that exhibited significant dysregulation upon exposure to PM2.5. These dysregulated genes covered a diverse range of functional categories, including oncogenes, tumor suppressor genes, and immune-related genes, which collectively contribute to PM2.5-induced carcinogenesis. Pathway enrichment analysis revealed the up-regulation of pathways associated with HIF-1, VEGF, and MAPK signalling, all of which have been implicated in various cancers. Induction in the levels of HIF pathway genes (HIF1⍺, HIF2⍺, VEGFA, BNIP3, EPO and PGK1) upon PM2.5 treatment was also confirmed by qRT-PCR. Furthermore, the construction of a protein-protein interaction (PPI) network unveiled hub genes, such as NQO1 and PDGFRB, that are known to be dysregulated and significantly correlated with overall survival in lung and breast cancer patients, suggesting their potential clinical significance. This study provides a deep insight into how PM2.5-mediated dysregulation of oncogenes or tumor suppressor genes across various human tissues may play an important role in PM2.5-induced carcinogenesis. Further exploration of these dysregulated molecular targets may enhance our understanding of the biological effects of PM2.5 and facilitate the development of preventive strategies and targeted therapies for PM2.5-associated cancers.
Collapse
Affiliation(s)
- Anadi Bisht
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India; Centre of Excellence for Research on Clean Air, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|