1
|
Chen SJ, Tsai CC, Lin SR, Lee MH, Huang SS, Zeng HY, Wang LH, Chiang MF, Sheu HM, Chang NS. Dissociation of the nuclear WWOX/TRAF2 switch renders UV/cold shock-mediated nuclear bubbling cell death at low temperatures. Cell Commun Signal 2024; 22:505. [PMID: 39420317 PMCID: PMC11487720 DOI: 10.1186/s12964-024-01866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Normal cells express functional tumor suppressor WW domain-containing oxidoreductase (WWOX), designated WWOXf. UV irradiation induces WWOXf cells to undergo bubbling cell death (BCD) - an event due to the accumulation of nuclear nitric oxide (NO) gas that forcefully pushes the nuclear and cell membranes to form one or two bubbles at room temperature (22 °C) and below. In contrast, when WWOX-deficient or -dysfunctional (WWOXd) cells are exposed to UV and/or cold shock, the cells undergo nuclear pop-out explosion death (POD). We aimed to determine the morphological and biochemical changes in WWOXf cells during BCD versus apoptosis. METHODS WWOXf and WWOXd cells were exposed to UV followed by measuring BCD or POD by time-lapse microscopy and/or time-lapse holographic microscopy at 4, 22, or 37 °C to visualize morphological changes. Live cell stains were used to measure the kinetics of nitric oxide (NO) production and Ca2+ influx. Extent of cell death was measured by uptake of propidium iodide and by internucleosomal DNA fragmentation using agarose gel electrophoresis. RESULTS WWOXf cells were exposed to UV and then cold shock, or cold shock and then UV, and cultured at 4, 10, and 22 °C, respectively. Initially, UV induced calcium influx and NO production, which led to nuclear bubbling and final death. Cold shock pretreatment completely suppressed UV-mediated bubbling at 37 °C, so the UV/cold shock-treated cells underwent apoptosis. Without cold shock, UV only induced bubbling at all temperatures, whereas the efficiency of bubbling at 37 °C was reduced by greater than 50%. Morphologically, the WWOXf cell height or thickness was significantly increased during cell division or apoptosis, but the event did not occur in BCD. In comparison, when WWOXd cancer cells received UV or UV/cold shock, these cells underwent NO-independent POD. UV/cold shock effectively downregulated the expression of many proteins such as the housekeeping α-tubulin (> 70%) and β-actin (< 50%), and cortactin (> 70%) in WWOXf COS7 cells. UV/cold shock induced relocation of α-tubulin to the nucleus and nuclear bubbles in damaged cells. UV induced co-translocation of the WWOX/TRAF2 complex to the nuclei, in which the prosurvival TRAF2 blocked the proapoptotic WWOX via its zinc finger domain. Without WWOX, TRAF2 did not relocate to the nuclei. Cold shock caused the dissociation of the WWOX/TRAF2 complex in the nucleus needed for BCD. In contrast, the formation of the WWOX/TRAF2 complex, plus p53, was strengthened at 37 °C required for apoptosis. CONCLUSIONS The temperature-sensitive nuclear WWOX/TRAF2 complex acts as a molecular switch, whose dissociation favors BCD at low temperatures, and the association supports apoptosis at 37 °C in UV-treated WWOXf cells.
Collapse
Affiliation(s)
- Szu-Jung Chen
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Cheng-Chang Tsai
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Sing-Ru Lin
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ming-Hui Lee
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shenq-Shyang Huang
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Han-Yan Zeng
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Lu-Hai Wang
- Chinese Medicine Research Center, Institute of Integrated Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Ming-Fu Chiang
- Department of Neurosurgery, Fu Jen Catholic University Hospital, Taipei, 24352, Taiwan.
| | - Hamm-Ming Sheu
- Department of Dermatology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Nan-Shan Chang
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
2
|
Zhang J, Lin Z, Zhang Y, Gu H, Li W. Bioinformatics-based drug repositioning and prediction of the main active ingredients and potential mechanisms of action for the efficacy of Dan-Lou tablet. Sci Rep 2024; 14:23297. [PMID: 39375410 PMCID: PMC11458610 DOI: 10.1038/s41598-024-74243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Drug repositioning is gaining attention as a method for developing new drugs due to its low cost, short cycle time, and high success rate. One important approach is to explore new uses for already marketed drugs. In this study, we utilized the strategy of drug repositioning, focusing on the Dan-Lou tablet. We predicted the efficacy of Dan-Lou tablet against non-small cell lung cancer based on gene expression similarity and verified it by in vitro experiments. Next, we performed further analysis and validation using network pharmacology, molecular docking and molecular dynamics. Based on the results, it was concluded that Dan-Lou tablet mainly acted through nine compounds, Quercetin, Luteolin, Scoparone, Isorhamnetin, Eugenol, Genistein, Coumestrol, Hederagenin, Succinic Acid, and mainly targeted CCL2, FEN1, TPI1, RMI2 by six pathways. This discovery not only provides a new idea for the development of Dan-Lou tablet but also provides useful predictive information for clinical treatment. The method we adopted has great development prospects as a way to predict the efficacy of new drugs and their main mechanisms of action, and it has a positive impact on the research and development of new drugs using drug repositioning and the modernization of traditional Chinese medicine.
Collapse
Affiliation(s)
- Jingyue Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhaozhou Lin
- Beijing Zhongyan Tongrentang Medicine R&D Co., Ltd, Beijing, 100079, China.
| | - Yinghua Zhang
- People's Hospital of Gansu province, Lanzhou, 730000, Gansu, China.
| | - Hao Gu
- Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100079, China.
| | - Wen Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
3
|
Zhang B, Hao Y, Liu H, Wu J, Lu L, Wang X, Bajpai AK, Yang X. Interplay of RNA m 6A Modification-Related Geneset in Pan-Cancer. Biomedicines 2024; 12:2211. [PMID: 39457524 PMCID: PMC11504890 DOI: 10.3390/biomedicines12102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: N6-methyladenosine (m6A), is the most common modification found in mRNA and lncRNA in higher organisms and plays an important role in physiology and pathology. However, its role in pan-cancer has not been explored. Results: A total of 31 m6A modification regulators, including 12 writers, 2 erasers, and 17 readers are identified in the current study. The functional analysis of the regulators results in the enrichment of processes, primarily related to RNA modification and metabolism, and the PPI network reveals multiple interactions among the regulators. The mRNA expression analysis reveals a high expression for most of the regulators in pan-cancer. Most of the m6A regulators are found to be mutated across the cancers, with ZC3H13, VIRMA, and PRRC2A having a higher frequency rate. Significant correlations of the regulators with clinicopathological parameters, such as age, gender, tumor stage, and grade are identified in pan-cancer. The m6A regulators' expression is found to have significant positive correlations with the miRNAs in pan-cancer. The expression pattern of the m6A regulators is able to classify the tumors into different subclusters as well as into high- and low-risk groups. These tumor groups show differential patterns in terms of their immune cell infiltration, tumor stemness score, genomic heterogeneity score, expression of immune regulatory/checkpoint genes, and correlations between the regulators and the drugs. Conclusions: Our study provide a comprehensive overview of the functional roles, genetic and epigenetic alterations, and prognostic value of the RNA m6A regulators in pan-cancer.
Collapse
Affiliation(s)
- Boyu Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Yajuan Hao
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China;
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Haiyan Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Jiarun Wu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, UT 38163, USA;
| | - Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Akhilesh K. Bajpai
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, UT 38163, USA;
| | - Xi Yang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| |
Collapse
|
4
|
Sarkar R, Choudhury SM, Kanneganti TD. Classical apoptotic stimulus, staurosporine, induces lytic inflammatory cell death, PANoptosis. J Biol Chem 2024; 300:107676. [PMID: 39151726 PMCID: PMC11418131 DOI: 10.1016/j.jbc.2024.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024] Open
Abstract
Innate immunity is the body's first line of defense against disease, and regulated cell death is a central component of this response that balances pathogen clearance and inflammation. Cell death pathways are generally categorized as non-lytic and lytic. While non-lytic apoptosis has been extensively studied in health and disease, lytic cell death pathways are also increasingly implicated in infectious and inflammatory diseases and cancers. Staurosporine (STS) is a well-known inducer of non-lytic apoptosis. However, in this study, we observed that STS also induces lytic cell death at later timepoints. Using biochemical assessments with genetic knockouts, pharmacological inhibitors, and gene silencing, we identified that STS triggered PANoptosis via the caspase-8/RIPK3 axis, which was mediated by RIPK1. PANoptosis is a lytic, innate immune cell death pathway initiated by innate immune sensors and driven by caspases and RIPKs through PANoptosome complexes. Deletion of caspase-8 and RIPK3, core components of the PANoptosome complex, protected against STS-induced lytic cell death. Overall, our study identifies STS as a time-dependent inducer of lytic cell death, PANoptosis. These findings emphasize the importance of understanding trigger- and time-specific activation of distinct cell death pathways to advance our understanding of the molecular mechanisms of innate immunity and cell death for clinical translation.
Collapse
Affiliation(s)
- Roman Sarkar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sk Mohiuddin Choudhury
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
5
|
Li Y, Pan Y, Yang X, Wang Y, Liu B, Zhang Y, Gao X, Wang Y, Zhou H, Li F. Unveiling the enigmatic role of MYH9 in tumor biology: a comprehensive review. Cell Commun Signal 2024; 22:417. [PMID: 39192336 PMCID: PMC11351104 DOI: 10.1186/s12964-024-01781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Non-muscle myosin heavy chain IIA (MYH9), a member of the non-muscle myosin II (NM II) family, is widely expressed in cells. The interaction of MYH9 with actin in the cytoplasm can hydrolyze ATP, completing the conversion of chemical energy to mechanical motion. MYH9 participates in various cellular processes, such as cell adhesion, migration, movement, and even signal transduction. Mutations in MYH9 are often associated with autosomal dominant platelet disorders and kidney diseases. Over the past decade, tumor-related research has gradually revealed a close relationship between MYH9 and the occurrence and development of tumors. This article provides a review of the research progress on the role of MYH9 in cancer regulation. We also discussed the anti-cancer effects of MYH9 under special circumstances, as well as its regulation of T cell function. In addition, given the importance of MYH9 as a key hub in oncogenic signal transduction, we summarize the current therapeutic strategies targeting MYH9 as well as the ongoing challenges.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yujie Pan
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiangzhe Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yuxiong Wang
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Bin Liu
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Xin Gao
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Honglan Zhou
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Faping Li
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Alzahrani AR, Hosny N, Mohamed DI, Abo Nahas HH, Albogami A, Al-Hazani TMI, Ibrahim IAA, Falemban AH, Bamagous GA, Saied EM. Unveiling the multifaceted antiproliferative efficacy of Cichorium endivia root extract by dual modulation of apoptotic and inflammatory genes, inducing cell cycle arrest, and targeting COX-2. RSC Adv 2024; 14:19400-19427. [PMID: 38887636 PMCID: PMC11182420 DOI: 10.1039/d4ra02131b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Chicory (Cichorium endivia L. divaricatum) is a renowned medicinal plant traditionally used for various ailments, yet the pharmacological potential of its roots, particularly in terms of antitumor activity, remains elusive. In the present study, we explore, for the first time, the metabolomic profile of ethanolic extract from Cichorium endivia roots (CIR) and further unveil its antiproliferative potential. The untargeted phytochemical analysis UPLC/T-TOF-MS/MS identified 131 metabolites in the CIR extract, covering acids, amino acids, flavonoids, alkaloids, nucleotides, and carbohydrates. The antiproliferative activity of the CIR extract was tested in 14 cancer cell lines, revealing significant cytotoxicity (IC50: 2.85-29.15 μg mL-1) and a high selectivity index. Among the cells examined, the CIR extract recorded the most potent antiproliferative activity and selectivity toward HepG2 and Panc-1 cells, with an IC50 of 2.85 μg mL-1 and 3.86 μg mL-1, respectively, and SI > 10. Insights into the mode of action of the antiproliferative activity revealed that CIR extract induces cell arrest in the S phase while diminishing cell distribution in the G0/G1 and G2/M phases in HepG-2 and Panc-1 cells. Flow cytometric and RT-PCR analysis revealed that the CIR extract significantly triggers apoptosis and modulates the expression of pro-apoptotic and anti-apoptotic genes. Furthermore, the CIR extract exhibited a pronounced anti-inflammatory activity, as evidenced by down-regulating key cytokines in LPS-induced RAW 264.7 cells and selectively inhibiting the COX-2 enzyme. Finally, the CIR extract showed a robust total antioxidant capacity, together with potent free radicals and metal scavenging properties, highlighting its role in alleviating oxidative stress. Taken together, this study highlights the multifaceted therapeutic potential of CIR extract as a natural-based antitumor supplement.
Collapse
Affiliation(s)
- Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Nora Hosny
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University Ismailia 41522 Egypt
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University Ismailia Egypt
| | - Doaa I Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | | | - Abdulaziz Albogami
- Biology Department, Faculty of Science, Al-Baha University Al Aqiq Saudi Arabia
| | - Tahani Mohamed Ibrahim Al-Hazani
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University P. O. Box: 83 Al-Kharj 11940 Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Ghazi A Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Essa M Saied
- Chemistry Department, Faculty of Science, Suez Canal University 41522 Ismailia Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin 12489 Berlin Germany
| |
Collapse
|
7
|
Dilday T, Abt M, Ramos-Solís N, Dayal N, Larocque E, Oblak AL, Sintim HO, Yeh ES. Identification and characterization of a potent and selective HUNK inhibitor for treatment of HER2+ breast cancer. Cell Chem Biol 2024; 31:989-999.e7. [PMID: 38307028 PMCID: PMC11102337 DOI: 10.1016/j.chembiol.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/27/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Human epidermal growth factor receptor 2 (HER2)-targeted agents have proven to be effective, however, the development of resistance to these agents has become an obstacle in treating HER2+ breast cancer. Evidence implicates HUNK as an anti-cancer target for primary and resistant HER2+ breast cancers. In this study, a selective inhibitor of HUNK is characterized alongside a phosphorylation event in a downstream substrate of HUNK as a marker for HUNK activity in HER2+ breast cancer. Rubicon has been established as a substrate of HUNK that is phosphorylated at serine (S) 92. Findings indicate that HUNK-mediated phosphorylation of Rubicon at S92 promotes both autophagy and tumorigenesis in HER2/neu+ breast cancer. HUNK inhibition prevents Rubicon S92 phosphorylation in HER2/neu+ breast cancer models and inhibits tumorigenesis. This study characterizes a downstream phosphorylation event as a measure of HUNK activity and identifies a selective HUNK inhibitor that has meaningful efficacy toward HER2+ breast cancer.
Collapse
Affiliation(s)
- Tinslee Dilday
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Melissa Abt
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Nicole Ramos-Solís
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Neetu Dayal
- Purdue Institute for Drug Discovery and Purdue Institute for Cancer Research, Purdue University, Lafayette, IN 47907, USA
| | - Elizabeth Larocque
- Purdue Institute for Drug Discovery and Purdue Institute for Cancer Research, Purdue University, Lafayette, IN 47907, USA
| | - Adrian L Oblak
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN 46202, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery and Purdue Institute for Cancer Research, Purdue University, Lafayette, IN 47907, USA
| | - Elizabeth S Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
8
|
Lazic J, Filipovic V, Pantelic L, Milovanovic J, Vojnovic S, Nikodinovic-Runic J. Late-stage diversification of bacterial natural products through biocatalysis. Front Bioeng Biotechnol 2024; 12:1351583. [PMID: 38807651 PMCID: PMC11130421 DOI: 10.3389/fbioe.2024.1351583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/18/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial natural products (BNPs) are very important sources of leads for drug development and chemical novelty. The possibility to perform late-stage diversification of BNPs using biocatalysis is an attractive alternative route other than total chemical synthesis or metal complexation reactions. Although biocatalysis is gaining popularity as a green chemistry methodology, a vast majority of orphan sequenced genomic data related to metabolic pathways for BNP biosynthesis and its tailoring enzymes are underexplored. In this review, we report a systematic overview of biotransformations of 21 molecules, which include derivatization by halogenation, esterification, reduction, oxidation, alkylation and nitration reactions, as well as degradation products as their sub-derivatives. These BNPs were grouped based on their biological activities into antibacterial (5), antifungal (5), anticancer (5), immunosuppressive (2) and quorum sensing modulating (4) compounds. This study summarized 73 derivatives and 16 degradation sub-derivatives originating from 12 BNPs. The highest number of biocatalytic reactions was observed for drugs that are already in clinical use: 28 reactions for the antibacterial drug vancomycin, followed by 18 reactions reported for the immunosuppressive drug rapamycin. The most common biocatalysts include oxidoreductases, transferases, lipases, isomerases and haloperoxidases. This review highlights biocatalytic routes for the late-stage diversification reactions of BNPs, which potentially help to recognize the structural optimizations of bioactive scaffolds for the generation of new biomolecules, eventually leading to drug development.
Collapse
Affiliation(s)
- Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
9
|
Asghar A, Chohan TA, Khurshid U, Saleem H, Mustafa MW, Khursheed A, Alafnan A, Batul R, Bin Break MK, Almansour K, Anwar S. A systematic review on understanding the mechanistic pathways and clinical aspects of natural CDK inhibitors on cancer progression.: Unlocking cellular and biochemical mechanisms. Chem Biol Interact 2024; 393:110940. [PMID: 38467339 DOI: 10.1016/j.cbi.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Cell division, differentiation, and controlled cell death are all regulated by phosphorylation, a key biological function. This mechanism is controlled by a variety of enzymes, with cyclin-dependent kinases (CDKs) being particularly important in phosphorylating proteins at serine and threonine sites. CDKs, which contain 20 unique components, serve an important role in regulating vital physiological functions such as cell cycle progression and gene transcription. Methodologically, an extensive literature search was performed using reputable databases such as PubMed, Google Scholar, Scopus, and Web of Science. Keywords encompassed "cyclin kinase," "cyclin dependent kinase inhibitors," "CDK inhibitors," "natural products," and "cancer therapy." The inclusion criteria, focused on relevance, publication date, and language, ensured a thorough representation of the most recent research in the field, encompassing articles published from January 2015 to September 2023. Categorization of CDKs into those regulating transcription and those orchestrating cell cycle phases provides a comprehensive understanding of their diverse functions. Ongoing clinical trials featuring CDK inhibitors, notably CDK7 and CDK4/6 inhibitors, illuminate their promising potential in various cancer treatments. This review undertakes a thorough investigation of CDK inhibitors derived from natural (marine, terrestrial, and peptide) sources. The aim of this study is to provide a comprehensive comprehension of the chemical classifications, origins, target CDKs, associated cancer types, and therapeutic applications.
Collapse
Affiliation(s)
- Andleeb Asghar
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Mian Waqar Mustafa
- Department of Pharmacy, Forman Christian College University, Lahore, Pakistan
| | - Anjum Khursheed
- Department of Pharmacy, Grand Asian University, Sialkot, Pakistan
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| | - Rahila Batul
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| |
Collapse
|
10
|
Gopal D, Muthuraj R, Balaya RDA, Kanekar S, Ahmed I, Chandrasekaran J. Computational discovery of novel FYN kinase inhibitors: a cheminformatics and machine learning-driven approach to targeted cancer and neurodegenerative therapy. Mol Divers 2024:10.1007/s11030-024-10819-7. [PMID: 38418686 DOI: 10.1007/s11030-024-10819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
In this study, we explored the potential of novel inhibitors for FYN kinase, a critical target in cancer and neurodegenerative disorders, by integrating advanced cheminformatics, machine learning, and molecular simulation techniques. Our approach involved analyzing key interactions for FYN inhibition using established multi-kinase inhibitors such as Staurosporine, Dasatinib, and Saracatinib. We utilized ECFP4 circular fingerprints and the t-SNE machine learning algorithm to compare molecular similarities between FDA-approved drugs and known clinical trial inhibitors. This led to the identification of potential inhibitors, including Afatinib, Copanlisib, and Vandetanib. Using the DrugSpaceX platform, we generated a vast library of 72,196 analogues from these leads, which after careful refinement, resulted in 6008 promising candidates. Subsequent clustering identified 48 analogues with significant similarity to known inhibitors. Notably, two candidates derived from Vandetanib, DE27123047 and DE27123035, exhibited strong docking affinities and stable binding in molecular dynamics simulations. These candidates showed high potential as effective FYN kinase inhibitors, as evidenced by MMGBSA calculations and MCE-18 scores exceeding 50. Additionally, our exploration into their molecular architecture revealed potential modification sites on the quinazolin-4-amine scaffold, suggesting opportunities for strategic alterations to enhance activity and optimize ADME properties. Our research is a pioneering effort in drug discovery, unveiling novel candidates for FYN inhibition and demonstrating the efficacy of a multi-layered computational strategy. The molecular insights gained provide a pathway for strategic refinements and future experimental validations, setting a new direction in targeted drug development against diseases involving FYN kinase.
Collapse
Affiliation(s)
- Dhanushya Gopal
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, 600116, India
| | - Rajesh Muthuraj
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, 600116, India
| | | | - Saptami Kanekar
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Iqrar Ahmed
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Jaikanth Chandrasekaran
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, 600116, India.
| |
Collapse
|
11
|
Garnique ADMB, Machado-Santelli GM. Characterization of 3D NSCLC Cell Cultures with Fibroblasts or Macrophages for Tumor Microenvironment Studies and Chemotherapy Screening. Cells 2023; 12:2790. [PMID: 38132110 PMCID: PMC10742261 DOI: 10.3390/cells12242790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 12/23/2023] Open
Abstract
The study of 3D cell culture has increased in recent years as a model that mimics the tumor microenvironment (TME), which is characterized by exhibiting cellular heterogeneity, allowing the modulation of different signaling pathways that enrich this microenvironment. The TME exhibits two main cell populations: cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAM). The aim of this study was to investigate 3D cell cultures of non-small cell lung cancer (NSCLC) alone and in combination with short-term cultured dermal fibroblasts (FDH) and with differentiated macrophages of the THP-1 cell line. Homotypic and heterotypic spheroids were morphologically characterized using light microscopy, immunofluorescence and transmission electron microscopy. Cell viability, cycle profiling and migration assay were performed, followed by the evaluation of the effects of some chemotherapeutic and potential compounds on homotypic and heterotypic spheroids. Both homotypic and heterotypic spheroids of NSCLC were generated with fibroblasts or macrophages. Heterotypic spheroids with fibroblast formed faster, while homotypic ones reached larger sizes. Different cell populations were identified based on spheroid zoning, and drug effects varied between spheroid types. Interestingly, heterotypic spheroids with fibroblasts showed similar responses to the treatment with different compounds, despite being smaller. Cellular viability analysis required multiple methods, since the responses varied depending on the spheroid type. Because of this, the complexity of the spheroid should be considered when analyzing compound effects. Overall, this study contributes to our understanding of the behavior and response of NSCLC cells in 3D microenvironments, providing valuable insights for future research and therapeutic development.
Collapse
Affiliation(s)
| | - Glaucia Maria Machado-Santelli
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Ave., Prof, Lineu Prestes, 1524, Cidade Universitária, São Paulo 05508-000, SP, Brazil;
| |
Collapse
|
12
|
Liu H, Li X, Cai J, Jiang L, Zhang X, Wu D, Wang L, Yang A, Guo C, Chen J, Pu W, Yu F. A screening of inhibitors targeting the receptor kinase FERONIA reveals small molecules that enhance plant root immunity. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:63-77. [PMID: 36121304 PMCID: PMC9829398 DOI: 10.1111/pbi.13925] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 05/14/2023]
Abstract
Receptor-like kinases (RLKs) constitute the largest receptor family involved in the regulation of plant immunity and growth, but small-molecule inhibitors that target RLKs to improve agronomic traits remain unexplored. The RLK member FERONIA (FER) negatively regulates plant resistance to certain soil-borne diseases that are difficult to control and cause huge losses in crop yields and economy. Here, we identified 33 highly effective FER kinase inhibitors from 1494 small molecules by monitoring FER autophosphorylation in vitro. Four representative inhibitors (reversine, cenisertib, staurosporine and lavendustin A) inhibited the kinase activity of FER and its homologues in several crops by targeting the conserved ATP pocket in the kinase structure. FER contributes to the physiological impact of representative inhibitors in plants. The treatment of roots with reversine, staurosporine and lavendustin A enhanced innate immunity in plant roots and thus alleviated soil-borne diseases in tobacco, tomato and rice without growth penalties. Consistently, RNA sequencing assays showed that lavendustin A and reversine exert profound impacts on immunity-related gene expression. Our results will set a new milestone in the development of the plant RLK kinase regulation theory and provide a novel strategy for the prevention and control of plant soil-borne diseases without growth penalties.
Collapse
Affiliation(s)
- Hong‐Bin Liu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Biology, Hunan UniversityChangshaChina
| | - Xiaoxu Li
- Technology CenterChina Tobacco Hunan Industrial Co., Ltd.ChangshaChina
| | - Jun Cai
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Biology, Hunan UniversityChangshaChina
| | - Ling‐Li Jiang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Biology, Hunan UniversityChangshaChina
| | - Xin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Dousheng Wu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Biology, Hunan UniversityChangshaChina
| | - Lifeng Wang
- State key Laboratory of Hybrid Rice, Hunan Agricultural Biotechnology Research InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Aiguo Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | - Cun Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | - Jia Chen
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Biology, Hunan UniversityChangshaChina
| | - Wenxuan Pu
- Technology CenterChina Tobacco Hunan Industrial Co., Ltd.ChangshaChina
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Biology, Hunan UniversityChangshaChina
- Yuelushan LaboratoryChangshaChina
| |
Collapse
|
13
|
Kapoor R, Saini A, Sharma D. Indispensable role of microbes in anticancer drugs and discovery trends. Appl Microbiol Biotechnol 2022; 106:4885-4906. [PMID: 35819512 DOI: 10.1007/s00253-022-12046-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/02/2022]
Abstract
Recent years have seen an increased focus on the advancement of naturally derived products for the treatment of cancer. Since the beginning of recorded history, nature has provided a variety of medicinal agents, and an overwhelming number of drugs that we have today are derived from natural sources. Such natural agents are prominently used to treat several diseases such as diabetes, malaria, Alzheimer's, pulmonary disorders, etc. with cancer being the highlight of this review. Due to the rapid development of resistance to chemotherapeutic drugs, the hunt for effective novel drugs is still a paramount concern in cancer treatment. Moreover, many chemotherapy drugs typically have high toxicity and adverse side effects, which necessitates the need to develop anti-tumor drugs that can be employed to treat deadly tumors with fewer negative effects on health and better efficacy. Isolation of several chemotherapeutic drugs has been conducted from a wide range of natural sources which include plants, microbes, fungi, and marine microorganisms. Considering the trends of previous decades, microbial diversity has grown to play a significant role in the formulation of pharmaceuticals and drugs, especially antibiotics and anti-cancer medications. Microbe-derived antitumor antibiotics such as anthracycline, epothilones, bleomycin, actinomycin, and staurosporine are amongst the widely used cancer chemotherapeutic agents. This review deals majorly with microbe-derived anticancer drugs taking into account their derivatives, mechanism of action, isolation procedures, limitations, and tumors targeted by them. This article also reports the phase of clinical study these drugs are undergoing. Moreover, it intends to portray the indispensable part that these microbes have been playing since time immemorial in the odyssey of chemotherapeutic agents. KEY POINTS: • Microbial diversity contributes heavily towards the formulation of anticancer drugs. • Polypeptides, carbohydrates, and alkaloids are prevalent microbe-based drug classes. • Microbe-derived anticancer agents target various sarcomas, carcinomas, and lymphomas.
Collapse
Affiliation(s)
- Ridam Kapoor
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Anamika Saini
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, 302006, India.,Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
| |
Collapse
|
14
|
Natural products as novel scaffolds for the design of glycogen synthase kinase 3β inhibitors. Expert Opin Drug Discov 2022; 17:377-396. [PMID: 35262427 DOI: 10.1080/17460441.2022.2043845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The different and relevant roles of GSK-3 are of critical importance since they deal with development, metabolic homeostasis, cell polarity and fate, neuronal growth and differentiation as well as modulation of apoptotic potential. Given their involvement with different diseases, many investigations have been undertaken with the aim of discovering new and promising inhibitors for this target. In this context, atural products represent an invaluable source of active molecules. AREAS COVERED In order to overcome issues such as poor pharmacokinetic properties or efficacy, frequently associated with natural compounds, different GSK-3β inhibitors belonging to alkaloid or flavonoid classes have been subjected to structural modifications in order to obtain more potent and safer compounds. Herein, the authors report the results obtained from studies where natural compounds have been used as hits with the aim of providing new kinase inhibitors endowed with a better inhibitory profile. EXPERT OPINION Structurally modification of natural scaffolds is a proven approach taking advantage of their pharmacological characteristics. Indeed, whatever the strategy adopted is and, despite the limitations associated with the structural complexity of natural products, the authors recommend the use of natural scaffolds as a promising strategy for the discovery of novel and potent GSK-3β inhibitors.
Collapse
|
15
|
Seo K, Jang SH, Rhee YH. Sequential Metal Catalysis towards 7‐Oxostaurosporine and Its Non‐Natural Septanose Analogue. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kyeongdeok Seo
- Department of Chemistry Pohang University of Science and Technology Cheongam-Ro 77, Nam-Gu Pohang, Kyeongbuk 37673 Republic of Korea
| | - Seok Hyeon Jang
- Department of Chemistry Pohang University of Science and Technology Cheongam-Ro 77, Nam-Gu Pohang, Kyeongbuk 37673 Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry Pohang University of Science and Technology Cheongam-Ro 77, Nam-Gu Pohang, Kyeongbuk 37673 Republic of Korea
| |
Collapse
|
16
|
Wang L, Zhang Y, Xu Z, Li J, Zhu W. Total synthesis of the indolocarbazole alkaloid ZHD-0501 and its seven isomers. Org Chem Front 2022. [DOI: 10.1039/d2qo00844k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An indolocarbazole alkaloid, ZHD-0501 (1), and its 7 stereoisomers (2–8) were totally synthesized from d/l-glucose and 2,3-dibromomaleimide in 22 step reactions, and the absolute configuration of ZHD-0501 was confirmed for the first time.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Yapeng Zhang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhihong Xu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
17
|
Seo K, Jang SH, Rhee YH. Sequential Metal Catalysis towards 7-Oxostaurosporine and Its Non-Natural Septanose Analogue. Angew Chem Int Ed Engl 2021; 61:e202112524. [PMID: 34786807 DOI: 10.1002/anie.202112524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 11/09/2022]
Abstract
We report sequential metal catalysis towards indolocarbazole glycosides. The signature event is highlighted by i) Pd0 -catalyzed addition of indolocarbazole to alkoxyallene combined with ring-closing-metathesis; ii) Ru-catalyzed chemoselective olefin migration; iii) PdII -catalyzed oxidative cyclization to build the bicyclic core structure of the target compounds. This approach gave access to both natural pyranose- and non-natural septanose glycosides. A short formal synthesis of 7-oxostaurosporine was achieved via this strategy.
Collapse
Affiliation(s)
- Kyeongdeok Seo
- Department of Chemistry, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Kyeongbuk, 37673, Republic of Korea
| | - Seok Hyeon Jang
- Department of Chemistry, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Kyeongbuk, 37673, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Kyeongbuk, 37673, Republic of Korea
| |
Collapse
|
18
|
Landin EJB, Williams C, Ryan SA, Bochel A, Akter N, Redfield C, Sessions RB, Dedi N, Taylor RJ, Crump MP. The structural basis for high affinity binding of α1-acid glycoprotein to the potent antitumor compound UCN-01. J Biol Chem 2021; 297:101392. [PMID: 34758357 PMCID: PMC8671939 DOI: 10.1016/j.jbc.2021.101392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
The α1-acid glycoprotein (AGP) is an abundant blood plasma protein with important immunomodulatory functions coupled to endogenous and exogenous ligand-binding properties. Its affinity for many drug-like structures, however, means AGP can have a significant effect on the pharmokinetics and pharmacodynamics of numerous small molecule therapeutics. Staurosporine, and its hydroxylated forms UCN-01 and UCN-02, are kinase inhibitors that have been investigated at length as antitumour compounds. Despite their potency, these compounds display poor pharmokinetics due to binding to both AGP variants, AGP1 and AGP2. The recent renewed interest in UCN-01 as a cytostatic protective agent prompted us to solve the structure of the AGP2–UCN-01 complex by X-ray crystallography, revealing for the first time the precise binding mode of UCN-01. The solution NMR suggests AGP2 undergoes a significant conformational change upon ligand binding, but also that it uses a common set of sidechains with which it captures key groups of UCN-01 and other small molecule ligands. We anticipate that this structure and the supporting NMR data will facilitate rational redesign of small molecules that could evade AGP and therefore improve tissue distribution.
Collapse
Affiliation(s)
| | - Christopher Williams
- School of Chemistry, University of Bristol, Bristol, UK; BrisSynBio, University of Bristol, Bristol, UK
| | - Sara A Ryan
- School of Chemistry, University of Bristol, Bristol, UK
| | - Alice Bochel
- School of Chemistry, University of Bristol, Bristol, UK
| | - Nahida Akter
- School of Chemistry, University of Bristol, Bristol, UK
| | | | | | - Neesha Dedi
- Discovery Sciences, UCB Biopharma, Slough, UK
| | | | | |
Collapse
|
19
|
Meyer FAH, Kraus D, Glassmann A, Veit N, Winter J, Probstmeier R. The Presence of Yin-Yang Effects in the Migration Pattern of Staurosporine-Treated Single versus Collective Breast Carcinoma Cells. Int J Mol Sci 2021; 22:ijms222111961. [PMID: 34769389 PMCID: PMC8584475 DOI: 10.3390/ijms222111961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/23/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Staurosporine-dependent single and collective cell migration patterns of breast carcinoma cells MDA-MB-231, MCF-7, and SK-BR-3 were analysed to characterise the presence of drug-dependent migration promoting and inhibiting yin-yang effects. METHODS Migration patterns of various breast cancer cells after staurosporine treatment were investigated using Western blot, cell toxicity assays, single and collective cell migration assays, and video time-lapse. Statistical analyses were performed with Kruskal-Wallis and Fligner-Killeen tests. RESULTS Application of staurosporine induced the migration of single MCF-7 cells but inhibited collective cell migration. With the exception of low-density SK-BR-3 cells, staurosporine induced the generation of immobile flattened giant cells. Video time-lapse analysis revealed that within the borderline of cell collectives, staurosporine reduced the velocity of individual MDA-MB-231 and SK-BR-3, but not of MCF-7 cells. In individual MCF-7 cells, mainly the directionality of migration became disturbed, which led to an increased migration rate parallel to the borderline, and hereby to an inhibition of the migration of the cell collective as a total. Moreover, the application of staurosporine led to a transient activation of ERK1/2 in all cell lines. CONCLUSION Dependent on the context (single versus collective cells), a drug may induce opposite effects in the same cell line.
Collapse
Affiliation(s)
- Frank A. H. Meyer
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (F.A.H.M.); (N.V.); (R.P.)
| | - Dominik Kraus
- Department of Prosthodontics, Preclinical Education, and Material Sciences, University Hospital, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany;
| | - Alexander Glassmann
- Life Science Inkubator, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany;
- Department of Immunology and Cell Biology, University of Applied Science Bonn-Rhein-Sieg, Campus Rheinbach, von-Liebig-Str. 20, 53359 Rheinbach, Germany
| | - Nadine Veit
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (F.A.H.M.); (N.V.); (R.P.)
| | - Jochen Winter
- Oral Cell Biology Group, Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany
- Correspondence: ; Tel.: +49-228-287-22011
| | - Rainer Probstmeier
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (F.A.H.M.); (N.V.); (R.P.)
| |
Collapse
|
20
|
Sakai K, Unten Y, Kimishima A, Nonaka K, Chinen T, Sakai K, Usui T, Shiomi K, Iwatsuki M, Murai M, Miyoshi H, Asami Y, Ōmura S. Traminines A and B, produced by Fusarium concentricum, inhibit oxidative phosphorylation in Saccharomyces cerevisiae mitochondria. J Ind Microbiol Biotechnol 2021; 48:6338109. [PMID: 34343309 PMCID: PMC8788869 DOI: 10.1093/jimb/kuab051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022]
Abstract
Two new tetramic acid derivatives, traminines A (1) and B (2), were isolated from a culture broth of Fusarium concentricum FKI-7550 by bioassay-guided fractionation using multidrug-sensitive Saccharomyces cerevisiae 12geneΔ0HSR-iERG6. The chemical structures of 1 and 2 were elucidated by NMR studies. Compounds 1 and 2 inhibited the growth of the multidrug-sensitive yeast strain on nonfermentable medium containing glycerol, but not on fermentable medium containing glucose. These results strongly suggest that they target mitochondrial machineries presiding over ATP production via oxidative phosphorylation. Throughout the assay monitoring overall ADP-uptake/ATP-release in yeast mitochondria, 1 and 2 were shown to inhibit one or more enzymes involving oxidative phosphorylation. Based on biochemical characterization, we found that the interference with oxidative phosphorylation by 1 is attributable to the dual inhibition of complex III and FoF1-ATPase, whereas that by 2 is solely due to the inhibition of complex III.
Collapse
Affiliation(s)
- Katsuyuki Sakai
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yufu Unten
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Aoi Kimishima
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Kenichi Nonaka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Takumi Chinen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazunari Sakai
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Takeo Usui
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazuro Shiomi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Satoshi Ōmura
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
21
|
Moumbock AFA, Li J, Tran HTT, Hinkelmann R, Lamy E, Jessen HJ, Günther S. ePharmaLib: A Versatile Library of e-Pharmacophores to Address Small-Molecule (Poly-)Pharmacology. J Chem Inf Model 2021; 61:3659-3666. [PMID: 34236848 DOI: 10.1021/acs.jcim.1c00135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bioactive compounds oftentimes bind to several target proteins, thereby exhibiting polypharmacology. Experimentally determining these interactions is however laborious, and structure-based virtual screening (SBVS) of bioactive compounds could expedite drug discovery by prioritizing hits for experimental validation. Here, we present ePharmaLib, a library of 15,148 e-pharmacophores modeled from solved structures of pharmaceutically relevant protein-ligand complexes of the screening Protein Data Bank (sc-PDB). ePharmaLib can be used for target fishing of phenotypic hits, side effect predictions, drug repurposing, and scaffold hopping. In retrospective SBVS, a good balance was obtained between computational efficiency and predictive accuracy. As a proof of concept, we carried out prospective SBVS in conjunction with a photometric assay, which inferred that the mechanism of action of neopterin (an endogenous immunomodulator) putatively stems from its inhibition (IC50 = 18 μM) of the human purine nucleoside phosphorylase. This ready-to-use library is freely available at http://www.pharmbioinf.uni-freiburg.de/epharmalib.
Collapse
Affiliation(s)
- Aurélien F A Moumbock
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany.,Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Jianyu Li
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| | - Hoai T T Tran
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany.,Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Engesserstaße 4, D-79108 Freiburg, Germany
| | - Rahel Hinkelmann
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Evelyn Lamy
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Engesserstaße 4, D-79108 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| |
Collapse
|
22
|
Welz B, Bikker R, Hoffmeister L, Diekmann M, Christmann M, Brand K, Huber R. Activation of GSK3 Prevents Termination of TNF-Induced Signaling. J Inflamm Res 2021; 14:1717-1730. [PMID: 33986607 PMCID: PMC8111165 DOI: 10.2147/jir.s300806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Termination of TNF-induced signaling plays a key role in the resolution of inflammation with dysregulations leading to severe pathophysiological conditions (sepsis, chronic inflammatory disease, cancer). Since a recent phospho-proteome analysis in human monocytes suggested GSK3 as a relevant kinase during signal termination, we aimed at further elucidating its role in this context. Materials and Methods For the analyses, THP-1 monocytic cells and primary human monocytes were used. Staurosporine (Stauro) was applied to activate GSK3 by inhibiting kinases that mediate inhibitory GSK3α/β-Ser21/9 phosphorylation (eg, PKC). For GSK3 inhibition, Kenpaulone (Ken) was used. GSK3- and PKC-siRNAs were applied for knockdown experiments. Protein expression and phosphorylation were assessed by Western blot or ELISA and mRNA expression by qPCR. NF-κB activation was addressed using reporter gene assays. Results Constitutive GSK3β and PKCβ expression and GSK3α/β-Ser21/9 and PKCα/βII-Thr638/641 phosphorylation were not altered during TNF long-term incubation. Stauro-induced GSK3 activation (demonstrated by Bcl3 reduction) prevented termination of TNF-induced signaling as reflected by strongly elevated IL-8 expression (used as an indicator) following TNF long-term incubation. A similar increase was observed in TNF short-term-exposed cells, and this effect was inhibited by Ken. PKCα/β-knockdown modestly increased, whereas GSK3α/β-knockdown inhibited TNF-induced IL-8 expression. TNF-dependent activation of two NF-κB-dependent indicator plasmids was enhanced by Stauro, demonstrating transcriptional effects. A TNF-induced increase in p65-Ser536 phosphorylation was further enhanced by Stauro, whereas IκBα proteolysis and IKKα/β-Ser176/180 phosphorylation were not affected. Moreover, PKCβ-knockdown reduced levels of Bcl3. A20 and IκBα mRNA, both coding for signaling inhibitors, were dramatically less affected under our conditions when compared to IL-8, suggesting differential transcriptional effects. Conclusion Our results suggest that GSK3 activation is involved in preventing the termination of TNF-induced signaling. Our data demonstrate that activation of GSK3 – either pathophysiologically or pharmacologically induced – may destroy the finely balanced condition necessary for the termination of inflammation-associated signaling.
Collapse
Affiliation(s)
- Bastian Welz
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Rolf Bikker
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Leonie Hoffmeister
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Mareike Diekmann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Martin Christmann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| |
Collapse
|
23
|
dos Santos Vasconcelos CR, Rezende AM. Systematic in silico Evaluation of Leishmania spp. Proteomes for Drug Discovery. Front Chem 2021; 9:607139. [PMID: 33987166 PMCID: PMC8111926 DOI: 10.3389/fchem.2021.607139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a group of neglected infectious diseases, with approximately 1. 3 million new cases each year, for which the available therapies have serious limitations. Therefore, it is extremely important to apply efficient and low-cost methods capable of selecting the best therapeutic targets to speed up the development of new therapies against those diseases. Thus, we propose the use of integrated computational methods capable of evaluating the druggability of the predicted proteomes of Leishmania braziliensis and Leishmania infantum, species responsible for the different clinical manifestations of leishmaniasis in Brazil. The protein members of those proteomes were assessed based on their structural, chemical, and functional contexts applying methods that integrate data on molecular function, biological processes, subcellular localization, drug binding sites, druggability, and gene expression. These data were compared to those extracted from already known drug targets (BindingDB targets), which made it possible to evaluate Leishmania proteomes for their biological relevance and treatability. Through this methodology, we identified more than 100 proteins of each Leishmania species with druggability characteristics, and potential interaction with available drugs. Among those, 31 and 37 proteins of L. braziliensis and L. infantum, respectively, have never been tested as drug targets, and they have shown evidence of gene expression in the evolutionary stage of pharmacological interest. Also, some of those Leishmania targets showed an alignment similarity of <50% when compared to the human proteome, making these proteins pharmacologically attractive, as they present a reduced risk of side effects. The methodology used in this study also allowed the evaluation of opportunities for the repurposing of compounds as anti-leishmaniasis drugs, inferring potential interaction between Leishmania proteins and ~1,000 compounds, of which only 15 have already been tested as a treatment for leishmaniasis. Besides, a list of potential Leishmania targets to be tested using drugs described at BindingDB, such as the potential interaction of the DEAD box RNA helicase, TRYR, and PEPCK proteins with the Staurosporine compound, was made available to the public.
Collapse
Affiliation(s)
- Crhisllane Rafaele dos Santos Vasconcelos
- Bioinformatics Plataform, Microbiology Department, Instituto Aggeu Magalhães, Recife, Brazil
- Posgraduate Program in Genetics, Genetics Department, Universidade Federal de Pernambuco, Recife, Brazil
| | - Antonio Mauro Rezende
- Bioinformatics Plataform, Microbiology Department, Instituto Aggeu Magalhães, Recife, Brazil
- Posgraduate Program in Genetics, Genetics Department, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
24
|
Natural Compounds as Guides for the Discovery of Drugs Targeting G-Protein-Coupled Receptors. Molecules 2020; 25:molecules25215060. [PMID: 33143389 PMCID: PMC7663367 DOI: 10.3390/molecules25215060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 01/12/2023] Open
Abstract
G protein-coupled receptors (GPCRs), which constitute the most populous family of the human proteome, are the target of 35–45% of approved therapeutic drugs. This review focuses on natural products (excluding peptides) that target GPCRs. Natural compounds identified so far as agonists, antagonists or allosteric modulators of GPCRs have been found in all groups of existing living beings according to Whittaker’s Five Kingdom Classification, i.e., bacteria (monera), fungi, protoctists, plants and animals. Terpenoids, alkaloids and flavonoids are the most common chemical structures that target GPCRs whose endogenous ligands range from lipids to epinephrine, from molecules that activate taste receptors to molecules that activate smell receptors. Virtually all of the compounds whose formula is displayed in this review are pharmacophores with potential for drug discovery; furthermore, they are expected to help expand the number of GPCRs that can be considered as therapeutic targets.
Collapse
|
25
|
Musaogullari A, Mandato A, Chai YC. Role of Glutathione Depletion and Reactive Oxygen Species Generation on Caspase-3 Activation: A Study With the Kinase Inhibitor Staurosporine. Front Physiol 2020; 11:998. [PMID: 32982774 PMCID: PMC7485172 DOI: 10.3389/fphys.2020.00998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/22/2020] [Indexed: 01/11/2023] Open
Abstract
Oxidative stress is known to contribute to the progression of apoptosis. Staurosporine is a broad-spectrum inducer of apoptosis, but its mechanism of action is not well understood. The goal of the present work was to elucidate the role of glutathione and reactive oxygen species (ROS) in the execution of staurosporine-induced apoptosis. HeLa cells were treated with staurosporine at 1 μM for up to 4 h. The concentration of glutathione, generation of ROS, and activation of caspase-3 were measured. The introduction of staurosporine significantly decreased the concentration of cellular glutathione and increased the presence of ROS after 3 h. These findings were concurrent with the activation of caspase-3. Interestingly, pre-treatment of cells with N-acetylcysteine, a precursor of glutathione, and a thiol antioxidant failed to block the depletion of glutathione, generation of ROS, and activation of caspase-3. Collectively, these results suggest that the cellular redox status may be one of the critical factors of the apoptotic pathway leading to caspase-3 activation by staurosporine.
Collapse
Affiliation(s)
- Aysenur Musaogullari
- Department of Chemistry, John Carroll University, University Heights, OH, United States
| | - Alysia Mandato
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yuh-Cherng Chai
- Department of Chemistry, John Carroll University, University Heights, OH, United States
| |
Collapse
|
26
|
Matsuo H, Hirose T, Mokudai T, Nonaka K, Niwano Y, Sunazuka T, Takahashi Y, Ōmura S, Nakashima T. Absolute structure and anti-oxidative activity of chaetochiversin C isolated from fungal strain Neocosmospora sp. FKI-7792 by physicochemical screening. J GEN APPL MICROBIOL 2020; 66:181-187. [PMID: 31735764 DOI: 10.2323/jgam.2019.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A new chaetochiversin analog, designated chaetochiversin C (1), was discovered from a cultured broth of fungal strain FKI-7792 by physicochemical screening. This strain was identified as a member of genus Neocosmospora based on morphology and DNA barcoding. The partially relative configuration of 1 was determined by 13C-NMR chemical shifts of the acetonide analog of 1. The absolute configuration was determined using an advanced Mosher's method. Compound 1 was assessed for anti-tumor, anti-microbial, and anti-malarial activities, and its ability to scavenge or quench reactive oxygen species (ROS), such as superoxide anion radicals, hydroxy radicals and singlet oxygen (1O2). Compound 1 showed a quenching effect on 1O2.
Collapse
Affiliation(s)
- Hirotaka Matsuo
- Kitasato Institute for Life Sciences, Kitasato University.,Graduate School of Infection Control Sciences, Kitasato University
| | - Tomoyasu Hirose
- Kitasato Institute for Life Sciences, Kitasato University.,Graduate School of Infection Control Sciences, Kitasato University
| | | | - Kenichi Nonaka
- Kitasato Institute for Life Sciences, Kitasato University.,Graduate School of Infection Control Sciences, Kitasato University
| | | | - Toshiaki Sunazuka
- Kitasato Institute for Life Sciences, Kitasato University.,Graduate School of Infection Control Sciences, Kitasato University
| | - Yōko Takahashi
- Kitasato Institute for Life Sciences, Kitasato University
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University
| | - Takuji Nakashima
- Kitasato Institute for Life Sciences, Kitasato University.,Graduate School of Infection Control Sciences, Kitasato University
| |
Collapse
|
27
|
Zarei M, Karimi E, Oskoueian E, Es-Haghi A, Yazdi MET. Comparative Study on the Biological Effects of Sodium Citrate-Based and Apigenin-Based Synthesized Silver Nanoparticles. Nutr Cancer 2020; 73:1511-1519. [PMID: 32757805 DOI: 10.1080/01635581.2020.1801780] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The apigenin is a bioactive flavonoid mostly found in fruits and vegetables that possess various biological activities. The current study was performed to compare the biological potentials of sodium citrate-based (SC-SNPs) and apigenin-based (AP-SNPs) synthesized silver nanoparticles under the in vitro and in vivo conditions. The synthesized silver nanoparticles were physically and chemically characterized. The anticancer, pro-apoptotic, and their anti-bacterial activities were determined. Further, the mice trial was conducted to determine the possible toxic effects of the synthesized silver nanoparticles. The result of particle size analysis revealed the nanometer sizes of the SC-SNPs and AP-SNPs were about 95.5 and 93.94 nm, respectively. Both nanoparticles indicated pseudo-spherical shape, homogenous dispersion with an appropriate good degree of stability. However, the anticancer potential, pro-apoptotic effects and antibacterial activity of AP-SNPs were higher than that of SC-SNPs. Moreover, the mice trial indicated that AP-SNPs improved the liver function through modulation of liver enzymes, lipid peroxidation, and increase in the expression of antioxidant enzymes (SOD and GPx) as compared to the mice received AP-SNPs during 30 day experiment. Consequently the synthesis of silver nanoparticles using apigenin as reducing bioactive compound may result in production of silver nanoparticles with enhanced anticancer, antibacterial and antioxidant activities.
Collapse
Affiliation(s)
- Mahsa Zarei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Oskoueian
- Mashhad Branch, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Mashhad, Iran
| | - Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
28
|
Hair Growth Effect of Emulsion Extracted Brevilin A, a JAK3 Inhibitor, from Centipeda minima. Processes (Basel) 2020. [DOI: 10.3390/pr8070767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Janus kinase 3 (JAK3) inhibitors have been used effectively in the treatment of several cases of alopecia universalis and its variants. Our study aims to evaluate whether the emulsion extract of brevilin A from Centipeda minima (CMX) stimulates hair regrowth in a clinical trial, as a JAK3 inhibitor, combined with network pharmacology-based analysis. CMX showed potent inhibition of JAK3 in a concentration-dependent manner. Significant differences in total hair count, terminal hair count, and anagen hair count from the baseline to 24 weeks were observed between the placebo and CMX subjects. The gene set enrichment analysis showed that the targets of CMX are mainly associated with the JAK-STAT signaling pathway, cytokine–cytokine receptor interactions, and the MAPK signaling pathway. This study suggests that the medicinal herbal extract CMX is useful in the treatment of mild to moderate vertex balding that contribute to the visible improvements in hair growth observed in treated patients.
Collapse
|
29
|
Mojicevic M, D'Agostino PM, Pavic A, Vojnovic S, Senthamaraikannan R, Vasiljevic B, Gulder TAM, Nikodinovic-Runic J. Streptomyces sp. BV410 isolate from chamomile rhizosphere soil efficiently produces staurosporine with antifungal and antiangiogenic properties. Microbiologyopen 2020; 9:e986. [PMID: 31989798 PMCID: PMC7066459 DOI: 10.1002/mbo3.986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Applying a bioactivity‐guided isolation approach, staurosporine was separated and identified as the active principle in the culture extract of the new isolate Streptomyces sp. BV410 collected from the chamomile rhizosphere. The biotechnological production of staurosporine by strain BV410 was optimized to yield 56 mg/L after 14 days of incubation in soy flour–glucose–starch–mannitol‐based fermentation medium (JS). The addition of FeSO4 significantly improved the staurosporine yield by 30%, while the addition of ZnSO4 significantly reduced staurosporine yield by 62% in comparison with the starting conditions. Although staurosporine was first isolated in 1977 from Lentzea albida (now Streptomyces staurosporeus) and its potent kinase inhibitory effect has been established, here, the biological activity of this natural product was assessed in depth in vivo using a selection of transgenic zebrafish (Danio rerio) models, including Tg(fli1:EGFP) with green fluorescent protein‐labeled endothelial cells allowing visualization and monitoring of blood vessels. This confirmed a remarkable antiangiogenic activity of the compound at doses of 1 ng/ml (2.14 nmol/L) which is below doses inducing toxic effects (45 ng/ml; 75 nmol/L). A new, efficient producing strain of commercially significant staurosporine has been described along with optimized fermentation conditions, which may lead to optimization of the staurosporine scaffold and its wider applicability.
Collapse
Affiliation(s)
- Marija Mojicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Paul M D'Agostino
- Chair of Technical Biochemistry, Technische Universität Dresden, Dresden, Germany.,Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Garching bei München, Germany
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Tobias A M Gulder
- Chair of Technical Biochemistry, Technische Universität Dresden, Dresden, Germany.,Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Garching bei München, Germany
| | | |
Collapse
|
30
|
A Co-Culturing Approach Enables Discovery and Biosynthesis of a Bioactive Indole Alkaloid Metabolite. Molecules 2020; 25:molecules25020256. [PMID: 31936318 PMCID: PMC7024260 DOI: 10.3390/molecules25020256] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Whole-genome sequence data of the genus Streptomyces have shown a far greater chemical diversity of metabolites than what have been discovered under typical laboratory fermentation conditions. In our previous natural product discovery efforts on Streptomyces sp. MA37, a bacterium isolated from the rhizosphere soil sample in Legon, Ghana, we discovered a handful of specialised metabolites from this talented strain. However, analysis of the draft genome of MA37 suggested that most of the encoded biosynthetic gene clusters (BGCs) remained cryptic or silent, and only a small fraction of BGCs for the production of specialised metabolites were expressed when cultured in our laboratory conditions. In order to induce the expression of the seemingly silent BGCs, we have carried out a co-culture experiment by growing the MA37 strain with the Gram-negative bacterium Pseudomonas sp. in a co-culture chamber that allows co-fermentation of two microorganisms with no direct contact but allows exchange of nutrients, metabolites, and other chemical cues. This co-culture approach led to the upregulation of several metabolites that were not previously observed in the monocultures of each strain. Moreover, the co-culture induced the expression of the cryptic indole alkaloid BGC in MA37 and led to the characterization of the known indolocarbazole alkaloid, BE-13793C 1. Neither bacterium produced compound 1 when cultured alone. The structure of 1 was elucidated by Nuclear Magnetic Resonance (NMR), mass spectrometry analyses and comparison of experimental with literature data. A putative biosynthetic pathway of 1 was proposed. Furthermore, BE-13793C 1 showed strong anti-proliferative activity against HT-29 (ATCC HTB-38) cells but no toxic effect to normal lung (ATCC CCL-171) cells. To the best of our knowledge, this is the first report for the activity of 1 against HT-29. No significant antimicrobial and anti-trypanosomal activities for 1 were observed. This research provides a solid foundation for the fact that a co-culture approach paves the way for increasing the chemical diversity of strain MA37. Further characterization of other upregulated metabolites in this strain is currently ongoing in our laboratory.
Collapse
|
31
|
Matsuo H, Hanamure Y, Miyano R, Takahashi Y, Ōmura S, Nakashima T. Screening for Sulfur Compounds by Molybdenum-Catalyzed Oxidation Combined with Liquid Chromatography-Mass Spectrometry. Molecules 2020; 25:molecules25020240. [PMID: 31936021 PMCID: PMC7024256 DOI: 10.3390/molecules25020240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 01/28/2023] Open
Abstract
The molybdenum (Mo)-catalyzed oxidation of sulfide under neutral conditions yields sulfone. This reaction proceeds more smoothly than olefin epoxidation and primary or secondary alcohol oxidation. In this study, Mo-catalyzed oxidation was used to screen for sulfur compounds (named “MoS-screening”) in microbial broths by liquid chromatography-mass spectrometry (LC/MS). To demonstrate proof-of-concept, known sulfur microbial compounds were successfully identified from a mixture of non-sulfur microbial compounds as sulfinyl or sulfonyl products of Mo-catalyzed oxidation. Then our MoS-screening method was used to screen 300 samples of microbial broth for sulfur compounds. One of the identified compounds was a kitasetaline-containing N-acetyl cysteine moiety produced by an actinomycete strain. These results demonstrate the potential of MoS-screening in the search for new sulfur compounds from microbial sources.
Collapse
Affiliation(s)
- Hirotaka Matsuo
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (Y.H.); (Y.T.); (S.Ō.)
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan;
- Correspondence: (H.M.); (T.N.); Tel./Fax: +81-3-5791-6450 (H.M. & T.N.)
| | - Yu Hanamure
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (Y.H.); (Y.T.); (S.Ō.)
| | - Rei Miyano
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan;
| | - Yōko Takahashi
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (Y.H.); (Y.T.); (S.Ō.)
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (Y.H.); (Y.T.); (S.Ō.)
| | - Takuji Nakashima
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (Y.H.); (Y.T.); (S.Ō.)
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan;
- Correspondence: (H.M.); (T.N.); Tel./Fax: +81-3-5791-6450 (H.M. & T.N.)
| |
Collapse
|
32
|
Zhao G, Zhu M, Provot O, Alami M, Messaoudi S. Synthesis of 2,3-Substituted β-N-Glycosyl Indoles through C–H Activation/Annulation Process under Rh(III)-Catalysis. Org Lett 2019; 22:57-61. [PMID: 31860311 DOI: 10.1021/acs.orglett.9b03893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guangkuan Zhao
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, 92296, France
| | - Mingxiang Zhu
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, 92296, France
| | - Olivier Provot
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, 92296, France
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, 92296, France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, 92296, France
| |
Collapse
|
33
|
Silva-Hirschberg C, Hartman H, Stack S, Swenson S, Minea RO, Davitz MA, Chen TC, Schönthal AH. Cytotoxic impact of a perillyl alcohol-temozolomide conjugate, NEO212, on cutaneous T-cell lymphoma in vitro. Ther Adv Med Oncol 2019; 11:1758835919891567. [PMID: 31839810 PMCID: PMC6900611 DOI: 10.1177/1758835919891567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Mycosis fungoides (MF) and Sézary syndrome (SS) are subtypes of primary
cutaneous lymphomas and represent complex diseases regarding their
physiopathology and management. Depending on the stage of the disease,
different treatment regimens are applied, but there is no consensus on an
optimal approach. Prognosis for patients with early stage MF is favorable,
but significantly worsens in advanced disease and in SS, where patients
frequently relapse and require multiple therapies. Methods: We investigated the potential anticancer effects of NEO212, a novel compound
generated by covalently conjugating perillyl alcohol (a natural monoterpene)
to temozolomide (an alkylating agent), on MF and SS cell lines in
vitro. HUT-78, HUT-102, and MyLa cells were treated with NEO212
under different conditions, and drug effects on proliferation, viability,
and apoptosis were characterized. Results: NEO212 inhibited proliferation, diminished viability, and stimulated
apoptosis in all cell lines, although with varying degrees of potency in the
different cell lines. It down-regulated c-myc and cyclin D1 proteins, which
are required for cell proliferation, but triggered endoplasmic reticulum
stress and activation of caspases. Pretreatment of cells with antioxidants
ascorbic acid and beta-mercaptoethanol prevented these NEO212-induced
effects. Conclusions: NEO212 exerted promising anticancer effects on SS and MF cell lines. The
generation of reactive oxygen species (ROS) appears to play a key role in
the NEO212-induced cell death process, because the blockage of ROS with
antioxidants prevented caspase activation. We propose that NEO212 should be
investigated further toward clinical testing in these tumor types.
Collapse
Affiliation(s)
- Catalina Silva-Hirschberg
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hannah Hartman
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Samantha Stack
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steve Swenson
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Radu O Minea
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A Davitz
- Leason Ellis, One Barker Avenue, Fifth Floor, White Plains, New York, NY, USA
| | - Thomas C Chen
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Axel H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR-405, Los Angeles, CA 90089, USA
| |
Collapse
|
34
|
Guan H, Li Y, Zheng J, Liu N, Zhang J, Tan H. Important role of a LAL regulator StaR in the staurosporine biosynthesis and high-production of Streptomyces fradiae CGMCC 4.576. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1638-1654. [PMID: 31820200 DOI: 10.1007/s11427-019-1597-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 01/27/2023]
Abstract
Staurosporine, belonging to indolocarbazole compounds, is regarded as an excellent lead compound for synthesizing antitumor agents as a potent inhibitor against various protein kinases. In this study, two separate clusters (cluster A and cluster B), corresponding to biosyntheses of K-252c (staurosporine aglycone) and sugar moiety, were identified in Streptomyces fradiae CGMCC 4.576 and heterologously expressed in Streptomyces coelicolor M1146 separately or together. StaR, a cluster-situated LAL family regulator, activates staurosporine biosynthesis by binding to the promoter regions of staO-staC and staG-staN. The conserved sequences GGGGG and GCGCG were found through gradually truncating promoters of staO and staG, and further determined by mutational experiments. Overexpression of staR with the supplementation of 0.01 g L-1 FeSO4 increased staurosporine production to 5.2-fold compared with that of the parental strain Streptomyces fradiae CGMCC 4.576 in GYM medium. Our results provided an approach for improvement of staurosporine production mediated by a positive regulator and established the basis for dissecting the regulatory mechanisms of other indolocarbazole compounds with clinical application value.
Collapse
Affiliation(s)
- Hanye Guan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jiazhen Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Jamieson LE, Harrison DJ, Campbell CJ. Raman spectroscopy investigation of biochemical changes in tumor spheroids with aging and after treatment with staurosporine. JOURNAL OF BIOPHOTONICS 2019; 12:e201800201. [PMID: 30246380 DOI: 10.1002/jbio.201800201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/20/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
There has been increasing use of in vitro cell culture models that more realistically replicate the three-dimensional (3D) environment found in vivo. Multicellular tumor spheroids (MTS) using cell lines or patient-derived organoids have become an important in vitro drug development tool, where cells are grown in a 3D "sphere" that exhibits many of the characteristics found in vivo. Significantly, MTS develop gradients in nutrients and oxygen, commonly found in tumors that contribute to therapy resistance. While MTS show promise as a more realistic in vitro culture model, there is a massive need to improve imaging technologies for assessing biochemical characteristics and drug response in such models to maximize their translation into useful applications such as high throughput screening (HTS). In this study, we investigate the potential for Raman spectroscopy to unveil biochemical information in MTS and have investigated how spheroid age influences drug response, shedding light on increased therapy resistance in developing tumors. The wealth of molecular level information delivered by Raman spectroscopy in a noninvasive manner, could aid translation of these 3D models into HTS applications.
Collapse
|
36
|
Yñigez-Gutierrez AE, Bachmann BO. Fixing the Unfixable: The Art of Optimizing Natural Products for Human Medicine. J Med Chem 2019; 62:8412-8428. [PMID: 31026161 DOI: 10.1021/acs.jmedchem.9b00246] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecules isolated from natural sources including bacteria, fungi, and plants are a long-standing source of therapeutics that continue to add to our medicinal arsenal today. Despite their potency and prominence in the clinic, complex natural products often exhibit a number of liabilities that hinder their development as therapeutics, which may be partially responsible for the current trend away from natural product discovery, research, and development. However, advances in synthetic biology and organic synthesis have inspired a new generation of natural product chemists to tackle powerful undeveloped scaffolds. In this Perspective, we will present case studies demonstrating the historical and current focus on making targeted, but significant, changes to natural product scaffolds via biosynthetic gene cluster manipulation, total synthesis, semisynthesis, or a combination of these methods, with a focus on increasing activity, decreasing toxicity, or improving chemical and pharmacological properties.
Collapse
Affiliation(s)
| | - Brian O Bachmann
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States
| |
Collapse
|
37
|
Ōmura S, Crump A. Lactacystin: first-in-class proteasome inhibitor still excelling and an exemplar for future antibiotic research. J Antibiot (Tokyo) 2019; 72:189-201. [PMID: 30755736 PMCID: PMC6760633 DOI: 10.1038/s41429-019-0141-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 01/28/2023]
Abstract
Lactacystin exemplifies the role that serendipity plays in drug discovery and why “finding things without actually looking for them” retains such a pivotal role in the search for the useful properties of chemicals. The first proteasome inhibitor discovered, lactacystin stimulated new possibilities in cancer control. New and innovative uses are regularly being found for lactacystin, including as a model to study dementia, while new formulations and delivery systems may facilitate its use clinically as an anticancer agent. All this provides yet more evidence that we need a comprehensive, collaborative and coordinated programme to fully investigate all new and existing chemical compounds, especially those of microbial origin. We need to do so in order to avoid failing to detect and successfully exploit unsought yet potentially life-saving or extremely advantageous properties of microbial metabolites.
Collapse
Affiliation(s)
- Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Andy Crump
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
38
|
Phosphorylation-mediated activation of mouse Xkr8 scramblase for phosphatidylserine exposure. Proc Natl Acad Sci U S A 2019; 116:2907-2912. [PMID: 30718401 DOI: 10.1073/pnas.1820499116] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The exposure of phosphatidylserine (PtdSer) to the cell surface is regulated by the down-regulation of flippases and the activation of scramblases. Xkr8 has been identified as a scramblase that is activated during apoptosis, but its exogenous expression in the mouse Ba/F3 pro B cell line induces constitutive PtdSer exposure. Here we found that this Xkr8-mediated PtdSer exposure occurred at 4 °C, but not at 20 °C, although its scramblase activity was observed at 20 °C. The Xkr8-mediated PtdSer exposure was inhibited by a kinase inhibitor and enhanced by phosphatase inhibitors. Phosphorylated Xkr8 was detected by Phos-tag PAGE, and a mass spectrometric and mutational analysis identified three phosphorylation sites. Their phosphomimic mutation rendered Xkr8 resistant to the kinase inhibitor for PtdSer exposure at 4 °C, but unlike phosphatase inhibitors, it did not induce constitutive PtdSer exposure at 20 °C. On the other hand, when the flippase genes were deleted, the Xkr8 induced constitutive PtdSer exposure at high temperature, indicating that the flippase activity normally counteracted Xkr8's ability to expose PtdSer. These results indicate that PtdSer exposure can be increased by the phosphorylation-mediated activation of Xkr8 scramblase and flippase down-regulation.
Collapse
|
39
|
Long MJC, Lawson AP, Baggio R, Qian Y, Rozhansky L, Fasci D, El Oualid F, Weerapana E, Hedstrom L. Diarylcarbonates are a new class of deubiquitinating enzyme inhibitor. Bioorg Med Chem Lett 2018; 29:204-211. [PMID: 30528168 DOI: 10.1016/j.bmcl.2018.11.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023]
Abstract
Promiscuous inhibitors of tyrosine protein kinases, proteases and phosphatases are useful reagents for probing regulatory pathways and stabilizing lysates as well as starting points for the design of more selective agents. Ubiquitination regulates many critical cellular processes, and promiscuous inhibitors of deubiquitinases (DUBs) would be similarly valuable. The currently available promiscuous DUB inhibitors are highly reactive electrophilic compounds that can crosslink proteins. Herein we introduce diarylcarbonate esters as a novel class of promiscuous DUB inhibitors that do not have the liabilities associated with the previously reported compounds. Diarylcarbonates stabilize the high molecular weight ubiquitin pools in cells and lysates. They also elicit cellular phenotypes associated with DUB inhibition, demonstrating their utility in ubiquitin discovery. Diarylcarbonates may also be a useful scaffold for the development of specific DUB inhibitors.
Collapse
Affiliation(s)
- Marcus J C Long
- Graduate Program in Biochemistry and Biophysics Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Ann P Lawson
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Rick Baggio
- Graduate Program in Biochemistry and Biophysics Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Yu Qian
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Lior Rozhansky
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Domenico Fasci
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Farid El Oualid
- UbiQ Bio BV, Science Park 408, 1098 XH Amsterdam, the Netherlands
| | - Eranthie Weerapana
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA; Department of Chemistry(3), Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|