1
|
Ouyang Y, Zhou B, Chu L, Chen X, Hao Q, Lei J. Causal associations of tea consumption on risk of pancreatic adenocarcinoma and the mediating role of vascular endothelial growth factor D levels. Br J Nutr 2024; 132:1503-1512. [PMID: 39501829 DOI: 10.1017/s0007114524002393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Tea is one of the most widely consumed beverages in the world. However, the association between tea and risk of pancreatic adenocarcinoma remains controversial. This study aimed to investigate the causal relationship between tea consumption and risk of pancreatic adenocarcinoma and to explore their mediating effects. The two-sample Mendelian randomisation (MR) analysis showed an inverse causal relationship between tea intake and pancreatic adenocarcinoma (OR: 0·111 (0·02, 0·85), P < 0·04). To examine the mediating effects, we explored the potential mechanisms by which tea intake reduces the risk of pancreatic adenocarcinoma. Based on the oral bioavailability and drug-like properties in Traditional Chinese Medicine Systems Pharmacology database, we selected the main active ingredients of tea. We screened out the fifteen representative targeted genes by Pharmmapper database, and the gene ontology enrichment analysis showed that these targeted genes were related to vascular endothelial growth factor (VEGF) pathway. The two-step MR analysis of results showed that only VEGF-D played a mediating role, with a mediation ratio of 0·230 (0·066, 0·394). In conclusion, the findings suggest that VEGF-D mediates the effect of tea intake on the risk of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Yonghao Ouyang
- Research Institute of General Surgery, Jinling Hospital, Nanjing210000, People's Republic of China
| | - Beini Zhou
- Jiangxi Modern polytechnic college, Nanchang330000, People's Republic of China
| | - Lihua Chu
- Jinggangshan University, Ji'an3343000, People's Republic of China
| | - Xin Chen
- Jiangxi University Of Traditional Chinese Medicine, Nanchang330000, People's Republic of China
| | - Qiang Hao
- Research Institute of General Surgery, Jinling Hospital, Nanjing210000, People's Republic of China
| | - Jiajia Lei
- College of Food Science & Project Engineering, Wuhan Polytechnic University, Wuhan430023, People's Republic of China
| |
Collapse
|
2
|
Mackova V, Raudenska M, Polanska HH, Jakubek M, Masarik M. Navigating the redox landscape: reactive oxygen species in regulation of cell cycle. Redox Rep 2024; 29:2371173. [PMID: 38972297 PMCID: PMC11637001 DOI: 10.1080/13510002.2024.2371173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Objectives: To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.Methods: This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.Results: We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.Discussion: Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.
Collapse
Affiliation(s)
- Viktoria Mackova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Institute of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Jibola-Shittu MY, Heng Z, Keyhani NO, Dang Y, Chen R, Liu S, Lin Y, Lai P, Chen J, Yang C, Zhang W, Lv H, Wu Z, Huang S, Cao P, Tian L, Qiu Z, Zhang X, Guan X, Qiu J. Understanding and exploring the diversity of soil microorganisms in tea ( Camellia sinensis) gardens: toward sustainable tea production. Front Microbiol 2024; 15:1379879. [PMID: 38680916 PMCID: PMC11046421 DOI: 10.3389/fmicb.2024.1379879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Leaves of Camellia sinensis plants are used to produce tea, one of the most consumed beverages worldwide, containing a wide variety of bioactive compounds that help to promote human health. Tea cultivation is economically important, and its sustainable production can have significant consequences in providing agricultural opportunities and lowering extreme poverty. Soil parameters are well known to affect the quality of the resultant leaves and consequently, the understanding of the diversity and functions of soil microorganisms in tea gardens will provide insight to harnessing soil microbial communities to improve tea yield and quality. Current analyses indicate that tea garden soils possess a rich composition of diverse microorganisms (bacteria and fungi) of which the bacterial Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes and Chloroflexi and fungal Ascomycota, Basidiomycota, Glomeromycota are the prominent groups. When optimized, these microbes' function in keeping garden soil ecosystems balanced by acting on nutrient cycling processes, biofertilizers, biocontrol of pests and pathogens, and bioremediation of persistent organic chemicals. Here, we summarize research on the activities of (tea garden) soil microorganisms as biofertilizers, biological control agents and as bioremediators to improve soil health and consequently, tea yield and quality, focusing mainly on bacterial and fungal members. Recent advances in molecular techniques that characterize the diverse microorganisms in tea gardens are examined. In terms of viruses there is a paucity of information regarding any beneficial functions of soil viruses in tea gardens, although in some instances insect pathogenic viruses have been used to control tea pests. The potential of soil microorganisms is reported here, as well as recent techniques used to study microbial diversity and their genetic manipulation, aimed at improving the yield and quality of tea plants for sustainable production.
Collapse
Affiliation(s)
- Motunrayo Y. Jibola-Shittu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiang Heng
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL, United States
| | - Yuxiao Dang
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruiya Chen
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sen Liu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongsheng Lin
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengyu Lai
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinhui Chen
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenjie Yang
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weibin Zhang
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huajun Lv
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ziyi Wu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuaishuai Huang
- School of Ecology and Environment, Tibet University, Lhasa, China
| | - Pengxi Cao
- School of Ecology and Environment, Tibet University, Lhasa, China
| | - Lin Tian
- Tibet Plateau Institute of Biology, Lhasa, China
| | - Zhenxing Qiu
- Fuzhou Technology and Business University, Fuzhou, Fujian, China
| | - Xiaoyan Zhang
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junzhi Qiu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Al‐kuraishy HM, Al‐Maiahy TJ, Al‐Gareeb AI, Alexiou A, Papadakis M, Saad HM, Batiha GE. The possible role furin and furin inhibitors in endometrial adenocarcinoma: A narrative review. Cancer Rep (Hoboken) 2024; 7:e1920. [PMID: 38018319 PMCID: PMC10809206 DOI: 10.1002/cnr2.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Endometrial adenocarcinoma (EAC) is a malignant tumor of the endometrium. EAC is the most common female malignancy following the menopause period. About 40% of patients with EAC are linked with obesity and interrelated with hypertension, diabetes mellitus, and high circulating estrogen levels. Proprotein convertase (PC) furin was involved in the progression of EAC. RECENT FINDINGS Furin is a protease enzyme belonging to the subtilisin PC family called PC subtilisin/kexin type 3 that converts precursor proteins to biologically active forms and products. Aberrant activation of furin promotes abnormal cell proliferation and the development of cancer. Furin promotes angiogenesis, malignant cell proliferation, and tissue invasion by malignant cells through its pro-metastatic and oncogenic activities. Furin activity is correlated with the malignant proliferation of EAC. Higher expression of furin may increase the development of EAC through overexpression of pro-renin receptors and disintegrin and metalloprotease 17 (ADAM17). As well, inflammatory signaling in EAC promotes the expression of furin with further propagation of malignant transformation. CONCLUSION Furin is associated with the development and progression of EAC through the induction of proliferation, invasion, and metastasis of malignant cells of EAC. Furin induces ontogenesis in EAC through activation expression of ADAM17, pro-renin receptor, CD109, and TGF-β. As well, EAC-mediated inflammation promotes the expression of furin with further propagation of neoplastic growth and invasion.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Thabat J. Al‐Maiahy
- Department of Gynecology and ObstetricsCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh University, Chandigarh‐Ludhiana HighwayMohaliPunjabIndia
- Department of Research & DevelopmentFunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of PathologyFaculty of Veterinary Medicine, Matrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and TherapeuticsFaculty of Veterinary Medicine, Damanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
5
|
Liu Y, Yang Q, Guo Y, Jiang Y, Zhu H, Yang B. New insights of flavonoid glycosidases and their application in food industry. Crit Rev Food Sci Nutr 2023:1-13. [PMID: 38117083 DOI: 10.1080/10408398.2023.2294167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Flavonoids are significant natural nutraceuticals and a key component of dietary supplements. Given that flavonoid glycosides are more plentiful in nature and less beneficial to human health than their aglycone counterparts, they serve as potential precursors for flavonoid production. Glycosidases have shown substantial potential within the food industry, particularly in enhancing the organoleptic properties of juice, wine, and tea. When applied to food resources, glycosidases can amplify their biological activities, thereby improving the performance of functional foods. This review provides up-to-date information on flavonoid glycosidases, including their catalytic mechanisms, biochemical properties, and natural sources, as well as their applications within the food industry. The use of flavonoid glycosidases in improving food quality is also reviewed.
Collapse
Affiliation(s)
- Yingjun Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Functional Food Group, South China National Botanical Garden, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiuxia Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Functional Food Group, South China National Botanical Garden, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yushan Guo
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Functional Food Group, South China National Botanical Garden, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Functional Food Group, South China National Botanical Garden, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zhu
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Functional Food Group, South China National Botanical Garden, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bao Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Functional Food Group, South China National Botanical Garden, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Wakayama R, Takasugi S, Honda K, Kanaya S. Application of a Two-Dimensional Mapping-Based Visualization Technique: Nutrient-Value-Based Food Grouping. Nutrients 2023; 15:5006. [PMID: 38068864 PMCID: PMC10707954 DOI: 10.3390/nu15235006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Worldwide, several food-based dietary guidelines, with diverse food-grouping methods in various countries, have been developed to maintain and promote public health. However, standardized international food-grouping methods are scarce. In this study, we used two-dimensional mapping to classify foods based on their nutrient composition. The Standard Tables of Food Composition in Japan were used for mapping with a novel technique-t-distributed stochastic neighbor embedding-to visualize high-dimensional data. The mapping results showed that most foods formed food group-based clusters in the Standard Tables of Food Composition in Japan. However, the beverages did not form large clusters and demonstrated scattered distribution on the map. Green tea, black tea, and coffee are located within or near the vegetable cluster whereas cocoa is near the pulse cluster. These results were ensured by the k-nearest neighbors. Thus, beverages made from natural materials can be categorized based on their origin. Visualization of food composition could enable an enhanced comprehensive understanding of the nutrients in foods, which could lead to novel aspects of nutrient-value-based food classifications.
Collapse
Affiliation(s)
- Ryota Wakayama
- Meiji Co., Ltd., 2-2-1 Kyobashi, Chuo-ku 104-9306, Tokyo, Japan;
- Computational Systems Biology Laboratory, Division of Information Science, Graduate School of Science and Technology & Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan
| | - Satoshi Takasugi
- Meiji Co., Ltd., 2-2-1 Kyobashi, Chuo-ku 104-9306, Tokyo, Japan;
| | - Keiko Honda
- Medicine Nutrition, Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Saitama, Japan
| | - Shigehiko Kanaya
- Computational Systems Biology Laboratory, Division of Information Science, Graduate School of Science and Technology & Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan
| |
Collapse
|
7
|
Tran HHV, Mansoor M, Butt SRR, Satnarine T, Ratna P, Sarker A, Ramesh AS, Munoz C, Jamil D, Mohammed L. Impact of Green Tea Consumption on the Prevalence of Cardiovascular Outcomes: A Systematic Review. Cureus 2023; 15:e49775. [PMID: 38161525 PMCID: PMC10757748 DOI: 10.7759/cureus.49775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Cardiovascular diseases (CVDs) represent a major global health concern, responsible for significant morbidity, mortality, and disability. To mitigate the impact of CVDs, individuals often seek preventive measures, and one such approach is the consumption of green tea. This study aims to provide a comprehensive and up-to-date assessment of the effects of green tea consumption on the prevalence of cardiovascular outcomes. Following PRISMA guidelines, we conducted a systematic review using PubMed and Google Scholar databases to identify relevant studies. Our analysis revealed that the risk factors associated with CVDs can vary across different diseases, with hypertension being a common risk factor for CVD mortality and CVD. Notably, the consumption of green tea exhibited a positive effect on reducing the prevalence of cardiometabolic risks and hypercholesterolemia. Furthermore, green tea consumption was observed to have a beneficial impact on lowering both diastolic and systolic blood pressure. In conclusion, the studies reviewed in this research suggest that the consumption of green tea has a significant and positive influence on cardiovascular health. These findings highlight the potential of green tea as a valuable component of a healthy lifestyle, offering a promising avenue for its use as a dietary supplement to reduce the risk of CVDs.
Collapse
Affiliation(s)
- Hadrian Hoang-Vu Tran
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mafaz Mansoor
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Samia Rauf R Butt
- General Practice, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Travis Satnarine
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pranuthi Ratna
- Family Medicine, Kamineni Academy of Medical Sciences and Research Center (KAMSRC), Hyderabad, IND
| | - Aditi Sarker
- General Practice, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Adarsh Srinivas Ramesh
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Carlos Munoz
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Dawood Jamil
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
8
|
Takamata A, Oka A, Nagata M, Kosugi N, Eguchi S, Sakagawa N, Takahashi A, Nishimoto Y, Nishimaki M, Morimoto K, Takihara T. Effect of fluid replacement with green tea on body fluid balance and renal responses under mild thermal hypohydration: a randomized crossover study. Eur J Nutr 2023; 62:3339-3347. [PMID: 37594507 DOI: 10.1007/s00394-023-03236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
PURPOSE Maintaining an appropriate hydration level by ingesting fluid in a hot environment is a measure to prevent heat-related illness. Caffeine-containing beverages, including green tea (GT), have been avoided as inappropriate rehydration beverages to prevent heat-related illness because caffeine has been assumed to exert diuretic/natriuretic action. However, the influence of caffeine intake on urine output in dehydrated individuals is not well documented. The aim of the present study was to examine the effect of fluid replacement with GT on body fluid balance and renal water and electrolyte handling in mildly dehydrated individuals. METHODS Subjects were dehydrated by performing three bouts of stepping exercise for 20 min separated by 10 min of rest. They were asked to ingest an amount of water (H2O), GT, or caffeinated H2O (20 mg/100 ml; Caf-H2O) that was equal to the volume of fluid loss during the dehydration protocol; fluid balance was measured for 2 h after fluid ingestion. RESULTS The dehydration protocol induced hypohydration by ~ 10 g/kg body weight (~ 1% of body weight). Fluid balance 2 h after fluid ingestion was significantly less negative in all trials, and the fluid retention ratio was 52.2 ± 4.2% with H2O, 51.0 ± 5.0% with GT, and 47.9 ± 6.2% with Caf-H2O; those values did not differ among the trials. After rehydration, urine output, urine osmolality, and urinary excretions of osmotically active substances, sodium, potassium and chloride were not different among the trials. CONCLUSION The data indicate that ingestion of GT or an equivalent caffeine amount does not worsen the hydration level 2 h after ingestion and can be effective in reducing the negative fluid balance for acute recovery from mild hypohydration. TRIAL REGISTRATION ISRCTN53057185; retrospectively registered.
Collapse
Affiliation(s)
- Akira Takamata
- Department of Environmental Health, Nara Women's University, Nara, Japan.
| | - Ayano Oka
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Mayuna Nagata
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Natsumi Kosugi
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Sayaka Eguchi
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Nanako Sakagawa
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Aoi Takahashi
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Yuki Nishimoto
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Mio Nishimaki
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Keiko Morimoto
- Department of Environmental Health, Nara Women's University, Nara, Japan
- Department of Health and Nutrition, Kyoto Koka Women's University, Kyoto, Japan
| | - Takanobu Takihara
- Central Research Institute, ITO EN, Ltd., Makinohara, Shizuoka, Japan
| |
Collapse
|
9
|
Liu M, Zhang Y, Ye Z, Yang S, Zhang Y, He P, Zhou C, Hou FF, Qin X. Association of unsweetened and sweetened tea consumption with the risk of new-onset chronic kidney disease: Findings from UK Biobank and Coronary Artery Risk Development in Young Adults (CARDIA) study. J Glob Health 2023; 13:04094. [PMID: 37856735 PMCID: PMC10586794 DOI: 10.7189/jogh.13.04094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Background The association between tea consumption and chronic kidney disease (CKD) remained inconsistent. We aimed to evaluate the association of tea consumption with new-onset CKD and examine the effects of common additives (milk and sweeteners) and genetic variations in caffeine metabolism on the association. Methods 176 038 and 3104 participants free of CKD at baseline in the United Kingdom Biobank (UK Biobank) and Coronary Artery Risk Development in Young Adults (CARDIA) study were included, respectively. Dietary information was collected using 24-hour dietary recall questionnaires. The study outcome was new-onset CKD. Results In the UK Biobank, during a median follow-up of 12.13 years, 3535 (2.01%) participants developed CKD. Compared with tea non-consumers, the risk of new-onset CKD was significantly lower in unsweetened tea consumers (hazard ratio (HR) = 0.84, 95% confidence interval (CI) = 0.76-0.93), but not in sweetened tea consumers (HR = 0.96, 95% CI = 0.85-1.08), regardless of whether milk was added to tea. Accordingly, relative to tea non-consumers, the adjusted HRs (95% CIs) of new-onset CKD for participants who reported drinking unsweetened tea 1.5 or fewer, >1.5 to 2.5, >2.5 to 3.5, >3.5 to 4.5, and >4.5 drinks/d were HR = 0.86, 95% CI = 0.75-0.99; HR = 0.88, 95% CI = 0.78-1.00; HR = 0.83, 95% CI = 0.73-0.94; HR = 0.83, 95% CI = 0.72-0.95; and HR = 0.86, 95% CI = 0.75-0.99. Moreover, the association of unsweetened tea consumption with new-onset CKD was stronger among those with faster genetically predicted caffeine metabolism levels, although the interaction was insignificant (P-value interaction = 0.768). Consistently, in the CARDIA study, compared with tea non-consumers, a significantly lower risk of new-onset CKD was found in unsweetened tea consumers (HR = 0.80, 95% CI = 0.65-0.98) but not in sweetened tea consumers (HR = 0.97, 95% CI = 0.70-1.34). Conclusions Compared with tea non-consumers, consumption of unsweetened tea, but not sweetened tea, was significantly associated with a lower risk of new-onset CKD, regardless of whether milk was added.
Collapse
|
10
|
Halma MTJ, Tuszynski JA, Marik PE. Cancer Metabolism as a Therapeutic Target and Review of Interventions. Nutrients 2023; 15:4245. [PMID: 37836529 PMCID: PMC10574675 DOI: 10.3390/nu15194245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is amenable to low-cost treatments, given that it has a significant metabolic component, which can be affected through diet and lifestyle change at minimal cost. The Warburg hypothesis states that cancer cells have an altered cell metabolism towards anaerobic glycolysis. Given this metabolic reprogramming in cancer cells, it is possible to target cancers metabolically by depriving them of glucose. In addition to dietary and lifestyle modifications which work on tumors metabolically, there are a panoply of nutritional supplements and repurposed drugs associated with cancer prevention and better treatment outcomes. These interventions and their evidentiary basis are covered in the latter half of this review to guide future cancer treatment.
Collapse
Affiliation(s)
- Matthew T. J. Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- EbMC Squared CIC, Bath BA2 4BL, UK
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-1029 Turin, Italy
| | - Paul E. Marik
- Frontline COVID-19 Critical Care Alliance, Washington, DC 20036, USA
| |
Collapse
|
11
|
Jacobo Cejudo MG, Ochoa-Rosales C, Ahmadizar F, Kavousi M, Geleijnse JM, Voortman T. The healthy beverage index is not associated with insulin resistance, prediabetes and type 2 diabetes risk in the Rotterdam Study. Eur J Nutr 2023; 62:3021-3031. [PMID: 37488428 PMCID: PMC10468439 DOI: 10.1007/s00394-023-03209-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE Whether beverage quality affects changes in glycaemic traits and type 2 diabetes (T2D) risk is unknown. We examined associations of a previously developed Healthy Beverage Index (HBI) with insulin resistance, and risk of prediabetes and T2D. METHODS We included 6769 participants (59% female, 62.0 ± 7.8 years) from the Rotterdam Study cohort free of diabetes at baseline. Diet was assessed using food-frequency questionnaires at baseline. The HBI included 10 components (energy from beverages, meeting fluid requirements, water, coffee and tea, low-fat milk, diet drinks, juices, alcohol, full-fat milk, and sugar-sweetened beverages), with a total score ranging from 0 to 100. A higher score represents a healthier beverage pattern. Data on study outcomes were available from 1993 to 2015. Multivariable linear mixed models and Cox proportional-hazards regression models were used to examine associations of the HBI (per 10 points increment) with two measurements of HOMA-IR (a proxy for insulin resistance), and risk of prediabetes and T2D. RESULTS During follow-up, we documented 1139 prediabetes and 784 T2D cases. Mean ± SD of the HBI was 66.8 ± 14.4. Higher HBI score was not associated with HOMA-IR (β: 0.003; 95% CI - 0.007, 0.014), or with risk of prediabetes (HR: 1.01; 95% CI 0.97, 1.06), or T2D (HR: 1.01; 95% CI 0.96, 1.07). CONCLUSION Our findings suggest no major role for overall beverage intake quality assessed with the HBI in insulin resistance, prediabetes and T2D incidence. The HBI may not be an adequate tool to assess beverage intake quality in our population.
Collapse
Affiliation(s)
- Maria G. Jacobo Cejudo
- Division of Human Nutrition and Health, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Carolina Ochoa-Rosales
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Fariba Ahmadizar
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Data Science & Biostatistics, Julius Global Health, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Johanna M. Geleijnse
- Division of Human Nutrition and Health, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Trudy Voortman
- Division of Human Nutrition and Health, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Hodges JK, Sasaki GY, Vodovotz Y, Bruno RS. Gallation and B-Ring Dihydroxylation Increase Green Tea Catechin Residence Time in Plasma by Differentially Affecting Tissue-Specific Trafficking: Compartmental Model of Catechin Kinetics in Healthy Adults. Nutrients 2023; 15:4021. [PMID: 37764804 PMCID: PMC10536004 DOI: 10.3390/nu15184021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Catechins in green tea extract (GTE) (epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin (EC), epicatechin gallate (ECG)) vary in bioactivity. We developed a physiologically relevant mathematical model of catechin metabolism to test the hypothesis that fractional catabolic rates of catechins would be differentially affected by their structural attributes. Pharmacokinetic data of plasma and urine catechin concentrations were used from healthy adults (n = 19) who ingested confections containing 0.5 g GTE (290 mg EGCG, 87 mg EGC, 39 mg EC, 28 mg ECG). A 7-compartmental model of catechin metabolism comprised of the gastrointestinal tract (stomach, small and large intestine), liver, plasma, extravascular tissues, and kidneys was developed using a mean fraction dose of EGCG, ECG, EGC, and EC. Fitting was by iterative least squares regression analysis, and goodness of fit was ascertained by the estimated variability of parameters (FSD < 0.5). The interaction of gallation and B-ring dihydroxylation most greatly extended plasma residence time such that EGC > EC = EGCG > EGC. The interaction between gallation and B-ring dihydroxylation accelerated the transfer from the upper gastrointestinal tract to the small intestine but delayed subsequent transfers from the small intestine through the liver to plasma and from kidneys to urine. Gallation and B-ring dihydroxylation independently delayed the transfer from plasma to extravascular tissues, except the uptake to kidneys, which was slowed by gallation only. This multi-compartment model, to be validated in a future study, suggests that gallation and B-ring dihydroxylation affect catechin catabolism in a tissue-specific manner and thus their potential bioactivity.
Collapse
Affiliation(s)
- Joanna K Hodges
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Geoffrey Y Sasaki
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Blasiak J, Chojnacki J, Szczepanska J, Fila M, Chojnacki C, Kaarniranta K, Pawlowska E. Epigallocatechin-3-Gallate, an Active Green Tea Component to Support Anti-VEGFA Therapy in Wet Age-Related Macular Degeneration. Nutrients 2023; 15:3358. [PMID: 37571296 PMCID: PMC10421466 DOI: 10.3390/nu15153358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Age-related macular degeneration (AMD) is a largely incurable disease and an emerging problem in aging societies. It occurs in two forms, dry and wet (exudative, neovascular), which may cause legal blindness and sight loss. Currently, there is not any effective treatment for dry AMD. Meanwhile, repeated intravitreal injections with antibodies effective against vascular endothelial growth factor A (VEGFA) slow down wet AMD progression but are not free from complications. (-)-Epigallocatechin-3-gallate (EGCG) is an active compound of green tea, which exerts many beneficial effects in the retinal pigment epithelium and the neural retina. It has been reported to downregulate the VEGFA gene by suppressing its activators. The inhibition of mitogen-activated protein kinases 1 and 3 (MAPK1 and MAPK3) may lie behind the antiangiogenic action of EGCG mediated by VEGFA. EGCG exerts protective effects against UV-induced damage to retinal cells and improves dysfunctional autophagy. EGCG may also interact with the mechanistic target rapamycin (MTOR) and unc-51-like autophagy activating kinase (ULK1) to modulate the interplay between autophagy and apoptosis. Several other studies report beneficial effects of EGCG on the retina that may be related to wet AMD. Therefore, controlled clinical trials are needed to verify whether diet supplementation with EGCG or green tea consumption may improve the results of anti-VEGFA therapy in wet AMD.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (J.S.); (E.P.)
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (J.S.); (E.P.)
| |
Collapse
|
14
|
de la Rubia Ortí JE, Moneti C, Serrano-Ballesteros P, Castellano G, Bayona-Babiloni R, Carriquí-Suárez AB, Motos-Muñoz M, Proaño B, Benlloch M. Liposomal Epigallocatechin-3-Gallate for the Treatment of Intestinal Dysbiosis in Children with Autism Spectrum Disorder: A Comprehensive Review. Nutrients 2023; 15:3265. [PMID: 37513683 PMCID: PMC10383799 DOI: 10.3390/nu15143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized by varying degrees of difficulty in social interaction and communication. These deficits are often associated with gastrointestinal symptoms, indicating alterations in both intestinal microbiota composition and metabolic activities. The intestinal microbiota influences the function and development of the nervous system. In individuals with ASD, there is an increase in bacterial genera such as Clostridium, as well as species involved in the synthesis of branched-chain amino acids (BCAA) like Prevotella copri. Conversely, decreased amounts of Akkermansia muciniphila and Bifidobacterium spp. are observed. Epigallocatechin-3-gallate (EGCG) is one of the polyphenols with the greatest beneficial activity on microbial growth, and its consumption is associated with reduced psychological distress. Therefore, the objective of this review is to analyze how EGCG and its metabolites can improve the microbial dysbiosis present in ASD and its impact on the pathology. The analysis reveals that EGCG inhibits the growth of pathogenic bacteria like Clostridium perfringens and Clostridium difficile. Moreover, it increases the abundance of Bifidobacterium spp. and Akkermansia spp. As a result, EGCG demonstrates efficacy in increasing the production of metabolites involved in maintaining epithelial integrity and improving brain function. This identifies EGCG as highly promising for complementary treatment in ASD.
Collapse
Affiliation(s)
| | - Costanza Moneti
- Doctoral School, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | | | - Gloria Castellano
- Centro de Investigación Traslacional San Alberto Magno (CITSAM), Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Raquel Bayona-Babiloni
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Ana Belén Carriquí-Suárez
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Motos-Muñoz
- Department of Personality Psychology, Treatment and Methodology, Catholic University of Valencia San Vicente Mártir, 46100 Valencia, Spain
- Child Neurorehabilitation Unit, Manises Hospital, 46940 Valencia, Spain
| | - Belén Proaño
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Benlloch
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
15
|
Malcomson FC, Mathers JC. Translation of nutrigenomic research for personalised and precision nutrition for cancer prevention and for cancer survivors. Redox Biol 2023; 62:102710. [PMID: 37105011 PMCID: PMC10165138 DOI: 10.1016/j.redox.2023.102710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Personalised and precision nutrition uses information on individual characteristics and responses to nutrients, foods and dietary patterns to develop targeted nutritional advice that is more effective in improving the diet and health of each individual. Moving away from the conventional 'one size fits all', such targeted intervention approaches may pave the way to better population health, including lower burden of non-communicable diseases. To date, most personalised and precision nutrition approaches have been focussed on tackling obesity and cardiometabolic diseases with limited efforts directed to cancer prevention and for cancer survivors. Advances in understanding the biological basis of cancer and of the role played by diet in cancer prevention and in survival after cancer diagnosis, mean that it is timely to test and to apply such personalised and precision nutrition approaches in the cancer area. This endeavour can take advantage of the enhanced understanding of interactions between dietary factors, individual genotype and the gut microbiome that impact on risk of, and survival after, cancer diagnosis. Translation of these basic research into public health action should include real-time acquisition of nutrigenomic and related data and use of AI-based data integration methods in systems approaches that can be scaled up using mobile devices.
Collapse
Affiliation(s)
- F C Malcomson
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - J C Mathers
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
16
|
Yu J, Liang D, Li J, Liu Z, Zhou F, Wang T, Ma S, Wang G, Chen B, Chen W. Coffee, Green Tea Intake, and the Risk of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis of Observational Studies. Nutr Cancer 2023; 75:1295-1308. [PMID: 37038314 DOI: 10.1080/01635581.2023.2178949] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Several studies suggest an inverse relationship between coffee intake and risk of hepatocellular carcinoma (HCC), but the association between green tea intake and the risk of HCC is still inconclusive. We performed a meta-analysis of observational studies to clarify the association. We identified eligible studies published from January 1, 1992, to February 28, 2022, by searching PubMed, Web of Science, and EMBASE. A total of 32 studies were included in the meta-analysis. Among them, 21 studies involving 2,492,625 participants and 5980 cases of HCC reported coffee intake, 18 studies involving 1,481,647 participants and 6985 cases of HCC reported green tea intake, and seven studies reported both coffee intake and green tea intake. The results showed that a higher coffee (RR = 0.53; 95% CI: 0.47-0.59; I2 = 0.0%; Pheterogeneity = 0.634) or green tea (RR = 0.80; 95% CI: 0.67-0.95; I2 = 72.30%; Pheterogeneity < 0.001) intake may be associated with a lower risk of HCC. The same results were observed in both cohort and case-control subgroups. Our findings suggest that drinking coffee or green tea may be a potentially effective approach for the prevention or mitigation of HCC, but this still needs to be confirmed by further well-designed observational studies and clinical experimental research.
Collapse
Affiliation(s)
- Jinchuan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Di Liang
- Department of Nursing & Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiujiu Li
- Hefei Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Zhengxiang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Fuding Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Ting Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Guangjun Wang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Baochun Chen
- Department of Anhui, No.2 Provincial People' Hospital, Hefei, China
| | - Wenjun Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Storozhuk M, Lee S, Lee JI, Park J. Green Tea Consumption and the COVID-19 Omicron Pandemic Era: Pharmacology and Epidemiology. Life (Basel) 2023; 13:life13030852. [PMID: 36984007 PMCID: PMC10054848 DOI: 10.3390/life13030852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
In spite of the development of numerous vaccines for the prevention of COVID-19 and the approval of several drugs for its treatment, there is still a great need for effective and inexpensive therapies against this disease. Previously, we showed that green tea and tea catechins interfere with coronavirus replication as well as coronavirus 3CL protease activity, and also showed lower COVID-19 morbidity and mortality in countries with higher green tea consumption. However, it is not clear whether green tea is still effective against the newer SARS-CoV-2 variants including omicron. It is also not known whether higher green tea consumption continues to contribute to lower COVID-19 morbidity and mortality now that vaccination rates in many countries are high. Here, we attempted to update the information regarding green tea in relation to COVID-19. Using pharmacological and ecological approaches, we found that EGCG as well as green tea inhibit the activity of the omicron variant 3CL protease efficiently, and there continues to be pronounced differences in COVID-19 morbidity and mortality between groups of countries with high and low green tea consumption as of December 6, 2022. These results collectively suggest that green tea continues to be effective against COVID-19 despite the new omicron variants and increased vaccination.
Collapse
Affiliation(s)
- Maksim Storozhuk
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine
| | - Siyun Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Jin I Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
18
|
Effect of Extraction Period on Total Phenolics, Total Flavonoids, and Antioxidant Capacity of Ugandan Camellia sinensis (L) Kuntze, Black Primary Grades and Green Tea. J FOOD QUALITY 2023. [DOI: 10.1155/2023/3504280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Introduction. Globally, the consumption and production of tea are on the rise because of its beneficial constituents. Scarce literature exists on the effects of extraction periods on the contents of the biologically important and protective phytochemicals such as phenolics, flavonoids, and antioxidants in locally produced teas in Uganda. Aim. This study determined the effects of extraction periods on the aqueous total phenolic content (TPC) of local Camella sinensis, black primary grades and green tea, and their ecological differences, their total flavonoid content (TFC), and antioxidant capacities (AOC). Methods. Samples of local tea were collected from Kigezi, Ankole, and Buganda regions, and those of green tea were purchased from a local supermarket in Uganda. Four- and 40-minute infusions were separately prepared for each sample. Total phenolic and flavonoid contents were determined using the Folin–Ciocalteu and aluminium chloride methods using garlic acid and quercetin as standards, respectively. Antioxidant content was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing assay power (FRAP) methods, using ascorbic acid as the standard. Results. Green tea had the highest total phenolic content both with four-minute (9.50 ± 0.25 mgGAE/g) and 40-minute (25.81 ± 1.13 mgGAE/g) extractions, followed by D1 (4.14 ± 0.33 mgGAE/g) at four minutes and PF (23.60 ± 2.37 mgGAE/g) at 40 minutes. Regionally, Kigezi (4.71 ± 0.09 and 22.13 ± 0.85 mgGAE/g) at four and 40 minutes, respectively, gave the highest TPC. In TFC, tea from Buganda (4,371 ± 0.00 μgQE/g) was the highest. In DPPH and FRAP, GT (93.82 ± 0.03%, 39.04 ± 0.02 AAEμg/mL) was the best, followed by Buganda tea (88.71 ± 0.03%, 36.99 ± 0.01 AAEµg/mL), respectively. Conclusion. Longer extraction periods increase TPC in all teas. Green tea generates approximately twice the TPC generated by black tea in four-minute infusions. Green tea gives higher TPC, DPPH, and FRAP but less TFC than some black teas and is perhaps the best in terms of protection against oxidative damage to the body.
Collapse
|
19
|
Zamani M, Kelishadi MR, Ashtary-Larky D, Amirani N, Goudarzi K, Torki IA, Bagheri R, Ghanavati M, Asbaghi O. The effects of green tea supplementation on cardiovascular risk factors: A systematic review and meta-analysis. Front Nutr 2023; 9:1084455. [PMID: 36704803 PMCID: PMC9871939 DOI: 10.3389/fnut.2022.1084455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose A bulk of observational studies have revealed the protective role of green tea supplementation in cardiovascular diseases. The current systematic review and meta-analysis study aimed to establish the effects of green tea supplementation on cardiovascular risk factors including lipid profile, blood pressure, glycemic control markers and CRP. Methods A systematic literature search of randomized clinical trials (RCTs) that investigated the effects of green tea supplementation and cardiovascular risk factors was undertaken in online databases including PubMed/Medline, Scopus, Web of Science, and Embase using a combination of green tea and cardiovascular risk factors search terms. Meta-analyses were carried out using a random-effects model. The I2 index was used to assess the heterogeneity of RCTs. Results Among the initial 11,286 studies that were identified from electronic databases search, 55 eligible RCTs with 63 effect sizes were eligible. Results from the random effects meta-analysis showed that GTE supplementation significantly reduced TC (WMD = -7.62; 95% CI: -10.51, -4.73; P = < 0.001), LDL-C (WMD = -5.80; 95% CI: -8.30, -3.30; P = < 0.001), FBS (WMD = -1.67; 95% CI: -2.58, -0.75; P = < 0.001), HbA1c (WMD = -0.15; 95% CI: -0.26, -0.04; P = 0.008), DBP (WMD = -0.87; 95% CI: -1.45, -0.29; P = 0.003), while increasing HDL-C (WMD = 1.85; 95% CI: 0.87, 2.84; P = 0.010). Subgroup analyses based on the duration of supplementation (≥ 12 vs. < 12 weeks), dose of green tea extract (GTE) (≥1,000 vs. < 1,000 mg/d), sex (male, female, and both), baseline serum levels of lipid profile, and glycemic control factors demonstrated different results for some risk factors. Conclusion The current study suggests improvements in the lipid and glycemic profiles following green tea supplementation. These findings support previous evidence showing the health benefits of green tea supplementation on cardiometabolic risk factors.
Collapse
Affiliation(s)
- Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niusha Amirani
- Faculty of Medicine, Alborz University of Medical Sciences, Tehran, Iran
| | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Matin Ghanavati
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Shvabskaia OB, Karamnova NS, Izmailova OV, Drapkina OM. Healthy Eating in Population Models of Nutrition: Asian Diet Style Summary. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2023. [DOI: 10.20996/1819-6446-2022-12-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The population of Japan and Okinawa is known for the longest life expectancy, which many researchers rightly associate with the nature of nutrition existing in these territories. The Japanese diet and Okinawan diet, along with other traditional diets, are real examples of historically established sustainable patterns of healthy eating. Asian eating styles have marked differences from European eating patterns, not only in differences in food sources, but also in eating habits. The article presents the historical, climatic and cultural features of these diets; the issues of food composition, energy and nutritional value of these models of nutrition are considered in detail with an analysis of the differences existing between them; highlights the benefits of products grown mainly in Japan, which are ration-forming for the population of this country; as well as the results of scientific studies on the protective effect of the Japanese and Okinawan diets on human health and disease prevention.
Collapse
Affiliation(s)
- O. B. Shvabskaia
- National Medical Research Center for Therapy and Preventive Medicine
| | - N. S. Karamnova
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. V. Izmailova
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
21
|
Sentkowska A, Pyrzynska K. Does the Type Matter? Verification of Different Tea Types' Potential in the Synthesis of SeNPs. Antioxidants (Basel) 2022; 11:antiox11122489. [PMID: 36552697 PMCID: PMC9774132 DOI: 10.3390/antiox11122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Selenium nanoparticles (SeNPs) are gaining popularity due to their potential biomedical applications. This work describes their green synthesis using various types of tea. Black, green, red and white tea infusions were tested for the content of polyphenolic compounds and antioxidant properties and then used in the synthesis of SeNPs. In each of the syntheses, nanoparticles with dimensions ranging from 3.9 to 12.5 nm, differing in shape and properties, were obtained. All of them were characterized by a very high ability to neutralize hydroxyl radicals, which was about three-times higher than for the tea infusions from which they were obtained. The main inconvenience in obtaining SeNPs was the difficulties with their purification, which should be a further stage in the described research.
Collapse
Affiliation(s)
- Aleksandra Sentkowska
- Heavy Ion Laboratory, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Correspondence:
| | - Krystyna Pyrzynska
- Department of Chemistry, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
22
|
Ohishi T, Miyoshi N, Mori M, Sagara M, Yamori Y. Health Effects of Soy Isoflavones and Green Tea Catechins on Cancer and Cardiovascular Diseases Based on Urinary Biomarker Levels. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248899. [PMID: 36558031 PMCID: PMC9781513 DOI: 10.3390/molecules27248899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Plant polyphenols have various health effects. Genistein, which is abundant in soybeans, and epigallocatechin-3-gallate, which is abundant in green tea, are major flavonoids, a subclass group of polyphenols. Several epidemiological studies have shown that these flavonoids have beneficial effects against cancer and cardiovascular diseases. However, other studies did not show such effects. Several confounding factors, including recall bias, are related to these inconsistent findings, and the determination of metabolites in the urine may be useful in reducing the number of confounding factors. Equipment, which can be used by research participants to collect samples from a portion of voided urine within 24 h without the help of medical workers, has been developed for epidemiological investigations. Previous studies, in which flavonoid metabolites in these urine samples were measured, revealed that soy intake was correlated with a reduced risk of certain types of cancer and cardiovascular diseases worldwide. Although soybeans and green tea consumption may have protective effects against cancer and cardiovascular diseases, further clinical studies that consider different confounding factors are required to provide evidence for the actual impact of dietary flavonoids on human diseases, including cancer and cardiovascular diseases. One possible mechanism involved is discussed in relation to the downregulation of reactive oxygen species and the upregulation of 5'-adenosine monophosphate-activated protein kinase elicited by these flavonoids.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan
- Correspondence: (T.O.); (Y.Y.)
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Mari Mori
- Department of Health Management, School of Health Studies, Tokai University, Kanagawa 259-1292, Japan
- NPO World Health Frontier Institute, Nishinomiya 663-8143, Japan
- Institute for World Health Development, Mukogawa Women’s University, Nishinomiya 663-8143, Japan
| | - Miki Sagara
- Institute for World Health Development, Mukogawa Women’s University, Nishinomiya 663-8143, Japan
- Disease Model Cooperative Research Association, Kyoto 606-0805, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women’s University, Nishinomiya 663-8143, Japan
- Correspondence: (T.O.); (Y.Y.)
| |
Collapse
|
23
|
Trisha AT, Shakil MH, Talukdar S, Rovina K, Huda N, Zzaman W. Tea Polyphenols and Their Preventive Measures against Cancer: Current Trends and Directions. Foods 2022; 11:3349. [PMID: 36359962 PMCID: PMC9658101 DOI: 10.3390/foods11213349] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 07/30/2023] Open
Abstract
Cancer is exerting an immense strain on the population and health systems all over the world. Green tea because of its higher simple catechin content (up to 30% on dry weight basis) is greatly popular as an anti-cancer agent which is found to reduce the risks of cancer as well as a range of other diseases. In addition, several in vitro and in vivo studies have shown that green tea possesses copious health benefits like anti-diabetic, anti-obese, anti-inflammatory, neuro-protective, cardio-protective, etc. This review highlights the anti-carcinogenic effects of green tea catechins integrating the recent information to gain a clear concept. Special emphasis was given to the effectiveness of green tea polyphenols (GTP) in the prevention of cancer. Overall, green tea has been found to be effective to reduce the risks of breast cancer, ovarian cancer, liver cancer, colorectal cancer, skin cancer, prostate cancer, oral cancer, etc. However, sufficient information was not found to support that green tea consumption reduces the risk of lung cancer, esophageal cancer, or stomach cancer. The exciting data integrated into this article will increase interest in future researchers to garner more fruitful information on the relevant topics.
Collapse
Affiliation(s)
- Anuva Talukder Trisha
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mynul Hasan Shakil
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Suvro Talukdar
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Wahidu Zzaman
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
24
|
Wu W, Gou H, Xiang B, Geng R, Dong J, Yang X, Chen D, Dai R, Chen L, Liu J. EGCG Enhances the Chemosensitivity of Colorectal Cancer to Irinotecan through GRP78-MediatedEndoplasmic Reticulum Stress. JOURNAL OF ONCOLOGY 2022; 2022:7099589. [PMID: 36147440 PMCID: PMC9489388 DOI: 10.1155/2022/7099589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to explore the role of GRP78-mediated endoplasmic reticulum stress (ERS) in the synergistic inhibition of colorectal cancer by epigallocatechin-3-gallate (EGCG) and irinotecan (IRI). Findings showed that EGCG alone or in combination with irinotecan can significantly promote intracellular GRP78 protein expression, reduce mitochondrial membrane potential and intracellular ROS in RKO and HCT 116 cells, and induce cell apoptosis. In addition, glucose regulatory protein 78 kDa (GRP78) is significantly over-expressed in both colorectal cancer (CRC) tumor specimens and mouse xenografts. The inhibition of GRP78 by small interfering RNA led to the decrease of the sensitivity of CRC cells to the drug combination, while the overexpression of it by plasmid significantly increased the apoptosis of cells after the drug combination. The experimental results in the mouse xenografts model showed that the combination of EGCG and irinotecan could inhibit the growth of subcutaneous tumors of HCT116 cells better than the two drugs alone. EGCG can induce GRP78-mediated endoplasmic reticulum stress and enhance the chemo-sensitivity of colorectal cancer cells when coadministered with irinotecan.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Hui Gou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bin Xiang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ruiman Geng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingying Dong
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaolong Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Dan Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Patent Examination Cooperation Sichuan Center of the Patent Office, China National Intellectual Property Administration, Chengdu 610041, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Neyestani TR, Nikooyeh B. A comprehensive overview on the effects of green tea on anthropometric measures, blood pressure, glycemic and lipidemic status: An umbrella review and meta meta-analysis study. Nutr Metab Cardiovasc Dis 2022; 32:2026-2040. [PMID: 35750605 DOI: 10.1016/j.numecd.2022.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022]
Abstract
AIM The aim of this meta-review was to establish the effects of green tea (GT) intake on some cardiometabolic risk factors including anthropometric measures, blood pressure as well as blood glucose and lipids using evidence from previous systematic reviews and meta-analyses. DATA SYNTHESIS Articles were identified via searches in PubMed, Embase, and the Cochrane Library, Web of Knowledge database from the index date of each database through January 31, 2021. A total of 13 meta-analyses were finally included in the synthesis. Meta-meta-analysis revealed significant effects of GT on weight and waist circumference with weighted mean difference (WMD) of -0.89 (95% CI -1.43 to -0.34, p < 0.001) and -1.01 (95% CI -1.63 to -0.39, p < 0.001), systolic and diastolic blood pressure, with WMDs of -1.17 (95% CI -2.18 to -0.16) and -1.24 (95% CI -2.07 to -0.4), respectively. There was similar effect on fasting blood glucose (WMD, -1.3, 95% CI -2.09 to -0.51, p < 0.001) but not on other glycemic indicators. The findings also revealed a significant effect size of total cholesterol and LDL-C (WMD -4.93; 95% CI -6.41 to -3.46, p < 0.001, WMD -4.31; 95% CI -6.55 to -2.07, p < 0.001, respectively). CONCLUSION Regular consumption of GT and probably its bioactive constituents as supplements have beneficial effects on different health aspects including weight, blood pressure, blood glucose and lipids. However, these effects might be influenced by several factors such as the amount and frequency of consumption, health/disease condition and life style including dietary habits and physical activity.
Collapse
Affiliation(s)
- Tirang R Neyestani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahareh Nikooyeh
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Hayashi A, Terasaka S, Nukada Y, Kameyama A, Yamane M, Shioi R, Iwashita M, Hashizume K, Morita O. 4″-Sulfation Is the Major Metabolic Pathway of Epigallocatechin-3-gallate in Humans: Characterization of Metabolites, Enzymatic Analysis, and Pharmacokinetic Profiling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8264-8273. [PMID: 35786898 PMCID: PMC9284555 DOI: 10.1021/acs.jafc.2c02150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, has beneficial effects on human health. This study aimed to elucidate the detailed EGCG sulfation process to better understand its phase II metabolism, a process required to maximize its health benefits. Results show that kinetic activity of sulfation in the human liver and intestinal cytosol is 2-fold and 60- to 300-fold higher than that of methylation and glucuronidation, respectively, suggesting sulfation as the key metabolic pathway. Moreover, SULT1A1 and SULT1A3 are responsible for sulfation in the liver and intestine, respectively. Additionally, our human ingestion study revealed that the concentration of EGCG-4″-sulfate in human plasma (Cmax: 177.9 nmol·L-1, AUC: 715.2 nmol·h·L-1) is equivalent to free EGCG (Cmax: 233.5 nmol·L-1, AUC: 664.1 nmol·h·L-1), suggesting that EGCG-4″-sulfate is the key metabolite. These findings indicate that sulfation is a crucial factor for improving EGCG bioavailability, while also advancing the understanding of the bioactivity and toxicity of EGCG.
Collapse
Affiliation(s)
- Akane Hayashi
- Safety
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
- . Tel.: +81-285-68-7214
| | - Shimpei Terasaka
- Safety
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| | - Yuko Nukada
- Safety
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| | - Akiyo Kameyama
- Safety
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| | - Masayuki Yamane
- Safety
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| | - Ryuta Shioi
- Biological
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| | - Masazumi Iwashita
- Biological
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| | - Kohjiro Hashizume
- Biological
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| | - Osamu Morita
- Safety
Science Laboratories, Kao Corporation, Tochigi 321-3497, Japan
| |
Collapse
|
27
|
Jiang Z, Zhuo LB, He Y, Fu Y, Shen L, Xu F, Gou W, Miao Z, Shuai M, Liang Y, Xiao C, Liang X, Tian Y, Wang J, Tang J, Deng K, Zhou H, Chen YM, Zheng JS. The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases. Nat Commun 2022; 13:3002. [PMID: 35637254 PMCID: PMC9151781 DOI: 10.1038/s41467-022-30712-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/05/2022] [Indexed: 02/07/2023] Open
Abstract
Evidence from human cohorts indicates that chronic insomnia is associated with higher risk of cardiometabolic diseases (CMD), yet whether gut microbiota plays a role is unclear. Here, in a longitudinal cohort (n = 1809), we find that the gut microbiota-bile acid axis may link the positive association between chronic insomnia and CMD. Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 are the main genera mediating the positive association between chronic insomnia and CMD. These results are also observed in an independent cross-sectional cohort (n = 6122). The inverse associations between those gut microbial biomarkers and CMD are mediated by certain bile acids (isolithocholic acid, muro cholic acid and nor cholic acid). Habitual tea consumption is prospectively associated with the identified gut microbiota and bile acids in an opposite direction compared with chronic insomnia. Our work suggests that microbiota-bile acid axis may be a potential intervention target for reducing the impact of chronic insomnia on cardiometabolic health. Chronic insomnia is associated with cardiometabolic diseases. Here, in two clinical cohorts (n = 7,931), authors show that gut microbiota-bile acid axis may be an intervention target to attenuate the impact of chronic insomnia on cardiometabolic health.
Collapse
|
28
|
Gharibzahedi SMT, Barba FJ, Zhou J, Wang M, Altintas Z. Electronic Sensor Technologies in Monitoring Quality of Tea: A Review. BIOSENSORS 2022; 12:bios12050356. [PMID: 35624658 PMCID: PMC9138728 DOI: 10.3390/bios12050356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 05/27/2023]
Abstract
Tea, after water, is the most frequently consumed beverage in the world. The fermentation of tea leaves has a pivotal role in its quality and is usually monitored using the laboratory analytical instruments and olfactory perception of tea tasters. Developing electronic sensing platforms (ESPs), in terms of an electronic nose (e-nose), electronic tongue (e-tongue), and electronic eye (e-eye) equipped with progressive data processing algorithms, not only can accurately accelerate the consumer-based sensory quality assessment of tea, but also can define new standards for this bioactive product, to meet worldwide market demand. Using the complex data sets from electronic signals integrated with multivariate statistics can, thus, contribute to quality prediction and discrimination. The latest achievements and available solutions, to solve future problems and for easy and accurate real-time analysis of the sensory-chemical properties of tea and its products, are reviewed using bio-mimicking ESPs. These advanced sensing technologies, which measure the aroma, taste, and color profiles and input the data into mathematical classification algorithms, can discriminate different teas based on their price, geographical origins, harvest, fermentation, storage times, quality grades, and adulteration ratio. Although voltammetric and fluorescent sensor arrays are emerging for designing e-tongue systems, potentiometric electrodes are more often employed to monitor the taste profiles of tea. The use of a feature-level fusion strategy can significantly improve the efficiency and accuracy of prediction models, accompanied by the pattern recognition associations between the sensory properties and biochemical profiles of tea.
Collapse
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Min Wang
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Zeynep Altintas
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| |
Collapse
|
29
|
Effect of Extraction Methodology on the Phytochemical Composition for Camelia sinensis “Powdered Tea Extracts” from Different Provenances. BEVERAGES 2022. [DOI: 10.3390/beverages8010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
(1) Background: beverages based on extracts from Camellia sinensis are popular worldwide. Due to an increasing number of processed teas on the market, there is a need to develop unified classification standards based on chemical analysis. Meanwhile, phytochemical characterizations are mainly performed on tea samples from China (~80%). Hence, data on teas of other provenances is recommended. (2) Methods: in the present investigation, we characterized lyophilised extracts obtained by infusion, maceration and methanolic extraction derived from tea samples from China, Japan, Sri Lanka and Portugal by phytochemistry (catechins, oxyaromatic acids, flavonols, alkaloids and theanine). The real benefits of drinking the tea were analysed based on the bioavailability of the determined phytochemicals. (3) Results: the infusions revealed the highest total phenolic contents (TPC) amounts, while methanolic extracts yielded the lowest. The correlation matrix indicated that the levels of phenolic compounds were similar in the infusions and methanolic samples, while extractions made by maceration were significantly different. The differences could be partially explained by the different amounts of (-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG) and gallic acids (GA). The catechin percentages were significantly lower in the macerations, especially the quantity of EGCG decreases by 4- to 5-fold after this process. (4) Conclusions: the results highlight the importance of the processing methodology to obtain “instant tea”; the composition of the extracts obtained with the same methodology is not significantly affected by the provenance of the tea. However, attention should be drawn to the specificities of the Japanese samples (the tea analysed in the present work was of Sencha quality). In contrast, the extraction methodology significantly affects the phytochemical composition, especially concerning the content of polyphenols. As such, our results indicate that instant tea classification based on chemical composition is sensible, but there is a need for a standard extraction methodology, namely concerning the temperature and time of contact of the tea leaves with the extraction solvent.
Collapse
|
30
|
Barré T, Fontaine H, Pol S, Ramier C, Di Beo V, Protopopescu C, Marcellin F, Bureau M, Bourlière M, Dorival C, Petrov-Sanchez V, Asselah T, Delarocque-Astagneau E, Larrey D, Duclos-Vallée JC, Carrat F, Carrieri P. Metabolic Disorders in Patients with Chronic Hepatitis B Virus Infection: Coffee as a Panacea? (ANRS CO22 Hepather Cohort). Antioxidants (Basel) 2022; 11:antiox11020379. [PMID: 35204261 PMCID: PMC8869416 DOI: 10.3390/antiox11020379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
People living with chronic hepatitis B virus (HBV) infection are at high risk of liver disease progression, which is positively associated with metabolic disorders, but inversely associated with dyslipidemia. Diet, including dietary antioxidants, is a lever of metabolic disorder management. In particular, elevated coffee consumption is associated with different metabolic outcomes in the general population. We aimed to test whether such associations occur in HBV-infected people. Based on cross-sectional data from the ANRS CO22 Hepather cohort, we performed logistic regression models with (i) dyslipidemia, (ii) hypertension, and (iii) diabetes as outcomes, and with demographic, clinical, and socio-behavioral (including coffee consumption) data as explanatory variables. Among 4746 HBV-infected patients, drinking ≥3 cups of coffee per day was associated with a higher risk of dyslipidemia (adjusted odds ratio [95% confidence interval] 1.49 [1.10–2.00], p = 0.009) and a lower risk of hypertension (0.64 [0.50–0.82], p = 0.001). It was not associated with diabetes. Elevated coffee consumption was associated with a higher risk of dyslipidemia and a lower risk of hypertension in HBV-infected patients, two effects expected to be associated with favorable clinical outcomes. Further studies should test whether such metabolic benefits translate into reduced mortality risk in this population.
Collapse
Affiliation(s)
- Tangui Barré
- Aix Marseille Univ. Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, ISSPAM, 13005 Marseille, France; (T.B.); (C.R.); (V.D.B.); (C.P.); (F.M.); (M.B.); (M.B.)
| | - Hélène Fontaine
- Université de Paris, AP-HP, Hôpital Cochin, Département d’Hépatologie/Addictologie, 75014 Paris, France; (H.F.); (S.P.)
| | - Stanislas Pol
- Université de Paris, AP-HP, Hôpital Cochin, Département d’Hépatologie/Addictologie, 75014 Paris, France; (H.F.); (S.P.)
| | - Clémence Ramier
- Aix Marseille Univ. Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, ISSPAM, 13005 Marseille, France; (T.B.); (C.R.); (V.D.B.); (C.P.); (F.M.); (M.B.); (M.B.)
| | - Vincent Di Beo
- Aix Marseille Univ. Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, ISSPAM, 13005 Marseille, France; (T.B.); (C.R.); (V.D.B.); (C.P.); (F.M.); (M.B.); (M.B.)
| | - Camelia Protopopescu
- Aix Marseille Univ. Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, ISSPAM, 13005 Marseille, France; (T.B.); (C.R.); (V.D.B.); (C.P.); (F.M.); (M.B.); (M.B.)
| | - Fabienne Marcellin
- Aix Marseille Univ. Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, ISSPAM, 13005 Marseille, France; (T.B.); (C.R.); (V.D.B.); (C.P.); (F.M.); (M.B.); (M.B.)
| | - Morgane Bureau
- Aix Marseille Univ. Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, ISSPAM, 13005 Marseille, France; (T.B.); (C.R.); (V.D.B.); (C.P.); (F.M.); (M.B.); (M.B.)
| | - Marc Bourlière
- Aix Marseille Univ. Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, ISSPAM, 13005 Marseille, France; (T.B.); (C.R.); (V.D.B.); (C.P.); (F.M.); (M.B.); (M.B.)
- Hôpital St. Joseph, Service d’Hépato-Gastroentérologie, 13008 Marseille, France
| | - Céline Dorival
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Pierre Louis d’Epidémiologie et de Santé Publique, Sorbonne Université, 75646 Paris, France;
| | - Ventzislava Petrov-Sanchez
- ANRS MIE (France Recherche Nord & Sud Sida-HIV Hépatites|Maladies Infectieuses Emergentes), Unit for Basic and Clinical Research on Viral Hepatitis, 73013 Paris, France;
| | - Tarik Asselah
- Université de Paris, Centre de Recherche sur L’inflammation, INSERM UMR1149, 75018 Paris, France;
- Department of Hepatology, AP-HP, Hôpital Beaujon, 92110 Clichy, France
| | - Elisabeth Delarocque-Astagneau
- Université Paris-Saclay, UVSQ, Inserm, CESP, Team Anti-Infective Evasion and Pharmacoepidemiology, 78180 Montigny, France;
- AP-HP, GHU Paris Saclay University, Raymond Poincaré Hospital, Epidemiology and Public Health Department, 92380 Garches, France
| | - Dominique Larrey
- Liver Unit-IRB-INSERM 1183, Hôpital Saint Eloi, 34090 Montpellier, France;
| | - Jean-Charles Duclos-Vallée
- AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, UMR-S 1193, Université Paris-Saclay, FHU HEPATINOV, 94800 Villejuif, France;
| | - Fabrice Carrat
- Hôpital Saint-Antoine, Unité de Santé Publique, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France;
| | - Patrizia Carrieri
- Aix Marseille Univ. Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, ISSPAM, 13005 Marseille, France; (T.B.); (C.R.); (V.D.B.); (C.P.); (F.M.); (M.B.); (M.B.)
- Correspondence:
| | | |
Collapse
|
31
|
Tian D, Chen X, Hou P, Zhao Y, Zhao Y, Zhang Y, Li J, Zhang Y, Wang F. Effects of exposure to fine particulate matter on the decline of lung function in rural areas in northwestern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14903-14913. [PMID: 34623588 DOI: 10.1007/s11356-021-16865-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Our aim was to clarify the main factors associated with lung function and to analyze the correlation between fine particulate matter (PM2.5) and lung function in a rural Chinese population. We analyzed data of 5195 participants in the China Northwest Natural Population Cohort: Ningxia Project who were ≥ 30 years old. They were recruited from 2018 to 2019, underwent spirometry during the physical examination, and completed a self-report questionnaire. A satellite-based spatiotemporal model was used to estimate the 2-year average PM2.5 exposure based on participants' home addresses. A generalized linear mixed model was used to test the relationship between PM2.5 concentration and lung function. Sex, age, exposure to cooking oil fumes, and occupational exposure were negatively correlated (P < 0.05) with forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). Educational status, economic level, tea consumption, and alcohol consumption were positively correlated (P < 0.05) with FVC and FEV1. The adjusted results of each model revealed that FVC and FEV1 decreased with increased exposure to PM2.5. There was a strong negative correlation between a PM2.5 concentration of 35.66 μg/m3 and FVC, FEV1, and FEV1/FVC, with unadjusted hazard ratios of - 0.06 (95% confidence interval, - 0.10 to - 0.01), - 0.13 (- 0.17 to - 0.10), and - 22.10 (- 24.62 to - 19.26), respectively. In conclusion, long-term exposure to high concentrations of ambient PM2.5 is related to reduce lung function among people in rural areas in northwestern China.
Collapse
Affiliation(s)
- Di Tian
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Xiyuan Chen
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Pengyi Hou
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yi Zhao
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yu Zhao
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yajuan Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Jiangping Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yuhong Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Faxuan Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China.
- Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
32
|
Unno T, Araki Y, Inagaki S, Kobayashi M, Ichitani M, Takihara T, Kinugasa H. Fructooligosaccharides Increase in Plasma Concentration of (-)-Epigallocatechin-3-Gallate in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14849-14855. [PMID: 34870993 DOI: 10.1021/acs.jafc.1c05991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) undergoes auto-oxidation at physiological pH and therefore may be poorly absorbed in the intestine. Fructooligosaccharides (FOS), comprising a group of 1-kestose, nystose, and 1F-β fructofuranosyl-nystose, are fermentable by gut bacteria and converted mainly into lactate. This study was conducted to determine whether dietary FOS may help to increase the plasma concentration of EGCG in rats by preventing it from auto-oxidation. Rats consumed an assigned diet, either a 0.3% (w/w) EGCG diet or an EGCG diet with additional 1, 3, or 5% (w/w) FOS, for 2 weeks. The results showed that the plasma concentration of EGCG was 0.21 ± 0.05 μM for the EGCG alone group, and it was significantly higher at 0.65 ± 0.12 μM for the EGCG plus 5% FOS group. Treatments with FOS resulted in a dose-dependent increase in the cecal level of lactate and brought the cecal pH down, with an accompanying alteration in the abundance of Lactobacillus and Collinsella. Because EGCG concentrations in the cecal digesta of rats fed the FOS-containing diet maintained comparatively high levels, FOS likely contributed to the protection of EGCG from auto-oxidation. In conclusion, FOS reduced the pH of the lumen of the intestine, kept EGCG intact to a certain degree, and consequently allowed EGCG to be taken into the blood circulation from the intestine.
Collapse
Affiliation(s)
- Tomonori Unno
- Faculty of Human Nutrition, Tokyo Kasei Gakuin University, 22 Sanban-cho, Chiyoda-ku, Tokyo 1028341, Japan
| | - Yoshiharu Araki
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara-shi, Shizuoka 4210516, Japan
| | - Shun Inagaki
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara-shi, Shizuoka 4210516, Japan
| | - Makoto Kobayashi
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara-shi, Shizuoka 4210516, Japan
| | - Masaki Ichitani
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara-shi, Shizuoka 4210516, Japan
| | - Takanobu Takihara
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara-shi, Shizuoka 4210516, Japan
| | - Hitoshi Kinugasa
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara-shi, Shizuoka 4210516, Japan
| |
Collapse
|
33
|
The Association between Habitual Green Tea Consumption and Comprehensive Frailty as Assessed by Kihon Checklist Indexes among an Older Japanese Population. Nutrients 2021; 13:nu13114149. [PMID: 34836404 PMCID: PMC8619869 DOI: 10.3390/nu13114149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022] Open
Abstract
Background: It is unclear whether habitual green tea consumption is related to comprehensive frailty. Objectives: We conducted this study to investigate this relationship among an elderly Japanese population. Methods: This was a cross-sectional study of baseline data from 2012. The study included 5668 Japanese participants (2766 men and 2902 women aged 65 years or older). The subjects completed a validated self-administered food frequency questionnaire that included questions on their green tea consumption. We evaluated comprehensive frailty using a 25-item Kihon Checklist (KCL), which comprised seven domains (instrumental activities of daily living (IADL), physical function, malnutrition, oral or eating function, socialization and housebound, cognitive function, and depression). Frailty was defined as a KCL score greater than or equal to seven. Results: We found that a higher consumption of green tea was associated with a lower prevalence of comprehensive frailty in both sexes. Further age-stratified analysis showed that a higher consumption of green tea among women was associated with a lower prevalence of comprehensive frailty, regardless of age. In men, however, this association was found only in the older age groups. An analysis of the association between green tea consumption and the frailty subdomains showed that green tea consumption was associated with a lower prevalence of oral dysfunction and cognitive problems in both sexes. In addition, only in women was higher green tea consumption found to be associated with a lower prevalence of IADL and mobility-related disability problems. Conclusions: Green tea consumption is inversely associated with the prevalence of comprehensive frailty in Japanese men and women. Longitudinal studies are required to confirm this association.
Collapse
|
34
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
35
|
Exploring tea (Camellia sinensis) microbiome: Insights into the functional characteristics and their impact on tea growth promotion. Microbiol Res 2021; 254:126890. [PMID: 34689100 DOI: 10.1016/j.micres.2021.126890] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
Abstract
Tea (Camellia sinensis) is perhaps the most popular and economic beverage in the globe due to its distinctive fragrance and flavour generated by the leaves of commercially farmed tea plants. The tea microbiome has now become a prominent topic of attention for microbiologists in recent years as it can help the plant for soil nutrient acquisition as well as stress management. Tea roots are well known to be colonized by Arbuscular Mycorrhizal Fungi (AMF) and many other beneficial microorganisms that boost the growth of the tea which increases leaf amino acids, protein, caffeine, and polyphenols content. One of the primary goals of rhizosphere microbial biology is to aid in the establishment of agricultural systems that provide high quantities of the food supply while minimizing environmental effects and anthropogenic activities. The present review is aimed to highlight the importance of microbes (along with their phylogeny) derived from cultivated and natural tea rhizospheres to understand the role of AMF and rhizospheric bacterial population to improve plant growth, enhancement of tea quality, and protecting tea plants from pathogens. This review also summarizes recent advances in our understanding of the diversity and profile of tea-associated bacteria. The utilization of the tea microbiome as a "natural resource" could provide holistic development in tea cultivation to ensure sustainability, highlighting knowledge gaps and future microbiome research.
Collapse
|
36
|
Perumal AB, Li X, Su Z, He Y. Preparation and characterization of a novel green tea essential oil nanoemulsion and its antifungal mechanism of action against Magnaporthae oryzae. ULTRASONICS SONOCHEMISTRY 2021; 76:105649. [PMID: 34186493 PMCID: PMC8250457 DOI: 10.1016/j.ultsonch.2021.105649] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 05/21/2023]
Abstract
Blast is one of the most devastating fungal diseases of rice caused by Magnaporthe oryzae. Plant essential oil (EO) can function as antifungal agents and are regarded as a safe and acceptable method for plant disease control. However, EOs are unstable and hydrophobic, which limits its use. In the present study, we aimed for the preparation and characterization of a nanoemulsion (NE) from green tea essential oil (GTO) by ultrasonication method and determined the antifungal activity of NE onM. oryzae. The particle size and zeta potential of the NE were 86.98 nm and -15.1 mV, respectively. The chemical composition and functional groups of GTO and NE were studied by using GC-MS analysis, portable Raman spectroscopy, and FTIR coupled with chemometric analysis. GC-MS analysis showed the major components in GTO and NE were n-Hexyl cinnamaldehyde and L-α-Terpineol. Both GTO and NE showed good antioxidant activity and total phenol content. Moreover, the NE showed good antifungal activity againstM. oryzae which was further confirmed by scanning electron microscopy (SEM) examination. Also, confocal Raman micro-spectroscopy (CRM) revealed the antifungal mechanism of GTO and NE on M. oryzae which proves the cell damage. To the best of our knowledge, this is the first study on the antifungal activity of GTO and NE against M. oryzae and also the use of CRM for the evaluation of the chemical changes in single fungal hyphae in a holistic approach. This study suggests that the prepared NE could be a potential candidate for use as a substitute for synthetic fungicides.
Collapse
Affiliation(s)
- Anand Babu Perumal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Zhenzhu Su
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
37
|
Djamgoz MBA, Jentzsch V. Integrative Management of Pancreatic Cancer (PDAC): Emerging Complementary Agents and Modalities. Nutr Cancer 2021; 74:1139-1162. [PMID: 34085871 DOI: 10.1080/01635581.2021.1934043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. The standard first-line treatment for PDAC is gemcitabine chemotherapy which, unfortunately, offers only limited chance of a lasting cure. This review further evaluates the hypothesis that the effectiveness of gemcitabine can be improved by combining it with evidence-based complementary measures. Previously, supported by clinical trial data, we suggested that a number of dietary factors and nutraceuticals can be integrated with gemcitabine therapy. Here, we evaluate a further 10 agents for which no clinical trials have (yet) been carried out but there are promising data from in vivo and/or in vitro studies including experiments involving combined treatments with gemcitabine. Two groups of complementary agents are considered: Dietary factors (resveratrol, epigallocatechin gallate, vitamin B9, capsaicin, quercetin and sulforaphane) and nutraceutical agents (artemisinin, garcinol, thymoquinone and emodin). In addition, we identified seven promising agents for which there is currently only basic (mostly in vitro) data. Finally, as a special case of combination therapy, we highlighted synergistic drug combinations involving gemcitabine with "repurposed" aspirin or metformin. We conclude overall that integrated management of PDAC currently is likely to produce the best outcome for patients and for this a wide range of complementary measures is available.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK
- Biotechnology Research Centre, Cyprus International University, Nicosia, Cyprus
| | - Valerie Jentzsch
- Department of Life Sciences, Imperial College London, London, UK
- Department of Health Policy, London School of Economics and Political Science, London, UK
| |
Collapse
|
38
|
Yatsuya H, Tsugane S. What constitutes healthiness of Washoku or Japanese diet? Eur J Clin Nutr 2021; 75:863-864. [PMID: 33603149 PMCID: PMC7890542 DOI: 10.1038/s41430-021-00872-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Hiroshi Yatsuya
- Department of Public Health and Health Systems, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
- Department of Public Health, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
| | - Shoichiro Tsugane
- Center for Public Health Sciences, National Cancer Center, Chuo-ku, Tokyo, Japan
| |
Collapse
|
39
|
Jiang Y, Jiang Z, Ma L, Huang Q. Advances in Nanodelivery of Green Tea Catechins to Enhance the Anticancer Activity. Molecules 2021; 26:3301. [PMID: 34072700 PMCID: PMC8198522 DOI: 10.3390/molecules26113301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death globally. A variety of phenolic compounds display preventative and therapeutic effects against cancers. Green teas are rich in phenolics. Catechins are the most dominant phenolic component in green teas. Studies have shown that catechins have anticancer activity in various cancer models. The anticancer activity of catechins, however, may be compromised due to their low oral bioavailability. Nanodelivery emerges as a promising way to improve the oral bioavailability and anticancer activity of catechins. Research in this area has been actively conducted in recent decades. This review provides the molecular mechanisms of the anticancer effects of catechins, the factors that limit the oral bioavailability of catechins, and the latest advances of delivering catechins using nanodelivery systems through different routes to enhance their anticancer activity.
Collapse
Affiliation(s)
- Yike Jiang
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen 518132, China;
| | - Ziyi Jiang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lan Ma
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen 518132, China;
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
40
|
Genovese S, Epifano F, Marchetti L, Bastianini M, Cardellini F, Spogli R, Fiorito S. Pre-concentration of active principles from different varieties of Camellia sinensis extracts by solid sorbents. J Pharm Biomed Anal 2021; 196:113945. [PMID: 33578265 DOI: 10.1016/j.jpba.2021.113945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
In this article we studied the phytochemical composition of leaves extracts of different varieties of Camellia sinensis(L.) Kuntze after treatment with 16 selected solid sorbents (namely hydrotalcites, magnesium oxide and hydroxide, zirconium phosphates, and phyllosilicates). The pre-concentration and selective adsorption of the main active principles of this food and medicinal plant [e.g. gallic acid, (-)-epicatechin, (-)-epicatechin gallate, and caffeine] were investigated. The quantities of phytochemicals adsorbed by solids were measured by HPLC analysis, coupled to photodiode array detection and calculated as the difference between the quantities in the parent untreated extracts and those recorded in the filtrates. Caffeine was selectively adsorbed by bentonite to a large extent, while for the remaining phytochemicals different patterns were recorded depending on the type of leaves extract. A comparison with pure chemicals revealed a strong effect of the phytocomplex composition on the adsorption yields. The methodology outlined herein may be useful to obtain tea extracts enriched in selective active principles also for industrial scopes.
Collapse
Affiliation(s)
- Salvatore Genovese
- Dipartimento Di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via Dei Vestini 31, 66100 Chieti Scalo, CH, Italy
| | - Francesco Epifano
- Dipartimento Di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via Dei Vestini 31, 66100 Chieti Scalo, CH, Italy.
| | - Lorenzo Marchetti
- Dipartimento Di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via Dei Vestini 31, 66100 Chieti Scalo, CH, Italy
| | | | | | - Roberto Spogli
- Prolabin & Tefarm Srl, Via dell'Acciaio 9, 06134 Perugia, Italy
| | - Serena Fiorito
- Dipartimento Di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via Dei Vestini 31, 66100 Chieti Scalo, CH, Italy
| |
Collapse
|
41
|
Chen Y, Sun X, Lin Y, Zhang Z, Gao Y, Wu IX. Non-Genetic Risk Factors for Parkinson's Disease: An Overview of 46 Systematic Reviews. JOURNAL OF PARKINSON'S DISEASE 2021; 11:919-935. [PMID: 33814465 PMCID: PMC8461677 DOI: 10.3233/jpd-202521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Numerous systematic reviews (SRs) and meta-analyses on non-genetic risk factors for Parkinson's disease (PD) development have been published with inconsistent conclusions. OBJECTIVE This overview of SRs aimed to summarize evidence on non-genetic factors for the development of PD from the published SRs, and explore the reasons behind the conflicting results. METHODS Three international databases were searched for SRs with meta-analyses summarized evidence on non-genetic factors for PD development. The Assessing the Methodological Quality of Systematic Reviews 2 tool was used to appraise the methodological quality of included SRs. Pooled effect estimations were extracted from each meta-analysis. RESULTS Forty-six SRs covered six categories, and more than 80 factors were included in this overview. Thirty-nine SRs (84.7%) were judged to be of critically low methodological quality. Evidence from prospective studies showed that physical activity, smoking, coffee, caffeine, tea, fat intake, ibuprofen use, calcium channel blocker use, statin use, thiazolidinediones, and high serum urate levels significantly reduced the risk of PD, while dairy intake, diabetes, hormone replacement therapy, depression, mood disorder, bipolar disorder, and aspirin use significantly increased the risk of PD. Differences in study designs (e.g., cohort studies, case-control studies) accounted for the conflicting results among included SRs. CONCLUSION Modifiable lifestyle factors such as physical activity and tea and coffee drinking may reduce the risk of PD, which may offer PD prevention strategies and hypotheses for future research. However, the designs of primary studies on PD risk factors and related SRs need to be improved and harmonized.
Collapse
Affiliation(s)
- Yancong Chen
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Xuemei Sun
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Yali Lin
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Zixuan Zhang
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Yinyan Gao
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Irene X.Y. Wu
- Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, China
| |
Collapse
|