1
|
West KL, Nguyen TTN, Tengler KA, Kreiling N, Raney KD, Ghosal G, Leung JW. Autophosphorylation of the Tousled-like kinases TLK1 and TLK2 regulates recruitment to damaged chromatin via PCNA interaction. Nucleic Acids Res 2024:gkae1279. [PMID: 39727191 DOI: 10.1093/nar/gkae1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Tousled-like kinases 1 and 2 (TLK1 and 2) are cell cycle-regulated serine/threonine kinases that are involved in multiple biological processes. Mutation of TLK1 and 2 confer neurodegenerative diseases. Recent studies demonstrate that TLK1 and 2 are involved in DNA repair. However, there is no direct evidence that TLK1 and 2 function at DNA damage sites. Here, we show that both TLK1 and TLK2 are hyper-autophosphorylated at their N-termini, at least in part, mediated by their homo- or hetero- dimerization. We found that TLK1 and 2 hyper-autophosphorylation suppresses their recruitment to damaged chromatin. Furthermore, both TLK1 and 2 associate with PCNA specifically through their evolutionarily conserved non-canonical PCNA-interacting protein (PIP) box at the N-terminus, and mutation of the PIP-box abolishes their recruitment to DNA damage sites. Mechanistically, the TLK1 and 2 hyper-autophosphorylation masks the PIP-box and negatively regulates their recruitment to the DNA damage site. Overall, our study dissects the detailed genetic regulation of TLK1 and 2 at damaged chromatin, which provides important insights into their emerging roles in DNA repair.
Collapse
Affiliation(s)
- Kirk L West
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 Markham St, Little Rock, AR 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 Markham St, Little Rock, AR 72205, USA
| | - Tram T N Nguyen
- Department of Radiation Oncology, University of Texas Health and Science Center, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Kyle A Tengler
- Department of Radiation Oncology, University of Texas Health and Science Center, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Natasha Kreiling
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, S 42nd &, Emile St, Omaha, NE 68198, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 Markham St, Little Rock, AR 72205, USA
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, S 42nd &, Emile St, Omaha, NE 68198, USA
| | - Justin W Leung
- Department of Radiation Oncology, University of Texas Health and Science Center, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Li HY, Jiang CM, Liu RY, Zou CC. Report of one case with de novo mutation in TLK2 and literature review. BMC Pediatr 2024; 24:732. [PMID: 39538191 PMCID: PMC11559194 DOI: 10.1186/s12887-024-05205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
TLK2 variants were identified as the cause for several neurodevelopmental disorders by impacting brain development. The incidence of mutation in TLK2 is low, which has common clinical features with other rare diseases. Herein, we reported a 5-year-old boy with TLK2 heterozygous mutation who presented distinctive facial features, gastrointestinal diseases, short stature, language delay, autism spectrum disorder, heart diseases, abnormal genitourinary system and skeletal abnormality. Moreover, we reviewed previous reported patients and our case in order to investigate more information on genotype-phenotype correlation and identify significant clinical characteristics for better diagnosis.
Collapse
Affiliation(s)
- Han-Yue Li
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333, Binsheng Road, Hangzhou, 310052, China
| | - Chun-Ming Jiang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Ruo-Yan Liu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333, Binsheng Road, Hangzhou, 310052, China
| | - Chao-Chun Zou
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333, Binsheng Road, Hangzhou, 310052, China.
| |
Collapse
|
3
|
Huang H, Qian Y, Yang C, Li S. Case report: A novel TLK2 variant with a neuropsychiatric phenotype from a Chinese family. Front Genet 2024; 15:1419027. [PMID: 39296544 PMCID: PMC11408229 DOI: 10.3389/fgene.2024.1419027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 09/21/2024] Open
Abstract
Background Tousled-like kinase 2 (TLK2) gene variant-related neurodevelopmental disorder was recently described. The haploinsufficiency of TLK2 was considered the most likely underlying disease mechanism, leading to a consistent neurodevelopmental phenotype. So far, only four studies, conducted on 49 patients from North America and Europe, have been reported. Case presentation In this study, we reported a Chinese family with a TLK2-related neuropsychiatric phenotype. The proband, a boy aged 2 years and 6 months, presented with temper tantrums, mood lability, aggressiveness, congenital astigmatism, and distinctive facial dysmorphism. Whole-exome sequencing identified a novel heterozygous variation in TLK2 gene (c.49dupG, p. E17Gfs*10) in them. His father carried the same TLK2 gene variant and exhibited anxiety and irritability. The parental grandparents and other family members had no such variation. Moreover, the proband was found to have global developmental delay, autism-like symptoms, and mild elevated homo-vanillic acid (HVA) and 2,3-dihydroxy-2-methylbutyric acid levels tested in urine. Conclusion Herein, we identified a novel TLK2 variant from a Chinese family and reported a new neuropsychiatric phenotype. This study also expanded the genotype profile of the newly defined TLK2-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Hongmei Huang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yue Qian
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chenlu Yang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shijie Li
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
4
|
Villamor-Payà M, Sanchiz-Calvo M, Smak J, Pais L, Sud M, Shankavaram U, Lovgren AK, Austin-Tse C, Ganesh VS, Gay M, Vilaseca M, Arauz-Garofalo G, Palenzuela L, VanNoy G, O’Donnell-Luria A, Stracker TH. De novo TLK1 and MDM1 mutations in a patient with a neurodevelopmental disorder and immunodeficiency. iScience 2024; 27:109984. [PMID: 38868186 PMCID: PMC11166698 DOI: 10.1016/j.isci.2024.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
The Tousled-like kinases 1 and 2 (TLK1/TLK2) regulate DNA replication, repair and chromatin maintenance. TLK2 variants underlie the neurodevelopmental disorder (NDD) 'Intellectual Disability, Autosomal Dominant 57' (MRD57), characterized by intellectual disability and microcephaly. Several TLK1 variants have been reported in NDDs but their functional significance is unknown. A male patient presenting with ID, seizures, global developmental delay, hypothyroidism, and primary immunodeficiency was determined to have a heterozygous TLK1 variant (c.1435C>G, p.Q479E), as well as a mutation in MDM1 (c.1197dupT, p.K400∗). Cells expressing TLK1 p.Q479E exhibited reduced cytokine responses and elevated DNA damage, but not increased radiation sensitivity or DNA repair defects. The TLK1 p.Q479E variant impaired kinase activity but not proximal protein interactions. Our study provides the first functional characterization of NDD-associated TLK1 variants and suggests that, such as TLK2, TLK1 variants may impact development in multiple tissues and should be considered in the diagnosis of rare NDDs.
Collapse
Affiliation(s)
- Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - María Sanchiz-Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Jordann Smak
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Lynn Pais
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Malika Sud
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Uma Shankavaram
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Alysia Kern Lovgren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christina Austin-Tse
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay S. Ganesh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Lluís Palenzuela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Grace VanNoy
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anne O’Donnell-Luria
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Travis H. Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Asquith CRM, East MP, Laitinen T, Alamillo-Ferrer C, Hartikainen E, Wells CI, Axtman AD, Drewry DH, Tizzard GJ, Poso A, Willson TM, Johnson GL. Discovery and optimization of narrow spectrum inhibitors of Tousled like kinase 2 (TLK2) using quantitative structure activity relationships. Eur J Med Chem 2024; 271:116357. [PMID: 38636130 PMCID: PMC11421834 DOI: 10.1016/j.ejmech.2024.116357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024]
Abstract
The oxindole scaffold has been the center of several kinase drug discovery programs, some of which have led to approved medicines. A series of two oxindole matched pairs from the literature were identified where TLK2 was potently inhibited as an off-target kinase. The oxindole has long been considered a promiscuous kinase inhibitor template, but across these four specific literature oxindoles TLK2 activity was consistent, while the kinome profile was radically different ranging from narrow to broad spectrum kinome coverage. We synthesized a large series of analogues, utilizing quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites, kinome profiling, and small-molecule x-ray structural analysis to optimize TLK2 inhibition and kinome selectivity. This resulted in the identification of several narrow spectrum, sub-family selective, chemical tool compounds including 128 (UNC-CA2-103) that could enable elucidation of TLK2 biology.
Collapse
Affiliation(s)
- Christopher R M Asquith
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Michael P East
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Carla Alamillo-Ferrer
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Erkka Hartikainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Carrow I Wells
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alison D Axtman
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Graham J Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Timothy M Willson
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gary L Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
West KL, Kreiling N, Raney KD, Ghosal G, Leung JW. Autophosphorylation of the Tousled-like kinases TLK1 and TLK2 regulates recruitment to damaged chromatin via PCNA interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590659. [PMID: 38712247 PMCID: PMC11071368 DOI: 10.1101/2024.04.22.590659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tousled-like kinases 1 and 2 (TLK1 and 2) are cell cycle-regulated serine/threonine kinases that are involved in multiple biological processes. Mutation of TLK1 and 2 confer neurodegenerative diseases. Recent studies demonstrate that TLK1 and 2 are involved in DNA repair. However, there is no direct evidence that TLK1 and 2 function at DNA damage sites. Here, we show that both TLK1 and TLK2 are hyper-autophosphorylated at their N-termini, at least in part, mediated by their homo- or hetero-dimerization. We found that TLK1 and 2 hyper-autophosphorylation suppresses their recruitment to damaged chromatin. Furthermore, both TLK1 and 2 associate with PCNA specifically through their evolutionarily conserved non-canonical PCNA-interacting protein (PIP) box at the N-terminus, and mutation of the PIP-box abolishes their recruitment to DNA damage sites. Mechanistically, the TLK1 and 2 hyper-autophosphorylation masks the PIP-box and negatively regulates their recruitment to the DNA damage site. Overall, our study dissects the detailed genetic regulation of TLK1 and 2 at damaged chromatin, which provides important insights into their emerging roles in DNA repair.
Collapse
Affiliation(s)
- Kirk L. West
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Natasha Kreiling
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kevin D. Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Justin W Leung
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| |
Collapse
|
7
|
Asquith CRM, East MP, Laitinen T, Alamillo-Ferrer C, Hartikainen E, Wells CI, Axtman AD, Drewry DH, Tizzard GJ, Poso A, Willson TM, Johnson GL. Discovery and Optimization of Narrow Spectrum Inhibitors of Tousled Like Kinase 2 (TLK2) Using Quantitative Structure Activity Relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.28.573261. [PMID: 38234837 PMCID: PMC10793458 DOI: 10.1101/2023.12.28.573261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The oxindole scaffold has been the center of several kinase drug discovery programs, some of which have led to approved medicines. A series of two oxindole matched pairs from the literature were identified where TLK2 was a potent off-target kinase. The oxindole has long been considered a promiscuous inhibitor template, but across these 4 specific literature oxindoles TLK2 activity was consistent, while the kinome profile was radically different from narrow to broad spectrum coverage. We synthesized a large series of analogues and through quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites, small-molecule x-ray structural analysis and kinome profiling, narrow spectrum, sub-family selective, chemical tool compounds were identified to enable elucidation of TLK2 biology.
Collapse
Affiliation(s)
- Christopher R M Asquith
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael P East
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Carla Alamillo-Ferrer
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erkka Hartikainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Carrow I Wells
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alison D Axtman
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Graham J Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Timothy M Willson
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gary L Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Villamor-Payà M, Sanchiz-Calvo M, Smak J, Pais L, Sud M, Shankavaram U, Lovgren AK, Austin-Tse C, Ganesh VS, Gay M, Vilaseca M, Arauz-Garofalo G, Palenzuela L, VanNoy G, O'Donnell-Luria A, Stracker TH. Identification of a de novo mutation in TLK1 associated with a neurodevelopmental disorder and immunodeficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.22.23294267. [PMID: 37662408 PMCID: PMC10473813 DOI: 10.1101/2023.08.22.23294267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background The Tousled-like kinases 1 and 2 (TLK1/TLK2) regulate DNA replication, repair and chromatin maintenance. TLK2 variants are associated with 'Intellectual Disability, Autosomal Dominant 57' (MRD57), a neurodevelopmental disorder (NDD) characterized by intellectual disability (ID), autism spectrum disorder (ASD) and microcephaly. Several TLK1 variants have been reported in NDDs but their functional significance is unknown. Methods A male patient presenting with ID, seizures, global developmental delay, hypothyroidism, and primary immunodeficiency was determined to have a novel, heterozygous variant in TLK1 (c.1435C>G, p.Q479E) by genome sequencing (GS). Single cell gel electrophoresis, western blot, flow cytometry and RNA-seq were performed in patient-derived lymphoblast cell lines. In silico, biochemical and proteomic analysis were used to determine the functional impact of the p.Q479E variant and previously reported NDD-associated TLK1 variant, p.M566T. Results Transcriptome sequencing in patient-derived cells confirmed expression of TLK1 transcripts carrying the p.Q479E variant and revealed alterations in genes involved in class switch recombination and cytokine signaling. Cells expressing the p.Q479E variant exhibited reduced cytokine responses and higher levels of spontaneous DNA damage but not increased sensitivity to radiation or DNA repair defects. The p.Q479E and p.M566T variants impaired kinase activity but did not strongly alter localization or proximal protein interactions. Conclusion Our study provides the first functional characterization of TLK1 variants associated with NDDs and suggests potential involvement in central nervous system and immune system development. Our results indicate that, like TLK2 variants, TLK1 variants may impact development in multiple tissues and should be considered in the diagnosis of rare NDDs.
Collapse
Affiliation(s)
- Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - María Sanchiz-Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Jordann Smak
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Lynn Pais
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Malika Sud
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Uma Shankavaram
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Alysia Kern Lovgren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christina Austin-Tse
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay S Ganesh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Lluís Palenzuela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Grace VanNoy
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anne O'Donnell-Luria
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Woods E, Spiller M, Balasubramanian M. Report of two children with global developmental delay in association with de novo TLK2 variant and literature review. Am J Med Genet A 2022; 188:931-940. [PMID: 34821460 DOI: 10.1002/ajmg.a.62580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 11/06/2022]
Abstract
We describe clinical details, including novel findings, of two further children with the newly defined TLK2-related disorder. One patient was recruited to the Deciphering Developmental Delay (DDD) Study to identify underlying etiology of global developmental delay. The other was detected on whole-exome sequencing as part of second line investigations following normal microarray. Both patients were found to have de novo heterozygous pathogenic TLK2 variants. A novel c.6del p.(Glu3Lysfs*) loss-of-function frameshift variant was found in Patient 1. A c.1121+1G>A splice-donor variant was detected in Patient 2. TLK2-related neurodevelopmental disorder is a specific syndrome that has been recently described. Global developmental delay, behavioral problems, gastrointestinal disorders, and typical facial dysmorphism are common features. Neuropsychiatric disorders, ophthalmic, musculoskeletal and cranial abnormalities, as well as short stature, have also all been described. The novel findings we describe include sleep disturbance, nondifferentiation of lateral semi-circular canals (where asymmetric semi-circular canals were a feature in the previous cohort), vesico-ureteric reflux, and bilateral periauricular skin tags. Here, we report a novel TLK2 variant and previously undescribed features of TLK2-related disorder, to expand the clinical phenotype and provide further genotype-phenotype correlation.
Collapse
Affiliation(s)
- Emily Woods
- Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Michael Spiller
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK.,Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Pavinato L, Villamor-Payà M, Sanchiz-Calvo M, Andreoli C, Gay M, Vilaseca M, Arauz-Garofalo G, Ciolfi A, Bruselles A, Pippucci T, Prota V, Carli D, Giorgio E, Radio FC, Antona V, Giuffrè M, Ranguin K, Colson C, De Rubeis S, Dimartino P, Buxbaum JD, Ferrero GB, Tartaglia M, Martinelli S, Stracker TH, Brusco A. Functional analysis of TLK2 variants and their proximal interactomes implicates impaired kinase activity and chromatin maintenance defects in their pathogenesis. J Med Genet 2022; 59:170-179. [PMID: 33323470 PMCID: PMC10631451 DOI: 10.1136/jmedgenet-2020-107281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/19/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The Tousled-like kinases 1 and 2 (TLK1 and TLK2) are involved in many fundamental processes, including DNA replication, cell cycle checkpoint recovery and chromatin remodelling. Mutations in TLK2 were recently associated with 'Mental Retardation Autosomal Dominant 57' (MRD57, MIM# 618050), a neurodevelopmental disorder characterised by a highly variable phenotype, including mild-to-moderate intellectual disability, behavioural abnormalities, facial dysmorphisms, microcephaly, epilepsy and skeletal anomalies. METHODS We re-evaluate whole exome sequencing and array-CGH data from a large cohort of patients affected by neurodevelopmental disorders. Using spatial proteomics (BioID) and single-cell gel electrophoresis, we investigated the proximity interaction landscape of TLK2 and analysed the effects of p.(Asp551Gly) and a previously reported missense variant (c.1850C>T; p.(Ser617Leu)) on TLK2 interactions, localisation and activity. RESULTS We identified three new unrelated MRD57 families. Two were sporadic and caused by a missense change (c.1652A>G; p.(Asp551Gly)) or a 39 kb deletion encompassing TLK2, and one was familial with three affected siblings who inherited a nonsense change from an affected mother (c.1423G>T; p.(Glu475Ter)). The clinical phenotypes were consistent with those of previously reported cases. The tested mutations strongly impaired TLK2 kinase activity. Proximal interactions between TLK2 and other factors implicated in neurological disorders, including CHD7, CHD8, BRD4 and NACC1, were identified. Finally, we demonstrated a more relaxed chromatin state in lymphoblastoid cells harbouring the p.(Asp551Gly) variant compared with control cells, conferring susceptibility to DNA damage. CONCLUSION Our study identified novel TLK2 pathogenic variants, confirming and further expanding the MRD57-related phenotype. The molecular characterisation of missense variants increases our knowledge about TLK2 function and provides new insights into its role in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lisa Pavinato
- Department of Medical Sciences, University of Turin, Torino, Italy
- Institute of Human Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marina Villamor-Payà
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
| | - Maria Sanchiz-Calvo
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
| | - Cristina Andreoli
- Department of Environment and Health, Istituto Superiore di Sanità, Roma, Italy
| | - Marina Gay
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
| | - Marta Vilaseca
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
| | - Gianluca Arauz-Garofalo
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, Roma, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Tommaso Pippucci
- Medical Genetics Unity, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Valentina Prota
- Department of Environment and Health, Istituto Superiore di Sanità, Roma, Italy
| | - Diana Carli
- Department of Pediatrics and Public Health and Pediatric Sciences, University of Turin, Torino, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Turin, Torino, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Vincenzo Antona
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Mario Giuffrè
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Kara Ranguin
- Department of Genetics, Reference center for Rare Diseases and Developmental Anomalies, Caen, France
| | - Cindy Colson
- Department of Genetics, Reference center for Rare Diseases and Developmental Anomalies, Caen, France
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Paola Dimartino
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Giovanni Battista Ferrero
- Department of Pediatrics and Public Health and Pediatric Sciences, University of Turin, Torino, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, Roma, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma, Italy
| | - Travis H Stracker
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Torino, Italy
- Unit of Medical Genetics, "Città della Salute e della Scienza" University Hospital, Torino, Italy
| |
Collapse
|
11
|
Arlt A, Kohlschmidt N, Hentschel A, Bartels E, Groß C, Töpf A, Edem P, Szabo N, Sickmann A, Meyer N, Schara-Schmidt U, Lau J, Lochmüller H, Horvath R, Oktay Y, Roos A, Hiz S. Novel insights into PORCN mutations, associated phenotypes and pathophysiological aspects. Orphanet J Rare Dis 2022; 17:29. [PMID: 35101074 PMCID: PMC8802438 DOI: 10.1186/s13023-021-02068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Goltz syndrome (GS) is a X-linked disorder defined by defects of mesodermal- and ectodermal-derived structures and caused by PORCN mutations. Features include striated skin-pigmentation, ocular and skeletal malformations and supernumerary or hypoplastic nipples. Generally, GS is associated with in utero lethality in males and most of the reported male patients show mosaicism (only three non-mosaic surviving males have been described so far). Also, precise descriptions of neurological deficits in GS are rare and less severe phenotypes might not only be caused by mosaicism but also by less pathogenic mutations suggesting the need of a molecular genetics and functional work-up of these rare variants. RESULTS We report two cases: one girl suffering from typical skin and skeletal abnormalities, developmental delay, microcephaly, thin corpus callosum, periventricular gliosis and drug-resistant epilepsy caused by a PORCN nonsense-mutation (c.283C > T, p.Arg95Ter). Presence of these combined neurological features indicates that CNS-vulnerability might be a guiding symptom in the diagnosis of GS patients. The other patient is a boy with a supernumerary nipple and skeletal anomalies but also, developmental delay, microcephaly, cerebral atrophy with delayed myelination and drug-resistant epilepsy as predominant features. Skin abnormalities were not observed. Genotyping revealed a novel PORCN missense-mutation (c.847G > C, p.Asp283His) absent in the Genome Aggregation Database (gnomAD) but also identified in his asymptomatic mother. Given that non-random X-chromosome inactivation was excluded in the mother, fibroblasts of the index had been analyzed for PORCN protein-abundance and -distribution, vulnerability against additional ER-stress burden as well as for protein secretion revealing changes. CONCLUSIONS Our combined findings may suggest incomplete penetrance for the p.Asp283His variant and provide novel insights into the molecular etiology of GS by adding impaired ER-function and altered protein secretion to the list of pathophysiological processes resulting in the clinical manifestation of GS.
Collapse
Affiliation(s)
- Annabelle Arlt
- Institute of Clinical Genetics and Tumor Genetics, Bonn, Germany
| | | | | | - Enrika Bartels
- Institute of Clinical Genetics and Tumor Genetics, Bonn, Germany
| | - Claudia Groß
- Institute of Clinical Genetics and Tumor Genetics, Bonn, Germany
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Pınar Edem
- Department of Medical Biology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Nora Szabo
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Albert Sickmann
- Leibniz Institute for Analytical Sciences (ISAS), Dortmund, Germany
| | - Nancy Meyer
- Pediatric Neurology, Faculty of Medicine, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Ulrike Schara-Schmidt
- Pediatric Neurology, Faculty of Medicine, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Jarred Lau
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Yavuz Oktay
- Department of Medical Biology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Andreas Roos
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.
| | - Semra Hiz
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| |
Collapse
|
12
|
Stracker TH, Morrison CG, Gergely F. Molecular causes of primary microcephaly and related diseases: a report from the UNIA Workshop. Chromosoma 2020; 129:115-120. [PMID: 32424716 DOI: 10.1007/s00412-020-00737-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
The International University of Andalucía (UNIA) Current Trends in Biomedicine Workshop on Molecular Causes of Primary Microcephaly and Related Diseases took place in Baeza, Spain, November 18-20, 2019. This meeting brought together scientists from Europe, the USA and China to discuss recent advances in our molecular and genetic understanding of a group of rare neurodevelopmental diseases characterised by primary microcephaly, a condition in which head circumference is smaller than normal at birth. Microcephaly can be caused by inherited mutations that affect key cellular processes, or environmental exposure to radiation or other toxins. It can also result from viral infection, as exemplified by the recent Zika virus outbreak in South America. Here we summarise a number of the scientific advances presented and topics discussed at the meeting.
Collapse
Affiliation(s)
- Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona) and Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Biosciences Building, Dangan, Galway, H91 TK33, Ireland
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|