1
|
Siqueiros-Sanchez M, Serur Y, McGhee CA, Smith TF, Green T. Social Communication in Ras Pathway Disorders: A Comprehensive Review from Genetics to Behavior in Neurofibromatosis Type 1 and Noonan Syndrome. Biol Psychiatry 2024:S0006-3223(24)01624-X. [PMID: 39366539 DOI: 10.1016/j.biopsych.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024]
Abstract
Neurofibromatosis type 1 (NF1) and Noonan syndrome (NS) are neurogenetic syndromes caused by pathogenetic variants encoding components of the Ras-ERK-MAPK signaling pathway (Ras pathway). NF1 and NS are associated with differences in social communication and related neuropsychiatric risks. During the last decade, there has been growing interest in Ras-linked syndromes as models to understand social communication deficits and autism spectrum disorders. We systematically review the literature between 2010-2023 focusing on the social communication construct of the RDoC framework. We provide an integrative summary of the research on facial and non-facial social communication processes in NF1 and NS across molecular, cellular, neural circuitry, and behavioral domains. At the molecular and cellular levels, dysregulation in the Ras pathway is intricately tied to variations in social communication through changes in GABAergic, glutamatergic, and serotonergic transmission, as well as inhibitory/excitatory imbalance. Neural circuitry typically associated with learning, attention, and memory in NF1 and NS (e.g., cortico-striatal connectivity), is also implicated in social communication. We highlight less researched, potential mechanisms for social communication, such as white matter connectivity and the default mode network. Finally, key gaps in NF1 and NS literature are identified and a roadmap for future research is provided. By leveraging genetic syndromes research, we can understand the mechanisms associated with behaviors and psychiatric disorders.
Collapse
Affiliation(s)
- Monica Siqueiros-Sanchez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Yaffa Serur
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chloe A McGhee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Taylor F Smith
- Department of Psychology and Child Development, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA
| | - Tamar Green
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Ottenhoff MJ, Mous SE, Castricum J, Rietman AB, Oostenbrink R, van der Vaart T, Tulen JHM, Parra A, Ramos FJ, Legius E, Moll HA, Elgersma Y, de Wit MCY. Lamotrigine for cognitive deficits associated with neurofibromatosis type 1: A phase II randomized placebo-controlled trial. Dev Med Child Neurol 2024. [PMID: 39340758 DOI: 10.1111/dmcn.16094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024]
Abstract
AIM To find proof-of-principle evidence for short-term treatment with lamotrigine to improve cognitive functioning of adolescents with neurofibromatosis type 1 (NF1). METHOD This was a double-blind, parallel-group, randomized, placebo-controlled clinical trial (the NF1-EXCEL trial: Examining the Cognitive and Electrophysiological benefit of Lamotrigine in Neurofibromatosis type 1; Clinicaltrials.gov identifier NCT02256124), with the aim of enrolling 60 adolescents with NF1 aged 12 to 17 years 6 months. The short-term study intervention was 200 mg of lamotrigine taken orally for 26 weeks. The primary outcome was performance IQ tested with the Wechsler Intelligence Scale for Children, Third Edition, complemented with secondary outcomes for visuospatial learning efficacy, visual perception, visual sustained attention, fine motor coordination, attention-deficit/hyperactivity problems, and executive functioning. RESULTS We screened 402 adolescents with NF1, of whom 31 (eight females) entered the study. Complete-case analysis showed no effect of lamotrigine on either performance IQ (-0.23, 95% CI -6.90 to 6.44) or most secondary outcomes. Visual sustained attention showed a trend towards better performance in the lamotrigine group (-0.81, 95% CI -1.67 to 0.04). INTERPRETATION Lamotrigine did not improve cognitive functioning in adolescents with NF1. The small treatment effects make it unlikely that a larger sample size could have changed this conclusion.
Collapse
Affiliation(s)
- Myrthe J Ottenhoff
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sabine E Mous
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
- Child Brain Center, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jesminne Castricum
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - André B Rietman
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
- Child Brain Center, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Rianne Oostenbrink
- Department of Pediatrics, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Thijs van der Vaart
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Joke H M Tulen
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Alba Parra
- Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Federico J Ramos
- Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Eric Legius
- Center for Human Genetics, University Hospital Leuven, Leuven, Belgium
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Henriette A Moll
- Department of Pediatrics, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ype Elgersma
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marie-Claire Y de Wit
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus Medical Center, Rotterdam, the Netherlands
- Child Brain Center, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
- Department of Pediatric Neurology, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Garzon JP, Patete A, Aschbacher-Smith L, Qu'd D, Kelly-Mancuso G, Raski CR, Weisman AG, Hankins M, Sawin M, Kim K, Drackley A, Zeid J, Weaver KN, Hopkin RJ, Saal HM, Charrow J, Schorry E, Listernick R, Simpson BN, Prada CE. Expanding the phenotype of neurofibromatosis type 1 microdeletion syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2024:e32095. [PMID: 39022906 DOI: 10.1002/ajmg.c.32095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/19/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
Neurofibromatosis type 1 (NF-1) microdeletion syndrome accounts for 5 to 11% of individuals with NF-1. The aim of our study was to characterize a large cohort of individuals with NF-1 microdeletion syndrome and expand its natural history. We conducted a retrospective chart review from 1994 to 2024 of individuals with NF-1 microdeletion syndrome followed at two large Neurofibromatosis Clinics. This cohort consists of 57 individuals with NF-1 microdeletion syndrome (28 type-1, 4 type-2, 2 type-3, 9 atypical deletions, and 14 indeterminate). We note 38/56 (67.9%) with describable facial features, 25/57 (43.8%) with plexiform neurofibromas, and 3/57 (5.2%) with malignant peripheral nerve sheath tumors within the observed period. The most reported neurodevelopmental manifestations from school-age or older individuals included 39/49 (79.6%) with developmental delays, 35/49 (71.4%) with expressive and/or receptive speech delays, 33/41 (80.5%) with learning difficulties, and 23/42 (54.8%) with attention-deficit/hyperactivity disorder. Full-scale IQ testing data was available for 22 individuals (range: 50-96). Of the 21 adults in this cohort, 14/21 (66.7%) graduated from high school, and 4/21 (19.0%) had some college experience. Many individuals received academic support (i.e., special education, individual education plan). In this cohort, neurocognitive outcomes in adults varied more than typically reported in the literature.
Collapse
Affiliation(s)
- Jenny P Garzon
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Andrea Patete
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Lindsey Aschbacher-Smith
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Dima Qu'd
- Alabama College of Osteopathic Medicine, Dothan, Alabama, USA
| | - Geraldine Kelly-Mancuso
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Carolyn R Raski
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Allison Goetsch Weisman
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Madison Hankins
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Michael Sawin
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Katherine Kim
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Andy Drackley
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Janice Zeid
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Ophthalmology, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - K Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Howard M Saal
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Joel Charrow
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Elizabeth Schorry
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert Listernick
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Brittany N Simpson
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Le Bonheur Children's Hospital, Memphis, Tennessee, USA
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Carlos E Prada
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Zhu B, Zheng T, Wang W, Gu Y, Wei C, Li Q, Wang Z. Genotype-phenotype correlations of neurofibromatosis type 1: a cross-sectional study from a large Chinese cohort. J Neurol 2024; 271:1893-1900. [PMID: 38095723 DOI: 10.1007/s00415-023-12127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 03/28/2024]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a highly heterogeneous autosomal genetic disorder characterized by a broad spectrum of clinical and molecular manifestations. The correlations between genotype and phenotype in NF1 remain elusive. This study aimed to elucidate genotype-phenotype associations in a large Chinese cohort of NF1 patients. METHODS We included NF1 patients from our center who underwent genetic testing for NF1 variants and systemic examination. Genotype-phenotype correlation analyses were performed, focusing on variation types and involved neurofibromin domains. RESULTS A total of 195 patients were enrolled, comprising 105 males and 90 females, with a median age of 18 years. Truncating variants, single amino acid variations, and splicing variants accounted for 139/195 (71.3%), 23/195 (11.8%), and 33/195 (16.9%), respectively. Patients with splicing variants exhibited a significantly higher prevalence of spinal plexiform neurofibromas (spinal PNF) than those with truncating variants (76.4% vs. 51.8%; p = 0.022). Variations affecting the PKC domain were associated with higher rates of cutaneous neurofibromas (CNF) (100% vs. 64.9%, p < 0.001), Lisch nodules (100% vs. 61.2%, p < 0.001), plexiform neurofibromas (PNF) (100% vs. 95.7%, p = 0.009), and psychiatric disorders (11.8% vs. 1.6%, p = 0.042). Patients with mutations in the CSRD had an elevated risk of secondary primary malignancies (11.6% vs. 2.8%, p = 0.015). GRD involvement might enhance the risk of Lisch nodules (76.9% vs. 53.7%, p = 0.044). Variations in the Sec14-PH domain were correlated with a higher rate of CNF (76.8% vs. 58.6%, p = 0.014). Additionally, we found that the p.R1748* variants carry a high risk of malignancy. CONCLUSION Our study suggested some novel genotype-phenotype correlations within a Chinese cohort, providing innovative insights into this complex field that may contribute to genetic counseling, risk stratification, and clinical management for the NF1 population.
Collapse
Affiliation(s)
- Beiyao Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Tingting Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yihui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
5
|
Kallionpää RA, Johansson E, Böckerman P, Peltonen J, Peltonen S. The contribution of morbidity and unemployment for the reduced labor market participation of individuals with neurofibromatosis 1 in Finland. Eur J Hum Genet 2024; 32:83-90. [PMID: 37460655 PMCID: PMC10772102 DOI: 10.1038/s41431-023-01426-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 01/09/2024] Open
Abstract
Neurofibromatosis 1 (NF1) is a multisystem disorder associated with, for example, a high risk for cancer, a variety of behavioral and cognitive deficits, low educational attainment and decreased income. We now examined the labor market participation of individuals with NF1. We analyzed the numbers of days of work, unemployment, and sickness allowance among 742 Finnish individuals with NF1 aged 20-59 years using nationwide register data from Statistics Finland and the Social Insurance Institution of Finland. The individuals with NF1 were compared with a control cohort of 8716 individuals matched with age, sex, and the area of residence. Individuals with NF1 had a significantly lower number of working days per year than the controls (rate ratio [RR] 0.93, 95% CI 0.91-0.95). Unemployment (RR 1.79, 95% CI 1.58-2.02), and sickness absence (RR 1.44, 95% CI 1.25-1.67) were more frequent in the NF1 than in the control group. The causes of sickness allowances were highly concordant with the previously reported morbidity profile of NF1 including neoplasms, cardiovascular disease, mental and behavioral diseases, and neurological diseases. In conclusion, NF1 significantly interferes with labor market participation via both unemployment and morbidity. Unemployment seems to cause more days of not working than sickness absence.
Collapse
Affiliation(s)
- Roope A Kallionpää
- Cancer Research Unit and FICAN West Cancer Centre, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Edvard Johansson
- Faculty of Social Sciences, Business, and Economics, Åbo Akademi University, Turku, Finland
| | - Petri Böckerman
- Jyväskylä University School of Business and Economics, Jyväskylä, Finland
- Labour Institute for Economic Research LABORE, Helsinki, Finland
- IZA Institute of Labor Economics, Bonn, Germany
| | - Juha Peltonen
- Cancer Research Unit and FICAN West Cancer Centre, Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Sirkku Peltonen
- Department of Dermatology and Venereology, University of Turku, Turku, Finland
- Department of Dermatology, Turku University Hospital, Turku, Finland
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Dermatology and Venereology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Dermatology and Allergology, University of Helsinki, Helsinki, Finland
- Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
6
|
Stefanski A, Pérez-Palma E, Brünger T, Montanucci L, Gati C, Klöckner C, Johannesen KM, Goodspeed K, Macnee M, Deng AT, Aledo-Serrano Á, Borovikov A, Kava M, Bouman AM, Hajianpour MJ, Pal DK, Engelen M, Hagebeuk EEO, Shinawi M, Heidlebaugh AR, Oetjens K, Hoffman TL, Striano P, Freed AS, Futtrup L, Balslev T, Abulí A, Danvoye L, Lederer D, Balci T, Nouri MN, Butler E, Drewes S, van Engelen K, Howell KB, Khoury J, May P, Trinidad M, Froelich S, Lemke JR, Tiller J, Freed AN, Kang JQ, Wuster A, Møller RS, Lal D. SLC6A1 variant pathogenicity, molecular function and phenotype: a genetic and clinical analysis. Brain 2023; 146:5198-5208. [PMID: 37647852 PMCID: PMC10689929 DOI: 10.1093/brain/awad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/05/2023] [Accepted: 07/08/2023] [Indexed: 09/01/2023] Open
Abstract
Genetic variants in the SLC6A1 gene can cause a broad phenotypic disease spectrum by altering the protein function. Thus, systematically curated clinically relevant genotype-phenotype associations are needed to understand the disease mechanism and improve therapeutic decision-making. We aggregated genetic and clinical data from 172 individuals with likely pathogenic/pathogenic (lp/p) SLC6A1 variants and functional data for 184 variants (14.1% lp/p). Clinical and functional data were available for a subset of 126 individuals. We explored the potential associations of variant positions on the GAT1 3D structure with variant pathogenicity, altered molecular function and phenotype severity using bioinformatic approaches. The GAT1 transmembrane domains 1, 6 and extracellular loop 4 (EL4) were enriched for patient over population variants. Across functionally tested missense variants (n = 156), the spatial proximity from the ligand was associated with loss-of-function in the GAT1 transporter activity. For variants with complete loss of in vitro GABA uptake, we found a 4.6-fold enrichment in patients having severe disease versus non-severe disease (P = 2.9 × 10-3, 95% confidence interval: 1.5-15.3). In summary, we delineated associations between the 3D structure and variant pathogenicity, variant function and phenotype in SLC6A1-related disorders. This knowledge supports biology-informed variant interpretation and research on GAT1 function. All our data can be interactively explored in the SLC6A1 portal (https://slc6a1-portal.broadinstitute.org/).
Collapse
Affiliation(s)
- Arthur Stefanski
- Genomic Medicine Institute and Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Eduardo Pérez-Palma
- Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Santiago de Chile 7610658, Chile
| | - Tobias Brünger
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, Cologne 50931, Germany
| | - Ludovica Montanucci
- Genomic Medicine Institute and Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Cornelius Gati
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre, Dianalund 4293, Denmark
- Department of Genetics, University Hospital of Copenhagen, Rigshispitalet, Copenhagen 2100, Denmark
| | - Kimberly Goodspeed
- Children’s Health, Medical Center, Dallas, TX 75235, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marie Macnee
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, Cologne 50931, Germany
| | - Alexander T Deng
- Clinical Genetics, Guys and St Thomas NHS Trust, London SE19RT, UK
| | - Ángel Aledo-Serrano
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Artem Borovikov
- Research and Counseling Department, Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Maina Kava
- Department of Neurology and Metabolic Medicine, Perth Children’s Hospital, Perth 6009, Australia
- School of Paediatrics and Child Health, UWA Medical School, University of Western Australia, Perth 6009, Australia
| | - Arjan M Bouman
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam 3015GD, The Netherlands
| | - M J Hajianpour
- Department of Pediatrics, Division of Medical Genetics and Genomics, Albany Medical College, Albany Med Health System, Albany, NY 12208, USA
| | - Deb K Pal
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE58AF, UK
- Department of Basic and Clinical Neurosciences, King’s College Hospital, London SE59RS, UK
| | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam Public Health, Amsterdam University Medical Center, Amsterdam 1081HV, The Netherlands
| | - Eveline E O Hagebeuk
- Department of Pediatric Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede and Zwolle 2103SW, The Netherlands
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St.Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Kathryn Oetjens
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA 17837, USA
| | - Trevor L Hoffman
- Department of Regional Genetics, Anaheim, Southern California Kaiser Permanente Medical Group, CA 92806, USA
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa 16147, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa 16132, Italy
| | - Amanda S Freed
- Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 91101, USA
| | - Line Futtrup
- Department of Paediatrics, Regional Hospital of Central Jutland, Viborg 8800, Denmark
| | - Thomas Balslev
- Department of Paediatrics, Regional Hospital of Central Jutland, Viborg 8800, Denmark
- Centre for Educational Development, Aarhus University, Aarhus 8200, Denmark
| | - Anna Abulí
- Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, University Hospital Vall d’Hebron, Barcelona 08035, Spain
| | - Leslie Danvoye
- Department of Neurology, Université catholique de Louvain, Cliniques universitaires Saint-Luc, Brussels 1200, Belgium
| | - Damien Lederer
- Centre for Human Genetics, Institute for Pathology and Genetics, Gosselies 6041, Belgium
| | - Tugce Balci
- Department of Pediatrics, Division of Medical Genetics, Western University, London, ON N6A3K7, Canada
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre and Children's Health Research Institute, London, ON N6A5A5, Canada
| | - Maryam Nabavi Nouri
- Department of Paediatrics, Division of Pediatric Neurology, London Health Sciences Centre, London, ON N6A5W9, Canada
| | | | - Sarah Drewes
- Department of Medical Genetics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kalene van Engelen
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, ON N6A5W9, Canada
| | - Katherine B Howell
- Department of Neurology, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Jean Khoury
- Genomic Medicine Institute and Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Marena Trinidad
- Translational Genomics, BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| | - Steven Froelich
- Translational Genomics, BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig 04103, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig 04103, Germany
| | | | | | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurology, Vanderbilt Brain Institute, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Kennedy Center of Human Development, Nashville, TN 37203, USA
| | - Arthur Wuster
- Translational Genomics, BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre, Dianalund 4293, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense 5000, Denmark
| | - Dennis Lal
- Genomic Medicine Institute and Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
- Stanley Center of Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
7
|
Castricum J, Tulen JHM, Taal W, Pel JJM, Elgersma Y. Visual-spatial and visuomotor functioning in adults with neurofibromatosis type 1. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2023; 67:362-374. [PMID: 36625000 DOI: 10.1111/jir.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a neurodevelopmental genetic disorder associated with visual-spatial and visuomotor deficits, which have not been studied well in adults with NF1. METHODS In 22 adults with NF1 and 31 controls, visuomotor functioning was assessed by measuring eye latency, hand latency and hand accuracy during visuomotor tasks. Visual-spatial functioning was assessed by measuring eye movement responses during the Visual Threshold Task. RESULTS The NF1 group had a significantly shorter eye latency than the control group and was less accurate in their hand movements during specific visuomotor tasks. The groups showed no differences in eye movement responses during the Visual Threshold Task and in hand latency during the visuomotor tasks. CONCLUSIONS In contrast to studies in children with NF1, we found no alterations in visual-spatial information processing in adults. Impairments in eye latency and hand accuracy during specific visuomotor tasks may indicate deficits in visuomotor functioning in adults with NF1.
Collapse
Affiliation(s)
- J Castricum
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J H M Tulen
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - W Taal
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Neurology/Neuro-oncology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - J J M Pel
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Y Elgersma
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Neurology/Neuro-oncology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Ottenhoff MJ, Dijkhuizen S, Ypelaar ACH, de Oude NL, Koekkoek SKE, Wang SSH, De Zeeuw CI, Elgersma Y, Boele HJ. Cerebellum-dependent associative learning is not impaired in a mouse model of neurofibromatosis type 1. Sci Rep 2022; 12:19041. [PMID: 36351971 PMCID: PMC9646701 DOI: 10.1038/s41598-022-21429-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Abstract
Individuals with Neurofibromatosis type 1 (NF1) experience a high degree of motor problems. The cerebellum plays a pivotal role in motor functioning and the NF1 gene is highly expressed in cerebellar Purkinje cells. However, it is not well understood to what extent NF1 affects cerebellar functioning and how this relates to NF1 motor functioning. Therefore, we subjected global Nf1+/- mice to a cerebellum-dependent associative learning task, called Pavlovian eyeblink conditioning. Additionally, we assessed general motor function and muscle strength in Nf1+/- mice. To our surprise, we found that Nf1+/- mice showed a moderately increased learning rate of conditioned eyeblink responses, as well as improved accuracy in the adaptive timing of the eyeblink responses. Locomotion, balance, general motor function, and muscle strength were not affected in Nf1+/- mice. Together, our results support the view that cerebellar function in Nf1+/- mice is unimpaired.
Collapse
Affiliation(s)
- M J Ottenhoff
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, 3015GD, The Netherlands
| | - S Dijkhuizen
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - A C H Ypelaar
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - N L de Oude
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - S K E Koekkoek
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - S S-H Wang
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, USA
| | - C I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
- Royal Academy of Arts and Sciences (KNAW), Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Y Elgersma
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, 3015GD, The Netherlands
- Department of Clinical Genetics, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - H J Boele
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands.
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, USA.
| |
Collapse
|
9
|
Crow AJD, Janssen JM, Marshall C, Moffit A, Brennan L, Kohler CG, Roalf DR, Moberg PJ. A systematic review and meta-analysis of intellectual, neuropsychological, and psychoeducational functioning in neurofibromatosis type 1. Am J Med Genet A 2022; 188:2277-2292. [PMID: 35546306 PMCID: PMC9302478 DOI: 10.1002/ajmg.a.62773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/27/2022] [Accepted: 04/06/2022] [Indexed: 01/07/2023]
Abstract
Neurofibromatosis Type 1 (NF1) is a common genetic disorder frequently associated with cognitive deficits. Despite cognitive deficits being a key feature of NF1, the profile of such impairments in NF1 has been shown to be heterogeneous. Thus, we sought to quantitatively synthesize the extant literature on cognitive functioning in NF1. A random-effects meta-analysis of cross-sectional studies was carried out comparing cognitive functioning of patients with NF1 to typically developing or unaffected sibling comparison subjects of all ages. Analyses included 50 articles (Total NNF1 = 1,522; MAge = 15.70 years, range = 0.52-69.60), yielding 460 effect sizes. Overall moderate deficits were observed [g = -0.64, 95% CI = (-0.69, -0.60)] wherein impairments differed at the level of cognitive domain. Deficits ranged from large [general intelligence: g = -0.95, 95% CI = (-1.12, -0.79)] to small [emotion: g = -0.37, 95% CI = (-0.63, -0.11)]. Moderation analyses revealed nonsignificant contributions of age, sex, educational attainment, and parental level of education to outcomes. These results illustrate that cognitive impairments are diffuse and salient across the lifespan in NF1. Taken together, these results further demonstrate efforts should be made to evaluate and address cognitive morbidity in patients with NF1 in conjunction with existing best practices.
Collapse
Affiliation(s)
- Andrew J D Crow
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jennica M Janssen
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Psychology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Carolina Marshall
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Psychology, Hope College, Holland, Michigan, USA
| | - Anne Moffit
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Christian G Kohler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Lifespan Brain Institute (LiBI), Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Lifespan Brain Institute (LiBI), Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Paul J Moberg
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Catsman-Berrevoets CE. Visual processing difficulties in children with NF1. A common but not widely recognized underlying cause of reading difficulties. Eur J Paediatr Neurol 2022; 38:A2. [PMID: 35490035 DOI: 10.1016/j.ejpn.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Coriene E Catsman-Berrevoets
- Department of Paediatric Neurology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
11
|
Castricum J, Tulen JHM, Taal W, Rietman AB, Elgersma Y. Attention and Motor Learning in Adult Patients with Neurofibromatosis Type 1. J Atten Disord 2022; 26:563-572. [PMID: 33978520 PMCID: PMC8987013 DOI: 10.1177/10870547211012035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder that is associated with cognitive disabilities, including attention and motor learning problems. These disabilities have been extensively studied in children with NF1 but limited studies have been performed in adults. METHOD Attention, motor learning and intellectual performance were studied with neuropsychological tasks in 32 adults with NF1 and 32 controls. RESULTS The NF1 and control group performed similarly on attention and motor learning tasks, although controls had shorter reaction times than adults with NF1 during the motor learning task (t[60] = -2.20, p = .03). Measures of attention or motor learning were not significantly associated with reduced intellectual performance in NF1. CONCLUSION In contrast to many studies in children with NF1, our findings did not provide evidence for presence of attention or motor learning problems in adults with NF1 in neuropsychological tasks. Our observations may be of clinical importance to determine treatment focus in adults with NF1.
Collapse
Affiliation(s)
- Jesminne Castricum
- Erasmus University Medical Center, Rotterdam, The Netherlands,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, the Netherlands
| | - Joke H. M. Tulen
- Erasmus University Medical Center, Rotterdam, The Netherlands,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, the Netherlands
| | - Walter Taal
- Erasmus University Medical Center, Rotterdam, The Netherlands,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, the Netherlands
| | - André B. Rietman
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, the Netherlands,Erasmus University Medical Center Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Ype Elgersma
- Erasmus University Medical Center, Rotterdam, The Netherlands,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, the Netherlands,Ype Elgersma, Department of Clinical Genetics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Lubbers K, Stijl EM, Dierckx B, Hagenaar DA, Ten Hoopen LW, Legerstee JS, de Nijs PFA, Rietman AB, Greaves-Lord K, Hillegers MHJ, Dieleman GC, Mous SE. Autism Symptoms in Children and Young Adults With Fragile X Syndrome, Angelman Syndrome, Tuberous Sclerosis Complex, and Neurofibromatosis Type 1: A Cross-Syndrome Comparison. Front Psychiatry 2022; 13:852208. [PMID: 35651825 PMCID: PMC9149157 DOI: 10.3389/fpsyt.2022.852208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The etiology of autism spectrum disorder (ASD) remains unclear, due to genetic heterogeneity and heterogeneity in symptoms across individuals. This study compares ASD symptomatology between monogenetic syndromes with a high ASD prevalence, in order to reveal syndrome specific vulnerabilities and to clarify how genetic variations affect ASD symptom presentation. METHODS We assessed ASD symptom severity in children and young adults (aged 0-28 years) with Fragile X Syndrome (FXS, n = 60), Angelman Syndrome (AS, n = 91), Neurofibromatosis Type 1 (NF1, n = 279) and Tuberous Sclerosis Complex (TSC, n = 110), using the Autism Diagnostic Observation Schedule and Social Responsiveness Scale. Assessments were part of routine clinical care at the ENCORE expertise center in Rotterdam, the Netherlands. First, we compared the syndrome groups on the ASD classification prevalence and ASD severity scores. Then, we compared individuals in our syndrome groups with an ASD classification to a non-syndromic ASD group (nsASD, n = 335), on both ASD severity scores and ASD symptom profiles. Severity scores were compared using MANCOVAs with IQ and gender as covariates. RESULTS Overall, ASD severity scores were highest for the FXS group and lowest for the NF1 group. Compared to nsASD, individuals with an ASD classification in our syndrome groups showed less problems on the instruments' social domains. We found a relative strength in the AS group on the social cognition, communication and motivation domains and a relative challenge in creativity; a relative strength of the NF1 group on the restricted interests and repetitive behavior scale; and a relative challenge in the FXS and TSC groups on the restricted interests and repetitive behavior domain. CONCLUSION The syndrome-specific strengths and challenges we found provide a frame of reference to evaluate an individual's symptoms relative to the larger syndromic population and to guide treatment decisions. Our findings support the need for personalized care and a dimensional, symptom-based diagnostic approach, in contrast to a dichotomous ASD diagnosis used as a prerequisite for access to healthcare services. Similarities in ASD symptom profiles between AS and FXS, and between NF1 and TSC may reflect similarities in their neurobiology. Deep phenotyping studies are required to link neurobiological markers to ASD symptomatology.
Collapse
Affiliation(s)
- Kyra Lubbers
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eefje M Stijl
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bram Dierckx
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Doesjka A Hagenaar
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of General Paediatrics, Erasmus MC, Rotterdam, Netherlands
| | - Leontine W Ten Hoopen
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen S Legerstee
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pieter F A de Nijs
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - André B Rietman
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Kirstin Greaves-Lord
- Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Clinical Psychology and Experimental Psychopathology Unit, Department of Psychology, Rijksuniversiteit Groningen, Groningen, Netherlands.,Yulius Mental Health, Dordrecht, Netherlands.,Jonx Autism Team Northern-Netherlands, Lentis Mental Health, Groningen, Netherlands
| | - Manon H J Hillegers
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Gwendolyn C Dieleman
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sabine E Mous
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
13
|
Kehrer-Sawatzki H, Wahlländer U, Cooper DN, Mautner VF. Atypical NF1 Microdeletions: Challenges and Opportunities for Genotype/Phenotype Correlations in Patients with Large NF1 Deletions. Genes (Basel) 2021; 12:genes12101639. [PMID: 34681033 PMCID: PMC8535936 DOI: 10.3390/genes12101639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Patients with neurofibromatosis type 1 (NF1) and type 1 NF1 deletions often exhibit more severe clinical manifestations than patients with intragenic NF1 gene mutations, including facial dysmorphic features, overgrowth, severe global developmental delay, severe autistic symptoms and considerably reduced cognitive abilities, all of which are detectable from a very young age. Type 1 NF1 deletions encompass 1.4 Mb and are associated with the loss of 14 protein-coding genes, including NF1 and SUZ12. Atypical NF1 deletions, which do not encompass all 14 protein-coding genes located within the type 1 NF1 deletion region, have the potential to contribute to the delineation of the genotype/phenotype relationship in patients with NF1 microdeletions. Here, we review all atypical NF1 deletions reported to date as well as the clinical phenotype observed in the patients concerned. We compare these findings with those of a newly identified atypical NF1 deletion of 698 kb which, in addition to the NF1 gene, includes five genes located centromeric to NF1. The atypical NF1 deletion in this patient does not include the SUZ12 gene but does encompass CRLF3. Comparative analysis of such atypical NF1 deletions suggests that SUZ12 hemizygosity is likely to contribute significantly to the reduced cognitive abilities, severe global developmental delay and facial dysmorphisms observed in patients with type 1 NF1 deletions.
Collapse
Affiliation(s)
- Hildegard Kehrer-Sawatzki
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Correspondence: ; Tel.: +49-731-500-65421
| | - Ute Wahlländer
- Kliniken des Bezirks Oberbayern (KBO), Children Clinical Center Munich, 81377 Munich, Germany;
| | - David N. Cooper
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
14
|
Kehrer-Sawatzki H, Cooper DN. Classification of NF1 microdeletions and its importance for establishing genotype/phenotype correlations in patients with NF1 microdeletions. Hum Genet 2021; 140:1635-1649. [PMID: 34535841 PMCID: PMC8553723 DOI: 10.1007/s00439-021-02363-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/01/2021] [Indexed: 01/12/2023]
Abstract
An estimated 5–11% of patients with neurofibromatosis type-1 (NF1) harbour large deletions encompassing the NF1 gene and flanking regions. These NF1 microdeletions are subclassified into type 1, 2, 3 and atypical deletions which are distinguishable from each other by their extent and by the number of genes included within the deletion regions as well as the frequency of mosaicism with normal cells. Most common are type-1 NF1 deletions which encompass 1.4-Mb and 14 protein-coding genes. Type-1 deletions are frequently associated with overgrowth, global developmental delay, cognitive disability and dysmorphic facial features which are uncommon in patients with intragenic pathogenic NF1 gene variants. Further, patients with type-1 NF1 deletions frequently exhibit high numbers of neurofibromas and have an increased risk of malignant peripheral nerve sheath tumours. Genes located within the type-1 NF1 microdeletion interval and co-deleted with NF1 are likely to act as modifiers responsible for the severe disease phenotype in patients with NF1 microdeletions, thereby causing the NF1 microdeletion syndrome. Genotype/phenotype correlations in patients with NF1 microdeletions of different lengths are important to identify such modifier genes. However, these correlations are critically dependent upon the accurate characterization of the deletions in terms of their extent. In this review, we outline the utility as well as the shortcomings of multiplex ligation-dependent probe amplification (MLPA) to classify the different types of NF1 microdeletion and indicate the importance of high-resolution microarray analysis for correct classification, a necessary precondition to identify those genes responsible for the NF1 microdeletion syndrome.
Collapse
Affiliation(s)
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
15
|
Kallionpää RA, Valtanen M, Auranen K, Uusitalo E, Rinne JO, Peltonen S, Peltonen J. Increased risk for dementia in neurofibromatosis type 1. Genet Med 2021; 23:2219-2222. [PMID: 34257422 PMCID: PMC8553610 DOI: 10.1038/s41436-021-01261-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To determine the risk for dementia in neurofibromatosis type 1 (NF1) using a Finnish nationwide cohort of individuals with NF1, and data from national registries. METHODS A Finnish cohort of 1,349 individuals with confirmed NF1 according to the US National Institutes of Health (NIH) diagnostic criteria was compared with a control cohort of 13,870 individuals matched for age, sex, and area of residence. Dementia-related hospital visits were retrieved from the Finnish Care Register for Health Care using International Classification of Diseases, 10th revision (ICD-10) diagnosis codes G30 and F00-F03. Purchases of antidementia drugs were queried with Anatomical Therapeutic Chemical (ATC) classification code N06D from the drug reimbursement register maintained by the Social Insurance Institution of Finland. The follow-up spanned 1998-2014. RESULTS Totals of 16 and 165 individuals with at least two dementia-related diagnoses or drug purchases were identified in the NF1 and control cohorts, respectively. The hazard ratio for dementia in NF1 was 1.67 (95% confidence interval [CI] 1.00-2.80, P = 0.050). In an analysis stratified by the type of dementia, the risk for Alzheimer disease was increased in NF1 compared to controls with a hazard ratio of 2.88 (95% CI 1.47-5.66, P = 0.002). CONCLUSION Dementia and especially Alzheimer disease are previously unrecognized neurological complications of NF1.
Collapse
Affiliation(s)
| | - Mikko Valtanen
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Dermatology and Venereology, University of Turku, Turku, Finland.,Department of Dermatology, Turku University Hospital, Turku, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Kari Auranen
- Department of Mathematics and Statistics, University of Turku, Turku, Finland.,Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Elina Uusitalo
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juha O Rinne
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology and Venereology, University of Turku, Turku, Finland.,Department of Dermatology, Turku University Hospital, Turku, Finland.,Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Dermatology and Venereology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Juha Peltonen
- Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
16
|
Wegscheid ML, Anastasaki C, Hartigan KA, Cobb OM, Papke JB, Traber JN, Morris SM, Gutmann DH. Patient-derived iPSC-cerebral organoid modeling of the 17q11.2 microdeletion syndrome establishes CRLF3 as a critical regulator of neurogenesis. Cell Rep 2021; 36:109315. [PMID: 34233200 PMCID: PMC8278229 DOI: 10.1016/j.celrep.2021.109315] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022] Open
Abstract
Neurodevelopmental disorders are often caused by chromosomal microdeletions comprising numerous contiguous genes. A subset of neurofibromatosis type 1 (NF1) patients with severe developmental delays and intellectual disability harbors such a microdeletion event on chromosome 17q11.2, involving the NF1 gene and flanking regions (NF1 total gene deletion [NF1-TGD]). Using patient-derived human induced pluripotent stem cell (hiPSC)-forebrain cerebral organoids (hCOs), we identify both neural stem cell (NSC) proliferation and neuronal maturation abnormalities in NF1-TGD hCOs. While increased NSC proliferation results from decreased NF1/RAS regulation, the neuronal differentiation, survival, and maturation defects are caused by reduced cytokine receptor-like factor 3 (CRLF3) expression and impaired RhoA signaling. Furthermore, we demonstrate a higher autistic trait burden in NF1 patients harboring a deleterious germline mutation in the CRLF3 gene (c.1166T>C, p.Leu389Pro). Collectively, these findings identify a causative gene within the NF1-TGD locus responsible for hCO neuronal abnormalities and autism in children with NF1.
Collapse
Affiliation(s)
- Michelle L Wegscheid
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kelly A Hartigan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Olivia M Cobb
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason B Papke
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer N Traber
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephanie M Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Büki G, Zsigmond A, Czakó M, Szalai R, Antal G, Farkas V, Fekete G, Nagy D, Széll M, Tihanyi M, Melegh B, Hadzsiev K, Bene J. Genotype-Phenotype Associations in Patients With Type-1, Type-2, and Atypical NF1 Microdeletions. Front Genet 2021; 12:673025. [PMID: 34168676 PMCID: PMC8217751 DOI: 10.3389/fgene.2021.673025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
Neurofibromatosis type 1 is a tumor predisposition syndrome inherited in autosomal dominant manner. Besides the intragenic loss-of-function mutations in NF1 gene, large deletions encompassing the NF1 gene and its flanking regions are responsible for the development of the variable clinical phenotype. These large deletions titled as NF1 microdeletions lead to a more severe clinical phenotype than those observed in patients with intragenic NF1 mutations. Around 5-10% of the cases harbor large deletion and four major types of NF1 microdeletions (type 1, 2, 3 and atypical) have been identified so far. They are distinguishable in term of their size and the location of the breakpoints, by the frequency of somatic mosaicism with normal cells not harboring the deletion and by the number of the affected genes within the deleted region. In our study genotype-phenotype analyses have been performed in 17 mostly pediatric patients with NF1 microdeletion syndrome identified by multiplex ligation-dependent probe amplification after systematic sequencing of the NF1 gene. Confirmation and classification of the NF1 large deletions were performed using array comparative genomic hybridization, where it was feasible. In our patient cohort 70% of the patients possess type-1 deletion, one patient harbors type-2 deletion and 23% of our cases have atypical NF1 deletion. All the atypical deletions identified in this study proved to be novel. One patient with atypical deletion displayed mosaicism. In our study NF1 microdeletion patients presented dysmorphic facial features, macrocephaly, large hands and feet, delayed cognitive development and/or learning difficulties, speech difficulties, overgrowth more often than patients with intragenic NF1 mutations. Moreover, neurobehavior problems, macrocephaly and overgrowth were less frequent in atypical cases compared to type-1 deletion. Proper diagnosis is challenging in certain patients since several clinical manifestations show age-dependency. Large tumor load exhibited more frequently in this type of disorder, therefore better understanding of genotype-phenotype correlations and progress of the disease is essential for individuals suffering from neurofibromatosis to improve the quality of their life. Our study presented additional clinical data related to NF1 microdeletion patients especially for pediatric cases and it contributes to the better understanding of this type of disorder.
Collapse
Affiliation(s)
- Gergely Büki
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Anna Zsigmond
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Márta Czakó
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Renáta Szalai
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gréta Antal
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Viktor Farkas
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György Fekete
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Dóra Nagy
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Marianna Tihanyi
- Genetic Laboratory, Szent Rafael Hospital of Zala County, Zalaegerszeg, Hungary
| | - Béla Melegh
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Full member of the European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No. 739547, Pécs, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Full member of the European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No. 739547, Pécs, Hungary
| |
Collapse
|
18
|
Scala M, Schiavetti I, Madia F, Chelleri C, Piccolo G, Accogli A, Riva A, Salpietro V, Bocciardi R, Morcaldi G, Di Duca M, Caroli F, Verrico A, Milanaccio C, Viglizzo G, Traverso M, Baldassari S, Scudieri P, Iacomino M, Piatelli G, Minetti C, Striano P, Garrè ML, De Marco P, Diana MC, Capra V, Pavanello M, Zara F. Genotype-Phenotype Correlations in Neurofibromatosis Type 1: A Single-Center Cohort Study. Cancers (Basel) 2021; 13:cancers13081879. [PMID: 33919865 PMCID: PMC8070780 DOI: 10.3390/cancers13081879] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Neurofibromatosis type 1 (NF1) is a complex disorder characterized by a multisystem involvement and cancer predisposition. It is caused by genetic variants in NF1, a large tumor suppressor gene encoding a cytoplasmatic protein (neurofibromin) with a regulatory role in essential cellular processes. Genotype–phenotype correlations in NF1 patients are so far elusive. We retrospectively reviewed clinical, radiological, and genetic data of 583 individuals with at least 1 National Institutes of Health (NIH) criterion for NF1 diagnosis, including 365 subjects fulfilling criteria for the diagnosis. Novel genotype–phenotype correlations were identified through uni- and multivariate statistical analysis. Missense variants negatively correlated with neurofibromas. Skeletal abnormalities were associated with frameshift variants and whole gene deletions. The c.3721C>T; p.(R1241*) variant positively correlated with structural brain alterations, whereas the c.6855C>A; p.(Y2285*) variant was associated with a higher prevalence of Lisch nodules and endocrinological disorders. These novel NF1 genotype–phenotype correlations may have a relevant role in the implementation of patients’ care. Abstract Neurofibromatosis type 1 (NF1) is a proteiform genetic condition caused by pathogenic variants in NF1 and characterized by a heterogeneous phenotypic presentation. Relevant genotype–phenotype correlations have recently emerged, but only few pertinent studies are available. We retrospectively reviewed clinical, instrumental, and genetic data from a cohort of 583 individuals meeting at least 1 diagnostic National Institutes of Health (NIH) criterion for NF1. Of these, 365 subjects fulfilled ≥2 NIH criteria, including 235 pediatric patients. Genetic testing was performed through cDNA-based sequencing, Next Generation Sequencing (NGS), and Multiplex Ligation-dependent Probe Amplification (MLPA). Uni- and multivariate statistical analysis was used to investigate genotype–phenotype correlations. Among patients fulfilling ≥ 2 NIH criteria, causative single nucleotide variants (SNVs) and copy number variations (CNVs) were detected in 267/365 (73.2%) and 20/365 (5.5%) cases. Missense variants negatively correlated with neurofibromas (p = 0.005). Skeletal abnormalities were associated with whole gene deletions (p = 0.05) and frameshift variants (p = 0.006). The c.3721C>T; p.(R1241*) variant positively correlated with structural brain alterations (p = 0.031), whereas Lisch nodules (p = 0.05) and endocrinological disorders (p = 0.043) were associated with the c.6855C>A; p.(Y2285*) variant. We identified novel NF1 genotype–phenotype correlations and provided an overview of known associations, supporting their potential relevance in the implementation of patient management.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Irene Schiavetti
- Department of Health Sciences, Section of Biostatistics, University of Genova, 16132 Genoa, Italy;
| | - Francesca Madia
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Cristina Chelleri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Gianluca Piccolo
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Andrea Accogli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Vincenzo Salpietro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Renata Bocciardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Guido Morcaldi
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Marco Di Duca
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Francesco Caroli
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Antonio Verrico
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (A.V.); (C.M.); (M.L.G.)
| | - Claudia Milanaccio
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (A.V.); (C.M.); (M.L.G.)
| | | | - Monica Traverso
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Simona Baldassari
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Paolo Scudieri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Michele Iacomino
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Gianluca Piatelli
- Neurosurgery Department, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy;
| | - Carlo Minetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Maria Luisa Garrè
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (A.V.); (C.M.); (M.L.G.)
| | - Patrizia De Marco
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Maria Cristina Diana
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Valeria Capra
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Marco Pavanello
- Neurosurgery Department, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy;
- Correspondence:
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| |
Collapse
|
19
|
Borrie SC, Horner AE, Yoshimura A, Legius E, Kopanitsa MV, Brems H. Impaired instrumental learning in Spred1 -/- mice, a model for a rare RASopathy. GENES BRAIN AND BEHAVIOR 2021; 20:e12727. [PMID: 33624414 DOI: 10.1111/gbb.12727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022]
Abstract
RASopathies are neuro-cardio-facio-cutaneous disorders stemming from mutations in genes regulating the RAS-MAPK pathway. Legius syndrome is a rare RASopathy disorder caused by mutations in the SPRED1 gene. SPRED1 protein negatively regulates activation of Ras by inhibiting RAS/RAF and by its interaction with neurofibromin, a Ras GTPase-activating protein (RAS-GAP). Cognitive impairments have been reported in Legius syndrome as well as in other RASopathy disorders. Modelling these cognitive deficits in a Spred1 mouse model for Legius syndrome has demonstrated spatial learning and memory deficits, but other cognitive domains remained unexplored. Here, we attempted to utilize a cognitive touchscreen battery to investigate if Spred1-/- mice exhibit deficits in other cognitive domains. We show that Spred1-/- mice had heterogeneous performance in instrumental operant learning, with a large subgroup (n = 9/20) failing to reach the standard criterion on touchscreen operant pretraining, precluding further cognitive testing. To examine whether targeting the RAS-MAPK signalling pathway could rescue these cognitive impairments, Spred1-/- mice were acutely treated with the clinically relevant mitogen-activated protein kinase (MEK) inhibitor PD325901. However, MEK inhibition did not improve their instrumental learning. We conclude that Spred1-/- mice can model severe cognitive impairments that cannot be reversed in adulthood.
Collapse
Affiliation(s)
- Sarah C Borrie
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Hilde Brems
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Johansson E, Kallionpää RA, Böckerman P, Peltonen J, Peltonen S. A rare disease and education: Neurofibromatosis type 1 decreases educational attainment. Clin Genet 2021; 99:529-539. [PMID: 33368180 PMCID: PMC8247857 DOI: 10.1111/cge.13907] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
Rare heritable syndromes may affect educational attainment. Here, we study education in neurofibromatosis 1 (NF1) that is associated with multifaceted medical, social and cognitive consequences. Educational attainment in the Finnish population‐based cohort of 1408 individuals with verified NF1 was compared with matched controls using Cox proportional hazards model with delayed entry and competing risk for death. Moreover, models accounting for the effects of cancer at age 15–30 years, parental NF1 and developmental disorders were constructed. Overall, the attainment of secondary education was reduced in individuals with NF1 compared to controls (hazard ratio 0.83, 95%CI 0.74–0.92). History of cancer and developmental disorders were major predictors of lack of secondary education. Individuals with NF1 obtained vocational secondary education more often than general upper secondary education. Consequently, NF1 decreased the attainment of Bachelor's and Master's degrees by 46%–49% and 64%–74%, respectively. Surprisingly, the non‐NF1 siblings of individuals with NF1 also had lower educational attainment than controls, irrespective of parental NF1. In conclusion, NF1 is associated with reduced educational attainment and tendency for affected individuals to obtain vocational instead of academic education. Individuals living with NF1, especially those with cancer, developmental disorders or familial NF1, need effective student counseling and learning assistance.
Collapse
Affiliation(s)
- Edvard Johansson
- Faculty of Social Sciences, Business, and Economics, Åbo Akademi University, Turku, Finland
| | | | - Petri Böckerman
- Jyväskylä University School of Business and Economics, Jyväskylä, Finland.,Labour Institute for Economic Research, Helsinki, Finland.,IZA Institute of Labor Economics, Bonn, Germany
| | - Juha Peltonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology and Venereology, University of Turku, Turku, Finland.,Department of Dermatology, Turku University Hospital, Turku, Finland.,Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Dermatology and Venereology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
21
|
Kehrer-Sawatzki H, Kluwe L, Salamon J, Well L, Farschtschi S, Rosenbaum T, Mautner VF. Clinical characterization of children and adolescents with NF1 microdeletions. Childs Nerv Syst 2020; 36:2297-2310. [PMID: 32533297 PMCID: PMC7575500 DOI: 10.1007/s00381-020-04717-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE An estimated 5-11% of patients with neurofibromatosis type 1 (NF1) harbour NF1 microdeletions encompassing the NF1 gene and its flanking regions. The purpose of this study was to evaluate the clinical phenotype in children and adolescents with NF1 microdeletions. METHODS We retrospectively analysed 30 children and adolescents with NF1 microdeletions pertaining to externally visible neurofibromas. The internal tumour load was determined by volumetry of whole-body magnetic resonance imaging (MRI) in 20 children and adolescents with NF1 microdeletions. Furthermore, the prevalence of global developmental delay, autism spectrum disorder and attention deficit hyperactivity disorder (ADHD) were evaluated. RESULTS Children and adolescents with NF1 microdeletions had significantly more often cutaneous, subcutaneous and externally visible plexiform neurofibromas than age-matched patients with intragenic NF1 mutations. Internal neurofibromas were detected in all 20 children and adolescents with NF1 microdeletions analysed by whole-body MRI. By contrast, only 17 (61%) of 28 age-matched NF1 patients without microdeletions had internal tumours. The total internal tumour load was significantly higher in NF1 microdeletion patients than in NF1 patients without microdeletions. Global developmental delay was observed in 28 (93%) of 30 children with NF1 microdeletions investigated. The mean full-scale intelligence quotient in our patient group was 77.7 which is significantly lower than that of patients with intragenic NF1 mutations. ADHD was diagnosed in 15 (88%) of 17 children and adolescents with NF1 microdeletion. Furthermore, 17 (71%) of the 24 patients investigated had T-scores ≥ 60 up to 75, indicative of mild to moderate autistic symptoms, which are consequently significantly more frequent in patients with NF1 microdeletions than in the general NF1 population. Also, the mean total T-score was significantly higher in patients with NF1 microdeletions than in the general NF1 population. CONCLUSION Our findings indicate that already at a very young age, NF1 microdeletions patients frequently exhibit a severe disease manifestation which requires specialized long-term clinical care.
Collapse
Affiliation(s)
- Hildegard Kehrer-Sawatzki
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Lan Kluwe
- Department of Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Salamon
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Well
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Said Farschtschi
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Victor-Felix Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Legius E, Brems H. Genetic basis of neurofibromatosis type 1 and related conditions, including mosaicism. Childs Nerv Syst 2020; 36:2285-2295. [PMID: 32601904 DOI: 10.1007/s00381-020-04771-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1) is a frequent autosomal dominant disorder characterised by café-au-lait maculae (CALM), skinfold freckling, iris Lisch nodules and benign peripheral nerve sheath tumours (neurofibromas). MECHANISM The NF1 gene is a tumour suppressor gene and NF1 individuals have an increased risk for a long list of tumours, all resulting from a second hit in the normal copy of the NF1 gene. Remarkably, some non-tumour phenotypes such as CALM and pseudarthrosis are also caused by a "second hit". Germline mutations inactivating the NF1 gene show a large variability in genetic mechanisms ranging from single-nucleotide substitutions and somatic mosaicism to large deletions affecting neighbouring genes. Molecular confirmation of the clinical diagnosis is becoming increasingly more important to differentiate NF1 from other syndromes such as Legius syndrome, to investigate genotype-phenotype correlations relevant in 10% of cases and to detect somatic mosaicism. SURVEILLANCE AND THERAPY Some degree of learning difficulties, attention deficit and social problems are observed in most children and affect quality of life. There is a large individual variability in complications and the evolution of the disease is difficult to predict. Specialised outpatient clinics for children have been widely established and are important for surveillance and guidance. Regular surveillance is also important for adolescents and adults because many tumour complications can be detected by whole-body MRI and treated even before symptoms develop and irreversible damage occurs. Recent data on nodular plexiform neurofibromas with continued growth in adolescents and young adults show that many of these tumours are premalignant lesions called atypical neurofibromatous neoplasm of uncertain biological potential (ANNUBP). Specific surveillance and timely local resection of these benign peripheral nerve sheath tumours might be important to prevent malignant degeneration. In the last years, targeted therapy with MEK inhibitors has shown promise to treat unresectable and symptomatic plexiform neurofibromas. Many more challenges remain to find the best way to monitor children and adults for potential complications and to find a satisfying cure for many complications in this disorder.
Collapse
Affiliation(s)
- Eric Legius
- Department of Human Genetics, University of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Hilde Brems
- Department of Human Genetics, University of Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
23
|
Castricum J, Tulen JHM, Taal W, Ottenhoff MJ, Kushner SA, Elgersma Y. Motor cortical excitability and plasticity in patients with neurofibromatosis type 1. Clin Neurophysiol 2020; 131:2673-2681. [PMID: 32977190 DOI: 10.1016/j.clinph.2020.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/16/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder that is associated with cognitive disabilities. Based on studies involving animals, the hypothesized cause of these disabilities results from increased activity of inhibitory interneurons that decreases synaptic plasticity. We obtained transcranial magnetic stimulation (TMS)-based measures of cortical inhibition, excitability and plasticity in individuals with NF1. METHODS We included 32 NF1 adults and 32 neurotypical controls. Cortical inhibition was measured with short-interval intracortical inhibition (SICI) and cortical silent period (CSP). Excitability and plasticity were studied with intermittent theta burst stimulation (iTBS). RESULTS The SICI and CSP response did not differ between NF1 adults and controls. The response upon iTBS induction was significantly increased in controls (70%) and in NF1 adults (83%). This potentiation lasted longer in controls than in individuals with NF1. Overall, the TMS response was significantly lower in NF1 patients (F(1, 41) = 7.552, p = 0.009). CONCLUSIONS Individuals with NF1 may have reduced excitability and plasticity, as indicated by their lower TMS response and attenuation of the initial potentiated response upon iTBS induction. However, our findings did not provide evidence for increased inhibition in NF1 patients. SIGNIFICANCE These findings have potential utility as neurophysiological outcome measures for intervention studies to treat cognitive deficits associated with NF1.
Collapse
Affiliation(s)
- Jesminne Castricum
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Joke H M Tulen
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Walter Taal
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Myrthe J Ottenhoff
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
24
|
Calvez S, Levy R, Calvez R, Roux CJ, Grévent D, Purcell Y, Beccaria K, Blauwblomme T, Grill J, Dufour C, Bourdeaut F, Doz F, Robert MP, Boddaert N, Dangouloff-Ros V. Focal Areas of High Signal Intensity in Children with Neurofibromatosis Type 1: Expected Evolution on MRI. AJNR Am J Neuroradiol 2020; 41:1733-1739. [PMID: 32816766 DOI: 10.3174/ajnr.a6740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/07/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Focal areas of high signal intensity are T2WI/T2-FLAIR hyperintensities frequently found on MR imaging of children diagnosed with neurofibromatosis type 1, often thought to regress spontaneously during adolescence or puberty. Due to the risk of tumor in this population, some focal areas of high signal intensity may pose diagnostic problems. The objective of this study was to assess the characteristics and temporal evolution of focal areas of high signal intensity in children with neurofibromatosis type 1 using long-term follow-up with MR imaging. MATERIALS AND METHODS We retrospectively examined the MRIs of children diagnosed with neurofibromatosis type 1 using the National Institutes of Health Consensus Criteria (1987), with imaging follow-up of at least 4 years. We recorded the number, size, and surface area of focal areas of high signal intensity according to their anatomic distribution on T2WI/T2-FLAIR sequences. A generalized mixed model was used to analyze the evolution of focal areas of high signal intensity according to age, and separate analyses were performed for girls and boys. RESULTS Thirty-nine patients (ie, 285 MR images) with a median follow-up of 7 years were analyzed. Focal areas of high signal intensity were found in 100% of patients, preferentially in the infratentorial white matter (35% cerebellum, 30% brain stem) and in the capsular lenticular region (22%). They measured 15 mm in 95% of cases. They appeared from the age of 1 year; increased in number, size, and surface area to a peak at the age of 7; and then spontaneously regressed by 17 years of age, similarly in girls and boys. CONCLUSIONS Focal areas of high signal intensity are mostly small (<15 mm) abnormalities in the posterior fossa or capsular lenticular region. Our results suggest that the evolution of focal areas of high signal intensity is not related to puberty with a peak at the age of 7 years. Knowledge of the predictive evolution of focal areas of high signal intensity is essential in the follow-up of children with neurofibromatosis type 1.
Collapse
Affiliation(s)
- S Calvez
- From the Pediatric Radiology Department (S.C., R.L., C.-J.R., D.G., N.B., V.D.-R.), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - R Levy
- From the Pediatric Radiology Department (S.C., R.L., C.-J.R., D.G., N.B., V.D.-R.), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Paris University (R.L., C.-J.R., D.G., K.B., T.B., F.B., F.D., M.P.R., N.B., V.D.-R.), PRES Sorbonne Paris Cité, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1000, (R.L., C.-J.R., D.G., N.B., V.D.-R.), Paris, France
- Institut Imagine (R.L., C.-J.R., D.G., N.B., V.D.-.R.), Unite Mixte de Recherche 1163, Paris, France
| | - R Calvez
- Expert Biostatistician (R.C.), Gagny, France
| | - C-J Roux
- From the Pediatric Radiology Department (S.C., R.L., C.-J.R., D.G., N.B., V.D.-R.), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Paris University (R.L., C.-J.R., D.G., K.B., T.B., F.B., F.D., M.P.R., N.B., V.D.-R.), PRES Sorbonne Paris Cité, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1000, (R.L., C.-J.R., D.G., N.B., V.D.-R.), Paris, France
- Institut Imagine (R.L., C.-J.R., D.G., N.B., V.D.-.R.), Unite Mixte de Recherche 1163, Paris, France
| | - D Grévent
- From the Pediatric Radiology Department (S.C., R.L., C.-J.R., D.G., N.B., V.D.-R.), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Paris University (R.L., C.-J.R., D.G., K.B., T.B., F.B., F.D., M.P.R., N.B., V.D.-R.), PRES Sorbonne Paris Cité, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1000, (R.L., C.-J.R., D.G., N.B., V.D.-R.), Paris, France
- Institut Imagine (R.L., C.-J.R., D.G., N.B., V.D.-.R.), Unite Mixte de Recherche 1163, Paris, France
| | - Y Purcell
- Radiology Department (Y.P.), Fondation Rothschild, Paris, France
| | - K Beccaria
- Paris University (R.L., C.-J.R., D.G., K.B., T.B., F.B., F.D., M.P.R., N.B., V.D.-R.), PRES Sorbonne Paris Cité, Paris, France
- Pediatric Neurosurgery Department (K.B., T.B.), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - T Blauwblomme
- Paris University (R.L., C.-J.R., D.G., K.B., T.B., F.B., F.D., M.P.R., N.B., V.D.-R.), PRES Sorbonne Paris Cité, Paris, France
- Pediatric Neurosurgery Department (K.B., T.B.), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - J Grill
- Department of Pediatric and Adolescent Oncology (J.G., C.D.), Gustave Roussy Institute, Villejuif, France
| | - C Dufour
- Department of Pediatric and Adolescent Oncology (J.G., C.D.), Gustave Roussy Institute, Villejuif, France
| | - F Bourdeaut
- Paris University (R.L., C.-J.R., D.G., K.B., T.B., F.B., F.D., M.P.R., N.B., V.D.-R.), PRES Sorbonne Paris Cité, Paris, France
- Oncology Center SIREDO (Care Innovation and Research for Children, Adolescents and Young Adults with Cancer) (F.B., F.D.), Institute Curie, ???????, France
| | - F Doz
- Paris University (R.L., C.-J.R., D.G., K.B., T.B., F.B., F.D., M.P.R., N.B., V.D.-R.), PRES Sorbonne Paris Cité, Paris, France
| | - M P Robert
- Paris University (R.L., C.-J.R., D.G., K.B., T.B., F.B., F.D., M.P.R., N.B., V.D.-R.), PRES Sorbonne Paris Cité, Paris, France
- Ophthalmology Department (M.P.R.), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - N Boddaert
- From the Pediatric Radiology Department (S.C., R.L., C.-J.R., D.G., N.B., V.D.-R.), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Paris University (R.L., C.-J.R., D.G., K.B., T.B., F.B., F.D., M.P.R., N.B., V.D.-R.), PRES Sorbonne Paris Cité, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1000, (R.L., C.-J.R., D.G., N.B., V.D.-R.), Paris, France
- Institut Imagine (R.L., C.-J.R., D.G., N.B., V.D.-.R.), Unite Mixte de Recherche 1163, Paris, France
| | - V Dangouloff-Ros
- From the Pediatric Radiology Department (S.C., R.L., C.-J.R., D.G., N.B., V.D.-R.), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Paris University (R.L., C.-J.R., D.G., K.B., T.B., F.B., F.D., M.P.R., N.B., V.D.-R.), PRES Sorbonne Paris Cité, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1000, (R.L., C.-J.R., D.G., N.B., V.D.-R.), Paris, France
- Institut Imagine (R.L., C.-J.R., D.G., N.B., V.D.-.R.), Unite Mixte de Recherche 1163, Paris, France
| |
Collapse
|