1
|
Mansueto L, Kretzschmar T, Mauleon R, King GJ. Building a community-driven bioinformatics platform to facilitate Cannabis sativa multi-omics research. GIGABYTE 2024; 2024:gigabyte137. [PMID: 39469541 PMCID: PMC11515022 DOI: 10.46471/gigabyte.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024] Open
Abstract
Global changes in cannabis legislation after decades of stringent regulation and heightened demand for its industrial and medicinal applications have spurred recent genetic and genomics research. An international research community emerged and identified the need for a web portal to host cannabis-specific datasets that seamlessly integrates multiple data sources and serves omics-type analyses, fostering information sharing. The Tripal platform was used to host public genome assemblies, gene annotations, quantitative trait loci and genetic maps, gene and protein expression data, metabolic profiles and their sample attributes. Single nucleotide polymorphisms were called using public resequencing datasets on three genomes. Additional applications, such as SNP-Seek and MapManJS, were embedded into Tripal. A multi-omics data integration web-service Application Programming Interface (API), developed on top of existing Tripal modules, returns generic tables of samples, properties and values. Use cases demonstrate the API's utility for various omics analyses, enabling researchers to perform multi-omics analyses efficiently. Availability and implementation The web portal can be accessed at www.icgrc.info.
Collapse
Affiliation(s)
- Locedie Mansueto
- Southern Cross University, Military Road, Lismore New South Wales, 2480, Australia
| | - Tobias Kretzschmar
- Southern Cross University, Military Road, Lismore New South Wales, 2480, Australia
| | - Ramil Mauleon
- Southern Cross University, Military Road, Lismore New South Wales, 2480, Australia
- International Rice Research Institute, Pili Drive, Los Baños Laguna, 4031, Philippines
| | - Graham J. King
- Southern Cross University, Military Road, Lismore New South Wales, 2480, Australia
- Recombics, Alstonville, New South Wales, 2480, Australia
| |
Collapse
|
2
|
Groza C, Chen X, Wheeler TJ, Bourque G, Goubert C. A unified framework to analyze transposable element insertion polymorphisms using graph genomes. Nat Commun 2024; 15:8915. [PMID: 39414821 PMCID: PMC11484939 DOI: 10.1038/s41467-024-53294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
Transposable elements are ubiquitous mobile DNA sequences generating insertion polymorphisms, contributing to genomic diversity. We present GraffiTE, a flexible pipeline to analyze polymorphic mobile elements insertions. By integrating state-of-the-art structural variant detection algorithms and graph genomes, GraffiTE identifies polymorphic mobile elements from genomic assemblies or long-read sequencing data, and genotypes these variants using short or long read sets. Benchmarking on simulated and real datasets reports high precision and recall rates. GraffiTE is designed to allow non-expert users to perform comprehensive analyses, including in models with limited transposable element knowledge and is compatible with various sequencing technologies. Here, we demonstrate the versatility of GraffiTE by analyzing human, Drosophila melanogaster, maize, and Cannabis sativa pangenome data. These analyses reveal the landscapes of polymorphic mobile elements and their frequency variations across individuals, strains, and cultivars.
Collapse
Affiliation(s)
- Cristian Groza
- Quantitative Life Sciences, McGill University, Montréal, QC, Canada
| | - Xun Chen
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Travis J Wheeler
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Guillaume Bourque
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
- Human Genetics, McGill University, Montréal, QC, Canada
| | - Clément Goubert
- Human Genetics, McGill University, Montréal, QC, Canada.
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
3
|
Mansueto L, McNally KL, Kretzschmar T, Mauleon R. CannSeek? Yes we Can! An open-source single nucleotide polymorphism database and analysis portal for Cannabis sativa. GIGABYTE 2024; 2024:gigabyte135. [PMID: 39416656 PMCID: PMC11480739 DOI: 10.46471/gigabyte.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
A growing interest in Cannabis sativa uses for food, fiber, and medicine, and recent changes in regulations have spurred numerous genomic studies of this once-prohibited plant. Cannabis research uses Next Generation Sequencing technologies for genomics and transcriptomics. While other crops have genome portals enabling access and analysis of numerous genotyping data from diverse accessions, leading to the discovery of alleles for important traits, this is absent for cannabis. The CannSeek web portal aims to address this gap. Single nucleotide polymorphism datasets were generated by identifying genome variants from public resequencing data and genome assemblies. Results and accompanying trait data are hosted in the CannSeek web application, built using the Rice SNP-Seek infrastructure with improvements to allow multiple reference genomes and provide a web-service Application Programming Interface. The tools built into the portal allow phylogenetic analyses, varietal grouping and identifications, and favorable haplotype discovery for cannabis accessions using public sequencing data. Availability and implementation The CannSeek portal is available at https://icgrc.info/cannseek, https://icgrc.info/genotype_viewer.
Collapse
Affiliation(s)
- Locedie Mansueto
- Southern Cross University, Military Road, Lismore New South Wales 2480, Australia
| | - Kenneth L. McNally
- International Rice Research Institute, Pili Drive, Los Baños Laguna 4031, Philippines
| | - Tobias Kretzschmar
- Southern Cross University, Military Road, Lismore New South Wales 2480, Australia
| | - Ramil Mauleon
- Southern Cross University, Military Road, Lismore New South Wales 2480, Australia
- International Rice Research Institute, Pili Drive, Los Baños Laguna 4031, Philippines
| |
Collapse
|
4
|
Ndlangamandla VV, Salawu-Rotimi A, Bushula-Njah VS, Hlongwane NL, Sibandze GF, Gebashe FC, Mchunu NP. Finally Freed- Cannabis in South Africa: A Review Contextualised within Global History, Diversity, and Chemical Profiles. PLANTS (BASEL, SWITZERLAND) 2024; 13:2695. [PMID: 39409565 PMCID: PMC11478489 DOI: 10.3390/plants13192695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024]
Abstract
Cannabis sativa L. is a monotypic genus belonging to the family Cannabaceae. It is one of the oldest species cultivated by humans, believed to have originated in Central Asia. In pivotal judgements in 2016 and 2018, the South African Constitutional Court legalised the use of Cannabis within the country for medicinal and recreational purposes, respectively. These decrees opened opportunities for in-depth research where previously there had been varying sentiments for research to be conducted on the plant. This review seeks to examine the history, genetic diversity, and chemical profile of Cannabis. The cultivation of Cannabis by indigenous people of southern Africa dates back to the eighteenth century. Indigenous rural communities have been supporting their livelihoods through Cannabis farming even before its legalisation. However, there are limited studies on the plant's diversity, both morphologically and genetically, and its chemical composition. Also, there is a lack of proper documentation of Cannabis varieties in southern Africa. Currently, the National Centre for Biotechnology Information (NCBI) has 15 genome assemblies of Cannabis obtained from hemp and drug cultivars; however, none of these are representatives of African samples. More studies are needed to explore the species' knowledge gaps on genetic diversity and chemical profiles to develop the Cannabis sector in southern Africa.
Collapse
Affiliation(s)
- Valencia V. Ndlangamandla
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X 54001, Durban 4000, South Africa; (V.V.N.); (N.P.M.)
- Agricultural Research Council-Biotechnology Platform Onderstepoort Veterinary Research, Private Bag X 5, Onderstepoort 0110, South Africa; (A.S.-R.); (V.S.B.-N.); (N.L.H.)
| | - Adeola Salawu-Rotimi
- Agricultural Research Council-Biotechnology Platform Onderstepoort Veterinary Research, Private Bag X 5, Onderstepoort 0110, South Africa; (A.S.-R.); (V.S.B.-N.); (N.L.H.)
| | - Vuyiswa S. Bushula-Njah
- Agricultural Research Council-Biotechnology Platform Onderstepoort Veterinary Research, Private Bag X 5, Onderstepoort 0110, South Africa; (A.S.-R.); (V.S.B.-N.); (N.L.H.)
| | - Nompilo L. Hlongwane
- Agricultural Research Council-Biotechnology Platform Onderstepoort Veterinary Research, Private Bag X 5, Onderstepoort 0110, South Africa; (A.S.-R.); (V.S.B.-N.); (N.L.H.)
| | - Gugu F. Sibandze
- Eswatini Institute for Research in Traditional Medicine, Medicinal and Indigenous Food Plants, University of Eswatini, Private Bag 4, Kwaluseni M201, Eswatini;
| | - Fikisiwe C. Gebashe
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X 54001, Durban 4000, South Africa; (V.V.N.); (N.P.M.)
| | - Nokuthula P. Mchunu
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X 54001, Durban 4000, South Africa; (V.V.N.); (N.P.M.)
- National Research Foundation, Meiring Naude, Pretoria 0001, South Africa
| |
Collapse
|
5
|
Miao K, Wang Y, Hou L, Liu Y, Liu H, Ji Y. Haplotype-resolved genome assembly of the upas tree (Antiaris toxicaria). Sci Data 2024; 11:1011. [PMID: 39294147 PMCID: PMC11410980 DOI: 10.1038/s41597-024-03860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
The upas tree (Antiaris toxicaria Lesch.) is a medically important plant that contains various specialized metabolites with significant bioactivity. The lack of a reference genome hinders the in-depth study as well as rational exploitation and conservation of this plant. Here, we present the first holotype-resolved chromosome-scale genome of the upas tree. The assembled genome consisted of 26 chromosomes that contain 1.34 Gb of sequencing data with a contig N50 length of 60 Mb. Genome annotation identified 43,500 protein-coding genes in the upas tree genome, of which 98.75% were functionally annotated. This high-quality reference genome will lay the foundation for further studies on the evolution and functional genomics of the upas tree.
Collapse
Affiliation(s)
- Ke Miao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Ya Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Luxiao Hou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Yan Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Natural Medicine, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- State Key Laboratory of Phytochemistry and Natural Medicine, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
6
|
Kim J, Kim DG, Kim WJ, Lee YJ, Lee SH, Ryu J, Kim JH, Kim SH. Characterization of Male Flower Induction by Silver Thiosulfate Foliar Spray in Female Cannabis at the Middle Reproductive Stage for Breeding. PLANTS (BASEL, SWITZERLAND) 2024; 13:2429. [PMID: 39273911 PMCID: PMC11397453 DOI: 10.3390/plants13172429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Cannabis (Cannabis sativa) is a versatile crop belonging to the Cannabaceae family, and is dioecious, typically with separate male and female plants. The flowers of female plants, especially the trichomes, accumulate relatively higher contents of cannabinoids compared with those of male plants. For this reason, to obtain seeds that are genetically female, it is desirable to induce the development of male flowers on a female plant that produces genetically female haploid gametes. Silver thiosulfate (STS) is a highly effective chemical for male flower induction. We investigated male flower induction in three commercial cultivars of female cannabis (Spectrum303, SuperwomanS1, and CBGambit) regarding the treatment frequency, stage of application, and concentration of STS applied as a foliar spray. All three cultivars showed adequate induction of male flowers in response to 1.5 mM STS applied at the early reproductive stage. In particular, SuperwomanS1 was most highly responsive to induction of male flowers, even when treated with 0.3 mM STS at the early reproductive stage. Treatment with three applications of STS was more effective compared with a single application, but a single application of 1.5 mM STS at the early reproductive stage was sufficient for male flower induction. A single STS application during the middle stage of reproductive growth was inadequate for induction of male flowers. However, 6 weeks after three applications of STS, CBGambit exhibited approximately 54% male flower induction at 0.3 mM STS, Spectrum303 showed approximately 56% induction at 3 mM STS, and SuperwomanS1 yielded approximately 26% induction at 1.5 mM (expressed as percentage of total number of individuals with the induced male flowers). Pollen stainability tests using KI-I2 solution and Alexander's staining showed high pollen viability with over 65% at different single STS concentrations, indicating that pollen grains induced by STS have sufficient viability for the self-pollination. This study demonstrated that different cultivars of cannabis respond diversely to different STS concentrations and highlighted the potential benefits of three STS applications during the middle reproductive stage for cannabis breeding.
Collapse
Affiliation(s)
- Juyoung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si 56212, Jeollabuk-do, Republic of Korea
| | - Dong-Gun Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si 56212, Jeollabuk-do, Republic of Korea
| | - Woon Ji Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si 56212, Jeollabuk-do, Republic of Korea
| | - Ye-Jin Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si 56212, Jeollabuk-do, Republic of Korea
| | - Seung Hyeon Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si 56212, Jeollabuk-do, Republic of Korea
| | - Jaihyunk Ryu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si 56212, Jeollabuk-do, Republic of Korea
| | - Jae Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si 56212, Jeollabuk-do, Republic of Korea
| | - Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si 56212, Jeollabuk-do, Republic of Korea
| |
Collapse
|
7
|
Wishart DS, Hiebert-Giesbrecht M, Inchehborouni G, Cao X, Guo AC, LeVatte MA, Torres-Calzada C, Gautam V, Johnson M, Liigand J, Wang F, Zahraei S, Bhumireddy S, Wang Y, Zheng J, Mandal R, Dyck JRB. Chemical Composition of Commercial Cannabis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14099-14113. [PMID: 38181219 PMCID: PMC11212042 DOI: 10.1021/acs.jafc.3c06616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Cannabis is widely used for medicinal and recreational purposes. As a result, there is increased interest in its chemical components and their physiological effects. However, current information on cannabis chemistry is often outdated or scattered across many books and journals. To address this issue, we used modern metabolomics techniques and modern bioinformatics techniques to compile a comprehensive list of >6000 chemical constituents in commercial cannabis. The metabolomics methods included a combination of high- and low-resolution liquid chromatography-mass spectrometry (MS), gas chromatography-MS, and inductively coupled plasma-MS. The bioinformatics methods included computer-aided text mining and computational genome-scale metabolic inference. This information, along with detailed compound descriptions, physicochemical data, known physiological effects, protein targets, and referential compound spectra, has been made available through a publicly accessible database called the Cannabis Compound Database (https://cannabisdatabase.ca). Such a centralized, open-access resource should prove to be quite useful for the cannabis community.
Collapse
Affiliation(s)
- David S. Wishart
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Department
of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department
of Laboratory Medicine and Pathology, University
of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | | | - Gozal Inchehborouni
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Xuan Cao
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - An Chi Guo
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Marcia A. LeVatte
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Claudia Torres-Calzada
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Vasuk Gautam
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Mathew Johnson
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jaanus Liigand
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Fei Wang
- Department
of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
| | - Shirin Zahraei
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Sudarshana Bhumireddy
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Yilin Wang
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jiamin Zheng
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rupasri Mandal
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jason R. B. Dyck
- Department
of Pediatrics, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| |
Collapse
|
8
|
Li X, Chen Y, Zhang Z, He Q, Tian T, Jiao Y, Cao L. Genome-wide identification of starch phosphorylase gene family in Rosa chinensis and expression in response to abiotic stress. Sci Rep 2024; 14:13917. [PMID: 38886497 PMCID: PMC11183051 DOI: 10.1038/s41598-024-64937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Chinese rose (Rosa chinensis) is an important ornamental plant, with economic, cultural, and symbolic significance. During the application of outdoor greening, adverse environments such as high temperature and drought are often encountered, which affect its application scope and ornamental quality. The starch phosphorylase (Pho) gene family participate in the synthesis and decomposition of starch, not only related to plant energy metabolism, but also plays an important role in plant stress resistance. The role of Pho in combating salinity and high temperature stress in R. chinensis remains unknown. In this work, 4 Phos from R. chinensis were detected with Pfam number of Pho (PF00343.23) and predicted by homolog-based prediction (HBP). The Phos are characterized by sequence lengths of 821 to 997 bp, and the proteins are predicted to subcellularly located in the plastid and cytoplasm. The regulatory regions of the Phos contain abundant stress and phytohormone-responsive cis-acting elements. Based on transcriptome analysis, the Phos were found to respond to abiotic stress factors such as drought, salinity, high temperature, and plant phytohormone of jasmonic acid and salicylic acid. The response of Phos to abiotic stress factors such as salinity and high temperature was confirmed by qRT-PCR analysis. To evaluate the genetic characteristics of Phos, a total of 69 Phos from 17 species were analyzed and then classified into 3 groups in phylogenetic tree. The collinearity analysis of Phos in R. chinensis and other species was conducted for the first time. This work provides a view of evolution for the Pho gene family and indicates that Phos play an important role in abiotic stress response of R. chinensis.
Collapse
Affiliation(s)
- Xu Li
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Zaiqi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China.
| | - Qin He
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Tingting Tian
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Yangmiao Jiao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China.
| | - Liang Cao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China.
| |
Collapse
|
9
|
Garcia-de Heer L, Mieog J, Burn A, Kretzschmar T. Why not XY? Male monoecious sexual phenotypes challenge the female monoecious paradigm in Cannabis sativa L.. FRONTIERS IN PLANT SCIENCE 2024; 15:1412079. [PMID: 38903434 PMCID: PMC11187236 DOI: 10.3389/fpls.2024.1412079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024]
Abstract
Monoecy in Cannabis sativa L. has long been considered an industrially important trait due to the increased uniformity it offers and was thought to be exclusively associated with XX females. The isolation and characterisation of a monoecious individual with XY chromosomes sourced from non-proprietary germplasm is reported for the first time. The chromosomal make up of this trait was confirmed through inflorescence structure, growth habit, PCR analysis and sexual phenotypes of progeny from a series of targeted crosses. The identification of an XY monoecious phenotype widens our understanding of monoecy in Cannabis and has important implications for breeding, particularly for producing F1-hybrid seed.
Collapse
Affiliation(s)
| | - Jos Mieog
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW, Australia
| | | | | |
Collapse
|
10
|
Kaminski KP, Hoeng J, Goffman F, Schlage WK, Latino D. Opportunities, Challenges, and Scientific Progress in Hemp Crops. Molecules 2024; 29:2397. [PMID: 38792258 PMCID: PMC11124073 DOI: 10.3390/molecules29102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
The resurgence of cannabis (Cannabis sativa L.) has been propelled by changes in the legal framework governing its cultivation and use, increased demand for hemp-derived products, and studies recognizing the industrial and health benefits of hemp. This has led to the creation of novel high-cannabidiol, low-Δ9-tetrahydrocannabinol varieties, enabling hemp crop expansion worldwide. This review elucidates the recent implications for hemp cultivation in Europe, with a focus on the legislative impacts on the cultivation practices, prospective breeding efforts, and dynamic scientific landscape surrounding this crop. We also review the current cultivars' cannabinoid composition of the European hemp market and its major differences with that of the United States.
Collapse
Affiliation(s)
| | - Julia Hoeng
- Vectura Fertin Pharma, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|
11
|
de Ronne M, Lapierre É, Torkamaneh D. Genetic insights into agronomic and morphological traits of drug-type cannabis revealed by genome-wide association studies. Sci Rep 2024; 14:9162. [PMID: 38644388 PMCID: PMC11033274 DOI: 10.1038/s41598-024-58931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Cannabis sativa L., previously concealed by prohibition, is now a versatile and promising plant, thanks to recent legalization, opening doors for medical research and industry growth. However, years of prohibition have left the Cannabis research community lagging behind in understanding Cannabis genetics and trait inheritance compared to other major crops. To address this gap, we conducted a comprehensive genome-wide association study (GWAS) of nine key agronomic and morphological traits, using a panel of 176 drug-type Cannabis accessions from the Canadian legal market. Utilizing high-density genotyping-by-sequencing (HD-GBS), we successfully generated dense genotyping data in Cannabis, resulting in a catalog of 800 K genetic variants, of which 282 K common variants were retained for GWAS analysis. Through GWAS analysis, we identified 18 markers significantly associated with agronomic and morphological traits. Several identified markers exert a substantial phenotypic impact, guided us to putative candidate genes that reside in high linkage-disequilibrium (LD) with the markers. These findings lay a solid foundation for an innovative cannabis research, leveraging genetic markers to inform breeding programs aimed at meeting diverse needs in the industry.
Collapse
Affiliation(s)
- Maxime de Ronne
- Département de Phytologie, Université Laval, Quebec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Québec, Canada
- Centre de Recherche et d'innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Québec, Canada
- Institut Intelligence et Données (IID), Université Laval, Quebec City, Québec, Canada
| | - Éliana Lapierre
- Département de Phytologie, Université Laval, Quebec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Québec, Canada
- Centre de Recherche et d'innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Québec, Canada
- Institut Intelligence et Données (IID), Université Laval, Quebec City, Québec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec City, Québec, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Québec, Canada.
- Centre de Recherche et d'innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Québec, Canada.
- Institut Intelligence et Données (IID), Université Laval, Quebec City, Québec, Canada.
| |
Collapse
|
12
|
Zhang C, Jiang M, Liu J, Wu B, Liu C. Genome-wide view and characterization of natural antisense transcripts in Cannabis Sativa L. PLANT MOLECULAR BIOLOGY 2024; 114:47. [PMID: 38632206 DOI: 10.1007/s11103-024-01434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/25/2024] [Indexed: 04/19/2024]
Abstract
Natural Antisense Transcripts (NATs) are a kind of complex regulatory RNAs that play crucial roles in gene expression and regulation. However, the NATs in Cannabis Sativa L., a widely economic and medicinal plant rich in cannabinoids remain unknown. In this study, we comprehensively predicted C. sativa NATs genome-wide using strand-specific RNA sequencing (ssRNA-Seq) data, and validated the expression profiles by strand-specific quantitative reverse transcription PCR (ssRT-qPCR). Consequently, a total of 307 NATs were predicted in C. sativa, including 104 cis- and 203 trans- NATs. Functional enrichment analysis demonstrated the potential involvement of the C. sativa NATs in DNA polymerase activity, RNA-DNA hybrid ribonuclease activity, and nucleic acid binding. Finally, 18 cis- and 376 trans- NAT-ST pairs were predicted to produce 621 cis- and 5,679 trans- small interfering RNA (nat-siRNAs), respectively. These nat-siRNAs were potentially involved in the biosynthesis of cannabinoids and cellulose. All these results will shed light on the regulation of NATs and nat-siRNAs in C. sativa.
Collapse
Affiliation(s)
- Chang Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, China
| | - Mei Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, China
- School of Pharmaceutical Sciences, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jingting Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, China
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, China.
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, China.
| |
Collapse
|
13
|
Das S, Kwon M, Kim JY. Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1279738. [PMID: 38450402 PMCID: PMC10915232 DOI: 10.3389/fpls.2024.1279738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Plants are the richest source of specialized metabolites. The specialized metabolites offer a variety of physiological benefits and many adaptive evolutionary advantages and frequently linked to plant defense mechanisms. Medicinal plants are a vital source of nutrition and active pharmaceutical agents. The production of valuable specialized metabolites and bioactive compounds has increased with the improvement of transgenic techniques like gene silencing and gene overexpression. These techniques are beneficial for decreasing production costs and increasing nutritional value. Utilizing biotechnological applications to enhance specialized metabolites in medicinal plants needs characterization and identification of genes within an elucidated pathway. The breakthrough and advancement of CRISPR/Cas-based gene editing in improving the production of specific metabolites in medicinal plants have gained significant importance in contemporary times. This article imparts a comprehensive recapitulation of the latest advancements made in the implementation of CRISPR-gene editing techniques for the purpose of augmenting specific metabolites in medicinal plants. We also provide further insights and perspectives for improving metabolic engineering scenarios in medicinal plants.
Collapse
Affiliation(s)
- Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Life Science, Anti-aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio R&D Center, Nulla Bio Inc., Jinju, Republic of Korea
| |
Collapse
|
14
|
Cosner JB, Grant JF. Influence of varieties of hemp, Cannabis sativa (Rosales: Cannabaceae), and fertilization rates on damage caused by corn earworm, Helicoverpa zea (Lepidoptera: Noctuidae). ENVIRONMENTAL ENTOMOLOGY 2024; 53:26-33. [PMID: 37431786 DOI: 10.1093/ee/nvad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/02/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Industrial hemp, Cannabis sativa L., production has been negatively impacted by larvae of corn earworm, Helicoverpa zea (Boddie), which feed on developing inflorescences. Adult H. zea oviposit on hemp once flowers develop, and late-instar larvae can cause serious loss to both quality and yield. A 2-year study to assess the influence of hemp variety and fertilization practices on damage caused by H. zea was conducted. Differences in damage ratings among varieties were observed in both years; however, the rate of nitrogen applied did not influence biomass yield or damage rating. These results indicate that increasing nitrogen fertility may not be an effective means of cultural control for mitigating damage from H. zea. Floral maturity was very influential on damage caused by H. zea as late-maturing varieties had much less floral injury than those which matured early in outdoor field trials. Some cannabinoids were also correlated to damage rating, but this relationship was due to late-maturing plants with immature flowers low in cannabinoid concentrations receiving less floral injury. Based on these results, the selection of high-yielding varieties that flower when ovipositional activity of H. zea is expected to decline should be the first step in an integrated pest management program for hemp production. This research expanded our knowledge of the role of fertility rate, varietal characteristics, cannabinoid profile, and floral maturity on damage caused by H. zea to hemp. Findings from this research will allow growers to make more informed agronomic decisions before planting to improve hemp production.
Collapse
Affiliation(s)
- Julian B Cosner
- Department of Entomology and Plant Pathology, University of Tennessee, 2505 E J. Chapman Drive, Knoxville, TN 37996, USA
| | - Jerome F Grant
- Department of Entomology and Plant Pathology, University of Tennessee, 2505 E J. Chapman Drive, Knoxville, TN 37996, USA
| |
Collapse
|
15
|
Wei H, Yang Z, Niyitanga S, Tao A, Xu J, Fang P, Lin L, Zhang L, Qi J, Ming R, Zhang L. The reference genome of seed hemp (Cannabis sativa) provides new insights into fatty acid and vitamin E synthesis. PLANT COMMUNICATIONS 2024; 5:100718. [PMID: 37717143 PMCID: PMC10811365 DOI: 10.1016/j.xplc.2023.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Affiliation(s)
- Huawei Wei
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Key Laboratory of Ministry of Agriculture and Rural Affairs for Biological Breeding of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zuqing Yang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Key Laboratory of Ministry of Agriculture and Rural Affairs for Biological Breeding of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sylvain Niyitanga
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Key Laboratory of Ministry of Agriculture and Rural Affairs for Biological Breeding of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aifen Tao
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Key Laboratory of Ministry of Agriculture and Rural Affairs for Biological Breeding of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiantang Xu
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Key Laboratory of Ministry of Agriculture and Rural Affairs for Biological Breeding of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pingping Fang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Key Laboratory of Ministry of Agriculture and Rural Affairs for Biological Breeding of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lihui Lin
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Key Laboratory of Ministry of Agriculture and Rural Affairs for Biological Breeding of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liemei Zhang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Key Laboratory of Ministry of Agriculture and Rural Affairs for Biological Breeding of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianmin Qi
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Key Laboratory of Ministry of Agriculture and Rural Affairs for Biological Breeding of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liwu Zhang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Key Laboratory of Ministry of Agriculture and Rural Affairs for Biological Breeding of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
16
|
Sirangelo TM, Ludlow RA, Spadafora ND. Molecular Mechanisms Underlying Potential Pathogen Resistance in Cannabis sativa. PLANTS (BASEL, SWITZERLAND) 2023; 12:2764. [PMID: 37570918 PMCID: PMC10420965 DOI: 10.3390/plants12152764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Cannabis (Cannabis sativa L.) is one of the earliest cultivated crops, valued for producing a broad spectrum of compounds used in medicinal products and being a source of food and fibre. Despite the availability of its genome sequences, few studies explore the molecular mechanisms involved in pathogen defense, and the underlying biological pathways are poorly defined in places. Here, we provide an overview of Cannabis defence responses against common pathogens, such as Golovinomyces spp., Fusarium spp., Botrytis cinerea and Pythium spp. For each of these pathogens, after a summary of their characteristics and symptoms, we explore studies identifying genes involved in Cannabis resistance mechanisms. Many studies focus on the potential involvement of disease-resistance genes, while others refer to other plants however whose results may be of use for Cannabis research. Omics investigations allowing the identification of candidate defence genes are highlighted, and genome editing approaches to generate resistant Cannabis species based on CRISPR/Cas9 technology are discussed. According to the emerging results, a potential defence model including both immune and defence mechanisms in Cannabis plant-pathogen interactions is finally proposed. To our knowledge, this is the first review of the molecular mechanisms underlying pathogen resistance in Cannabis.
Collapse
Affiliation(s)
- Tiziana M. Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123 Rome, Italy
| | - Richard A. Ludlow
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK;
| | - Natasha D. Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
17
|
Ebrahimi N, Far NP, Fakhr SS, Faghihkhorasani F, Miraghel SA, Chaleshtori SR, Rezaei-Tazangi F, Beiranvand S, Baziyar P, Manavi MS, Zarrabi A, Nabavi N, Ren J, Aref AR. The endocannabinoid system, a new gatekeeper in the pharmacology of human hepatocellular carcinoma. ENVIRONMENTAL RESEARCH 2023; 228:115914. [PMID: 37062475 DOI: 10.1016/j.envres.2023.115914] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Despite numerous prevention methodologies and treatment options, hepatocellular carcinoma (HCC) still remains as the third leading life-threatening cancer. It is thus pertinent to develop new treatment modality to fight this devastating carcinoma. Ample recent studies have shown the anti-inflammatory and antitumor roles of the endocannabinoid system in various forms of cancers. Preclinical studies have also confirmed that cannabinoid therapy can be an optimal regimen for cancer treatments. The endocannabinoid system is involved in many cancer-related processes, including induction of endoplasmic reticulum (ER) stress-dependent apoptosis, autophagy, PITRK and ERK signaling pathways, cell invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes. Moreover, changes in signaling transduction of the endocannabinoid system can be a potential diagnostic and prognostic biomarker for HCC. Due to its pivotal role in lipid metabolism, the endocannabinoid system affects metabolic reprogramming as well as lipid content of exosomes. In addition, due to the importance of non-coding RNAs (ncRNAs), several studies have examined the relationship between microRNAs and the endocannabinoid system in HCC. However, HCC is a pathological condition with high heterogeneity, and therefore using the endocannabinoid system for treatment has faced many controversies. While some studies favored a role of the endocannabinoid system in carcinogenesis and tumor induction, others exhibited the anticancer potential of endocannabinoids in HCC. In this review, specific studies delineating the relationship between endocannabinoids and HCC are examined. Based on collected findings, detailed studies of the molecular mechanism of endocannabinoids as well as preclinical studies for investigating therapeutic or carcinogenic impacts in HCC cancer are strongly suggested.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology,Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Division of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus, Hamar, Norway
| | | | - Seyed Ali Miraghel
- Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sheida Beiranvand
- Department of Biotechnology, School of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, Uinversity of Mazandaran, Babolsar, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, WA, 98195, USA
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
18
|
The B1080/B1192 molecular marker identifies hemp plants with functional THCA synthase and total THC content above legal limit. Gene 2023; 858:147198. [PMID: 36641078 DOI: 10.1016/j.gene.2023.147198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
In Cannabis sativa L. the presence of delta 9-tetrahydrocannabinolic acid (THCA) above legal limit is a challenging issue that still restricts the industrial exploitation of this promising crop. In recent years, the interest of entrepreneurs and growers who see hemp as a dynamic and profitable crop was joined by the growing knowledge on C. sativa genetics and genomics, accelerated by the application of high throughput tools. Despite the renewed interest in the species, much remains to be clarified, especially about the long-standing problem of THCA in hemp inflorescences, which could even result in the seizure of the whole harvest. Although several hypotheses have been formulated on the accumulation of this metabolite in industrial varieties, none is conclusive yet. In this work, individuals of a population of the hemp cultivar 'FINOLA' obtained from commercial seeds were investigated for total THC level and examined at molecular level. A marker linked to THCA synthase was found at a high incidence in both male and female plants, suggesting a considerable genetic variability within the seed batch. Full-length sequences encoding for putatively functional THCA synthases were isolated for the first time from the genome of both female and male plants of an industrial hemp variety and, using transcriptional analysis, the THCA synthase expression was quantified in mature inflorescences of individuals identified by the marker. Biochemical analyses finally demonstrated for these plants a 100% association between the predicted and actual chemotype.
Collapse
|
19
|
Liu J, Zhang C, Jiang M, Ni Y, Xu Y, Wu W, Huang L, Newmaster SG, Kole C, Wu B, Liu C. Identification of circular RNAs of Cannabis sativa L. potentially involved in the biosynthesis of cannabinoids. PLANTA 2023; 257:72. [PMID: 36862222 DOI: 10.1007/s00425-023-04104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
We identified circRNAs in the Cannabis sativa L. genome and examined their association with 28 cannabinoids in three tissues of C. sativa. Nine circRNAs are potentially involved in the biosynthesis of six cannabinoids. Cannabis sativa L. has been widely used in the production of medicine, textiles, and food for over 2500 years. The main bioactive compounds in C. sativa are cannabinoids, which have multiple important pharmacological actions. Circular RNAs (circRNAs) play essential roles in growth and development, stress resistance, and the biosynthesis of secondary metabolites. However, the circRNAs in C. sativa remain unknown. In this study, to explore the role of circRNAs in cannabinoid biosynthesis, we performed RNA-Seq and metabolomics analysis on the leaves, roots, and stems of C. sativa. We identified 741 overlapping circRNAs by three tools, of which 717, 16, and 8 circRNAs were derived from exonic, intronic, and intergenic, respectively. Functional enrichment analysis indicated that the parental genes (PGs) of circRNAs were enriched in many processes related to biological stress responses. We found that most of the circRNAs showed tissue-specific expression and 65 circRNAs were significantly correlated with their PGs (P < 0.05, |r|≥ 0.5). We also determined 28 cannabinoids by High-performance liquid chromatography-ESI-triple quadrupole-linear ion trap mass spectrometry. Ten circRNAs, including ciR0159, ciR0212, ciR0153, ciR0149, ciR0016, ciR0044, ciR0022, ciR0381, ciR0006, and ciR0025 were found to be associated with six cannabinoids by weighted gene co-expression network analysis. Twenty-nine of 53 candidate circRNAs, including 9 cannabinoids related were validated successfully using PCR amplification and Sanger sequencing. Taken together, all these results would help to enhance our acknowledge of the regulation of circRNAs, and lay the foundation for breeding new C. sativa cultivars with high cannabinoids through manipulating circRNAs.
Collapse
Affiliation(s)
- Jingting Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Chang Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Mei Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Yicen Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Wuwei Wu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, People's Republic of China
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Steven G Newmaster
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Chittaranjan Kole
- International Climate Resilient Crop Genomics Consortium and International Phytomedomics and Nutriomics Consortium, Kolkata, 700094, India
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| |
Collapse
|
20
|
Liu J, Ni Y, Liu C. Polymeric structure of the Cannabis sativa L. mitochondrial genome identified with an assembly graph model. Gene 2023; 853:147081. [PMID: 36470482 DOI: 10.1016/j.gene.2022.147081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Cannabis sativa L. belongs to the family Cannabaceae in Rosales. It has been widely used as medicines, building materials, and textiles. Elucidating its genome is critical for molecular breeding and synthetic biology study. Many studies have shown that the mitochondrial genomes (mitogenomes) and even chloroplast genomes (plastomes) had complex polymeric structures. Using the Nanopore sequencing platform, we sequenced, assembled, and analyzed its mitogenome and plastome. The resulting unitig graph suggested that the mitogenome had a complex polymeric structure. However, a gap-free, circular sequence was further assembled from the unitig graph. In contrast, a circular sequence representing the plastome was obtained. The mitogenome major conformation was 415,837 bp long, and the plastome was 153,927 bp long. To test if the repeat sequences promote recombination, which corresponds to the branch points in the structure, we tested the sequences around repeats by long-read mapping. Among 208 pairs of predicted repeats, the mapping results supported the presence of cross-over around 25 pairs of repeats. Subsequent PCR amplification confirmed the presence of cross-over around 15 of the 25 repeats. By comparing the mitogenome and plastome sequences, we identified 19 mitochondria plastid DNAs, including seven complete genes (trnW-CCA, trnP-UGG, psbJ, trnN-GUU, trnD-GUC, trnH-GUG, trnM-CAU) and nine gene fragments. Furthermore, the selective pressure analysis results showed that five genes (atp1, ccmB, ccmC, cox1, nad7) had 19 positively selected sites. Lastly, we predicted 28 RNA editing sites. A total of 8 RNA editing sites located in the coding regions were successfully validated by PCR amplification and Sanger sequencing, of which four were synonymous, and four were nonsynonymous. In particular, the RNA editing events appeared to be tissue-specific in C. sativa mitogenome. In summary, we have confirmed the major confirmation of C. sativa mitogenome and characterized its structural features in detail. These results provide critical information for future variety breeding and resource development for C. sativa.
Collapse
Affiliation(s)
- Jingting Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
21
|
Liu D, Xie X, Tong B, Zhou C, Qu K, Guo H, Zhao Z, El-Kassaby YA, Li W, Li W. A high -quality genome assembly and annotation of Quercus acutissima Carruth. FRONTIERS IN PLANT SCIENCE 2022; 13:1068802. [PMID: 36507419 PMCID: PMC9729791 DOI: 10.3389/fpls.2022.1068802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Quercus acutissima is an economic and ecological tree species often used for afforestation of arid and semi-arid lands and is considered as an excellent tree for soil and water conservation. METHODS Here, we combined PacBio long reads, Hi-C, and Illumina short reads to assemble Q. acutissima genome. RESULTS We generated a 957.1 Mb genome with a contig N50 of 1.2 Mb and scaffold N50 of 77.0 Mb. The repetitive sequences constituted 55.63% of the genome, among which long terminal repeats were the majority and accounted for 23.07% of the genome. Ab initio, homology-based and RNA sequence-based gene prediction identified 29,889 protein-coding genes, of which 82.6% could be functionally annotated. Phylogenetic analysis showed that Q. acutissima and Q. variabilis were differentiated around 3.6 million years ago, and showed no evidence of species-specific whole genome duplication. CONCLUSION The assembled and annotated high-quality Q. acutissima genome not only promises to accelerate the species molecular biology studies and breeding, but also promotes genome level evolutionary studies.
Collapse
Affiliation(s)
- Dan Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Chengcheng Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kai Qu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haili Guo
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Zhiheng Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Wei Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenqing Li
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| |
Collapse
|
22
|
Král D, Šenkyřík JB, Ondřej V. Expression of Genes Involved in ABA and Auxin Metabolism and LEA Gene during Embryogenesis in Hemp. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212995. [PMID: 36365448 PMCID: PMC9657790 DOI: 10.3390/plants11212995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 05/14/2023]
Abstract
The level of phytohormones such as abscisic acid (ABA) and auxins (Aux) changes dynamically during embryogenesis. Knowledge of the transcriptional activity of the genes of their metabolic pathways is essential for a deeper understanding of embryogenesis itself; however, it could also help breeding programs of important plants, such as Cannabis sativa, attractive for the pharmaceutical, textile, cosmetic, and food industries. This work aimed to find out how genes of metabolic pathways of Aux (IAA-1, IAA-2, X15-1, X15-2) and ABA (PP2C-1) alongside one member of the LEA gene family (CanLea34) are expressed in embryos depending on the developmental stage and the embryo cultivation in vitro. Walking stick (WS) and mature (M) cultivated and uncultivated embryos of C. sativa cultivars 'KC Dora' and 'USO 31' were analyzed. The RT-qPCR results indicated that for the development of immature (VH) embryos, the genes (IAA-1, IAA-2) are likely to be fundamental. Only an increased expression of the CanLea34 gene was characteristic of the fully maturated (M) embryos. In addition, this feature was significantly increased by cultivation. In conclusion, the cultivation led to the upsurge of expression of all studied genes.
Collapse
|
23
|
Sipahi H, Whyte TD, Ma G, Berkowitz G. Genome-Wide Identification and Expression Analysis of Wall-Associated Kinase (WAK) Gene Family in Cannabis sativa L. PLANTS (BASEL, SWITZERLAND) 2022; 11:2703. [PMID: 36297727 PMCID: PMC9609219 DOI: 10.3390/plants11202703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Wall-associated kinases (WAKs) are receptors that bind pectin or small pectic fragments in the cell wall and play roles in cell elongation and pathogen response. In the Cannabis sativa (Cs) genome, 53 CsWAK/CsWAKL (WAK-like) protein family members were identified and characterized; their amino acid lengths and molecular weights varied from 582 to 983, and from 65.6 to 108.8 kDa, respectively. They were classified into four main groups by a phylogenetic tree. Out of the 53 identified CsWAK/CsWAKL genes, 23 CsWAK/CsWAKL genes were unevenly distributed among six chromosomes. Two pairs of genes on chromosomes 4 and 7 have undergone duplication. The number of introns and exons among CsWAK/CsWAKL genes ranged from 1 to 6 and from 2 to 7, respectively. The promoter regions of 23 CsWAKs/CsWAKLs possessed diverse cis-regulatory elements that are involved in light, development, environmental stress, and hormone responsiveness. The expression profiles indicated that our candidate genes (CsWAK1, CsWAK4, CsWAK7, CsWAKL1, and CsWAKL7) are expressed in leaf tissue. These genes exhibit different expression patterns than their homologs in other plant species. These initial findings are useful resources for further research work on the potential roles of CsWAK/CsWAKL in cellular signalling during development, environmental stress conditions, and hormone treatments.
Collapse
Affiliation(s)
- Hülya Sipahi
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Eskişehir Osmangazi, Eskişehir 26160, Türkiye
| | - Terik Djabeng Whyte
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Eskişehir Osmangazi, Eskişehir 26160, Türkiye
| | - Gang Ma
- Agricultural Biotechnology Laboratory, Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Gerald Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
24
|
Guo L, Tang C, Gao C, Li Z, Cheng Y, Chen J, Wang T, Xu J. Bacterial and fungal communities within and among geographic samples of the hemp pest Psylliodes attenuata from China. Front Microbiol 2022; 13:964735. [PMID: 36147860 PMCID: PMC9485832 DOI: 10.3389/fmicb.2022.964735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
The hemp flea beetle Psylliodes attenuata (Coleoptera: Chrysomelidae: Psylliodes) is a common pest of Cannabis sativa, including cultivars of both medicinal marijuana and industrial hemp. Both the larval and adult stages of this beetle can cause significant damages to C. sativa, resulting in substantial crop losses. At present, little is known about the bacterial and fungal community diversity among populations of this pest insect. In the present study, we obtained P. attenuata samples from nine field sites representing broad industrial hemp productions in China and analyzed their microbial communities using DNA metabarcoding. Bacterial sequences of all the samples were assigned to 3728 OTUs, which belonged to 45 phyla, 1058 genera and 1960 known species. The most common genera were Rickettsia, Wolbachia, and Candidatus_Brownia. Fungal sequences of all the samples were assigned to 910 OTUs, which belonged to 9 phyla, 308 genera and 464 known species. The most common fungal genera were Cladosporium, Cutaneotrichosporon, and Aspergillus. Principal coordinate analysis revealed a significant difference in the bacterial and fungal community structure among the nine P. attenuata populations. Understanding the microbial symbionts may provide clues to help develop potential biocontrol techniques against this pest.
Collapse
Affiliation(s)
- Litao Guo
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- *Correspondence: Litao Guo,
| | - Chao Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chunsheng Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zhimin Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yi Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jia Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Tuhong Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jianping Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Department of Biology, McMaster University, Hamilton, ON, Canada
- Jianping Xu, ; 0000-0003-2915-2780
| |
Collapse
|
25
|
Sirangelo TM, Ludlow RA, Spadafora ND. Multi-Omics Approaches to Study Molecular Mechanisms in Cannabis sativa. PLANTS (BASEL, SWITZERLAND) 2022; 11:2182. [PMID: 36015485 PMCID: PMC9416457 DOI: 10.3390/plants11162182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Cannabis (Cannabis sativa L.), also known as hemp, is one of the oldest cultivated crops, grown for both its use in textile and cordage production, and its unique chemical properties. However, due to the legislation regulating cannabis cultivation, it is not a well characterized crop, especially regarding molecular and genetic pathways. Only recently have regulations begun to ease enough to allow more widespread cannabis research, which, coupled with the availability of cannabis genome sequences, is fuelling the interest of the scientific community. In this review, we provide a summary of cannabis molecular resources focusing on the most recent and relevant genomics, transcriptomics and metabolomics approaches and investigations. Multi-omics methods are discussed, with this combined approach being a powerful tool to identify correlations between biological processes and metabolic pathways across diverse omics layers, and to better elucidate the relationships between cannabis sub-species. The correlations between genotypes and phenotypes, as well as novel metabolites with therapeutic potential are also explored in the context of cannabis breeding programs. However, further studies are needed to fully elucidate the complex metabolomic matrix of this crop. For this reason, some key points for future research activities are discussed, relying on multi-omics approaches.
Collapse
Affiliation(s)
- Tiziana M. Sirangelo
- CREA—Council for Agricultural Research and Agricultural Economy Analysis, Genomics and Bioinformatics Department, 26836 Montanaso Lombardo, Italy
| | - Richard A. Ludlow
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Natasha D. Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
26
|
Busta L, Dweikat I, Sato SJ, Qu H, Xue Y, Zhou B, Gan L, Yu B, Clemente TE, Cahoon EB, Zhang C. Chemical and genetic variation in feral Cannabis sativa populations across the Nebraska climate gradient. PHYTOCHEMISTRY 2022; 200:113206. [PMID: 35436478 DOI: 10.1016/j.phytochem.2022.113206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Cannabis sativa is a versatile crop that can be cultivated for fiber, seed, or phytochemicals. To take advantage of this versatility and the potential of Cannabis as a feedstock for the bioeconomy, genomics-enabled breeding programs must be strengthened and expanded. This work contributes to the foundation for such by investigating the phytochemistry and genomics of feral Cannabis populations collected from seventeen counties across the climate gradient of Nebraska. Flower tissue from male and female plants (28 total) was studied using (i) gas chromatography-mass spectrometry to assess cannabinoid profiles and (ii) RNA sequencing to determine transcript abundances. Both male and female flower tissues produced cannabinoids, and, though the compounds were more abundant in female flower tissue, the primary cannabinoid in both was usually cannabidiol. The expression of genes that mediate early steps on the cannabinoid biosynthetic pathway were upregulated in female relative to male flowers, suggesting that female versus male flower tissue cannabinoid abundance may be controlled at least in part at the transcriptional level. DNA sequencing was used to place feral Cannabis plants from Nebraska into a previously described genomic context, revealing that all the plants studied here are much more similar to previously characterized hemp-type Cannabis plants than to drug-type Cannabis plants, at least at the genetic level. This work provides foundational phytochemical knowledge and a large set of high-quality single nucleotide polymorphism markers for future studies of feral Nebraska Cannabis.
Collapse
Affiliation(s)
- Lucas Busta
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA; Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Ismail Dweikat
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Shirley J Sato
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Haolin Qu
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Yong Xue
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Bangjun Zhou
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Lu Gan
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Bin Yu
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Thomas E Clemente
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Edgar B Cahoon
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA; Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
27
|
Chen X, Guo HY, Zhang QY, Wang L, Guo R, Zhan YX, Lv P, Xu YP, Guo MB, Zhang Y, Zhang K, Liu YH, Yang M. Whole-genome resequencing of wild and cultivated cannabis reveals the genetic structure and adaptive selection of important traits. BMC PLANT BIOLOGY 2022; 22:371. [PMID: 35883045 PMCID: PMC9327241 DOI: 10.1186/s12870-022-03744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cannabis is an important industrial crop species whose fibre, seeds, flowers and leaves are widely used by humans. The study of cannabinoids extracted from plants has been popular research topic in recent years. China is one of the origins of cannabis and one of the few countries with wild cannabis plants. However, the genetic structure of Chinese cannabis and the degree of adaptive selection remain unclear. RESULTS The main morphological characteristics of wild cannabis in China were assessed. Based on whole-genome resequencing SNPs, Chinese cannabis could be divided into five groups in terms of geographical source and ecotype: wild accessions growing in the northwestern region; wild accessions growing in the northeastern region; cultivated accessions grown for fibre in the northeastern region; cultivated accessions grown for seed in northwestern region, and cultivated accessions in southwestern region. We further identified genes related to flowering time, seed germination, seed size, embryogenesis, growth, and stress responses selected during the process of cannabis domestication. The expression of flowering-related genes under long-day (LD) and short-day (SD) conditions showed that Chinese cultivated cannabis is adapted to different photoperiods through the regulation of Flowering locus T-like (FT-like) expression. CONCLUSION This study clarifies the genetic structure of Chinese cannabis and offers valuable genomic resources for cannabis breeding.
Collapse
Affiliation(s)
- Xuan Chen
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Hong-Yan Guo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Qing-Ying Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Lu Wang
- State Key Laboratory for Conservation, School of Life Sciences, Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500 China
| | - Rong Guo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yi-Xun Zhan
- State Key Laboratory for Conservation, School of Life Sciences, Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500 China
| | - Pin Lv
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yan-Ping Xu
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Meng-Bi Guo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yuan Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Kun Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Ming Yang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| |
Collapse
|
28
|
Melzer R, McCabe PF, Schilling S. Evolution, genetics and biochemistry of plant cannabinoid synthesis: a challenge for biotechnology in the years ahead. Curr Opin Biotechnol 2022; 75:102684. [DOI: 10.1016/j.copbio.2022.102684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022]
|
29
|
Alexandrov OS, Romanov DV, Divashuk MG, Razumova OV, Ulyanov DS, Karlov GI. Study and Physical Mapping of the Species-Specific Tandem Repeat CS-237 Linked with 45S Ribosomal DNA Intergenic Spacer in Cannabis sativa L. PLANTS (BASEL, SWITZERLAND) 2022; 11:1396. [PMID: 35684169 PMCID: PMC9183113 DOI: 10.3390/plants11111396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Hemp (Cannabis sativa L.) is a valuable crop and model plant for studying sex chromosomes. The scientific interest in the plant has led to its whole genome sequencing and the determination of its cytogenetic characteristics. A range of cytogenetic markers (subtelomeric repeat CS-1, 5S rDNA, and 45S rDNA) has been mapped onto hemp's chromosomes by fluorescent in situ hybridization (FISH). In this study, another cytogenetic marker (the tandem repeat CS-237, with a 237 bp monomer) was found, studied, and localized on chromosomes by FISH. The signal distribution and karyotyping revealed that the CS-237 probe was localized in chromosome 6 with one hybridization site and in chromosome 8 with two hybridization sites, one of which colocalizes with the 45S rDNA probe (with which a nucleolus organizer region, NOR, was detected). A BLAST analysis of the genomic data and PCR experiments showed that the modified CS-237 monomers (delCS-237, 208 bp in size) were present in the intergenic spacers (IGSs) of hemp 45S rDNA monomers. Such a feature was firstly observed in Cannabaceae species. However, IGS-linked DNA repeats were found in several plant species of other families (Fabaceae, Solanaceae, and Asteraceae). This phenomenon is discussed in this article. The example of CS-237 may be useful for further studying the phenomenon as well as for the physical mapping of hemp chromosomes.
Collapse
Affiliation(s)
| | - Dmitry V. Romanov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (O.S.A.); (M.G.D.); (O.V.R.); (D.S.U.); (G.I.K.)
| | | | | | | | | |
Collapse
|
30
|
Zhao Y, Sun Y, Cao K, Zhang X, Bian J, Han C, Jiang Y, Xu L, Wang X. Combined use of specific length amplified fragment sequencing (SLAF-seq) and bulked segregant analysis (BSA) for rapid identification of genes influencing fiber content of hemp (Cannabis sativa L.). BMC PLANT BIOLOGY 2022; 22:250. [PMID: 35596150 PMCID: PMC9123736 DOI: 10.1186/s12870-022-03594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Hemp (Cannabis sativa L.), an ancient crop, is a significant source of high-quality fiber that primarily caters to the textile industry worldwide. Fiber content is a crucial quantitative trait for evaluating fiber yield in hemp. Understanding the genetic mechanisms involved in hemp breeding is essential for improving yield. In this study, we developed 660 F1 plants from a cross between Jindao-15 (high fiber content fiber-use variety) and Fire No.1 (low fiber content fiber-use variety), and thirty plants each with high and low fiber content were selected from 305 monoecious plants of this population according to 5%-10% of population size for quantitative traits. The DNA from these plants was extracted to establish two bulk DNA pools and then subjected to the restriction digestion by the enzymes RsaI and HaeIII to obtain 314-364 bp digestion fragments and subjected to sequencing using specific length amplified fragment sequencing (SLAF-seq). Finally, we successfully developed 368,404 SLAF tags, which led to the detection of 25,133 high-quality SNPs. Combing with the resequencing results of parents, the SNPs of mixed pools were then subjected to the SNP-Index correlation algorithm, which revealed four candidate regions related to fiber content traits on Chromosome 1, with a length of 8.68 Mb and containing 389 annotated genes. The annotation information and the comparison results identified 15 genes that were highly likely to modulate the fiber content of hemp. Further, qPCR validation identified six genes (LOC115705530, LOC115705875, LOC115704794, LOC115705371, LOC115705688 and LOC115707511) that were highly positively correlated with influencing the hemp fiber content. These genes were involved in the transcription regulation, auxin and water transportion, one carbon and sugar metabolism. And non-synnoumous mutation SNPs which may play vital role in influencing the fiber content were detected in LOC115705875, LOC115704794, LOC115705688 and LOC115707511. Thus, our study highlights the importance of the combined use of SLAF-Seq and Bulked Segregant analysis (BSA) to locate genes related to hemp fiber content rapidly. Hence, our study provides novel mechanistic inputs for the fast identification of genes related to important agronomic traits of hemp and other crops catering to the textile industry.
Collapse
Affiliation(s)
- Yue Zhao
- Daqing Branch of Heilongjiang Academy of Sciences, Heilongjiang, China
| | - Yufeng Sun
- Daqing Branch of Heilongjiang Academy of Sciences, Heilongjiang, China
| | - Kun Cao
- Daqing Branch of Heilongjiang Academy of Sciences, Heilongjiang, China
| | - Xiaoyan Zhang
- Daqing Branch of Heilongjiang Academy of Sciences, Heilongjiang, China
| | - Jing Bian
- Daqing Branch of Heilongjiang Academy of Sciences, Heilongjiang, China
| | - Chengwei Han
- Daqing Branch of Heilongjiang Academy of Sciences, Heilongjiang, China
| | - Ying Jiang
- Daqing Branch of Heilongjiang Academy of Sciences, Heilongjiang, China
| | - Lei Xu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Heilongjiang, China
| | - Xiaonan Wang
- Daqing Branch of Heilongjiang Academy of Sciences, Heilongjiang, China.
| |
Collapse
|
31
|
Fattel L, Psaroudakis D, Yanarella CF, Chiteri KO, Dostalik HA, Joshi P, Starr DC, Vu H, Wimalanathan K, Lawrence-Dill CJ. Standardized genome-wide function prediction enables comparative functional genomics: a new application area for Gene Ontologies in plants. Gigascience 2022; 11:6568997. [PMID: 35426911 PMCID: PMC9012101 DOI: 10.1093/gigascience/giac023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/28/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background Genome-wide gene function annotations are useful for hypothesis generation and for prioritizing candidate genes potentially responsible for phenotypes of interest. We functionally annotated the genes of 18 crop plant genomes across 14 species using the GOMAP pipeline. Results By comparison to existing GO annotation datasets, GOMAP-generated datasets cover more genes, contain more GO terms, and are similar in quality (based on precision and recall metrics using existing gold standards as the basis for comparison). From there, we sought to determine whether the datasets across multiple species could be used together to carry out comparative functional genomics analyses in plants. To test the idea and as a proof of concept, we created dendrograms of functional relatedness based on terms assigned for all 18 genomes. These dendrograms were compared to well-established species-level evolutionary phylogenies to determine whether trees derived were in agreement with known evolutionary relationships, which they largely are. Where discrepancies were observed, we determined branch support based on jackknifing then removed individual annotation sets by genome to identify the annotation sets causing unexpected relationships. Conclusions GOMAP-derived functional annotations used together across multiple species generally retain sufficient biological signal to recover known phylogenetic relationships based on genome-wide functional similarities, indicating that comparative functional genomics across species based on GO data holds promise for generating novel hypotheses about comparative gene function and traits.
Collapse
Affiliation(s)
- Leila Fattel
- Department of Agronomy, 2104 Agronomy Hall, 716 Farm House Lane Ames, Iowa 50011-1051, USA
| | - Dennis Psaroudakis
- Department of Plant Pathology and Microbiology, 1344 Advanced Teaching & Research Bldg, 2213 Pammel Drive, Ames, Iowa 50011, USA
| | - Colleen F Yanarella
- Department of Agronomy, 2104 Agronomy Hall, 716 Farm House Lane Ames, Iowa 50011-1051, USA
| | - Kevin O Chiteri
- Department of Agronomy, 2104 Agronomy Hall, 716 Farm House Lane Ames, Iowa 50011-1051, USA
| | - Haley A Dostalik
- Department of Agronomy, 2104 Agronomy Hall, 716 Farm House Lane Ames, Iowa 50011-1051, USA
| | - Parnal Joshi
- Department of Veterinary Microbiology and Preventive Medicine, 1800 Christensen Drive, Ames, Iowa 50011-1134, USA
| | - Dollye C Starr
- Department of Agronomy, 2104 Agronomy Hall, 716 Farm House Lane Ames, Iowa 50011-1051, USA
| | - Ha Vu
- Department of Genetics, Development and Cell Biology, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames, Iowa 50011-1079, USA
| | - Kokulapalan Wimalanathan
- Department of Genetics, Development and Cell Biology, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames, Iowa 50011-1079, USA
| | - Carolyn J Lawrence-Dill
- Department of Agronomy, 2104 Agronomy Hall, 716 Farm House Lane Ames, Iowa 50011-1051, USA
- Department of Genetics, Development and Cell Biology, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames, Iowa 50011-1079, USA
| |
Collapse
|
32
|
Placido DF, Lee CC. Potential of Industrial Hemp for Phytoremediation of Heavy Metals. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050595. [PMID: 35270065 PMCID: PMC8912475 DOI: 10.3390/plants11050595] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 05/27/2023]
Abstract
The accumulation of anthropogenic heavy metals in soil is a major form of pollution. Such potentially toxic elements are nonbiodegradable and persist for many years as threats to human and environmental health. Traditional forms of remediation are costly and potentially damaging to the land. An alternative strategy is phytoremediation, where plants are used to capture metals from the environment. Industrial hemp (Cannabis sativa) is a promising candidate for phytoremediation. Hemp has deep roots and is tolerant to the accumulation of different metals. In addition, the crop biomass has many potential commercial uses after harvesting is completed. Furthermore, the recent availability of an annotated genome sequence provides a powerful tool for the bioengineering of C. sativa for better phytoremediation.
Collapse
|
33
|
Shiels D, Prestwich BD, Koo O, Kanchiswamy CN, O'Halloran R, Badmi R. Hemp Genome Editing-Challenges and Opportunities. Front Genome Ed 2022; 4:823486. [PMID: 35187530 PMCID: PMC8847435 DOI: 10.3389/fgeed.2022.823486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Hemp (Cannabis sativa L.) is a multipurpose crop with many important uses including medicine, fibre, food and biocomposites. This plant is currently gaining prominence and acceptance for its valuable applications. Hemp is grown as a cash crop for its novel cannabinoids which are estimated to be a multibillion-dollar downstream market. Hemp cultivation can play a major role in carbon sequestration with good CO2 to biomass conversion in low input systems and can also improve soil health and promote phytoremediation. The recent advent of genome editing tools to produce non-transgenic genome-edited crops with no trace of foreign genetic material has the potential to overcome regulatory hurdles faced by genetically modified crops. The use of Artificial Intelligence - mediated trait discovery platforms are revolutionizing the agricultural industry to produce desirable crops with unprecedented accuracy and speed. However, genome editing tools to improve the beneficial properties of hemp have not yet been deployed. Recent availability of high-quality Cannabis genome sequences from several strains (cannabidiol and tetrahydrocannabinol balanced and CBD/THC rich strains) have paved the way for improving the production of valuable bioactive molecules for the welfare of humankind and the environment. In this context, the article focuses on exploiting advanced genome editing tools to produce non-transgenic hemp to improve the most industrially desirable traits. The challenges, opportunities and interdisciplinary approaches that can be adopted from existing technologies in other plant species are highlighted.
Collapse
Affiliation(s)
- Donal Shiels
- School of Biological Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Barbara Doyle Prestwich
- School of Biological Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Ireland
| | | | | | - Roisin O'Halloran
- School of Biological Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Raghuram Badmi
- School of Biological Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Ireland
- Plantedit Pvt Ltd, Cork, Ireland
| |
Collapse
|
34
|
Olejar KJ, Park SH. Industry-Based Misconceptions Regarding Cross-Pollination of Cannabis spp. FRONTIERS IN PLANT SCIENCE 2022; 13:793264. [PMID: 35154220 PMCID: PMC8826057 DOI: 10.3389/fpls.2022.793264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/04/2022] [Indexed: 05/22/2023]
Abstract
Cross-pollination of commercial crops has been an ongoing issue in many species. Cannabis spp. encompasses the classifications of marijuana [high in Δ9-tetrahydrocannabinol (THC)] and hemp (below 0.3% THC). As such, cannabis is the most recent crop facing the dilemma of cross-pollination and is leading to litigation. These litigations are driven by the large misunderstanding of the impacts of cross-pollination within the cannabis industry. The misconception is that if hemp is cross-pollinated by high THC cannabis, the hemp will become "hot" (high in THC) thereby rendering the crop illegal under the 2018 Farm Bill. However, there are many factors that contribute to the amount of THC a plant may produce. This article examines and refutes the misconception of cross-pollination increasing THC levels by highlighting several methods of how THC may become high in a given hemp crop.
Collapse
Affiliation(s)
- Kenneth J. Olejar
- Department of Chemistry, Colorado State University Pueblo, Pueblo, CO, United States
| | - Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University Pueblo, Pueblo, CO, United States
| |
Collapse
|
35
|
Hussain T, Jeena G, Pitakbut T, Vasilev N, Kayser O. Cannabis sativa research trends, challenges, and new-age perspectives. iScience 2021; 24:103391. [PMID: 34841230 PMCID: PMC8605354 DOI: 10.1016/j.isci.2021.103391] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cannabis sativa L. has been one of the oldest medicinal plants cultivated for 10,000 years for several agricultural and industrial applications. However, the plant became controversial owing to some psychoactive components that have adverse effects on human health. In this review, we analyzed the trends in cannabis research for the past two centuries. We discussed the historical transitions of cannabis from the category of herbal medicine to an illicit drug and back to a medicinal product post-legalization. In addition, we address the new-age application of immuno-suppressive and anti-inflammatory extracts for the treatment of COVID-19 inflammation. We further address the influence of the legal aspects of cannabis cultivation for medicinal, pharmaceutical, and biotechnological research. We reviewed the up-to-date cannabis genomic resources and advanced technologies for their potential application in genomic-based cannabis improvement. Overall, this review discusses the diverse aspects of cannabis research developments ranging from traditional use as herbal medicine to the latest potential in COVID-19, legal practices with updated patent status, and current state of art genetic and genomic tools reshaping cannabis biotechnology in modern age agriculture and pharmaceutical industry.
Collapse
Affiliation(s)
- Tajammul Hussain
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Strasse. 66, 44227 Dortmund, Germany
| | - Ganga Jeena
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Strasse. 66, 44227 Dortmund, Germany
| | - Thanet Pitakbut
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Strasse. 66, 44227 Dortmund, Germany
| | - Nikolay Vasilev
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Strasse. 66, 44227 Dortmund, Germany
| | - Oliver Kayser
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Strasse. 66, 44227 Dortmund, Germany
| |
Collapse
|
36
|
Fulvio F, Paris R, Montanari M, Citti C, Cilento V, Bassolino L, Moschella A, Alberti I, Pecchioni N, Cannazza G, Mandolino G. Analysis of Sequence Variability and Transcriptional Profile of Cannabinoid synthase Genes in Cannabis sativa L. Chemotypes with a Focus on Cannabichromenic acid synthase. PLANTS (BASEL, SWITZERLAND) 2021; 10:1857. [PMID: 34579390 PMCID: PMC8466818 DOI: 10.3390/plants10091857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 02/03/2023]
Abstract
Cannabis sativa L. has been long cultivated for its narcotic potential due to the accumulation of tetrahydrocannabinolic acid (THCA) in female inflorescences, but nowadays its production for fiber, seeds, edible oil and bioactive compounds has spread throughout the world. However, some hemp varieties still accumulate traces of residual THCA close to the 0.20% limit set by European Union, despite the functional gene encoding for THCA synthase (THCAS) is lacking. Even if some hypotheses have been produced, studies are often in disagreement especially on the role of the cannabichromenic acid synthase (CBCAS). In this work a set of European Cannabis genotypes, representative of all chemotypes, were investigated from a chemical and molecular point of view. Highly specific primer pairs were developed to allow an accurate distinction of different cannabinoid synthases genes. In addition to their use as markers to detect the presence of CBCAS at genomic level, they allowed the analysis of transcriptional profiles in hemp or marijuana plants. While the high level of transcription of THCAS and cannabidiolic acid synthase (CBDAS) clearly reflects the chemical phenotype of the plants, the low but stable transcriptional level of CBCAS in all genotypes suggests that these genes are active and might contribute to the final amount of cannabinoids.
Collapse
Affiliation(s)
- Flavia Fulvio
- CREA—Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128 Bologna, Italy; (F.F.); (M.M.); (V.C.); (L.B.); (A.M.); (G.M.)
- Department of Sciences of Agriculture, Food Natural Resources and Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Roberta Paris
- CREA—Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128 Bologna, Italy; (F.F.); (M.M.); (V.C.); (L.B.); (A.M.); (G.M.)
| | - Massimo Montanari
- CREA—Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128 Bologna, Italy; (F.F.); (M.M.); (V.C.); (L.B.); (A.M.); (G.M.)
| | - Cinzia Citti
- CNR NANOTEC—Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (C.C.); (G.C.)
- Department of Life Science, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Vincenzo Cilento
- CREA—Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128 Bologna, Italy; (F.F.); (M.M.); (V.C.); (L.B.); (A.M.); (G.M.)
| | - Laura Bassolino
- CREA—Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128 Bologna, Italy; (F.F.); (M.M.); (V.C.); (L.B.); (A.M.); (G.M.)
| | - Anna Moschella
- CREA—Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128 Bologna, Italy; (F.F.); (M.M.); (V.C.); (L.B.); (A.M.); (G.M.)
| | - Ilaria Alberti
- CREA—Research Centre for Cereal and Industrial Crops, Via G. Amendola 82, 45100 Rovigo, Italy;
| | - Nicola Pecchioni
- CREA—Research Centre for Cereal and Industrial Crops, S.S. 673 Km 25,200, 71122 Foggia, Italy;
| | - Giuseppe Cannazza
- CNR NANOTEC—Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (C.C.); (G.C.)
- Department of Life Science, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Giuseppe Mandolino
- CREA—Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128 Bologna, Italy; (F.F.); (M.M.); (V.C.); (L.B.); (A.M.); (G.M.)
| |
Collapse
|
37
|
van Velzen R, Schranz ME. Origin and Evolution of the Cannabinoid Oxidocyclase Gene Family. Genome Biol Evol 2021; 13:evab130. [PMID: 34100927 PMCID: PMC8521752 DOI: 10.1093/gbe/evab130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Cannabis is an ancient crop representing a rapidly increasing legal market, especially for medicinal purposes. Medicinal and psychoactive effects of Cannabis rely on specific terpenophenolic ligands named cannabinoids. Recent whole-genome sequencing efforts have uncovered variation in multiple genes encoding the final steps in cannabinoid biosynthesis. However, the origin, evolution, and phylogenetic relationships of these cannabinoid oxidocyclase genes remain unclear. To elucidate these aspects, we performed comparative genomic analyses of Cannabis, related genera within the Cannabaceae family, and selected outgroup species. Results show that cannabinoid oxidocyclase genes originated in the Cannabis lineage from within a larger gene expansion in the Cannabaceae family. Localization and divergence of oxidocyclase genes in the Cannabis genome revealed two main syntenic blocks, each comprising tandemly repeated cannabinoid oxidocyclase genes. By comparing these blocks with those in genomes from closely related species, we propose an evolutionary model for the origin, neofunctionalization, duplication, and diversification of cannabinoid oxidocycloase genes. Based on phylogenetic analyses, we propose a comprehensive classification of three main clades and seven subclades that are intended to aid unequivocal referencing and identification of cannabinoid oxidocyclase genes. Our data suggest that cannabinoid phenotype is primarily determined by the presence/absence of single-copy genes. Although wild populations of Cannabis are still unknown, increased sampling of landraces and wild/feral populations across its native geographic range is likely to uncover additional cannabinoid oxidocyclase sequence variants.
Collapse
Affiliation(s)
- Robin van Velzen
- Plant Sciences, Biosystematics Group, Wageningen University, Wageningen, The Netherlands
- Bedrocan International, Veendam, The Netherlands
| | - M Eric Schranz
- Plant Sciences, Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
38
|
Cai S, Zhang Z, Huang S, Bai X, Huang Z, Zhang YJ, Huang L, Tang W, Haughn G, You S, Liu Y. CannabisGDB: a comprehensive genomic database for Cannabis Sativa L. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:857-859. [PMID: 33462958 PMCID: PMC8131054 DOI: 10.1111/pbi.13548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/11/2021] [Indexed: 06/02/2023]
Affiliation(s)
- Sen Cai
- Basic Forestry and Proteomics CenterHaixia Institute of Science and TechnologyState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
- School of Life SciencesCapital Normal UniversityBeijingChina
| | - Zhiyuan Zhang
- Basic Forestry and Proteomics CenterHaixia Institute of Science and TechnologyState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
| | - Suyun Huang
- Basic Forestry and Proteomics CenterHaixia Institute of Science and TechnologyState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xu Bai
- Basic Forestry and Proteomics CenterHaixia Institute of Science and TechnologyState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ziying Huang
- Basic Forestry and Proteomics CenterHaixia Institute of Science and TechnologyState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
| | | | - Likun Huang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (FAFU)Ministry of EducationFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Weiqi Tang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (FAFU)Ministry of EducationFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Marine and Agricultural Biotechnology LaboratoryInstitute of OceanographyMinjiang UniversityFuzhouChina
| | - George Haughn
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Shijun You
- Institute of Applied EcologyFujian Agriculture and Forestry UniversityFuzhouChina
- Joint International Research Laboratory of Ecological Pest ControlMinistry of EducationFuzhouChina
| | - Yuanyuan Liu
- Basic Forestry and Proteomics CenterHaixia Institute of Science and TechnologyState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
- Joint International Research Laboratory of Ecological Pest ControlMinistry of EducationFuzhouChina
| |
Collapse
|
39
|
Hurgobin B, Tamiru‐Oli M, Welling MT, Doblin MS, Bacic A, Whelan J, Lewsey MG. Recent advances in Cannabis sativa genomics research. THE NEW PHYTOLOGIST 2021; 230:73-89. [PMID: 33283274 PMCID: PMC7986631 DOI: 10.1111/nph.17140] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/27/2020] [Indexed: 05/06/2023]
Abstract
Cannabis (Cannabis sativa L.) is one of the oldest cultivated plants purported to have unique medicinal properties. However, scientific research of cannabis has been restricted by the Single Convention on Narcotic Drugs of 1961, an international treaty that prohibits the production and supply of narcotic drugs except under license. Legislation governing cannabis cultivation for research, medicinal and even recreational purposes has been relaxed recently in certain jurisdictions. As a result, there is now potential to accelerate cultivar development of this multi-use and potentially medically useful plant species by application of modern genomics technologies. Whilst genomics has been pivotal to our understanding of the basic biology and molecular mechanisms controlling key traits in several crop species, much work is needed for cannabis. In this review we provide a comprehensive summary of key cannabis genomics resources and their applications. We also discuss prospective applications of existing and emerging genomics technologies for accelerating the genetic improvement of cannabis.
Collapse
Affiliation(s)
- Bhavna Hurgobin
- La Trobe Institute for Agriculture and FoodDepartment of Animal, Plant and Soil SciencesSchool of Life SciencesLa Trobe UniversityAgriBio BuildingBundooraVIC3086Australia
- Australian Research Council Research Hub for Medicinal AgricultureLa Trobe UniversityAgriBio BuildingBundooraVIC3086Australia
| | - Muluneh Tamiru‐Oli
- La Trobe Institute for Agriculture and FoodDepartment of Animal, Plant and Soil SciencesSchool of Life SciencesLa Trobe UniversityAgriBio BuildingBundooraVIC3086Australia
- Australian Research Council Research Hub for Medicinal AgricultureLa Trobe UniversityAgriBio BuildingBundooraVIC3086Australia
| | - Matthew T. Welling
- La Trobe Institute for Agriculture and FoodDepartment of Animal, Plant and Soil SciencesSchool of Life SciencesLa Trobe UniversityAgriBio BuildingBundooraVIC3086Australia
- Australian Research Council Research Hub for Medicinal AgricultureLa Trobe UniversityAgriBio BuildingBundooraVIC3086Australia
| | - Monika S. Doblin
- La Trobe Institute for Agriculture and FoodDepartment of Animal, Plant and Soil SciencesSchool of Life SciencesLa Trobe UniversityAgriBio BuildingBundooraVIC3086Australia
- Australian Research Council Research Hub for Medicinal AgricultureLa Trobe UniversityAgriBio BuildingBundooraVIC3086Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture and FoodDepartment of Animal, Plant and Soil SciencesSchool of Life SciencesLa Trobe UniversityAgriBio BuildingBundooraVIC3086Australia
- Australian Research Council Research Hub for Medicinal AgricultureLa Trobe UniversityAgriBio BuildingBundooraVIC3086Australia
| | - James Whelan
- La Trobe Institute for Agriculture and FoodDepartment of Animal, Plant and Soil SciencesSchool of Life SciencesLa Trobe UniversityAgriBio BuildingBundooraVIC3086Australia
- Australian Research Council Research Hub for Medicinal AgricultureLa Trobe UniversityAgriBio BuildingBundooraVIC3086Australia
- Australian Research Council Centre of Excellence for Plant Energy BiologyLa Trobe UniversityAgriBio BuildingBundooraVIC3086Australia
| | - Mathew G. Lewsey
- La Trobe Institute for Agriculture and FoodDepartment of Animal, Plant and Soil SciencesSchool of Life SciencesLa Trobe UniversityAgriBio BuildingBundooraVIC3086Australia
- Australian Research Council Research Hub for Medicinal AgricultureLa Trobe UniversityAgriBio BuildingBundooraVIC3086Australia
| |
Collapse
|
40
|
Zheng J, Meinhardt LW, Goenaga R, Zhang D, Yin Y. The chromosome-level genome of dragon fruit reveals whole-genome duplication and chromosomal co-localization of betacyanin biosynthetic genes. HORTICULTURE RESEARCH 2021; 8:63. [PMID: 33750805 PMCID: PMC7943767 DOI: 10.1038/s41438-021-00501-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 05/05/2023]
Abstract
Dragon fruits are tropical fruits economically important for agricultural industries. As members of the family of Cactaceae, they have evolved to adapt to the arid environment. Here we report the draft genome of Hylocereus undatus, commercially known as the white-fleshed dragon fruit. The chromosomal level genome assembly contains 11 longest scaffolds corresponding to the 11 chromosomes of H. undatus. Genome annotation of H. undatus found ~29,000 protein-coding genes, similar to Carnegiea gigantea (saguaro). Whole-genome duplication (WGD) analysis revealed a WGD event in the last common ancestor of Cactaceae followed by extensive genome rearrangements. The divergence time between H. undatus and C. gigantea was estimated to be 9.18 MYA. Functional enrichment analysis of orthologous gene clusters (OGCs) in six Cactaceae plants found significantly enriched OGCs in drought resistance. Fruit flavor-related functions were overrepresented in OGCs that are significantly expanded in H. undatus. The H. undatus draft genome also enabled the discovery of carbohydrate and plant cell wall-related functional enrichment in dragon fruits treated with trypsin for a longer storage time. Lastly, genes of the betacyanin (a red-violet pigment and antioxidant with a very high concentration in dragon fruits) biosynthetic pathway were found to be co-localized on a 12 Mb region of one chromosome. The consequence may be a higher efficiency of betacyanin biosynthesis, which will need experimental validation in the future. The H. undatus draft genome will be a great resource to study various cactus plants.
Collapse
Affiliation(s)
- Jinfang Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588, USA
| | | | - Ricardo Goenaga
- Tropical Agriculture Research Station, USDA-ARS, Puerto Rico, PR, USA
| | - Dapeng Zhang
- Sustainable Perennial Crops Lab, USDA-ARS, Beltsville, MD, USA.
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588, USA.
| |
Collapse
|
41
|
Carey S, Yu Q, Harkess A. The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing. Genes (Basel) 2021; 12:381. [PMID: 33800038 PMCID: PMC8000587 DOI: 10.3390/genes12030381] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/21/2023] Open
Abstract
For centuries, scientists have been intrigued by the origin of dioecy in plants, characterizing sex-specific development, uncovering cytological differences between the sexes, and developing theoretical models. Through the invention and continued improvements in genomic technologies, we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the advances in research on dioecy and sex chromosomes. We start by first discussing the early works that built the foundation for current studies and the advances in genome sequencing that have facilitated more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination genes uncovered by genome sequencing. We synthesize these results to find some patterns are emerging, such as the role of duplications, the involvement of hormones in sex-determination, and support for the two-locus model for the origin of dioecy. Though across systems, there are also many novel insights into how sex chromosomes evolve, including different sex-determining genes and routes to suppressed recombination. We propose the future of research in plant sex chromosomes should involve interdisciplinary approaches, combining cutting-edge technologies with the classics to unravel the patterns that can be found across the hundreds of independent origins.
Collapse
Affiliation(s)
- Sarah Carey
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA;
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Qingyi Yu
- Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX 75252, USA
| | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA;
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
42
|
Bautista J, Yu S, Tian L. Flavonoids in Cannabis sativa: Biosynthesis, Bioactivities, and Biotechnology. ACS OMEGA 2021; 6:5119-5123. [PMID: 33681553 PMCID: PMC7931196 DOI: 10.1021/acsomega.1c00318] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/11/2021] [Indexed: 05/02/2023]
Abstract
Although Cannabis sativa synthesizes a wide range of phytochemicals, much attention has been primarily given to two phytocannabinoids, Δ9-tetrahydocannabinol (THC) and cannabidiol (CBD), due to their distinctive activities in humans. These bioactivities can be further enhanced through the interaction of THC and CBD with other phytocannabinoids or non-phytocannabinoid chemicals, such as terpenes and flavonoids, a phenomenon that is termed the entourage effect. Flavonoid metabolism in C. sativa and the entourage effect are currently understudied. This mini-review examines recent advances in the biosynthesis and bioactivities of cannflavins, which are prenylated (C5) and geranylated (C10) flavones that are relatively unique to C. sativa. We also discuss the rapidly developing omics tools that enable discoveries in flavonoid metabolism in C. sativa and manipulation of flavonoid production through biotechnology. These advances set the stage for interrogating the health benefits of C. sativa flavonoids, deciphering the contribution of flavonoids to the entourage effect, and developing drugs.
Collapse
Affiliation(s)
| | | | - Li Tian
- . Telephone: +1 530 7520940. Fax: +1 530 7529659
| |
Collapse
|
43
|
Oultram JMJ, Pegler JL, Bowser TA, Ney LJ, Eamens AL, Grof CPL. Cannabis sativa: Interdisciplinary Strategies and Avenues for Medical and Commercial Progression Outside of CBD and THC. Biomedicines 2021; 9:biomedicines9030234. [PMID: 33652704 PMCID: PMC7996784 DOI: 10.3390/biomedicines9030234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabis sativa (Cannabis) is one of the world’s most well-known, yet maligned plant species. However, significant recent research is starting to unveil the potential of Cannabis to produce secondary compounds that may offer a suite of medical benefits, elevating this unique plant species from its illicit narcotic status into a genuine biopharmaceutical. This review summarises the lengthy history of Cannabis and details the molecular pathways that underpin the production of key secondary metabolites that may confer medical efficacy. We also provide an up-to-date summary of the molecular targets and potential of the relatively unknown minor compounds offered by the Cannabis plant. Furthermore, we detail the recent advances in plant science, as well as synthetic biology, and the pharmacology surrounding Cannabis. Given the relative infancy of Cannabis research, we go on to highlight the parallels to previous research conducted in another medically relevant and versatile plant, Papaver somniferum (opium poppy), as an indicator of the possible future direction of Cannabis plant biology. Overall, this review highlights the future directions of cannabis research outside of the medical biology aspects of its well-characterised constituents and explores additional avenues for the potential improvement of the medical potential of the Cannabis plant.
Collapse
Affiliation(s)
- Jackson M. J. Oultram
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Joseph L. Pegler
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Timothy A. Bowser
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
| | - Luke J. Ney
- School of Psychological Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Andrew L. Eamens
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Christopher P. L. Grof
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
- Correspondence: ; Tel.: +612-4921-5858
| |
Collapse
|
44
|
Cheng QQ, Ouyang Y, Tang ZY, Lao CC, Zhang YY, Cheng CS, Zhou H. Review on the Development and Applications of Medicinal Plant Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:791219. [PMID: 35003182 PMCID: PMC8732986 DOI: 10.3389/fpls.2021.791219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 05/04/2023]
Abstract
With the development of sequencing technology, the research on medicinal plants is no longer limited to the aspects of chemistry, pharmacology, and pharmacodynamics, but reveals them from the genetic level. As the price of next-generation sequencing technology becomes affordable, and the long-read sequencing technology is established, the medicinal plant genomes with large sizes have been sequenced and assembled more easily. Although the review of plant genomes has been reported several times, there is no review giving a systematic and comprehensive introduction about the development and application of medicinal plant genomes that have been reported until now. Here, we provide a historical perspective on the current situation of genomes in medicinal plant biology, highlight the use of the rapidly developing sequencing technologies, and conduct a comprehensive summary on how the genomes apply to solve the practical problems in medicinal plants, like genomics-assisted herb breeding, evolution history revelation, herbal synthetic biology study, and geoherbal research, which are important for effective utilization, rational use and sustainable protection of medicinal plants.
Collapse
Affiliation(s)
- Qi-Qing Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yue Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zi-Yu Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Chi-Chou Lao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yan-Yu Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Chun-Song Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Joint Laboratory for Translational Cancer Research of Chinese Medicine, The Ministry of Education of the People’s Republic of China, Macau University of Science and Technology, Taipa, Macao SAR, China
- *Correspondence: Hua Zhou,
| |
Collapse
|
45
|
Braich S, Baillie RC, Spangenberg GC, Cogan NOI. A new and improved genome sequence of Cannabis sativa. GIGABYTE 2020; 2020:gigabyte10. [PMID: 36824593 PMCID: PMC9632002 DOI: 10.46471/gigabyte.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/18/2020] [Indexed: 11/09/2022] Open
Abstract
Cannabis is a diploid species (2n = 20), the estimated haploid genome sizes of the female and male plants using flow cytometry are 818 and 843 Mb respectively. Although the genome of Cannabis has been sequenced (from hemp, wild and high-THC strains), all assemblies have significant gaps. In addition, there are inconsistencies in the chromosome numbering which limits their use. A new comprehensive draft genome sequence assembly (∼900 Mb) has been generated from the medicinal cannabis strain Cannbio-2, that produces a balanced ratio of cannabidiol and delta-9-tetrahydrocannabinol using long-read sequencing. The assembly was subsequently analysed for completeness by ordering the contigs into chromosome-scale pseudomolecules using a reference genome assembly approach, annotated and compared to other existing reference genome assemblies. The Cannbio-2 genome sequence assembly was found to be the most complete genome sequence available based on nucleotides assembled and BUSCO evaluation in Cannabis sativa with a comprehensive genome annotation. The new draft genome sequence is an advancement in Cannabis genomics permitting pan-genome analysis, genomic selection as well as genome editing.
Collapse
Affiliation(s)
- Shivraj Braich
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Rebecca C. Baillie
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Noel O. I. Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3086, Australia, Corresponding author. E-mail:
| |
Collapse
|
46
|
Deguchi M, Kane S, Potlakayala S, George H, Proano R, Sheri V, Curtis WR, Rudrabhatla S. Metabolic Engineering Strategies of Industrial Hemp ( Cannabis sativa L.): A Brief Review of the Advances and Challenges. FRONTIERS IN PLANT SCIENCE 2020; 11:580621. [PMID: 33363552 PMCID: PMC7752810 DOI: 10.3389/fpls.2020.580621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
Industrial hemp (Cannabis sativa L.) is a diploid (2n = 20), dioecious plant that is grown for fiber, seed, and oil. Recently, there has been a renewed interest in this crop because of its panoply of cannabinoids, terpenes, and other phenolic compounds. Specifically, hemp contains terpenophenolic compounds such as cannabidiol (CBD) and cannabigerol (CBG), which act on cannabinoid receptors and positively regulate various human metabolic, immunological, and physiological functions. CBD and CBG have an effect on the cytokine metabolism, which has led to the examination of cannabinoids on the treatment of viral diseases, including COVID-19. Based on genomic, transcriptomic, and metabolomic studies, several synthetic pathways of hemp secondary metabolite production have been elucidated. Nevertheless, there are few reports on hemp metabolic engineering despite obvious impact on scientific and industrial sectors. In this article, recent status and current perspectives on hemp metabolic engineering are reviewed. Three distinct approaches to expedite phytochemical yield are discussed. Special emphasis has been placed on transgenic and transient gene delivery systems, which are critical for successful metabolic engineering of hemp. The advent of new tools in synthetic biology, particularly the CRISPR/Cas systems, enables environment-friendly metabolic engineering to increase the production of desirable hemp phytochemicals while eliminating the psychoactive compounds, such as tetrahydrocannabinol (THC).
Collapse
Affiliation(s)
- Michihito Deguchi
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA, United States
| | - Shriya Kane
- School of Medicine, Georgetown University, Washington, DC, United States
| | - Shobha Potlakayala
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA, United States
| | - Hannah George
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA, United States
| | - Renata Proano
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA, United States
| | - Vijay Sheri
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA, United States
| | - Wayne R. Curtis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Sairam Rudrabhatla
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA, United States
| |
Collapse
|
47
|
Singh A, Bilichak A, Kovalchuk I. The genetics of Cannabis-genomic variations of key synthases and their effect on cannabinoid content. Genome 2020; 64:490-501. [PMID: 33186070 DOI: 10.1139/gen-2020-0087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite being a controversial crop, Cannabis sativa L. has a long history of cultivation throughout the world. Following recent legalization in Canada, Cannabis is emerging as an important plant for both medicinal and recreational purposes. Recent progress in genome sequencing of both cannabis and hemp varieties allow for systematic analysis of genes coding for enzymes involved in the cannabinoid biosynthesis pathway. Single-nucleotide polymorphisms in the coding regions of cannabinoid synthases play an important role in determining plant chemotype. Deep understanding of how these variants affect enzyme activity and accumulation of cannabinoids will allow breeding of novel cultivars with desirable cannabinoid profiles. Here we present a short overview of the major cannabinoid synthases and present the data on the analysis of their genetic variants and their effect on cannabinoid content using several in-house sequenced Cannabis cultivars.
Collapse
Affiliation(s)
- Aparna Singh
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Andriy Bilichak
- Morden Research and Development Center, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
48
|
Bassolino L, Buti M, Fulvio F, Pennesi A, Mandolino G, Milc J, Francia E, Paris R. In Silico Identification of MYB and bHLH Families Reveals Candidate Transcription Factors for Secondary Metabolic Pathways in Cannabis sativa L. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1540. [PMID: 33187168 PMCID: PMC7697600 DOI: 10.3390/plants9111540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
Plant secondary metabolic pathways are finely regulated by the activity of transcription factors, among which members of the bHLH and MYB subfamilies play a main role. Cannabis sativa L. is a unique officinal plant species with over 600 synthesized phytochemicals having diverse scale-up industrial and pharmaceutical usage. Despite comprehensive knowledge of cannabinoids' metabolic pathways, very little is known about their regulation, while the literature on flavonoids' metabolic pathways is still scarce. In this study, we provide the first genome-wide analysis of bHLH and MYB families in C. sativa reference cultivar CBDRx and identification of candidate coding sequences for these transcription factors. Cannabis sativa bHLHs and MYBs were then classified into functional subfamilies through comparative phylogenetic analysis with A. thaliana transcription factors. Analyses of gene structure and motif distribution confirmed that CsbHLHs and CsMYBs belonging to the same evolutionary clade share common features at both gene and amino acidic level. Candidate regulatory genes for key metabolic pathways leading to flavonoid and cannabinoid synthesis in Cannabis were also retrieved. Furthermore, a candidate gene approach was used to identify structural enzyme-coding genes for flavonoid and cannabinoid synthesis. Taken as a whole, this work represents a valuable resource of candidate genes for further investigation of the C. sativa cannabinoid and flavonoid metabolic pathways for genomic studies and breeding programs.
Collapse
Affiliation(s)
- Laura Bassolino
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy;
| | - Flavia Fulvio
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Alessandro Pennesi
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Giuseppe Mandolino
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Justyna Milc
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (J.M.); (E.F.)
| | - Enrico Francia
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (J.M.); (E.F.)
| | - Roberta Paris
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| |
Collapse
|
49
|
Romero P, Peris A, Vergara K, Matus JT. Comprehending and improving cannabis specialized metabolism in the systems biology era. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110571. [PMID: 32771172 DOI: 10.1016/j.plantsci.2020.110571] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Cannabis sativa is a source of food, fiber and specialized metabolites such as cannabinoids, with psychoactive and pharmacological effects. Due to its expanding and increasingly-accepted use in medicine, cannabis cultivation is acquiring more importance and less social stigma. Humans initiated different domestication episodes whose later spread gave rise to a plethora of landrace cultivars. At present, breeders cross germplasms from different gene pools depending on their specific use. The fiber (hemp) and drug (marijuana) types of C. sativa differ in their cannabinoid chemical composition phenotype (chemotype) and also in the accumulation of terpenoid compounds that constitute a strain's particular flavor and scent. Cannabinoids are isoprenylated polyketides among which cannabidiolic acid (CBDA) and (-)-trans-Δ⁹-tetrahydrocannabinol acid (THCA) have been well-documented for their many effects on humans. Here, we review the most studied specialized metabolic pathways in C. sativa, showing how terpenes and cannabinoids share both part of the isoprenoid pathway and the same biosynthetic compartmentalization (i.e. glandular trichomes of leaves and flowers). We enlist the several studies that have deciphered these pathways in this species including physical and genetic maps, QTL analyses and localization and enzymatic studies of cannabinoid and terpene synthases. In addition, new comparative modeling of cannabinoid synthases and phylogenetic trees are presented. We describe the genome sequencing initiatives of several accessions with the concomitant generation of next-generation genome maps and transcriptomic data. Very recently, proteomic characterizations and systems biology approaches such as those applying network theory or the integration of multi-omics data have increased the knowledge on gene function, enzyme diversity and metabolite content in C. sativa. In this revision we drift through the history, present and future of cannabis research and on how second- and third-generation sequencing technologies are bringing light to the field of cannabis specialized metabolism. We also discuss different biotechnological approaches for producing cannabinoids in engineered microorganisms.
Collapse
Affiliation(s)
- P Romero
- Institute for Integrative Systems Biology, I²SysBio (Universitat de València - CSIC), 46908, Paterna, Valencia, Spain
| | - A Peris
- Institute for Integrative Systems Biology, I²SysBio (Universitat de València - CSIC), 46908, Paterna, Valencia, Spain
| | - K Vergara
- Centro de Estudios del Cannabis, CECANN, Santiago, Chile
| | - J T Matus
- Institute for Integrative Systems Biology, I²SysBio (Universitat de València - CSIC), 46908, Paterna, Valencia, Spain.
| |
Collapse
|
50
|
Onaivi ES, Singh Chauhan BP, Sharma V. Challenges of cannabinoid delivery: how can nanomedicine help? Nanomedicine (Lond) 2020; 15:2023-2028. [PMID: 32589080 DOI: 10.2217/nnm-2020-0221] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Emmanuel Shan Onaivi
- Department of Biology, College of Science & Health, William Paterson University, Wayne, NJ 07470, USA.,College of Science & Health, William Paterson University, Wayne, NJ 07470, USA
| | - Bhanu Pratap Singh Chauhan
- College of Science & Health, William Paterson University, Wayne, NJ 07470, USA.,Department of Chemistry, College of Science & Health, William Paterson University, Wayne, NJ 07470, USA
| | - Venkatanarayanan Sharma
- Department of Biology, College of Science & Health, William Paterson University, Wayne, NJ 07470, USA.,College of Science & Health, William Paterson University, Wayne, NJ 07470, USA
| |
Collapse
|