1
|
Sharma NC, Verma P, Verma P, Kumar P, Sharma CL, Saini S. Apple russeting-causes, physiology and control measures: A review. PLANTA 2025; 261:41. [PMID: 39836232 DOI: 10.1007/s00425-025-04614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
MAIN CONCLUSION This review serves as a critical framework for guiding future research into the causes of russeting and the development of effective control strategies to enhance fruit quality. Russeting is a condition characterized by the formation of brown, corky patches on fruit skin which significantly impairs both the quality and market value of apples. This phenomenon arises from a complex interplay of various biotic and abiotic factors. Among the abiotic factors, environmental conditions, such as light, temperature, and relative humidity, as well as nutrient imbalances and the application of agrochemicals are important, whereas biotic factors include the influence of yeasts, fungi, viruses, and bacteria. The susceptibility of apple cultivars to russeting varies with yellow-fleshed varieties generally exhibiting higher incidences compared to red-fleshed ones. While russeting is partly determined by varietal and genetic factors, it can be mitigated through the implementation of effective cultural practices, nutrient management, plant growth regulators, biological agents, and pesticides. Understanding these dynamics provides valuable insights for developing future research strategies aimed at improving fruit quality and production.
Collapse
Affiliation(s)
- Naveen C Sharma
- Department of Fruit Science, College of Horticulture, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, 173230, India
| | - Preetika Verma
- Department of Fruit Science, College of Horticulture, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, 173230, India.
| | - Pramod Verma
- Department of Fruit Science, College of Horticulture, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, 173230, India
| | - Pramod Kumar
- Department of Fruit Science, College of Horticulture, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, 173230, India
| | - Chuni L Sharma
- Department of Fruit Science, College of Horticulture, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, 173230, India
| | - Simran Saini
- Department of Fruit Science, College of Horticulture, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, 173230, India
| |
Collapse
|
2
|
Wang W, Chi M, Liu S, Zhang Y, Song J, Xia G, Liu S. TaGPAT6 enhances salt tolerance in wheat by synthesizing cutin and suberin monomers to form a diffusion barrier. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39601645 DOI: 10.1111/jipb.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
One mechanism plants use to tolerate high salinity is the deposition of cutin and suberin to form apoplastic barriers that limit the influx of ions. However, the mechanism underlying barrier formation under salt stress is unclear. Here, we characterized the glycerol-3-phosphate acyltransferase (GPAT) family gene TaGPAT6, encoding a protein involved in cutin and suberin biosynthesis for apoplastic barrier formation in wheat (Triticum aestivum). TaGPAT6 has both acyltransferase and phosphatase activities, which are responsible for the synthesis of sn-2-monoacylglycerol (sn-2 MAG), the precursor of cutin and suberin. Overexpressing TaGPAT6 promoted the deposition of cutin and suberin in the seed coat and the outside layers of root tip cells and enhanced salt tolerance by reducing sodium ion accumulation within cells. By contrast, TaGPAT6 knockout mutants showed increased sensitivity to salt stress due to reduced cutin and suberin deposition and enhanced sodium ion accumulation. Yeast-one-hybrid and electrophoretic mobility shift assays identified TaABI5 as the upstream regulator of TaGPAT6. TaABI5 knockout mutants showed suppressed expression of TaGPAT6 and decreased barrier formation in the seed coat. These results indicate that TaGPAT6 is involved in cutin and suberin biosynthesis and the resulting formation of an apoplastic barrier that enhances salt tolerance in wheat.
Collapse
Affiliation(s)
- Wenlong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Menghan Chi
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shupeng Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ying Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jiawang Song
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shuwei Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257345, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
3
|
Luo F, Huang Y, Sun Y, Guan J, Li M, Liu T, Qi H. Transcription Factor CmWRKY13 Regulates Cucurbitacin B Biosynthesis Leading to Bitterness in Oriental Melon Fruit ( Cucumis melo var. Makuwa Makino). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39460931 DOI: 10.1021/acs.jafc.4c04608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Bitterness, caused by cucurbitacin B (CuB), is one of the important traits that affects melon fruit quality and consumer acceptance. Therefore, the detailed mechanism behind the regulation of CuB biosynthesis on melon fruit needs to be further explored. This study investigated CuB content and transcriptomes of "YMR" melon fruit treated by 5 and 20 mg L-1 CPPU. The content of CuB reaches its peak in 5 days and then decreases. WGCNA identified the WRKY transcription factor (TF), CmWRKY13, coexpressed with CuB biosynthetic genes (Cm180, Cm170, Cm160, and CmACT). Yeast one-hybrid, dual-luciferase, and transient gene expression assays were conducted and suggested that the nucleus-localized CmWRKY13 transactivated the promoters of CuB biosynthetic genes and participated in the regulation of CuB biosynthesis. Furthermore, CmWRKY13 could interact with CmBt, the fruit bitterness-specific TF, which synergistically activated CuB biosynthetic gene expression. These findings provide a novel mechanistic insight for CuB biosynthesis and regulation in melon cultivation.
Collapse
Affiliation(s)
- Fei Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yushan Huang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yinhan Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - JingYue Guan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Meng Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| |
Collapse
|
4
|
Miao Y, Duan W, Li A, Yuan M, Meng J, Wang H, Pan L, Sun S, Cui G, Shi C, Niu L, Zeng W. The MYB transcription factor PpMYB5 regulates Pp4CL1/Pp4CL2 expression to promote lignin biosynthesis of fruit russeting in the flat nectarine. PLANT CELL REPORTS 2024; 43:231. [PMID: 39276239 DOI: 10.1007/s00299-024-03321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
KEY MESSAGE Transcription factor PpMYB5 promotes lignin synthesis by directly binding to the Pp4CL1/Pp4CL2 promoter and affecting their expression, which may be related to nectarine russeting formation. Nectarine russeting is usually considered to be a non-invasive physiological disease that usually occurs on late-maturing cultivars and seriously affects their appearance quality and commercial value. The cause of nectarine fruit rust is currently unknown. In this study, we compared two flat nectarine cultivars, 'zhongyoupanweidi' (HD; russeting-free cultivar) and 'zhongyoupanweihou' (TH; russeting-prone cultivar), with respect to nectarine russeting by means of microscopy, transcriptomics, and hormone analysis. Compared to HD fruits, TH fruits had a broken cuticle, missing wax layer, and heavy lignin deposition. RNA sequencing (RNA-seq) revealed significant alternations in the expression of genes related to lignin synthesis. Moreover, structure genes Pp4CL1 and Pp4CL2, MYB transcription factor (TF) gene PpMYB5 were identified through weighted gene co-expression network analysis (WGCNA). Molecular experiments and transgenic evidence suggested that PpMYB5 regulates Pp4CL1/Pp4CL2 expression to promote lignin synthesis. Overall, in addition to providing new insights into the formation of mechanisms for nectarine russeting, our study also establishes a foundation for nectarine russeting prevention.
Collapse
Affiliation(s)
- Yule Miao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, People's Republic of China
| | - Wenyi Duan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, People's Republic of China
| | - Ang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Mingzhu Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Junren Meng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Hongmei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Lei Pan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, People's Republic of China
| | - Shihang Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, People's Republic of China
| | - Guochao Cui
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Caiyun Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Liang Niu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Wenfang Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, People's Republic of China.
| |
Collapse
|
5
|
Calderón L, Carbonell-Bejerano P, Muñoz C, Bree L, Sola C, Bergamin D, Tulle W, Gomez-Talquenca S, Lanz C, Royo C, Ibáñez J, Martinez-Zapater JM, Weigel D, Lijavetzky D. Diploid genome assembly of the Malbec grapevine cultivar enables haplotype-aware analysis of transcriptomic differences underlying clonal phenotypic variation. HORTICULTURE RESEARCH 2024; 11:uhae080. [PMID: 38766532 PMCID: PMC11101320 DOI: 10.1093/hr/uhae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/08/2024] [Indexed: 05/22/2024]
Abstract
To preserve their varietal attributes, established grapevine cultivars (Vitis vinifera L. ssp. vinifera) must be clonally propagated, due to their highly heterozygous genomes. Malbec is a France-originated cultivar appreciated for producing high-quality wines and is the offspring of cultivars Prunelard and Magdeleine Noire des Charentes. Here, we have built a diploid genome assembly of Malbec, after trio binning of PacBio long reads into the two haploid complements inherited from either parent. After haplotype-aware deduplication and corrections, complete assemblies for the two haplophases were obtained with a very low haplotype switch-error rate (<0.025). The haplophase alignment identified > 25% of polymorphic regions. Gene annotation including RNA-seq transcriptome assembly and ab initio prediction evidence resulted in similar gene model numbers for both haplophases. The annotated diploid assembly was exploited in the transcriptomic comparison of four clonal accessions of Malbec that exhibited variation in berry composition traits. Analysis of the ripening pericarp transcriptome using either haplophases as a reference yielded similar results, although some differences were observed. Particularly, among the differentially expressed genes identified only with the Magdeleine-inherited haplotype as reference, we observed an over-representation of hypothetically hemizygous genes. The higher berry anthocyanin content of clonal accession 595 was associated with increased abscisic acid responses, possibly leading to the observed overexpression of phenylpropanoid metabolism genes and deregulation of genes associated with abiotic stress response. Overall, the results highlight the importance of producing diploid assemblies to fully represent the genomic diversity of highly heterozygous woody crop cultivars and unveil the molecular bases of clonal phenotypic variation.
Collapse
Affiliation(s)
- Luciano Calderón
- Instituto de Biología Agrícola de Mendoza (CONICET-UNCuyo), Genetica y Genomica de Vid, Chacras de Coria 5505, Mendoza, Argentina
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, Logroño 26007, La Rioja, Spain
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Claudio Muñoz
- Instituto de Biología Agrícola de Mendoza (CONICET-UNCuyo), Genetica y Genomica de Vid, Chacras de Coria 5505, Mendoza, Argentina
- Facultad de Ciencias Agrarias (UNCuyo), Cátedra Fitopatología, Chacras de Coria 5505, Mendoza, Argentina
| | - Laura Bree
- Vivero Mercier Argentina, Perdriel 5500, Mendoza, Argentina
| | - Cristobal Sola
- Vivero Mercier Argentina, Perdriel 5500, Mendoza, Argentina
| | | | - Walter Tulle
- Instituto de Biología Agrícola de Mendoza (CONICET-UNCuyo), Genetica y Genomica de Vid, Chacras de Coria 5505, Mendoza, Argentina
| | - Sebastian Gomez-Talquenca
- Plant Virology Laboratory, Instituto Nacional de Tecnología Agropecuaria, Luján de Cuyo 5534, Mendoza, Argentina
| | - Christa Lanz
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Carolina Royo
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, Logroño 26007, La Rioja, Spain
| | - Javier Ibáñez
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, Logroño 26007, La Rioja, Spain
| | - José Miguel Martinez-Zapater
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, Logroño 26007, La Rioja, Spain
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Diego Lijavetzky
- Instituto de Biología Agrícola de Mendoza (CONICET-UNCuyo), Genetica y Genomica de Vid, Chacras de Coria 5505, Mendoza, Argentina
| |
Collapse
|
6
|
Manzoor MA, Xu Y, Lv Z, Xu J, Shah IH, Sabir IA, Wang Y, Sun W, Liu X, Wang L, Liu R, Jiu S, Zhang C. Horticulture crop under pressure: Unraveling the impact of climate change on nutrition and fruit cracking. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120759. [PMID: 38554453 DOI: 10.1016/j.jenvman.2024.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Climate change is increasingly affecting the nutritional content and structural integrity of horticultural crops, leading to challenges such as diminished fruit quality and the exacerbation of fruit cracking. This manuscript systematically explores the multifaceted impacts of these changes, with a particular focus on the nutritional quality and increased incidence of fruit cracking. An exhaustive review of current research identifies the critical role of transcription factors in mediating plant responses to climatic stressors, such as drought, temperature extremes, and saline conditions. The significance of transcription factors, including bHLH, bZIP, DOF, MDP, HD-ZIP, MYB, and ERF4, is highlighted in the development of fruit cracking, underscoring the genetic underpinnings behind stress-related phenotypic outcomes. The effectiveness of greenhouse structures in mitigating adverse climatic effects is evaluated, offering a strategic approach to sustain crop productivity amidst CO2 fluctuations and water scarcity, which are shown to influence plant physiology and lead to changes in fruit development, nutrient dynamics, and a heightened risk of cracking. Moreover, the manuscript delves into advanced breeding strategies and genetic engineering techniques, such as genome editing, to enhance crop resilience against climatic challenges. It also discusses adaptation strategies vital for sustainable horticulture, emphasizing the need to integrate novel genetic insights with controlled environment horticulture to counteract climate change's detrimental effects. The synthesis presented here underscores the urgent need for innovative breeding strategies aimed at developing resilient crop varieties that can withstand climatic uncertainty while preserving nutritional integrity.
Collapse
Affiliation(s)
- Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jieming Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
7
|
Gapper NE. NACs strike again: NOR-like1 is responsible for cuticle development in tomato fruit. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1791-1795. [PMID: 38534188 DOI: 10.1093/jxb/erae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
This article comments on:
Liu G-S, Huang H, Grierson D, Gao Y, Ji X, Peng Z-Z, Li H-L, Niu X-L, Jia W, He J-L, Xiang L-T, Gao H-Y, Qu G-Q, Zhu H-L, Zhu B-Z, Luo Y-B, Fu D-Q. 2024. NAC transcription factor SlNOR-like1 plays a dual regulatory role in tomato fruit cuticle formation. Journal of Experimental Botany 75, 1903–1918.
Collapse
Affiliation(s)
- Nigel E Gapper
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland, New Zealand
| |
Collapse
|
8
|
Niederauer GF, de Oliveira GL, Aono AH, da Silva Graciano D, Carmello-Guerreiro SM, Moura MF, de Souza AP. Uncovering the molecular mechanisms of russet skin formation in Niagara grapevine (Vitis vinifera × Vitis labrusca). Sci Rep 2024; 14:6600. [PMID: 38504117 PMCID: PMC10950848 DOI: 10.1038/s41598-024-55745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024] Open
Abstract
Grape breeding programs are mostly focused on developing new varieties with high production volume, sugar contents, and phenolic compound diversity combined with resistance and tolerance to the main pathogens under culture and adverse environmental conditions. The 'Niagara' variety (Vitis labrusca × Vitis vinifera) is one of the most widely produced and commercialized table grapes in Brazil. In this work, we selected three Niagara somatic variants with contrasting berry phenotypes and performed morphological and transcriptomic analyses of their berries. Histological sections of the berries were also performed to understand anatomical and chemical composition differences of the berry skin between the genotypes. An RNA-Seq pipeline was implemented, followed by global coexpression network modeling. 'Niagara Steck', an intensified russet mutant with the most extreme phenotype, showed the largest difference in expression and showed selection of coexpressed network modules involved in the development of its russet-like characteristics. Enrichment analysis of differently expressed genes and hub network modules revealed differences in transcription regulation, auxin signaling and cell wall and plasmatic membrane biogenesis. Cutin- and suberin-related genes were also differently expressed, supporting the anatomical differences observed with microscopy.
Collapse
Affiliation(s)
- Guilherme Francio Niederauer
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Geovani Luciano de Oliveira
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Alexandre Hild Aono
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Diego da Silva Graciano
- Department of Plant Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Anete Pereira de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Department of Plant Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
9
|
Badjakov I, Dincheva I, Vrancheva R, Georgiev V, Pavlov A. Plant In Vitro Culture Factories for Pentacyclic Triterpenoid Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:17-49. [PMID: 38319391 DOI: 10.1007/10_2023_245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Pentacyclic triterpenoids are a diverse subclass of naturally occurring terpenes with various biological activities and applications. These compounds are broadly distributed in natural plant resources, but their low abundance and the slow growth cycle of plants pose challenges to their extraction and production. The biosynthesis of pentacyclic triterpenoids occurs through two main pathways, the mevalonic acid (MVA) pathway and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway, which involve several enzymes and modifications. Plant in vitro cultures, including elicited and hairy root cultures, have emerged as an effective and sustainable system for pentacyclic triterpenoid production, circumventing the limitations associated with natural plant resources. Bioreactor systems and controlling key parameters, such as media composition, temperature, light quality, and elicitor treatments, have been optimized to enhance the production and characterization of specific pentacyclic triterpenoids. These systems offer a promising bioprocessing tool for producing pentacyclic triterpenoids characterized by a low carbon footprint and a sustainable source of these compounds for various industrial applications.
Collapse
Affiliation(s)
| | | | - Radka Vrancheva
- Department of Analytical Chemistry and Physical Chemistry, University of Food Technologies-Plovdiv, Plovdiv, Bulgaria
| | - Vasil Georgiev
- Laboratory of Applied Biotechnologies, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Atanas Pavlov
- Department of Analytical Chemistry and Physical Chemistry, University of Food Technologies-Plovdiv, Plovdiv, Bulgaria
- Laboratory of Applied Biotechnologies, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| |
Collapse
|
10
|
Dinday S, Ghosh S. Recent advances in triterpenoid pathway elucidation and engineering. Biotechnol Adv 2023; 68:108214. [PMID: 37478981 DOI: 10.1016/j.biotechadv.2023.108214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Triterpenoids are among the most assorted class of specialized metabolites found in all the taxa of living organisms. Triterpenoids are the leading active ingredients sourced from plant species and are utilized in pharmaceutical and cosmetic industries. The triterpenoid precursor 2,3-oxidosqualene, which is biosynthesized via the mevalonate (MVA) pathway is structurally diversified by the oxidosqualene cyclases (OSCs) and other scaffold-decorating enzymes such as cytochrome P450 monooxygenases (P450s), UDP-glycosyltransferases (UGTs) and acyltransferases (ATs). A majority of the bioactive triterpenoids are harvested from the native hosts using the traditional methods of extraction and occasionally semi-synthesized. These methods of supply are time-consuming and do not often align with sustainability goals. Recent advancements in metabolic engineering and synthetic biology have shown prospects for the green routes of triterpenoid pathway reconstruction in heterologous hosts such as Escherichia coli, Saccharomyces cerevisiae and Nicotiana benthamiana, which appear to be quite promising and might lead to the development of alternative source of triterpenoids. The present review describes the biotechnological strategies used to elucidate complex biosynthetic pathways and to understand their regulation and also discusses how the advances in triterpenoid pathway engineering might aid in the scale-up of triterpenoid production in engineered hosts.
Collapse
Affiliation(s)
- Sandeep Dinday
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
11
|
Straube J, Suvarna S, Chen YH, Khanal BP, Knoche M, Debener T. Time course of changes in the transcriptome during russet induction in apple fruit. BMC PLANT BIOLOGY 2023; 23:457. [PMID: 37775771 PMCID: PMC10542230 DOI: 10.1186/s12870-023-04483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Russeting is a major problem in many fruit crops. Russeting is caused by environmental factors such as wounding or moisture exposure of the fruit surface. Despite extensive research, the molecular sequence that triggers russet initiation remains unclear. Here, we present high-resolution transcriptomic data by controlled russet induction at very early stages of fruit development. During Phase I, a patch of the fruit surface is exposed to surface moisture. For Phase II, moisture exposure is terminated, and the formerly exposed surface remains dry. We targeted differentially expressed transcripts as soon as 24 h after russet induction. RESULTS During moisture exposure (Phase I) of 'Pinova' apple, transcripts associated with the cell cycle, cell wall, and cuticle synthesis (SHN3) decrease, while those related to abiotic stress increase. NAC35 and MYB17 were the earliest induced genes during Phase I. They are therefore linked to the initial processes of cuticle microcracking. After moisture removal (Phase II), the expression of genes related to meristematic activity increased (WOX4 within 24 h, MYB84 within 48 h). Genes related to lignin synthesis (MYB52) and suberin synthesis (MYB93, WRKY56) were upregulated within 3 d after moisture removal. WOX4 and AP2B3 are the earliest differentially expressed genes induced in Phase II. They are therefore linked to early events in periderm formation. The expression profiles were consistent between two different seasons and mirrored differences in russet susceptibility in a comparison of cultivars. Furthermore, expression profiles during Phase II of moisture induction were largely identical to those following wounding. CONCLUSIONS The combination of a unique controlled russet induction technique with high-resolution transcriptomic data allowed for the very first time to analyse the formation of cuticular microcracks and periderm in apple fruit immediately after the onset of triggering factors. This data provides valuable insights into the spatial-temporal dynamics of russeting, including the synthesis of cuticles, dedifferentiation of cells, and impregnation of cell walls with suberin and lignin.
Collapse
Affiliation(s)
- Jannis Straube
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Shreya Suvarna
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Yun-Hao Chen
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Bishnu P Khanal
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Thomas Debener
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| |
Collapse
|
12
|
Huang H, Liu H, Wang L, Xiang X. Cuticular wax metabolism responses to atmospheric water stress on the exocarp surface of litchi fruit after harvest. Food Chem 2023; 414:135704. [PMID: 36808022 DOI: 10.1016/j.foodchem.2023.135704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Litchi fruit is susceptible to pericarp browning, which is largely due to the oxidation of phenols in pericarp. However, the response of cuticular waxes to water loss of litchi after harvest is less mentioned. In this study, litchi fruits were stored under ambient, dry, water-sufficient, and packing conditions, while rapid pericarp browning and water loss from the pericarp were observed under the water-deficient conditions. The coverage of cuticular waxes on the fruit surface increased following the development of pericarp browning, during which quantities of very-long-chain (VLC) fatty acids, primary alcohols, and n-alkanes changed significantly. Genes involved in the metabolism of such compounds were upregulated, including LcLACS2, LcKCS1, LcKCR1, LcHACD, and LcECR for elongation of fatty acids, LcCER1 and LcWAX2 for n-alkanes, and LcCER4 for primary alcohols. These findings reveal that cuticular wax metabolism may take part in the response of litchi to water-deficient and pericarp browning during storage.
Collapse
Affiliation(s)
- Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, PR China.
| | - Hailun Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, PR China
| | - Ling Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Xu Xiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, PR China
| |
Collapse
|
13
|
Composition, metabolism and postharvest function and regulation of fruit cuticle: A review. Food Chem 2023; 411:135449. [PMID: 36669336 DOI: 10.1016/j.foodchem.2023.135449] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.
Collapse
|
14
|
Wen C, Zhang Z, Shi Q, Niu R, Duan X, Shen B, Li X. Transcription Factors ZjMYB39 and ZjMYB4 Regulate Farnesyl Diphosphate Synthase- and Squalene Synthase-Mediated Triterpenoid Biosynthesis in Jujube. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4599-4614. [PMID: 36880571 DOI: 10.1021/acs.jafc.2c08679] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Jujube (Ziziphus jujuba Mill.) is rich in valuable bioactive triterpenoids. However, the regulatory mechanism underlying triterpenoid biosynthesis in jujube remains poorly studied. Here, we characterized the triterpenoid content in wild jujube and cultivated jujube. The triterpenoid content was higher in wild jujube than in cultivated jujube, triterpenoids were most abundant in young leaves, buds, and later stages of development. The transcriptome analysis and correlation analysis showed that differentially expressed genes (DEGs) were enriched in the terpenoid synthesis pathways, and triterpenoids content was strongly correlated with farnesyl diphosphate synthase (ZjFPS), squalene synthase (ZjSQS), and transcription factors ZjMYB39 and ZjMYB4 expression. Gene overexpression and silencing analysis indicated that ZjFPS and ZjSQS were key genes in triterpenoid biosynthesis and transcription factors ZjMYB39 and ZjMYB4 regulated triterpenoid biosynthesis. Subcellular localization experiments showed that ZjFPS and ZjSQS were localized to the nucleus and endoplasmic reticulum and ZjMYB39 and ZjMYB4 were localized to the nucleus. Yeast one-hybrid, glucuronidase activity, and dual-luciferase activity assays suggested that ZjMYB39 and ZjMYB4 regulate triterpenoid biosynthesis by directly binding and activating the promoters of ZjFPS and ZjSQS. These findings provide insights into the underlying regulatory network of triterpenoids metabolism in jujube and lay theoretical and practical foundation for molecular breeding.
Collapse
Affiliation(s)
- Cuiping Wen
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Zhong Zhang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Runzi Niu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xiaoshan Duan
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Bingqi Shen
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- College of Horticulture and Forestry, Tarim University, Alar 843300, China
| |
Collapse
|
15
|
Xu X, Guerriero G, Domergue F, Beine-Golovchuk O, Cocco E, Berni R, Sergeant K, Hausman JF, Legay S. Characterization of MdMYB68, a suberin master regulator in russeted apples. FRONTIERS IN PLANT SCIENCE 2023; 14:1143961. [PMID: 37021306 PMCID: PMC10067606 DOI: 10.3389/fpls.2023.1143961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Apple russeting is mainly due to the accumulation of suberin in the cell wall in response to defects and damages in the cuticle layer. Over the last decades, massive efforts have been done to better understand the complex interplay between pathways involved in the suberization process in model plants. However, the regulation mechanisms which orchestrate this complex process are still under investigation. Our previous studies highlighted a number of transcription factor candidates from the Myeloblastosis (MYB) transcription factor family which might regulate suberization in russeted or suberized apple fruit skin. Among these, we identified MdMYB68, which was co-expressed with number of well-known key suberin biosynthesis genes. METHOD To validate the MdMYB68 function, we conducted an heterologous transient expression in Nicotiana benthamiana combined with whole gene expression profiling analysis (RNA-Seq), quantification of lipids and cell wall monosaccharides, and microscopy. RESULTS MdMYB68 overexpression is able to trigger the expression of the whole suberin biosynthesis pathway. The lipid content analysis confirmed that MdMYB68 regulates the deposition of suberin in cell walls. Furthermore, we also investigated the alteration of the non-lipid cell wall components and showed that MdMYB68 triggers a massive modification of hemicelluloses and pectins. These results were finally supported by the microscopy. DISCUSSION Once again, we demonstrated that the heterologous transient expression in N. benthamiana coupled with RNA-seq is a powerful and efficient tool to investigate the function of suberin related transcription factors. Here, we suggest MdMYB68 as a new regulator of the aliphatic and aromatic suberin deposition in apple fruit, and further describe, for the first time, rearrangements occurring in the carbohydrate cell wall matrix, preparing this suberin deposition.
Collapse
Affiliation(s)
- Xuan Xu
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Frederic Domergue
- Université de Bordeaux, Centre National de la Recherche Scientifique (CNRS) – Unité Mixte de Recherche (UMR) 5200, Laboratoire de biogenèse Membranaire, Bâtiment A3 ‐ Institut Natitonal de la Recherche Agronomique (INRA) Bordeaux Aquitaine, Villenave d’Ornon, France
| | - Olga Beine-Golovchuk
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Roberto Berni
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
16
|
Santos M, Egea-Cortines M, Gonçalves B, Matos M. Molecular mechanisms involved in fruit cracking: A review. FRONTIERS IN PLANT SCIENCE 2023; 14:1130857. [PMID: 36937999 PMCID: PMC10016354 DOI: 10.3389/fpls.2023.1130857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Several fleshy fruits are highly affected by cracking, a severe physiological disorder that compromises their quality and causes high economical losses to the producers. Cracking can occur due to physiological, genetic or environmental factors and may happen during fruit growth, development and ripening. Moreover, in fleshy fruits, exocarp plays an important role, acting as a mechanical protective barrier, defending against biotic or abiotic factors. Thus, when biochemical properties of the cuticle + epidermis + hypodermis are affected, cracks appear in the fruit skin. The identification of genes involved in development such as cell wall modifications, biosynthesis and transport of cuticular waxes, cuticular membrane deposition and associated transcription factors provides new insights to better understand how fruit cracking is affected by genetic factors. Amongst the major environmental stresses causing cracking are excessive water during fruit development, leading to imbalances in cations such as Ca. This review focus on expression of key genes in these pathways, in their influence in affected fruits and the potential for molecular breeding programs, aiming to develop cultivars more resistant to cracking under adverse environmental conditions.
Collapse
Affiliation(s)
- Marlene Santos
- Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Marcos Egea-Cortines
- Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Department of Biology and Environment (DeBA), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Manuela Matos
- Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
17
|
Cárdenas-Conejo Y, Narváez-Zapata JA, Carballo-Uicab VM, Aguilar-Espinosa M, Us-Camas R, Escobar-Turriza P, Comai L, Rivera-Madrid R. Gene expression profile during seed development of Bixa orellana accessions varying in bixin pigment. FRONTIERS IN PLANT SCIENCE 2023; 14:1066509. [PMID: 36875614 PMCID: PMC9975726 DOI: 10.3389/fpls.2023.1066509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Diverse morphological, cellular and physiological changes occur during seed maturation in Bixa orellana when the seed tissues form specialized cell glands that produce reddish latex with high bixin amounts. Transcriptomic profiling during seed development in three B. orellana accessions (P12, N4 and N5) with contrasting morphologic characteristics showed enrichment in pathways of triterpenes, sesquiterpenes, and cuticular wax biosynthesis. WGCNA allows groups of all identified genes in six modules the module turquoise, the largest and highly correlated with the bixin content. The high number of genes in this module suggests a diversification of regulatory mechanisms for bixin accumulation with the genes belonging to isoprene, triterpenes and carotene pathways, being more highly correlated with the bixin content. Analysis of key genes of the mevalonate (MVA) and the 2C-methyl-D-erythritol-4-phosphate (MEP) pathways revealed specific activities of orthologs of BoHMGR, BoFFP, BoDXS, and BoHDR. This suggests that isoprenoid production is necessary for compounds included in the reddish latex of developing seeds. The carotenoid-related genes BoPSY2, BoPDS1 and BoZDS displayed a high correlation with bixin production, consistent with the requirement for carotene precursors for apocarotenoid biosynthesis. The BoCCD gene member (BoCCD4-4) and some BoALDH (ALDH2B7.2 and ALDH3I1) and BoMET (BoSABATH1 and BoSABATH8) gene members were highly correlated to bixin in the final seed development stage. This suggested a contributing role for several genes in apocarotenoid production. The results revealed high genetic complexity in the biosynthesis of reddish latex and bixin in specialized seed cell glands in different accessions of B. orellana suggesting gene expression coordination between both metabolite biosynthesis processes.
Collapse
Affiliation(s)
- Yair Cárdenas-Conejo
- Laboratorio de Agrobiotecnología, Consejo Nacional de Ciencia y Tecnología (CONACYT)-Universidad de Colima, Colima, Mexico
| | | | - Víctor Manuel Carballo-Uicab
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida, Yucatán, Mexico
| | - Margarita Aguilar-Espinosa
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida, Yucatán, Mexico
| | - Rosa Us-Camas
- Departamento de Estudios de Posgrado e Investigación, Instituto Tecnológico Superior de Calkiní, en el Estado de Campeche, Calkiní, Campeche, Mexico
| | - Pedro Escobar-Turriza
- Segunda División de Biotecnología Industrial, Centro de Investigación Científica y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Jalisco, Mexico
| | - Luca Comai
- Plant Biology and Genome Center, University of California, Davis, Davis, CA, United States
| | - Renata Rivera-Madrid
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida, Yucatán, Mexico
| |
Collapse
|
18
|
The role of cuticle in fruit shelf-life. Curr Opin Biotechnol 2022; 78:102802. [PMID: 36162185 DOI: 10.1016/j.copbio.2022.102802] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 12/14/2022]
Abstract
Ensuring the availability of high-quality fresh fruits requires the development of strategies to maintain prolonged shelf-life. The plant cuticle is a modification of the outer epidermal cell wall and, as such, acts as a barrier with the environment. Understanding how the cuticle naturally changes during postharvest is crucial to address the potential effect of different storage conditions on the cuticle biophysical properties. The impact of different cuticle traits in fruit water loss, its relevance in several fruit-skin disorders, and its participation in postharvest decay caused by pathogens are discussed. Future challenges to study in vivo the physicochemical properties of the cuticle are also addressed.
Collapse
|
19
|
Wang Z, Liu S, Huo W, Chen M, Zhang Y, Jiang S. Transcriptome and metabolome analyses reveal phenotype formation differences between russet and non-russet apples. FRONTIERS IN PLANT SCIENCE 2022; 13:1057226. [PMID: 36426145 PMCID: PMC9678910 DOI: 10.3389/fpls.2022.1057226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The apple is an economically important fruit, and fruit russeting is not conducive to its appearance. Although studies have examined fruit russeting, its mechanism remains unclear. Two apple strains of the F1 hybrid population derived from 'Fuji' and 'Golden Delicious' were used in this study. We found that the skin of russet apples was rough and fissured, while that of non-russet apples was smooth and waxy. Chemical staining, LC- and GC-MS showed that both lignin and suberin were increased in russet apple skin. Meanwhile, genes involved in lignin and suberin synthetic pathways were upregulated in russet apple skin. Additionally, we found many differentially expressed genes (DEGs1) involved in hormone biosynthesis and signaling and stress responses in the two apple strains. We found that WRKY13 may influence russeting by regulating lignin synthesis. Our study identified several candidate metabolites and genes, which will provide a good foundation for further research.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Shasha Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Wenping Huo
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Min Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Shenghui Jiang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| |
Collapse
|
20
|
Xu X, Guerriero G, Berni R, Sergeant K, Guignard C, Lenouvel A, Hausman JF, Legay S. MdMYB52 regulates lignin biosynthesis upon the suberization process in apple. FRONTIERS IN PLANT SCIENCE 2022; 13:1039014. [PMID: 36275517 PMCID: PMC9583409 DOI: 10.3389/fpls.2022.1039014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Our previous studies, comparing russeted vs. waxy apple skin, highlighted a MYeloBlastosys (Myb) transcription factor (MdMYB52), which displayed a correlation with genes associated to the suberization process. The present article aims to assess its role and function in the suberization process. Phylogenetic analyses and research against Arabidopsis thaliana MYBs database were first performed and the tissue specific expression of MdMYB52 was investigated using RT-qPCR. The function of MdMYB52 was further investigated using Agrobacterium-mediated transient overexpression in Nicotiana benthamiana leaves. An RNA-Seq analysis was performed to highlight differentially regulated genes in response MdMYB52. Transcriptomic data were supported by analytical chemistry and microscopy. A massive decreased expression of photosynthetic and primary metabolism pathways was observed with a concomitant increased expression of genes associated with phenylpropanoid and lignin biosynthesis, cell wall modification and senescence. Interestingly key genes involved in the synthesis of suberin phenolic components were observed. The analytical chemistry displayed a strong increase in the lignin content in the cell walls during MdMYB52 expression. More specifically, an enrichment in G-Unit lignin residues was observed, supporting transcriptomic data as well as previous work describing the suberin phenolic domain as a G-unit enriched lignin-like polymer. The time-course qPCR analysis revealed that the observed stress response, might be explain by this lignin biosynthesis and by a possible programmed senescence triggered by MdMYB52. The present work supports a crucial regulatory role for MdMYB52 in the biosynthesis of the suberin phenolic domain and possibly in the fate of suberized cells in russeted apple skins.
Collapse
|
21
|
Kumar S, Molloy C, Hunt M, Deng CH, Wiedow C, Andre C, Dare A, McGhie T. GWAS provides new insights into the genetic mechanisms of phytochemicals production and red skin colour in apple. HORTICULTURE RESEARCH 2022; 9:uhac218. [PMID: 36479587 PMCID: PMC9720448 DOI: 10.1093/hr/uhac218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Understanding the genetic architecture of apple phytochemicals, and their interplay with conventional selection traits, is critical for the development of new apple cultivars with enhanced health benefits. Apple accessions (n = 344) used for this genome-wide association study (GWAS) represented the wide diversity of metabolic profiles in the domesticated and wild Malus genepools. Fruit samples were phenotyped for 34 metabolites, including a stable vitamin C glycoside "ascorbic acid 2-β-glucoside" (AA-2βG), and the accessions were genotyped using the Apple 20 K SNP Array. Several fruit quality traits, including red skin over-colour (OCOL), were also assessed. Wild Malus accessions showed at least 2-fold higher average content of several metabolites (e.g. ascorbic acid, chlorogenic acid, phloridzin, and trilobatin) than Malus domestica accessions. Several new genomic regions and potential candidate genes underpinning the genetic diversity of apple phytochemicals were identified. The percentage of phenotypic variance explained by the best SNP ranged between 3% and 21% for the different metabolites. Novel association signals for OCOL in the syntenic regions on chromosomes 13 and 16 suggested that whole genome duplication has played a role in the evolution of apple red skin colour. Genetic correlations between phytochemicals and sensory traits were moderate. This study will assist in the selection of Malus accessions with specific phytochemical profiles to establish innovative genomics-based breeding strategies for the development of apple cultivars with enhanced nutritional value.
Collapse
Affiliation(s)
| | - Claire Molloy
- The New Zealand Institute for Plant and Food Research Limited, Hawke’s Bay Research Centre, Havelock North 4130, New Zealand
| | - Martin Hunt
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4410, New Zealand
| | - Cecilia Hong Deng
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand
| | - Claudia Wiedow
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4410, New Zealand
| | - Christelle Andre
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand
| | - Andrew Dare
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand
| | - Tony McGhie
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4410, New Zealand
| |
Collapse
|
22
|
Bewg WP, Harding SA, Engle NL, Vaidya BN, Zhou R, Reeves J, Horn TW, Joshee N, Jenkins JW, Shu S, Barry KW, Yoshinaga Y, Grimwood J, Schmitz RJ, Schmutz J, Tschaplinski TJ, Tsai CJ. Multiplex knockout of trichome-regulating MYB duplicates in hybrid poplar using a single gRNA. PLANT PHYSIOLOGY 2022; 189:516-526. [PMID: 35298644 PMCID: PMC9157173 DOI: 10.1093/plphys/kiac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/24/2022] [Indexed: 05/13/2023]
Abstract
As the focus for CRISPR/Cas-edited plants moves from proof-of-concept to real-world applications, precise gene manipulation will increasingly require concurrent multiplex editing for polygenic traits. A common approach for editing across multiple sites is to design one guide RNA (gRNA) per target; however, this complicates construct assembly and increases the possibility of off-target mutations. In this study, we utilized one gRNA to target MYB186, a known positive trichome regulator, as well as its paralogs MYB138 and MYB38 at a consensus site for mutagenesis in hybrid poplar (Populus tremula × P. alba INRA 717-1B4). Unexpected duplications of MYB186 and MYB138 resulted in eight alleles for the three targeted genes in the hybrid poplar. Deep sequencing and polymerase chain reaction analyses confirmed editing across all eight targets in nearly all of the resultant glabrous mutants, ranging from small indels to large genomic dropouts, with no off-target activity detected at four potential sites. This highlights the effectiveness of a single gRNA targeting conserved exonic regions for multiplex editing. Additionally, cuticular wax and whole-leaf analyses showed a complete absence of triterpenes in the trichomeless mutants, hinting at a previously undescribed role for the nonglandular trichomes of poplar.
Collapse
Affiliation(s)
- William P Bewg
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Scott A Harding
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Nancy L Engle
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Brajesh N Vaidya
- Department of Plant Science, Fort Valley State University, Georgia, 31030, USA
| | - Ran Zhou
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Jacob Reeves
- Department of Computer Science, University of Georgia, Athens, Georgia 30602, USA
| | - Thomas W Horn
- Department of Computer Science, University of Georgia, Athens, Georgia 30602, USA
| | - Nirmal Joshee
- Department of Plant Science, Fort Valley State University, Georgia, 31030, USA
| | - Jerry W Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Shengqiang Shu
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Kerrie W Barry
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Yuko Yoshinaga
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | | | - Chung-Jui Tsai
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
23
|
Jiang S, Chen M, Wang Z, Ren Y, Wang B, Zhu J, Zhang Y. Advances in Understanding the Causes, Molecular Mechanism, and Perspectives of Russeting on Tree Fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:834109. [PMID: 35295640 PMCID: PMC8919063 DOI: 10.3389/fpls.2022.834109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The external quality of fruit is one of its most important qualities; good external quality attracts consumers easily and increases the value of fruit. Fruit russeting is one of the factors that influences the external quality of fruit and has been studied in most horticultural plants. However, the molecular mechanism of russeting has never been discussed so far. In this review, we summarize the research progress on fruit russeting, including causes, microscopic histomorphology, composition, genetics, and regulation and made a series of elaboration on the current research on fruit russeting. This study aims to provide insights into the mechanisms underlying fruit russeting. It also puts forward ideas for research on fruit russeting, which may provide a reference for future research.
Collapse
Affiliation(s)
- Shenghui Jiang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Min Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Ziqi Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yanxue Ren
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Bin Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jun Zhu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yugang Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
24
|
André CM, Guerriero G, Lateur M, Charton S, Leclercq CC, Renaut J, Hausman JF, Legay S. Identification of Novel Candidate Genes Involved in Apple Cuticle Integrity and Russeting-Associated Triterpene Synthesis Using Metabolomic, Proteomic, and Transcriptomic Data. PLANTS (BASEL, SWITZERLAND) 2022; 11:289. [PMID: 35161271 PMCID: PMC8838389 DOI: 10.3390/plants11030289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Apple russeting develops on the fruit surface when skin integrity has been lost. It induces a modification of fruit wax composition, including its triterpene profile. In the present work, we studied two closely related apple varieties, 'Reinette grise du Canada' and 'Reinette blanche du Canada', which display russeted and non-russeted skin phenotypes, respectively, during fruit development. To better understand the molecular events associated with russeting and the differential triterpene composition, metabolomics data were generated using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) and combined with proteomic and transcriptomic data. Our results indicated lower expression of genes linked to cuticle biosynthesis (cutin and wax) in russet apple throughout fruit development, along with an alteration of the specialized metabolism pathways, including triterpene and phenylpropanoid. We identified a lipid transfer protein (LTP3) as a novel player in cuticle formation, possibly involved in the transport of both cutin and wax components in apple skin. Metabolomic data highlighted for the first time a large diversity of triterpene-hydroxycinnamates in russeted tissues, accumulation of which was highly correlated with suberin-related genes, including some enzymes belonging to the BAHD (HXXXD-motif) acyltransferase family. Overall, this study increases our understanding about the crosstalk between triterpene and suberin pathways.
Collapse
Affiliation(s)
- Christelle M. André
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Rue Bommel, Hautcharage, L-4940 Luxembourg, Luxembourg; (C.M.A.); (G.G.); (S.C.); (C.C.L.); (J.R.); (J.-F.H.)
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland 1142, New Zealand
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Rue Bommel, Hautcharage, L-4940 Luxembourg, Luxembourg; (C.M.A.); (G.G.); (S.C.); (C.C.L.); (J.R.); (J.-F.H.)
| | - Marc Lateur
- Walloon Agricultural Research Centre, Rue de Liroux, B-5030 Gembloux, Belgium;
| | - Sophie Charton
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Rue Bommel, Hautcharage, L-4940 Luxembourg, Luxembourg; (C.M.A.); (G.G.); (S.C.); (C.C.L.); (J.R.); (J.-F.H.)
| | - Celine C. Leclercq
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Rue Bommel, Hautcharage, L-4940 Luxembourg, Luxembourg; (C.M.A.); (G.G.); (S.C.); (C.C.L.); (J.R.); (J.-F.H.)
| | - Jenny Renaut
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Rue Bommel, Hautcharage, L-4940 Luxembourg, Luxembourg; (C.M.A.); (G.G.); (S.C.); (C.C.L.); (J.R.); (J.-F.H.)
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Rue Bommel, Hautcharage, L-4940 Luxembourg, Luxembourg; (C.M.A.); (G.G.); (S.C.); (C.C.L.); (J.R.); (J.-F.H.)
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Rue Bommel, Hautcharage, L-4940 Luxembourg, Luxembourg; (C.M.A.); (G.G.); (S.C.); (C.C.L.); (J.R.); (J.-F.H.)
| |
Collapse
|
25
|
Han X, Wei X, Lu W, Wu Q, Mao L, Luo Z. Transcriptional regulation of KCS gene by bZIP29 and MYB70 transcription factors during ABA-stimulated wound suberization of kiwifruit (Actinidia deliciosa). BMC PLANT BIOLOGY 2022; 22:23. [PMID: 34998386 PMCID: PMC8742354 DOI: 10.1186/s12870-021-03407-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/09/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Our previous study has demonstrated that the transcription of AchnKCS involved in suberin biosynthesis was up-regulated by exogenous abscisic acid (ABA) during the wound suberization of kiwifruit, but the regulatory mechanism has not been fully elucidated. RESULTS Through subcellular localization analysis in this work, AchnbZIP29 and AchnMYB70 transcription factors were observed to be localized in the nucleus. Yeast one-hybrid and dual-luciferase assay proved the transcriptional activation of AchnMYB70 and transcriptional suppression of AchnbZIP29 on AchnKCS promoter. Furthermore, the transcription level of AchnMYB70 was enhanced by ABA during wound suberization of kiwifruit, but AchnbZIP29 transcription was reduced by ABA. CONCLUSIONS Therefore, it was believed that ABA enhanced the transcriptional activation of AchnMYB70 on AchnKCS by increasing AchnMYB70 expression. On the contrary, ABA relieved the inhibitory effect of AchnbZIP29 on transcription of AchnKCS by inhibiting AchnbZIP29 expression. These results gave further insight into the molecular regulatory network of ABA in wound suberization of kiwifruit.
Collapse
Affiliation(s)
- Xueyuan Han
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Xiaopeng Wei
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Wenjing Lu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qiong Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| |
Collapse
|