1
|
Patel A, Fréville A, Rey JA, Flynn HR, Koussis K, Skehel MJ, Blackman MJ, Baker DA. Plasmodium falciparum protein phosphatase PP7 is required for early ring-stage development. mBio 2024:e0253924. [PMID: 39387582 DOI: 10.1128/mbio.02539-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
We previously reported that the Plasmodium falciparum putative serine/threonine protein phosphatase 7 (PP7) is a high-confidence substrate of the cAMP-dependent protein kinase (PKA). Here we explore the function of PP7 in asexual P. falciparum blood stage parasites. We show that conditional disruption of PP7 leads to a severe growth arrest. We show that PP7 is a calcium-dependent phosphatase that interacts with calmodulin and calcium-dependent protein kinase 1 (CDPK1), consistent with a role in calcium signaling. Notably, PP7 was found to be dispensable for erythrocyte invasion, but was crucial for ring-stage development, with PP7-null parasites arresting shortly following invasion and showing no transition to ameboid forms. Phosphoproteomic analysis revealed that PP7 may regulate certain PKAc substrates. Its interaction with calmodulin and CDPK1 further emphasizes a role in calcium signaling, while its impact on early ring development and PKAc substrate phosphorylation underscores its importance in parasite development. IMPORTANCE Plasmodium falciparum causes malaria and is responsible for more than 600,000 deaths each year. Although effective drugs are available to treat disease, the spread of drug-resistant parasites endangers their future efficacy. It is hoped that a better understanding of the biology of malaria parasites will help us to discover new drugs to tackle the resistance problem. Our work is focused on the cell signaling mechanisms that control the development of the parasite throughout its complex life cycle. All signal transduction pathways are ultimately regulated by reversible protein phosphorylation by protein kinase and protein phosphatase enzymes. In this study, we investigate the function of calcium-dependent protein phosphatase PP7 and show that it is essential for the development of ring-stage parasites following the invasion of human erythrocytes. Our results contribute to the understanding of the erythrocytic stages of the parasite life cycle that cause malaria pathology.
Collapse
Affiliation(s)
- Avnish Patel
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Aline Fréville
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Joshua A Rey
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Helen R Flynn
- Proteomics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Konstantinos Koussis
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mark J Skehel
- Proteomics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael J Blackman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David A Baker
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
2
|
Okombo J, Fidock DA. Towards next-generation treatment options to combat Plasmodium falciparum malaria. Nat Rev Microbiol 2024:10.1038/s41579-024-01099-x. [PMID: 39367132 DOI: 10.1038/s41579-024-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Malaria, which is caused by infection of red blood cells with Plasmodium parasites, can be fatal in non-immune individuals if left untreated. The recent approval of the pre-erythrocytic vaccines RTS, S/AS01 and R21/Matrix-M has ushered in hope of substantial reductions in mortality rates, especially when combined with other existing interventions. However, the efficacy of these vaccines is partial, and chemotherapy remains central to malaria treatment and control. For many antimalarial drugs, clinical efficacy has been compromised by the emergence of drug-resistant Plasmodium falciparum strains. Therefore, there is an urgent need for new antimalarial medicines to complement the existing first-line artemisinin-based combination therapies. In this Review, we discuss various opportunities to expand the present malaria treatment space, appraise the current antimalarial drug development pipeline and highlight examples of promising targets. We also discuss other approaches to circumvent antimalarial resistance and how potency against drug-resistant parasites could be retained.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Cabral G, Moss WJ, Brown KM. Proteomic approaches for protein kinase substrate identification in Apicomplexa. Mol Biochem Parasitol 2024; 259:111633. [PMID: 38821187 PMCID: PMC11194964 DOI: 10.1016/j.molbiopara.2024.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Apicomplexa is a phylum of protist parasites, notable for causing life-threatening diseases including malaria, toxoplasmosis, cryptosporidiosis, and babesiosis. Apicomplexan pathogenesis is generally a function of lytic replication, dissemination, persistence, host cell modification, and immune subversion. Decades of research have revealed essential roles for apicomplexan protein kinases in establishing infections and promoting pathogenesis. Protein kinases modify their substrates by phosphorylating serine, threonine, tyrosine, or other residues, resulting in rapid functional changes in the target protein. Post-translational modification by phosphorylation can activate or inhibit a substrate, alter its localization, or promote interactions with other proteins or ligands. Deciphering direct kinase substrates is crucial to understand mechanisms of kinase signaling, yet can be challenging due to the transient nature of kinase phosphorylation and potential for downstream indirect phosphorylation events. However, with recent advances in proteomic approaches, our understanding of kinase function in Apicomplexa has improved dramatically. Here, we discuss methods that have been used to identify kinase substrates in apicomplexan parasites, classifying them into three main categories: i) kinase interactome, ii) indirect phosphoproteomics and iii) direct labeling. We briefly discuss each approach, including their advantages and limitations, and highlight representative examples from the Apicomplexa literature. Finally, we conclude each main category by introducing prospective approaches from other fields that would benefit kinase substrate identification in Apicomplexa.
Collapse
Affiliation(s)
- Gabriel Cabral
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William J Moss
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin M Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Dos Santos BM, Pecenin MF, Borges-Pereira L, Springer E, Przyborski JM, Martins-Jr DC, Hashimoto RF, Garcia CRS. The genetically encoded calcium indicator GCaMP3 reveals spontaneous calcium oscillations at asexual stages of the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2024; 260:111650. [PMID: 39151473 DOI: 10.1016/j.molbiopara.2024.111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Most protocols used to study the dynamics of calcium (Ca2+) in the malaria parasite are based on dyes, which are invasive and do not allow discrimination between the signal from the host cell and the parasite. To avoid this pitfall, we have generated a parasite line expressing the genetically encoded calcium sensor GCaMP3. The PfGCaMP3 parasite line is an innovative tool for studying spontaneous intracellular Ca2+ oscillations without external markers. Using this parasite line, we demonstrate the occurrence of spontaneous Ca2+ oscillations in the ring, trophozoite, and schizont stages in Plasmodium falciparum. Using the Fourier transform to fluorescence intensity data extracted from different experiments, we observe cytosolic Ca2+ fluctuations. These spontaneous cytosolic Ca2+ oscillations occur in the three intraerythrocytic stages of the parasite, with most oscillations occurring in the ring and trophozoite stages. A control parasite line expressing only a GFP control did not reveal such fluctuations, demonstrating the specificity of the observations. Our results clearly show dynamic, spontaneous Ca2+ oscillations during the asexual stage in P. falciparum, independent from external stimuli.
Collapse
Affiliation(s)
- Benedito M Dos Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Mateus F Pecenin
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lucas Borges-Pereira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Eric Springer
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus-Liebig University, Gießen 35390, Germany
| | - Jude M Przyborski
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus-Liebig University, Gießen 35390, Germany
| | - David C Martins-Jr
- Center of Mathematics, Computing and Cognition, Federal University of ABC, Santo André 09606-045, Brazil
| | - Ronaldo F Hashimoto
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo 05508-000, Brazil
| | - Célia R S Garcia
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
5
|
Kanyal A, Deshmukh B, Davies H, Mamatharani DV, Farheen D, Treeck M, Karmodiya K. PfHDAC1 is an essential regulator of P. falciparum asexual proliferation and host cell invasion genes with a dynamic genomic occupancy responsive to artemisinin stress. mBio 2024; 15:e0237723. [PMID: 38709067 PMCID: PMC11237754 DOI: 10.1128/mbio.02377-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Plasmodium falciparum, the deadly protozoan parasite responsible for malaria, has a tightly regulated gene expression profile closely linked to its intraerythrocytic development cycle. Epigenetic modifiers of the histone acetylation code have been identified as key regulators of the parasite's transcriptome but require further investigation. In this study, we map the genomic distribution of Plasmodium falciparum histone deacetylase 1 (PfHDAC1) across the erythrocytic asexual development cycle and find it has a dynamic occupancy over a wide array of developmentally relevant genes. Overexpression of PfHDAC1 results in a progressive increment in parasite load over consecutive rounds of the asexual infection cycle and is associated with enhanced gene expression of multiple families of host cell invasion factors (merozoite surface proteins, rhoptry proteins, etc.) and with increased merozoite invasion efficiency. With the use of class-specific inhibitors, we demonstrate that PfHDAC1 activity in parasites is crucial for timely intraerythrocytic development. Interestingly, overexpression of PfHDAC1 results in decreased sensitivity to frontline-drug dihydroartemisinin in parasites. Furthermore, we identify that artemisinin exposure can interfere with PfHDAC1 abundance and chromatin occupancy, resulting in enrichment over genes implicated in response/resistance to artemisinin. Finally, we identify that dihydroartemisinin exposure can interrupt the in vitro catalytic deacetylase activity and post-translational phosphorylation of PfHDAC1, aspects that are crucial for its genomic function. Collectively, our results demonstrate PfHDAC1 to be a regulator of critical functions in asexual parasite development and host invasion, which is responsive to artemisinin exposure stress and deterministic of resistance to it. IMPORTANCE Malaria is a major public health problem, with the parasite Plasmodium falciparum causing most of the malaria-associated mortality. It is spread by the bite of infected mosquitoes and results in symptoms such as cyclic fever, chills, and headache. However, if left untreated, it can quickly progress to a more severe and life-threatening form. The World Health Organization currently recommends the use of artemisinin combination therapy, and it has worked as a gold standard for many years. Unfortunately, certain countries in southeast Asia and Africa, burdened with a high prevalence of malaria, have reported cases of drug-resistant infections. One of the major problems in controlling malaria is the emergence of artemisinin resistance. Population genomic studies have identified mutations in the Kelch13 gene as a molecular marker for artemisinin resistance. However, several reports thereafter indicated that Kelch13 is not the main mediator but rather hinted at transcriptional deregulation as a major determinant of drug resistance. Earlier, we identified PfGCN5 as a global regulator of stress-responsive genes, which are known to play a central role in artemisinin resistance generation. In this study, we have identified PfHDAC1, a histone deacetylase as a cell cycle regulator, playing an important role in artemisinin resistance generation. Taken together, our study identified key transcriptional regulators that play an important role in artemisinin resistance generation.
Collapse
Affiliation(s)
- Abhishek Kanyal
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Bhagyashree Deshmukh
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - D. V. Mamatharani
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Dilsha Farheen
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| |
Collapse
|
6
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. Nat Commun 2024; 15:2021. [PMID: 38448421 PMCID: PMC10918175 DOI: 10.1038/s41467-024-46416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per year. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, can vary dramatically among children. We simultaneously characterize host and parasite gene expression profiles from 136 Malian children with symptomatic falciparum malaria and examine differences in the relative proportion of immune cells and parasite stages, as well as in gene expression, associated with infection and or patient characteristics. Parasitemia explains much of the variation in host and parasite gene expression, and infections with higher parasitemia display proportionally more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age also strongly correlates with variations in gene expression: Plasmodium falciparum genes associated with age suggest that older children carry more male gametocytes, while variations in host gene expression indicate a stronger innate response in younger children and stronger adaptive response in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew B Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily M Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Christopher V Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kirsten E Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Irfan I, Uddin A, Jain R, Gupta A, Gupta S, Napoleon JV, Hussain A, Alajmi MF, Joshi MC, Hasan P, Kumar P, Abid M, Singh S. Biological evaluation of novel side chain containing CQTrICh-analogs as antimalarials and their development as PfCDPK1 kinase inhibitors. Heliyon 2024; 10:e25077. [PMID: 38327451 PMCID: PMC10847618 DOI: 10.1016/j.heliyon.2024.e25077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
The rapid emergence of resistance to existing frontline antimalarial drugs emphasizes a need for the development of target-oriented molecules with novel modes of action. Given the importance of a plant-like Calcium-Dependent Protein Kinase 1 (PfCDPK1) as a stand-alone multistage signalling regulator of P. falciparum, we designed and synthesized 7-chloroquinoline-indole-chalcones tethered with a triazole (CQTrICh-analogs 7 (a-s) and 9) directed towards PfCDPK1. This was accomplished by reacting substituted 1-phenyl-3-(1-(prop-2-yn-1-yl)-1H-indol-3-yl) prop-2-en-1-one and 1-(prop-2-yn-1-yl)-1H-indole-3-carbaldehyde with 4-azido-7-chloroquinoline, respectively via a 'click' reaction. The selected CQTrICh-analogs: 7l and 7r inhibited the growth of chloroquine-sensitive 3D7 strain and -resistant RKL-9 isolate of Plasmodium falciparum, with IC50 values of 2.4 μM & 1.8 μM (7l), and 3.5 μM & 2.7 μM (7r), respectively, and showed no apparent hemolytic activity and cytotoxicity in mammalian cells. Intra-erythrocytic progression studies revealed that the active hybrids: 7l and 7r are effective against the mature stages of the parasite. 7l and 7r were found to stably interact with the catalytically active ATP-binding pocket of PfCDPK1 via energetically favourable H-bonds. The interaction was confirmed in vitro by microscale thermophoresis and kinase assays, which demonstrated that the active hybrids interact with PfCDPK1 and inhibit its kinase activity which is presumably responsible for the parasite growth inhibition. Interestingly, 7l and 7r showed no inhibitory effect on the human kinases, indicating their selectivity for the parasite kinase. We report the antiplasmodial potential of novel kinase-targeting bio-conjugates, a step towards developing pan-kinase inhibitors which is a prerequisite for multistage anti-malarial protection.
Collapse
Affiliation(s)
- Iram Irfan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Aashima Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mukesh C. Joshi
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Phool Hasan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Purnendu Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
8
|
Adelusi TI, Ojo TO, Bolaji OQ, Oyewole MP, Olaoba OT, Oladipo EK. Predicting Plasmodium falciparum kinase inhibitors from antimalarial medicinal herbs using computational modeling approach. In Silico Pharmacol 2023; 12:4. [PMID: 38130691 PMCID: PMC10730500 DOI: 10.1007/s40203-023-00175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Malaria remains a significant public health challenge, with resistance to available drugs necessitating the development of novel therapies targeting invasion-dependent proteins. Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK-1) is essential for host erythrocyte invasion and parasite asexual development. This study screened a library of 490 compounds using computational methods to identify potential PfCDPK-1 inhibitors. Three compounds; 17-hydroxyazadiradione, Picracin, and Epicatechin-gallate derived from known antimalarial botanicals, showed potent inhibitory effects on PfCDPK-1. These compounds exhibited better binding affinities (-8.8, -9.1, -9.3 kCal/mol respectively), pharmacokinetics, and physicochemical properties than the purported inhibitory standard of PfCDPK-1, Purfalcamine. Molecular dynamics simulations (50 ns) and molecular mechanics analyses confirmed the stability and binding rigidity of these compounds at the active pocket of PfCDPK-1. The results suggest that these compounds are promising pharmacological targets with potential therapeutic effects for malaria treatment/management without undesirable side effects. Therefore, this study provides new insights into the development of effective antimalarial agents targeting invasion-dependent proteins, which could help combat the global malaria burden. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00175-z.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
| | - Taiwo Ooreoluwa Ojo
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
- Genomics unit, Helix Biogen Institute, P.M.B 212102, Ogbomoso, Oyo State Nigeria
| | - Olawale Quadri Bolaji
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
| | - Moyosoluwa Precious Oyewole
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
| | - Olamide Tosin Olaoba
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211 USA
| | - Elijah Kolawole Oladipo
- Genomics unit, Helix Biogen Institute, P.M.B 212102, Ogbomoso, Oyo State Nigeria
- Laboratory of Molecular Biology, Bioinformatics and Immunology, Department of Microbiology, Adeleke University, Ede, Osun State Nigeria
| |
Collapse
|
9
|
Chan AW, Broncel M, Yifrach E, Haseley NR, Chakladar S, Andree E, Herneisen AL, Shortt E, Treeck M, Lourido S. Analysis of CDPK1 targets identifies a trafficking adaptor complex that regulates microneme exocytosis in Toxoplasma. eLife 2023; 12:RP85654. [PMID: 37933960 PMCID: PMC10629828 DOI: 10.7554/elife.85654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Apicomplexan parasites use Ca2+-regulated exocytosis to secrete essential virulence factors from specialized organelles called micronemes. Ca2+-dependent protein kinases (CDPKs) are required for microneme exocytosis; however, the molecular events that regulate trafficking and fusion of micronemes with the plasma membrane remain unresolved. Here, we combine sub-minute resolution phosphoproteomics and bio-orthogonal labeling of kinase substrates in Toxoplasma gondii to identify 163 proteins phosphorylated in a CDPK1-dependent manner. In addition to known regulators of secretion, we identify uncharacterized targets with predicted functions across signaling, gene expression, trafficking, metabolism, and ion homeostasis. One of the CDPK1 targets is a putative HOOK activating adaptor. In other eukaryotes, HOOK homologs form the FHF complex with FTS and FHIP to activate dynein-mediated trafficking of endosomes along microtubules. We show the FHF complex is partially conserved in T. gondii, consisting of HOOK, an FTS homolog, and two parasite-specific proteins (TGGT1_306920 and TGGT1_316650). CDPK1 kinase activity and HOOK are required for the rapid apical trafficking of micronemes as parasites initiate motility. Moreover, parasites lacking HOOK or FTS display impaired microneme protein secretion, leading to a block in the invasion of host cells. Taken together, our work provides a comprehensive catalog of CDPK1 targets and reveals how vesicular trafficking has been tuned to support a parasitic lifestyle.
Collapse
Affiliation(s)
- Alex W Chan
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Malgorzata Broncel
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Eden Yifrach
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Nicole R Haseley
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | | | - Elena Andree
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Alice L Herneisen
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Emily Shortt
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Moritz Treeck
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Sebastian Lourido
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
10
|
Rawat RS, Gupta A, Antil N, Bhatnagar S, Singh M, Rawat A, Prasad TSK, Sharma P. Protein kinase PfPK2 mediated signalling is critical for host erythrocyte invasion by malaria parasite. PLoS Pathog 2023; 19:e1011770. [PMID: 37988347 PMCID: PMC10662742 DOI: 10.1371/journal.ppat.1011770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
Signalling pathways in malaria parasite remain poorly defined and major reason for this is the lack of understanding of the function of majority of parasite protein kinases and phosphatases in parasite signalling and its biology. In the present study, we have elucidated the function of Protein Kinase 2 (PfPK2), which is known to be indispensable for the survival of human malaria parasite Plasmodium falciparum. We demonstrate that it is involved in the invasion of host erythrocytes, which is critical for establishing infection. In addition, PfPK2 may also be involved in the maturation of the parasite post-invasion. PfPK2 regulates the release of microneme proteins like Apical Membrane Antigen 1 (AMA1), which facilitates the formation of Tight Junction between the merozoite and host erythrocyte- a key step in the process of invasion. Comparative phosphoproteomics studies revealed that PfPK2 may be involved in regulation of several key proteins involved in invasion and signalling. Furthermore, PfPK2 regulates the generation of cGMP and the release of calcium in the parasite, which are key second messengers for the process of invasion. These and other studies have shed light on a novel signalling pathway in which PfPK2 acts as an upstream regulator of important cGMP-calcium signalling, which plays an important role in parasite invasion.
Collapse
Affiliation(s)
- Rahul Singh Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Ankit Gupta
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Neelam Antil
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sonika Bhatnagar
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Monika Singh
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Akanksha Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Pushkar Sharma
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
11
|
Tebben K, Yirampo S, Coulibaly D, Koné A, Laurens M, Stucke E, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry A, Kouriba B, Plowe C, Doumbo O, Lyke K, Takala-Harrison S, Thera M, Travassos M, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. RESEARCH SQUARE 2023:rs.3.rs-3487114. [PMID: 37961587 PMCID: PMC10635353 DOI: 10.21203/rs.3.rs-3487114/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes. We used gene expression deconvolution to estimate the relative proportion of immune cells and parasite stages in each sample and to adjust the differential gene expression analyses. Parasitemia explained much of the variation in both host and parasite gene expression and revealed that infections with higher parasitemia had more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age was also strongly correlated with gene expression variations. Plasmodium falciparum genes associated with age suggested that older children carried more male gametocytes, while host genes associated with age indicated a stronger innate response (through TLR and NLR signaling) in younger children and stronger adaptive immunity (through TCR and BCR signaling) in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
| | - Salif Yirampo
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Drissa Coulibaly
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Abdoulaye Koné
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | | | - Ahmadou Dembélé
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Youssouf Tolo
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Karim Traoré
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Ahmadou Niangaly
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | - Bourema Kouriba
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | - Ogobara Doumbo
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | | | - Mahamadou Thera
- Malaria Research and Training Centre-International Center for Excellence in Research (MRTC-ICER)
| | | | | |
Collapse
|
12
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563751. [PMID: 37961701 PMCID: PMC10634788 DOI: 10.1101/2023.10.24.563751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes. We used gene expression deconvolution to estimate the relative proportion of immune cells and parasite stages in each sample and to adjust the differential gene expression analyses. Parasitemia explained much of the variation in both host and parasite gene expression and revealed that infections with higher parasitemia had more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age was also strongly correlated with gene expression variations. Plasmodium falciparum genes associated with age suggested that older children carried more male gametocytes, while host genes associated with age indicated a stronger innate response (through TLR and NLR signaling) in younger children and stronger adaptive immunity (through TCR and BCR signaling) in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Emily M. Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, USA
| |
Collapse
|
13
|
Chan AW, Broncel M, Yifrach E, Haseley N, Chakladar S, Andree E, Herneisen AL, Shortt E, Treeck M, Lourido S. Analysis of CDPK1 targets identifies a trafficking adaptor complex that regulates microneme exocytosis in Toxoplasma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523553. [PMID: 36712004 PMCID: PMC9882037 DOI: 10.1101/2023.01.11.523553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Apicomplexan parasites use Ca2+-regulated exocytosis to secrete essential virulence factors from specialized organelles called micronemes. Ca2+-dependent protein kinases (CDPKs) are required for microneme exocytosis; however, the molecular events that regulate trafficking and fusion of micronemes with the plasma membrane remain unresolved. Here, we combine sub-minute resolution phosphoproteomics and bio-orthogonal labeling of kinase substrates in Toxoplasma gondii to identify 163 proteins phosphorylated in a CDPK1-dependent manner. In addition to known regulators of secretion, we identify uncharacterized targets with predicted functions across signaling, gene expression, trafficking, metabolism, and ion homeostasis. One of the CDPK1 targets is a putative HOOK activating adaptor. In other eukaryotes, HOOK homologs form the FHF complex with FTS and FHIP to activate dynein-mediated trafficking of endosomes along microtubules. We show the FHF complex is partially conserved in T. gondii, consisting of HOOK, an FTS homolog, and two parasite-specific proteins (TGGT1_306920 and TGGT1_316650). CDPK1 kinase activity and HOOK are required for the rapid apical trafficking of micronemes as parasites initiate motility. Moreover, parasites lacking HOOK or FTS display impaired microneme protein secretion, leading to a block in the invasion of host cells. Taken together, our work provides a comprehensive catalog of CDPK1 targets and reveals how vesicular trafficking has been tuned to support a parasitic lifestyle.
Collapse
Affiliation(s)
- Alex W Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Malgorzata Broncel
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Eden Yifrach
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Nicole Haseley
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Elena Andree
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Moritz Treeck
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
He L, Qiu Y, Pang G, Li S, Wang J, Feng Y, Chen L, Zhu L, Liu Y, Cui L, Cao Y, Zhu X. Plasmodium falciparum GAP40 Plays an Essential Role in Merozoite Invasion and Gametocytogenesis. Microbiol Spectr 2023; 11:e0143423. [PMID: 37249423 PMCID: PMC10269477 DOI: 10.1128/spectrum.01434-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cyclic invasion of red blood cells (RBCs) by Plasmodium merozoites is associated with the symptoms and pathology of malaria. Merozoite invasion is powered actively and rapidly by a parasite actomyosin motor called the glideosome. The ability of the glideosome to generate force to support merozoite entry into the host RBCs is thought to rely on its stable anchoring within the inner membrane complex (IMC) through membrane-resident proteins, such as GAP50 and GAP40. Using a conditional knockdown (KD) approach, we determined that PfGAP40 was required for asexual blood-stage replication. PfGAP40 is not needed for merozoite egress from host RBCs or for the attachment of merozoites to new RBCs. PfGAP40 coprecipitates with PfGAP45 and PfGAP50. During merozoite invasion, PfGAP40 is associated strongly with stabilizing the expression levels of PfGAP45 and PfGAP50 in the schizont stage. Although PfGAP40 KD did not influence IMC integrity, it impaired the maturation of gametocytes. In addition, PfGAP40 is phosphorylated, and mutations that block phosphorylation of PfGAP40 at the C-terminal serine residues S370, S372, S376, S405, S409, S420, and S445 reduced merozoite invasion efficiency. Overall, our findings implicate PfGAP40 as an important regulator for the gliding activity of merozoites and suggest that phosphorylation is required for PfGAP40 function. IMPORTANCE Red blood cell invasion is central to the pathogenesis of the malaria parasite, and the parasite proteins involved in this process are potential therapeutic targets. Gliding motility powers merozoite invasion and is driven by a unique molecular motor termed the glideosome. The glideosome is stably anchored to the parasite inner membrane complex (IMC) through membrane-resident proteins. In the present study, we demonstrate the importance of an IMC-resident glideosome component, PfGAP40, that plays a critical role in stabilizing the expression levels of glideosome components in the schizont stage. We determined that phosphorylation of PfGAP40 at C-terminal residues is required for efficient merozoite invasion.
Collapse
Affiliation(s)
- Lu He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yue Qiu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Geping Pang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Siqi Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jingjing Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yonghui Feng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
- National Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Lumeng Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liying Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yinjie Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Ong HW, Adderley J, Tobin AB, Drewry DH, Doerig C. Parasite and host kinases as targets for antimalarials. Expert Opin Ther Targets 2023; 27:151-169. [PMID: 36942408 DOI: 10.1080/14728222.2023.2185511] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The deployment of Artemisinin-based combination therapies and transmission control measures led to a decrease in the global malaria burden over the recent decades. Unfortunately, this trend is now reversing, in part due to resistance against available treatments, calling for the development of new drugs against untapped targets to prevent cross-resistance. AREAS COVERED In view of their demonstrated druggability in noninfectious diseases, protein kinases represent attractive targets. Kinase-focussed antimalarial drug discovery is facilitated by the availability of kinase-targeting scaffolds and large libraries of inhibitors, as well as high-throughput phenotypic and biochemical assays. We present an overview of validated Plasmodium kinase targets and their inhibitors, and briefly discuss the potential of host cell kinases as targets for host-directed therapy. EXPERT OPINION We propose priority research areas, including (i) diversification of Plasmodium kinase targets (at present most efforts focus on a very small number of targets); (ii) polypharmacology as an avenue to limit resistance (kinase inhibitors are highly suitable in this respect); and (iii) preemptive limitation of resistance through host-directed therapy (targeting host cell kinases that are required for parasite survival) and transmission-blocking through targeting sexual stage-specific kinases as a strategy to protect curative drugs from the spread of resistance.
Collapse
Affiliation(s)
- Han Wee Ong
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Jack Adderley
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| | - Andrew B Tobin
- Advanced Research Centre, University of Glasgow, Glasgow, UK
| | - David H Drewry
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Christian Doerig
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| |
Collapse
|
16
|
Rashpa R, Klages N, Schvartz D, Pasquarello C, Brochet M. The Skp1-Cullin1-FBXO1 complex is a pleiotropic regulator required for the formation of gametes and motile forms in Plasmodium berghei. Nat Commun 2023; 14:1312. [PMID: 36898988 PMCID: PMC10006092 DOI: 10.1038/s41467-023-36999-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Malaria-causing parasites of the Plasmodium genus undergo multiple developmental phases in the human and the mosquito hosts, regulated by various post-translational modifications. While ubiquitination by multi-component E3 ligases is key to regulate a wide range of cellular processes in eukaryotes, little is known about its role in Plasmodium. Here we show that Plasmodium berghei expresses a conserved SKP1/Cullin1/FBXO1 (SCFFBXO1) complex showing tightly regulated expression and localisation across multiple developmental stages. It is key to cell division for nuclear segregation during schizogony and centrosome partitioning during microgametogenesis. It is additionally required for parasite-specific processes including gamete egress from the host erythrocyte, as well as integrity of the apical and the inner membrane complexes (IMC) in merozoite and ookinete, two structures essential for the dissemination of these motile stages. Ubiquitinomic surveys reveal a large set of proteins ubiquitinated in a FBXO1-dependent manner including proteins important for egress and IMC organisation. We additionally demonstrate an interplay between FBXO1-dependent ubiquitination and phosphorylation via calcium-dependent protein kinase 1. Altogether we show that Plasmodium SCFFBXO1 plays conserved roles in cell division and is also important for parasite-specific processes in the mammalian and mosquito hosts.
Collapse
Affiliation(s)
- Ravish Rashpa
- University of Geneva, Faculty of Medicine, Department of Microbiology and Molecular Medicine, Geneva, Switzerland.
| | - Natacha Klages
- University of Geneva, Faculty of Medicine, Department of Microbiology and Molecular Medicine, Geneva, Switzerland
| | - Domitille Schvartz
- University of Geneva, Faculty of Medicine, Proteomics Core Facility, Geneva, Switzerland
| | - Carla Pasquarello
- University of Geneva, Faculty of Medicine, Proteomics Core Facility, Geneva, Switzerland
| | - Mathieu Brochet
- University of Geneva, Faculty of Medicine, Department of Microbiology and Molecular Medicine, Geneva, Switzerland.
| |
Collapse
|
17
|
Structure- and ligand-based drug design methods for the modeling of antimalarial agents: a review of updates from 2012 onwards. J Biomol Struct Dyn 2022; 40:10481-10506. [PMID: 34129805 DOI: 10.1080/07391102.2021.1932598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malaria still persists as one of the deadliest infectious disease having a huge morbidity and mortality affecting the higher population of the world. Structure and ligand-based drug design methods like molecular docking and MD simulations, pharmacophore modeling, QSAR and virtual screening are widely used to perceive the accordant correlation between the antimalarial activity and property of the compounds to design novel dominant and discriminant molecules. These modeling methods will speed-up antimalarial drug discovery, selection of better drug candidates for synthesis and to achieve potent and safer drugs. In this work, we have extensively reviewed the literature pertaining to the use and applications of various ligand and structure-based computational methods for the design of antimalarial agents. Different classes of molecules are discussed along with their target interactions pattern, which is responsible for antimalarial activity. Communicated by Ramaswamy H. Sarma.
Collapse
|
18
|
Anusha-Kiran Y, Mol P, Dey G, Bhat FA, Chatterjee O, Deolankar SC, Philip M, Prasad TSK, Srinivas Bharath MM, Mahadevan A. Regional heterogeneity in mitochondrial function underlies region specific vulnerability in human brain ageing: Implications for neurodegeneration. Free Radic Biol Med 2022; 193:34-57. [PMID: 36195160 DOI: 10.1016/j.freeradbiomed.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022]
Abstract
Selective neuronal vulnerability (SNV) of specific neuroanatomical regions such as frontal cortex (FC) and hippocampus (HC) is characteristic of age-associated neurodegenerative diseases (NDDs), although its pathogenetic basis remains unresolved. We hypothesized that physiological differences in mitochondrial function in neuroanatomical regions could contribute to SNV. To investigate this, we evaluated mitochondrial function in human brains (age range:1-90 y) in FC, striatum (ST), HC, cerebellum (CB) and medulla oblongata (MD), using enzyme assays and quantitative proteomics. Striking differences were noted in resistant regions- MD and CB compared to the vulnerable regions- FC, HC and ST. At younger age (25 ± 5 y), higher activity of electron transport chain enzymes and upregulation of metabolic and antioxidant proteins were noted in MD compared to FC and HC, that was sustained with increasing age (≥65 y). In contrast, the expression of synaptic proteins was higher in FC, HC and ST (vs. MD). In line with this, quantitative phospho-proteomics revealed activation of upstream regulators (ERS, PPARα) of mitochondrial metabolism and inhibition of synaptic pathways in MD. Microtubule Associated Protein Tau (MAPT) showed overexpression in FC, HC and ST both in young and older age (vs. MD). MAPT hyperphosphorylation and the activation of its kinases were noted in FC and HC with age. Our study demonstrates that regional heterogeneity in mitochondrial and other cellular functions contribute to SNV and protect regions such as MD, while rendering FC and HC vulnerable to NDDs. The findings also support the "last in, first out" hypothesis of ageing, wherein regions such as FC, that are the most recent to develop phylogenetically and ontogenetically, are the first to be affected in ageing and NDDs.
Collapse
Affiliation(s)
- Yarlagadda Anusha-Kiran
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, 560029, India; Department of Clinical Psychopharmacology and Neurotoxicology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, India
| | - Praseeda Mol
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India; Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India
| | - Firdous Ahmad Bhat
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India; Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Sayali Chandrashekhar Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Mariamma Philip
- Department of Biostatistics, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, India.
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, 560029, India.
| |
Collapse
|
19
|
Deolankar SC, Najar MA, Ramesh P, Kanichery A, Kudva AK, Raghu SV, Prasad TSK. Discovery of Molecular Networks of Neuroprotection Conferred by Brahmi Extract in Aβ 42-Induced Toxicity Model of Drosophila melanogaster Using a Quantitative Proteomic Approach. Mol Neurobiol 2022; 60:303-316. [PMID: 36261695 DOI: 10.1007/s12035-022-03066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
Abstract
Accumulation of Aβ42 peptides forming plaque in various regions of the brain is a hallmark of Alzheimer's disease (AD) progression. However, to date, there is no effective management strategy reported for attenuation of Aβ42-induced toxicity in the early stages of the disease. Alternate medicinal systems such as Ayurveda in the past few decades show promising results in the management of neuronal complications. Medhya Rasayana such as Brahmi is known for its neuroprotective properties via resolving memory-related issues, while the underlying molecular mechanism of the same remains unclear. In the present study, we aimed to understand the neuroprotective effects of the aqueous extract of Bacopa monnieri and Centella asiatica (both commonly known as Brahmi) against the Aβ42 expressing model of the Drosophila melanogaster. By applying a quantitative proteomics approach, the study identified > 90% of differentially expressed proteins from Aβ42 expressing D. melanogaster were either restored to their original expression pattern or showed no change in expression pattern upon receiving either Brahmi extract treatment. The Brahmi restored proteins were part of neuronal pathways associated with cell cycle re-entry, apoptosis, and mitochondrial dynamics. The neuroprotective effect of Brahmi was also validated by negative geotaxis behavioral analysis suggesting its protective role against behavioral deficits exerted by Aβ42 toxicity. We believe that these discoveries will provide a platform for developing novel therapeutics for AD management by deciphering molecular targets of neuroprotection conferred by an aqueous extract of Bacopa monnieri or Centella asiatica.
Collapse
Affiliation(s)
- Sayali Chandrashekhar Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
| | - Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
| | - Anagha Kanichery
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
| | - Avinash K Kudva
- Department of Biochemistry, Mangalore University, Mangalore, India
| | | | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India.
| |
Collapse
|
20
|
Anam Z, Kumari G, Mukherjee S, Rex DAB, Biswas S, Maurya P, Ravikumar S, Gupta N, Kushawaha AK, Sah RK, Chaurasiya A, Singhal J, Singh N, Kaushik S, Prasad TSK, Pati S, Ranganathan A, Singh S. Complementary crosstalk between palmitoylation and phosphorylation events in MTIP regulates its role during Plasmodium falciparum invasion. Front Cell Infect Microbiol 2022; 12:924424. [PMID: 36250062 PMCID: PMC9556994 DOI: 10.3389/fcimb.2022.924424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
Post-translational modifications (PTMs) including phosphorylation and palmitoylation have emerged as crucial biomolecular events that govern many cellular processes including functioning of motility- and invasion-associated proteins during Plasmodium falciparum invasion. However, no study has ever focused on understanding the possibility of a crosstalk between these two molecular events and its direct impact on preinvasion- and invasion-associated protein–protein interaction (PPI) network-based molecular machinery. Here, we used an integrated in silico analysis to enrich two different catalogues of proteins: (i) the first group defines the cumulative pool of phosphorylated and palmitoylated proteins, and (ii) the second group represents a common set of proteins predicted to have both phosphorylation and palmitoylation. Subsequent PPI analysis identified an important protein cluster comprising myosin A tail interacting protein (MTIP) as one of the hub proteins of the glideosome motor complex in P. falciparum, predicted to have dual modification with the possibility of a crosstalk between the same. Our findings suggested that blocking palmitoylation led to reduced phosphorylation and blocking phosphorylation led to abrogated palmitoylation of MTIP. As a result of the crosstalk between these biomolecular events, MTIP’s interaction with myosin A was found to be abrogated. Next, the crosstalk between phosphorylation and palmitoylation was confirmed at a global proteome level by click chemistry and the phenotypic effect of this crosstalk was observed via synergistic inhibition in P. falciparum invasion using checkerboard assay and isobologram method. Overall, our findings revealed, for the first time, an interdependence between two PTM types, their possible crosstalk, and its direct impact on MTIP-mediated invasion via glideosome assembly protein myosin A in P. falciparum. These insights can be exploited for futuristic drug discovery platforms targeting parasite molecular machinery for developing novel antimalarial therapeutics.
Collapse
Affiliation(s)
- Zille Anam
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumyadeep Mukherjee
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | | | - Shreeja Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Susendaran Ravikumar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Nutan Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | - Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ayushi Chaurasiya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Jhalak Singhal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Niharika Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shikha Kaushik
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
- *Correspondence: Shailja Singh, ; Anand Ranganathan, ; Soumya Pati,
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Shailja Singh, ; Anand Ranganathan, ; Soumya Pati,
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Shailja Singh, ; Anand Ranganathan, ; Soumya Pati,
| |
Collapse
|
21
|
Plasmodium falciparum CRK5 Is Critical for Male Gametogenesis and Infection of the Mosquito. mBio 2022; 13:e0222722. [PMID: 36154191 PMCID: PMC9600428 DOI: 10.1128/mbio.02227-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) and cyclins are critical cell cycle regulators in eukaryotes. In this study, we functionally characterized a CDK-related kinase (CRK5) of the human malaria parasite Plasmodium falciparum. P. falciparum CRK5 (PfCRK5) was expressed in asexual blood stages and sexual gametocyte stages, but showed male gametocyte- specific expression. In contrast to previous findings, we showed that gene deletion Pfcrk5− parasites grew normally as asexual stages and underwent normal gametocytogenesis to stage V gametocytes. However, Pfcrk5− parasites showed a severe defect in male gametogenesis, which was evident by a significant reduction in the emergence of male gametes (exflagellation). This defect caused a severe reduction of parasite transmission to the mosquito. Genetic crosses performed using sex-specific sterile transgenic parasites revealed that Pfcrk5− parasites suffered a defect in male fertility but female gametes were fertile. Taken together, these results demonstrate that PfCRK5 is a critical sexual stage kinase which regulates male gametogenesis and transmission to the mosquito.
Collapse
|
22
|
Functional inactivation of Plasmodium falciparum glycogen synthase kinase GSK3 modulates erythrocyte invasion and blocks gametocyte maturation. J Biol Chem 2022; 298:102360. [PMID: 35961464 PMCID: PMC9478393 DOI: 10.1016/j.jbc.2022.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Malaria is responsible for hundreds of thousands of deaths every year. The lack of an effective vaccine and the global spread of multidrug resistant parasites hampers the fight against the disease and underlines the need for new antimalarial drugs. Central to the pathogenesis of malaria is the proliferation of Plasmodium parasites within human erythrocytes. Parasites invade erythrocytes via a coordinated sequence of receptor–ligand interactions between the parasite and the host cell. Posttranslational modifications such as protein phosphorylation are known to be key regulators in this process and are mediated by protein kinases. For several parasite kinases, including the Plasmodium falciparum glycogen synthase kinase 3 (PfGSK3), inhibitors have been shown to block erythrocyte invasion. Here, we provide an assessment of PfGSK3 function by reverse genetics. Using targeted gene disruption, we show the active gene copy, PfGSK3β, is not essential for asexual blood stage proliferation, although it modulates efficient erythrocyte invasion. We found functional inactivation leads to a 69% decreased growth rate and confirmed this growth defect by rescue experiments with wildtype and catalytically inactive mutants. Functional knockout of PfGSK3β does not lead to transcriptional upregulation of the second copy of PfGSK3. We further analyze expression, localization, and function of PfGSK3β during gametocytogenesis using a parasite line allowing conditional induction of sexual commitment. We demonstrate PfGSK3β-deficient gametocytes show a strikingly malformed morphology leading to the death of parasites in later stages of gametocyte development. Taken together, these findings are important for our understanding and the development of PfGSK3 as an antimalarial target.
Collapse
|
23
|
Qian P, Wang X, Zhong CQ, Wang J, Cai M, Nguitragool W, Li J, Cui H, Yuan J. Inner membrane complex proteomics reveals a palmitoylation regulation critical for intraerythrocytic development of malaria parasite. eLife 2022; 11:77447. [PMID: 35775739 PMCID: PMC9293000 DOI: 10.7554/elife.77447] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Malaria is caused by infection of the erythrocytes by the parasites Plasmodium. Inside the erythrocytes, the parasites multiply via schizogony, an unconventional cell division mode. The inner membrane complex (IMC), an organelle located beneath the parasite plasma membrane, serving as the platform for protein anchorage, is essential for schizogony. So far, the complete repertoire of IMC proteins and their localization determinants remain unclear. Here we used biotin ligase (TurboID)-based proximity labeling to compile the proteome of the schizont IMC of the rodent malaria parasite Plasmodium yoelii. In total, 300 TurboID-interacting proteins were identified. 18 of 21 selected candidates were confirmed to localize in the IMC, indicating good reliability. In light of the existing palmitome of Plasmodium falciparum, 83 proteins of the P. yoelii IMC proteome are potentially palmitoylated. We further identified DHHC2 as the major resident palmitoyl-acyl-transferase of the IMC. Depletion of DHHC2 led to defective schizont segmentation and growth arrest both in vitro and in vivo. DHHC2 was found to palmitoylate two critical IMC proteins CDPK1 and GAP45 for their IMC localization. In summary, this study reports an inventory of new IMC proteins and demonstrates a central role of DHHC2 in governing the IMC localization of proteins during the schizont development.
Collapse
Affiliation(s)
- Pengge Qian
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xu Wang
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Chuan-Qi Zhong
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jiaxu Wang
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Mengya Cai
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
| | - Jian Li
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huiting Cui
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jing Yuan
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
24
|
Gupta P, Venkadesan S, Mohanty D. Pf-Phospho: a machine learning-based phosphorylation sites prediction tool for Plasmodium proteins. Brief Bioinform 2022; 23:6618232. [PMID: 35753700 DOI: 10.1093/bib/bbac249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/14/2022] [Accepted: 05/28/2022] [Indexed: 12/13/2022] Open
Abstract
Even though several in silico tools are available for prediction of the phosphorylation sites for mammalian, yeast or plant proteins, currently no software is available for predicting phosphosites for Plasmodium proteins. However, the availability of significant amount of phospho-proteomics data during the last decade and advances in machine learning (ML) algorithms have opened up the opportunities for deciphering phosphorylation patterns of plasmodial system and developing ML-based phosphosite prediction tools for Plasmodium. We have developed Pf-Phospho, an ML-based method for prediction of phosphosites by training Random Forest classifiers using a large data set of 12 096 phosphosites of Plasmodium falciparum and Plasmodium bergei. Of the 12 096 known phosphosites, 75% of sites have been used for training/validation of the classifier, while remaining 25% have been used as completely unseen test data for blind testing. It is encouraging to note that Pf-Phospho can predict the kinase-independent phosphosites with 84% sensitivity, 75% specificity and 78% precision. In addition, it can also predict kinase-specific phosphosites for five plasmodial kinases-PfPKG, Plasmodium falciparum, PfPKA, PfPK7 and PbCDPK4 with high accuracy. Pf-Phospho (http://www.nii.ac.in/pfphospho.html) outperforms other widely used phosphosite prediction tools, which have been trained using mammalian phosphoproteome data. It also has been integrated with other widely used resources such as PlasmoDB, MPMP, Pfam and recently available ML-based predicted structures by AlphaFold2. Currently, Pf-phospho is the only bioinformatics resource available for ML-based prediction of phospho-signaling networks of Plasmodium and is a user-friendly platform for integrative analysis of phospho-signaling along with metabolic and protein-protein interaction networks.
Collapse
Affiliation(s)
- Priya Gupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | | | - Debasisa Mohanty
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi - 110067, India
| |
Collapse
|
25
|
Gupta P, Mohanty D. Allosteric regulation of the inactive to active state conformational transition in CDPK1 protein of Plasmodium falciparum. Int J Biol Macromol 2022; 215:489-500. [PMID: 35709874 DOI: 10.1016/j.ijbiomac.2022.06.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022]
Abstract
The aim of the current study is to investigate the role of the CAD domain in the activation mechanism of calcium dependent protein kinase-1 of Plasmodium falciparum (PfCDPK1) and explore the possibility of allosteric inhibition of this kinase. PfCDPK1 belongs to CDPK family of apicomplexan kinases which have a C-terminal CAD domain. Microsecond scale MD simulations were performed on modeled structures of complete PfCDPK1 and its kinase domain alone. The simulations revealed that in absence of CAD the salt bridge between Glu116 in αC-helix and Lys85 in β3-sheet of kinase breaks after 200 ns resulting in inactive conformation of the kinase, but the salt bridge stays intact in the complete protein stabilizing it in active conformation. These results highlight the novel CAD mediated allosteric stabilization of the crucial salt bridge which is a hallmark of active conformation of kinase domains. The mechanistic details of the allosteric activation revealed by our study, opens up the possibility for design of allosteric inhibitors of PfCDPK1 kinase by disrupting the kinase:CAD interactions. Using a combination of machine learning and structure-based in silico screening, we have identified novel PPI modulators for allosteric inactivation of PfCDPK1 kinase.
Collapse
Affiliation(s)
- Priya Gupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasisa Mohanty
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
26
|
Rex DB, Patil AH, Modi PK, Kandiyil MK, Kasaragod S, Pinto SM, Tanneru N, Sijwali PS, Prasad TSK. Dissecting Plasmodium yoelii Pathobiology: Proteomic Approaches for Decoding Novel Translational and Post-Translational Modifications. ACS OMEGA 2022; 7:8246-8257. [PMID: 35309442 PMCID: PMC8928344 DOI: 10.1021/acsomega.1c03892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Malaria is a vector-borne disease. It is caused by Plasmodium parasites. Plasmodium yoelii is a rodent model parasite, primarily used for studying parasite development in liver cells and vectors. To better understand parasite biology, we carried out a high-throughput-based proteomic analysis of P. yoelii. From the same mass spectrometry (MS)/MS data set, we also captured several post-translational modified peptides by following a bioinformatics analysis without any prior enrichment. Further, we carried out a proteogenomic analysis, which resulted in improvements to some of the existing gene models along with the identification of several novel genes. Analysis of proteome and post-translational modifications (PTMs) together resulted in the identification of 3124 proteins. The identified PTMs were found to be enriched in mitochondrial metabolic pathways. Subsequent bioinformatics analysis provided an insight into proteins associated with metabolic regulatory mechanisms. Among these, the tricarboxylic acid (TCA) cycle and the isoprenoid synthesis pathway are found to be essential for parasite survival and drug resistance. The proteogenomic analysis discovered 43 novel protein-coding genes. The availability of an in-depth proteomic landscape of a malaria pathogen model will likely facilitate further molecular-level investigations on pre-erythrocytic stages of malaria.
Collapse
Affiliation(s)
- Devasahayam
Arokia Balaya Rex
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Arun H. Patil
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Prashant Kumar Modi
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Mrudula Kinarulla Kandiyil
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sandeep Kasaragod
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sneha M. Pinto
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Nandita Tanneru
- CSIR-Centre
for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Puran Singh Sijwali
- CSIR-Centre
for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | | |
Collapse
|
27
|
Baindara P, Agrawal S, Franco OL. Host-directed therapies for malaria and tuberculosis: common infection strategies and repurposed drugs. Expert Rev Anti Infect Ther 2022; 20:849-869. [DOI: 10.1080/14787210.2022.2044794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Missouri, Columbia, MO, USA
| | - Sonali Agrawal
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - O. L. Franco
- Proteomics Analysis and Biochemical Center, Catholic University of Brasilia, Brasilia, Brazil; S-Inova Biotech, Catholic University Dom Bosco, Campo Grande, MS, Brazil
| |
Collapse
|
28
|
Maurya R, Tripathi A, Kumar M, Antil N, Yamaryo‐Botté Y, Kumar P, Bansal P, Doerig C, Botté CY, Prasad TSK, Sharma P. PI4-kinase and PfCDPK7 signaling regulate phospholipid biosynthesis in Plasmodium falciparum. EMBO Rep 2022; 23:e54022. [PMID: 34866326 PMCID: PMC8811644 DOI: 10.15252/embr.202154022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
PfCDPK7 is an atypical member of the calcium-dependent protein kinase (CDPK) family and is crucial for the development of Plasmodium falciparum. However, the mechanisms whereby PfCDPK7 regulates parasite development remain unknown. Here, we perform quantitative phosphoproteomics and phospholipid analysis and find that PfCDPK7 promotes phosphatidylcholine (PC) synthesis by regulating two key enzymes involved in PC synthesis, phosphoethanolamine-N-methyltransferase (PMT) and ethanolamine kinase (EK). In the absence of PfCDPK7, both enzymes are hypophosphorylated and PMT is degraded. We further find that PfCDPK7 interacts with 4'-phosphorylated phosphoinositides (PIPs) generated by PI4-kinase. Inhibition of PI4K activity disrupts the vesicular localization PfCDPK7. P. falciparum PI4-kinase, PfPI4K is a prominent drug target and one of its inhibitors, MMV39048, has reached Phase I clinical trials. Using this inhibitor, we demonstrate that PfPI4K controls phospholipid biosynthesis and may act in part by regulating PfCDPK7 localization and activity. These studies not only unravel a signaling pathway involving PfPI4K/4'-PIPs and PfCDPK7 but also provide novel insights into the mechanism of action of a promising series of candidate anti-malarial drugs.
Collapse
Affiliation(s)
- Ranjana Maurya
- Eukaryotic Gene Expression laboratoryNational Institute of ImmunologyNew DelhiIndia
| | - Anuj Tripathi
- Eukaryotic Gene Expression laboratoryNational Institute of ImmunologyNew DelhiIndia
| | - Manish Kumar
- Eukaryotic Gene Expression laboratoryNational Institute of ImmunologyNew DelhiIndia
- Institute of BioinformaticsInternational Tech ParkBangaloreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Neelam Antil
- Institute of BioinformaticsInternational Tech ParkBangaloreIndia
- ApicoLipid TeamInstitute of Advanced BiosciencesCNRS UMR5309Université Grenoble AlpesINSERM U1209GrenobleFrance
- Amrita School of BiotechnologyAmrita Vishwa VidyapeethamKollamIndia
| | - Yoshiki Yamaryo‐Botté
- Center for Systems Biology and Molecular MedicineYenepoya Research CentreYenepoya (Deemed to be University)MangaloreIndia
| | - Praveen Kumar
- Eukaryotic Gene Expression laboratoryNational Institute of ImmunologyNew DelhiIndia
| | - Priyanka Bansal
- Eukaryotic Gene Expression laboratoryNational Institute of ImmunologyNew DelhiIndia
| | - Christian Doerig
- NIMHANS IOB Proteomics and Bioinformatics LaboratoryNeurobiology Research CentreNational Institute of Mental Health and Neuro SciencesBangaloreIndia
| | - Cyrille Y Botté
- Center for Systems Biology and Molecular MedicineYenepoya Research CentreYenepoya (Deemed to be University)MangaloreIndia
| | - T S Keshava Prasad
- Institute of BioinformaticsInternational Tech ParkBangaloreIndia
- Amrita School of BiotechnologyAmrita Vishwa VidyapeethamKollamIndia
- School of Health and Biomedical SciencesRMIT UniversityBundooraVic.Australia
| | - Pushkar Sharma
- Eukaryotic Gene Expression laboratoryNational Institute of ImmunologyNew DelhiIndia
| |
Collapse
|
29
|
N-terminal phosphorylation regulates the activity of Glycogen Synthase Kinase 3 from Plasmodium falciparum. Biochem J 2022; 479:337-356. [PMID: 35023554 PMCID: PMC8883495 DOI: 10.1042/bcj20210829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
As the decline of malaria cases stalled over the last five years, novel targets in Plasmodium falciparum are necessary for the development of new drugs. Glycogen Synthase Kinase (PfGSK3) has been identified as a potential target, since its selective inhibitors were shown to disrupt the parasitès life cycle. In the uncanonical N-terminal region of the parasite enzyme, we identified several autophosphorylation sites and probed their role in activity regulation of PfGSK3. By combining molecular modeling with experimental small-angle X-ray scattering data, we show that increased PfGSK3 activity is promoted by conformational changes in the PfGSK3 N-terminus, triggered by N-terminal phosphorylation. Our work provides novel insights into the structure and regulation of the malarial PfGSK3.
Collapse
|
30
|
Deolankar SC, Najar MA, Raghu SV, Prasad TSK. Aβ42 Expressing Drosophila melanogaster Model for Alzheimer's Disease: Quantitative Proteomics Identifies Altered Protein Dynamics of Relevance to Neurodegeneration. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:51-63. [PMID: 35006003 DOI: 10.1089/omi.2021.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Production and deposition of β-amyloid peptides (Aβ) are among the major hallmarks of the pathogenesis of Alzheimer's disease (AD). Mapping the altered protein dynamics associated with Aβ accumulation and neuronal damage may open up new avenues to innovation for drug target discovery in AD. Using quantitative proteomics, we report new findings from the amyloid beta-peptide with 42 amino acids (Aβ42) expressing Drosophila melanogaster model for AD compared to that of the wild-type flies. We identified 302,241 peptide-spectrum matches with 25,641 nonredundant peptides corresponding to 7959 D. melanogaster proteins. Furthermore, we unraveled 538 significantly altered proteins in Aβ42 expressing flies. These differentially expressed proteins were enriched for biological processes associated with neuronal damage leading to AD progression. We also identified 463 unique post-translational modification events mapping to 202 proteins from the same dataset. Among these, 303 modified peptides corresponding to 246 proteins were also altered in the AD model. These modified proteins are known to be involved in the disruption of molecular functions maintaining neuronal plasticity. This study provides new molecular leads on altered protein dynamics relevant to neurodegeneration, neuroplasticity, and AD progression induced by Aβ42 toxicity. These proteins may prove useful to discover new drugs in an AD model of D. melanogaster and evaluate their efficacy and mode of molecular action in the future.
Collapse
Affiliation(s)
- Sayali Chandrashekhar Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohammad Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalore, India
| | | |
Collapse
|
31
|
Plasmodium falciparum Calcium-Dependent Protein Kinase 4 is Critical for Male Gametogenesis and Transmission to the Mosquito Vector. mBio 2021; 12:e0257521. [PMID: 34724830 PMCID: PMC8561384 DOI: 10.1128/mbio.02575-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gametocytes of the malaria parasite Plasmodium are taken up by the mosquito vector with an infectious blood meal, representing a critical stage for parasite transmission. Calcium-independent protein kinases (CDPKs) play key roles in calcium-mediated signaling across the complex life cycle of the parasite. We sought to understand their role in human parasite transmission from the host to the mosquito vector and thus investigated the role of the human-infective parasite Plasmodium falciparum CDPK4 in the parasite life cycle. P. falciparumcdpk4− parasites created by targeted gene deletion showed no effect in blood stage development or gametocyte development. However, cdpk4− parasites showed a severe defect in male gametogenesis and the emergence of flagellated male gametes. To understand the molecular underpinnings of this defect, we performed mass spectrometry-based phosphoproteomic analyses of wild-type and Plasmodium falciparumcdpk4− late gametocyte stages to identify key CDPK4-mediated phosphorylation events that may be important for the regulation of male gametogenesis. We further employed in vitro assays to identify these putative substrates of Plasmodium falciparum CDPK4. This indicated that CDPK4 regulates male gametogenesis by directly or indirectly controlling key essential events, such as DNA replication, mRNA translation, and cell motility. Taken together, our work demonstrates that PfCDPK4 is a central kinase that regulates exflagellation and thereby is critical for parasite transmission to the mosquito vector.
Collapse
|
32
|
Briquet S, Gissot M, Silvie O. A toolbox for conditional control of gene expression in apicomplexan parasites. Mol Microbiol 2021; 117:618-631. [PMID: 34564906 PMCID: PMC9293482 DOI: 10.1111/mmi.14821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/29/2023]
Abstract
Apicomplexan parasites encompass diverse pathogens for humans and animals, including the causative agents of malaria and toxoplasmosis, Plasmodium spp. and Toxoplasma gondii. Genetic manipulation of these parasites has become central to explore parasite biology, unravel gene function and identify new targets for therapeutic strategies. Tremendous progress has been achieved over the past years with the advent of next generation sequencing and powerful genome editing methods. In particular, various methods for conditional gene expression have been developed in both Plasmodium and Toxoplasma to knockout or knockdown essential genes, or for inducible expression of master developmental regulators or mutant versions of proteins. Conditional gene expression can be achieved at three distinct levels. At the DNA level, inducible site‐specific recombinases allow conditional genome editing. At the RNA level, regulation can be achieved during transcription, using stage‐specific or regulatable promoters, or post‐transcriptionally through alteration of mRNA stability or translation. At the protein level, several systems have been developed for inducible degradation or displacement of a protein of interest. In this review, we provide an overview of current systems for conditional control of gene expression in Plasmodium and Toxoplasma parasites, highlighting the advantages and limitations of each approach.
Collapse
Affiliation(s)
- Sylvie Briquet
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France
| | - Mathieu Gissot
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, CIIL, Univ. Lille, Lille, France
| | - Olivier Silvie
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France
| |
Collapse
|
33
|
Sharma M, Choudhury H, Roy R, Michaels SA, Ojo KK, Bansal A. CDPKs: The critical decoders of calcium signal at various stages of malaria parasite development. Comput Struct Biotechnol J 2021; 19:5092-5107. [PMID: 34589185 PMCID: PMC8453137 DOI: 10.1016/j.csbj.2021.08.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Calcium ions are used as important signals during various physiological processes. In malaria parasites, Plasmodium spp., calcium dependent protein kinases (CDPKs) have acquired the unique ability to sense and transduce calcium signals at various critical steps during the lifecycle, either through phosphorylation of downstream substrates or mediating formation of high molecular weight protein complexes. Calcium signaling cascades establish important crosstalk events with signaling pathways mediated by other secondary messengers such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). CDPKs play critical roles at various important physiological steps during parasite development in vertebrates and mosquitoes. They are also important for transmission of the parasite between the two hosts. Combined with the fact that CDPKs are not present in humans, they continue to be pursued as important targets for development of anti-malarial drugs.
Collapse
Affiliation(s)
- Manish Sharma
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Himashree Choudhury
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajarshi Roy
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Samantha A. Michaels
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109 USA
| | - Kayode K. Ojo
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109 USA
| | - Abhisheka Bansal
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
34
|
de Oliveira LS, Alborghetti MR, Carneiro RG, Bastos IMD, Amino R, Grellier P, Charneau S. Calcium in the Backstage of Malaria Parasite Biology. Front Cell Infect Microbiol 2021; 11:708834. [PMID: 34395314 PMCID: PMC8355824 DOI: 10.3389/fcimb.2021.708834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
The calcium ion (Ca2+) is a ubiquitous second messenger involved in key biological processes in prokaryotes and eukaryotes. In Plasmodium species, Ca2+ signaling plays a central role in the parasite life cycle. It has been associated with parasite development, fertilization, locomotion, and host cell infection. Despite the lack of a canonical inositol-1,4,5-triphosphate receptor gene in the Plasmodium genome, pharmacological evidence indicates that inositol-1,4,5-triphosphate triggers Ca2+ mobilization from the endoplasmic reticulum. Other structures such as acidocalcisomes, food vacuole and mitochondria are proposed to act as supplementary intracellular Ca2+ reservoirs. Several Ca2+-binding proteins (CaBPs) trigger downstream signaling. Other proteins with no EF-hand motifs, but apparently involved with CaBPs, are depicted as playing an important role in the erythrocyte invasion and egress. It is also proposed that a cross-talk among kinases, which are not members of the family of Ca2+-dependent protein kinases, such as protein kinases G, A and B, play additional roles mediated indirectly by Ca2+ regulation. This statement may be extended for proteins directly related to invasion or egress, such as SUB1, ERC, IMC1I, IMC1g, GAP45 and EBA175. In this review, we update our understanding of aspects of Ca2+-mediated signaling correlated to the developmental stages of the malaria parasite life cycle.
Collapse
Affiliation(s)
- Lucas Silva de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Marcos Rodrigo Alborghetti
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Renata Garcia Carneiro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Izabela Marques Dourado Bastos
- Laboratory of Host-Pathogen Interaction, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Rogerio Amino
- Unité Infection et Immunité Paludéennes, Institut Pasteur, Paris, France
| | - Philippe Grellier
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
35
|
Rashidi S, Tuteja R, Mansouri R, Ali-Hassanzadeh M, Shafiei R, Ghani E, Karimazar M, Nguewa P, Manzano-Román R. The main post-translational modifications and related regulatory pathways in the malaria parasite Plasmodium falciparum: An update. J Proteomics 2021; 245:104279. [PMID: 34089893 DOI: 10.1016/j.jprot.2021.104279] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
There are important challenges when investigating individual post-translational modifications (PTMs) or protein interaction network and delineating if PTMs or their changes and cross-talks are involved during infection, disease initiation or as a result of disease progression. Proteomics and in silico approaches now offer the possibility to complement each other to further understand the regulatory involvement of these modifications in parasites and infection biology. Accordingly, the current review highlights key expressed or altered proteins and PTMs are invisible switches that turn on and off the function of most of the proteins. PTMs include phosphorylation, glycosylation, ubiquitylation, palmitoylation, myristoylation, prenylation, acetylation, methylation, and epigenetic PTMs in P. falciparum which have been recently identified. But also other low-abundant or overlooked PTMs that might be important for the parasite's survival, infectivity, antigenicity, immunomodulation and pathogenesis. We here emphasize the PTMs as regulatory pathways playing major roles in the biology, pathogenicity, metabolic pathways, survival, host-parasite interactions and the life cycle of P. falciparum. Further validations and functional characterizations of such proteins might confirm the discovery of therapeutic targets and might most likely provide valuable data for the treatment of P. falciparum, the main cause of severe malaria in human.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammadreza Karimazar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Nguewa
- University of Navarra, ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), c/Irunlarrea 1, 31008 Pamplona, Spain.
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
36
|
Lasonder E, More K, Singh S, Haidar M, Bertinetti D, Kennedy EJ, Herberg FW, Holder AA, Langsley G, Chitnis CE. cAMP-Dependent Signaling Pathways as Potential Targets for Inhibition of Plasmodium falciparum Blood Stages. Front Microbiol 2021; 12:684005. [PMID: 34108954 PMCID: PMC8183823 DOI: 10.3389/fmicb.2021.684005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
We review the role of signaling pathways in regulation of the key processes of merozoite egress and red blood cell invasion by Plasmodium falciparum and, in particular, the importance of the second messengers, cAMP and Ca2+, and cyclic nucleotide dependent kinases. cAMP-dependent protein kinase (PKA) is comprised of cAMP-binding regulatory, and catalytic subunits. The less well conserved cAMP-binding pockets should make cAMP analogs attractive drug leads, but this approach is compromised by the poor membrane permeability of cyclic nucleotides. We discuss how the conserved nature of ATP-binding pockets makes ATP analogs inherently prone to off-target effects and how ATP analogs and genetic manipulation can be useful research tools to examine this. We suggest that targeting PKA interaction partners as well as substrates, or developing inhibitors based on PKA interaction sites or phosphorylation sites in PKA substrates, may provide viable alternative approaches for the development of anti-malarial drugs. Proximity of PKA to a substrate is necessary for substrate phosphorylation, but the P. falciparum genome encodes few recognizable A-kinase anchor proteins (AKAPs), suggesting the importance of PKA-regulatory subunit myristylation and membrane association in determining substrate preference. We also discuss how Pf14-3-3 assembles a phosphorylation-dependent signaling complex that includes PKA and calcium dependent protein kinase 1 (CDPK1) and how this complex may be critical for merozoite invasion, and a target to block parasite growth. We compare altered phosphorylation levels in intracellular and egressed merozoites to identify potential PKA substrates. Finally, as host PKA may have a critical role in supporting intracellular parasite development, we discuss its role at other stages of the life cycle, as well as in other apicomplexan infections. Throughout our review we propose possible new directions for the therapeutic exploitation of cAMP-PKA-signaling in malaria and other diseases caused by apicomplexan parasites.
Collapse
Affiliation(s)
- Edwin Lasonder
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Kunal More
- Unité de Biologie de Plasmodium et Vaccins, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Malak Haidar
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | | | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | | | - Anthony A Holder
- Malaria Parasitology Laboratory, Francis Crick Institute, London, United Kingdom
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| |
Collapse
|
37
|
Bansal P, Antil N, Kumar M, Yamaryo-Botté Y, Rawat RS, Pinto S, Datta KK, Katris NJ, Botté CY, Prasad TSK, Sharma P. Protein kinase TgCDPK7 regulates vesicular trafficking and phospholipid synthesis in Toxoplasma gondii. PLoS Pathog 2021; 17:e1009325. [PMID: 33635921 PMCID: PMC7909640 DOI: 10.1371/journal.ppat.1009325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Apicomplexan parasites are causative agents of major human diseases. Calcium Dependent Protein Kinases (CDPKs) are crucial components for the intracellular development of apicomplexan parasites and are thus considered attractive drug targets. CDPK7 is an atypical member of this family, which initial characterization suggested to be critical for intracellular development of both Apicomplexa Plasmodium falciparum and Toxoplasma gondii. However, the mechanisms via which it regulates parasite replication have remained unknown. We performed quantitative phosphoproteomics of T. gondii lacking TgCDPK7 to identify its parasitic targets. Our analysis lead to the identification of several putative TgCDPK7 substrates implicated in critical processes like phospholipid (PL) synthesis and vesicular trafficking. Strikingly, phosphorylation of TgRab11a via TgCDPK7 was critical for parasite intracellular development and protein trafficking. Lipidomic analysis combined with biochemical and cellular studies confirmed that TgCDPK7 regulates phosphatidylethanolamine (PE) levels in T. gondii. These studies provide novel insights into the regulation of these processes that are critical for parasite development by TgCDPK7. In this study, we demonstrate that protein kinase TgCDPK7 regulates cellular processes like vesicular trafficking and the synthesis of phospholipids, which are critical for the development of the parasite Toxoplasma gondii. It regulates the localization of a small GTPase TgRab11a by phosphorylating it at a specific site, which is critical for trafficking of important parasite proteins and is important for parasite division. TgCDPK7 may regulate key enzymes involved biogenesis of phosphatidylethanolamine, which may contribute to the synthesis of this important phospholipid. These and other studies shed light on a novel signaling pathway in apicomplexan parasite Toxoplasma gondii.
Collapse
Affiliation(s)
- Priyanka Bansal
- Eukaryotic Gene Expression laboratory, National Institute of Immunology, New Delhi, India
| | - Neelam Antil
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Manish Kumar
- Eukaryotic Gene Expression laboratory, National Institute of Immunology, New Delhi, India
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Rahul Singh Rawat
- Eukaryotic Gene Expression laboratory, National Institute of Immunology, New Delhi, India
| | - Sneha Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Keshava K. Datta
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Nicholas J. Katris
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Cyrille Y. Botté
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - T. S. Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- NIMHANS IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Pushkar Sharma
- Eukaryotic Gene Expression laboratory, National Institute of Immunology, New Delhi, India
- * E-mail:
| |
Collapse
|
38
|
Ghartey-Kwansah G, Yin Q, Li Z, Gumpper K, Sun Y, Yang R, Wang D, Jones O, Zhou X, Wang L, Bryant J, Ma J, Boampong JN, Xu X. Calcium-dependent Protein Kinases in Malaria Parasite Development and Infection. Cell Transplant 2021; 29:963689719884888. [PMID: 32180432 PMCID: PMC7444236 DOI: 10.1177/0963689719884888] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Apicomplexan parasites have challenged researchers for nearly a century. A major challenge to developing efficient treatments and vaccines is the parasite's ability to change its cellular and molecular makeup to develop intracellular and extracellular niches in its hosts. Ca2+ signaling is an important messenger for the egress of the malaria parasite from the infected erythrocyte, gametogenesis, ookinete motility in the mosquito, and sporozoite invasion of mammalian hepatocytes. Calcium-dependent protein kinases (CDPKs) have crucial functions in calcium signaling at various stages of the parasite's life cycle; this therefore makes them attractive drug targets against malaria. Here, we summarize the functions of the various CDPK isoforms in relation to the malaria life cycle by emphasizing the molecular mechanism of developmental progression within host tissues. We also discuss the current development of anti-malarial drugs, such as how specific bumped kinase inhibitors (BKIs) for parasite CDPKs have been shown to reduce infection in Toxoplasma gondii, Cryptosporidium parvum, and Plasmodium falciparum. Our suggested combinations of BKIs, artemisinin derivatives with peroxide bridge, and inhibitors on the Ca(2+)-ATPase PfATP6 as a potential target should be inspected further as a treatment against malaria.
Collapse
Affiliation(s)
- George Ghartey-Kwansah
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China.,Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.,Authors contributed equally to this article
| | - Qinan Yin
- Clinical Center of National Institutes of Health, Bethesda, MD, USA.,Authors contributed equally to this article
| | - Zhongguang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China.,Ohio State University School of Medicine, Columbus, OH, USA.,Authors contributed equally to this article
| | - Kristyn Gumpper
- Ohio State University School of Medicine, Columbus, OH, USA.,Authors contributed equally to this article
| | - Yuting Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Rong Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Dan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Odell Jones
- University of Pennsylvania School of Medicine, Animal Center, Philadelphia, PA, USA
| | - Xin Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China.,Ohio State University School of Medicine, Columbus, OH, USA
| | - Liyang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China.,Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joseph Bryant
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jianjie Ma
- Ohio State University School of Medicine, Columbus, OH, USA
| | - Johnson Nyarko Boampong
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Xuehong Xu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China
| |
Collapse
|
39
|
Scarpelli PH, Pecenin MF, Garcia CRS. Intracellular Ca 2+ Signaling in Protozoan Parasites: An Overview with a Focus on Mitochondria. Int J Mol Sci 2021; 22:ijms22010469. [PMID: 33466510 PMCID: PMC7796463 DOI: 10.3390/ijms22010469] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ signaling has been involved in controling critical cellular functions such as activation of proteases, cell death, and cell cycle control. The endoplasmatic reticulum plays a significant role in Ca2+ storage inside the cell, but mitochondria have long been recognized as a fundamental Ca2+ pool. Protozoan parasites such as Plasmodium falciparum, Toxoplasma gondii, and Trypanosoma cruzi display a Ca2+ signaling toolkit with similarities to higher eukaryotes, including the participation of mitochondria in Ca2+-dependent signaling events. This review summarizes the most recent knowledge in mitochondrial Ca2+ signaling in protozoan parasites, focusing on the mechanism involved in mitochondrial Ca2+ uptake by pathogenic protists.
Collapse
|
40
|
Molecular dynamics simulations and biochemical characterization of Pf14-3-3 and PfCDPK1 interaction towards its role in growth of human malaria parasite. Biochem J 2020; 477:2153-2177. [PMID: 32484216 DOI: 10.1042/bcj20200145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022]
Abstract
Scaffold proteins play pivotal role as modulators of cellular processes by operating as multipurpose conformation clamps. 14-3-3 proteins are gold-standard scaffold modules that recognize phosphoSer/Thr (pS/pT) containing conserved motifs, and confer conformational changes leading to modulation of functional parameters of their target proteins. Modulation in functional activity of kinases has been attributed to their interaction with 14-3-3 proteins. Herein, we have annotated and characterized PF3D7_0818200 as 14-3-3 isoform I in Plasmodium falciparum 3D7, and its interaction with one of the key kinases of the parasite, Calcium-Dependent Protein Kinase 1 (CDPK1) by performing various analytical biochemistry and biophysical assays. Molecular dynamics simulation studies indicated that CDPK1 polypeptide sequence (61KLGpS64) behaves as canonical Mode I-type (RXXpS/pT) consensus 14-3-3 binding motif, mediating the interaction. The 14-3-3I/CDPK1 interaction was validated in vitro with ELISA and SPR, which confirmed that the interaction is phosphorylation dependent, with binding affinity constant of 670 ± 3.6 nM. The interaction of 14-3-3I with CDPK1 was validated with well characterized optimal 14-3-3 recognition motifs: Mode I-type ARSHpSYPA and Mode II-type RLYHpSLPA, by simulation studies and ITC. This interaction was found to marginally enhance CDPK1 functional activity. Furthermore, interaction antagonizing peptidomimetics showed growth inhibitory impact on the parasite indicating crucial physiological role of 14-3-3/CDPK1 interaction. Overall, this study characterizes 14-3-3I as a scaffold protein in the malaria parasite and unveils CDPK1 as its previously unidentified target. This sets a precedent for the rational design of 14-3-3 based PPI inhibitors by utilizing 14-3-3 recognition motif peptides, as a potential antimalarial strategy.
Collapse
|
41
|
Mustière R, Vanelle P, Primas N. Plasmodial Kinase Inhibitors Targeting Malaria: Recent Developments. Molecules 2020; 25:E5949. [PMID: 33334080 PMCID: PMC7765515 DOI: 10.3390/molecules25245949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
Recent progress in reducing malaria cases and ensuing deaths is threatened by factors like mutations that induce resistance to artemisinin derivatives. Multiple drugs are currently in clinical trials for malaria treatment, including some with novel mechanisms of action. One of these, MMV390048, is a plasmodial kinase inhibitor. This review lists the recently developed molecules which target plasmodial kinases. A systematic review of the literature was performed using CAPLUS and MEDLINE databases from 2005 to 2020. It covers a total of 60 articles and describes about one hundred compounds targeting 22 plasmodial kinases. This work highlights the strong potential of compounds targeting plasmodial kinases for future drug therapies. However, the majority of the Plasmodium kinome remains to be explored.
Collapse
Affiliation(s)
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385 Marseille CEDEX 05, France;
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385 Marseille CEDEX 05, France;
| |
Collapse
|
42
|
Development of novel anti-malarial from structurally diverse library of molecules, targeting plant-like CDPK1, a multistage growth regulator of P. falciparum. Biochem J 2020; 477:1951-1970. [PMID: 32401306 DOI: 10.1042/bcj20200045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/06/2023]
Abstract
Upon Plasmodium falciparum merozoites exposure to low [K+] environment in blood plasma, there is escalation of cytosolic [Ca2+] which activates Ca2+-Dependent Protein Kinase 1 (CDPK1), a signaling hub of intra-erythrocytic proliferative stages of parasite. Given its high abundance and multidimensional attributes in parasite life-cycle, this is a lucrative target for designing antimalarials. Towards this, we have virtually screened MyriaScreenII diversity collection of 10,000 drug-like molecules, which resulted in 18 compounds complementing ATP-binding pocket of CDPK1. In vitro screening for toxicity in mammalian cells revealed that these compounds are non-toxic in nature. Furthermore, SPR analysis demonstrated differential binding affinity of these compounds towards recombinantly purified CDPK1 protein. Selection of lead compound 1 was performed by evaluating their inhibitory effects on phosphorylation and ATP binding activities of CDPK1. Furthermore, in vitro biophysical evaluations by ITC and FS revealed that binding of compound 1 is driven by formation of energetically favorable non-covalent interactions, with different binding constants in presence and absence of Ca2+, and TSA authenticated stability of compound 1 bound CDPK1 complex. Finally, compound 1 strongly inhibited intra-erythrocytic growth of P. falciparum in vitro. Conceivably, we propose a novel CDPK1-selective inhibitor, step towards developing pan-CDPK kinase inhibitors, prerequisite for cross-stage anti-malarial protection.
Collapse
|
43
|
Moolman C, van der Sluis R, Beteck RM, Legoabe LJ. An Update on Development of Small-Molecule Plasmodial Kinase Inhibitors. Molecules 2020; 25:E5182. [PMID: 33171706 PMCID: PMC7664427 DOI: 10.3390/molecules25215182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.
Collapse
Affiliation(s)
- Chantalle Moolman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Rencia van der Sluis
- Focus Area for Human Metabolomics, Biochemistry, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa;
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| |
Collapse
|
44
|
Karthikkeyan G, Najar MA, Pervaje R, Pervaje SK, Modi PK, Prasad TSK. Identification of Molecular Network Associated with Neuroprotective Effects of Yashtimadhu ( Glycyrrhiza glabra L.) by Quantitative Proteomics of Rotenone-Induced Parkinson's Disease Model. ACS OMEGA 2020; 5:26611-26625. [PMID: 33110989 PMCID: PMC7581237 DOI: 10.1021/acsomega.0c03420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 05/04/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder, whose treatment with modern therapeutics leads to a plethora of side effects with prolonged usage. Therefore, the management of PD with complementary and alternative medicine is often pursued. In the Ayurveda system of alternative medicine, Yashtimadhu choorna, a Medhya Rasayana (nootropic), prepared from the dried roots of Glycyrrhiza glabra L. (licorice), is prescribed for the management of PD with a favorable outcome. We pursued to understand the neuroprotective effects of Yashtimadhu choorna against a rotenone-induced cellular model of PD using differentiated IMR-32 cells. Cotreatment with Yashtimadhu choorna extract rescued rotenone-induced apoptosis and hyperphosphorylation of ERK-1/2. Quantitative proteomic analysis of six peptide fractions from independent biological replicates acquired 1,561,169 mass spectra, which when searched resulted in 565,008 peptide-spectrum matches mapping to 30,554 unique peptides that belonged to 4864 human proteins. Proteins commonly identified in biological replicates and >4 PSMs were considered for further analysis, leading to a refined set of 3720 proteins. Rotenone treatment differentially altered 144 proteins (fold ≥1.25 or ≤0.8), involved in mitochondrial, endoplasmic reticulum, and autophagy functions. Cotreatment with Yashtimadhu choorna extract rescued 84 proteins from the effect of rotenone and an additional regulation of 4 proteins. Network analysis highlighted the interaction of proteins and pathways regulated by them, which can be targeted for neuroprotection. Validation of proteomics data highlighted that Yashtimadhu confers neuroprotection by preventing mitochondrial oxidative stress and apoptosis. This discovery will pave the way for understanding the molecular action of Ayurveda drugs and developing novel therapeutics for PD.
Collapse
Affiliation(s)
- Gayathree Karthikkeyan
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Mohd. Altaf Najar
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | | | | - Prashant Kumar Modi
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | |
Collapse
|
45
|
Phosphorylation of Rhoptry Protein RhopH3 Is Critical for Host Cell Invasion by the Malaria Parasite. mBio 2020; 11:mBio.00166-20. [PMID: 33024030 PMCID: PMC7542355 DOI: 10.1128/mbio.00166-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Host cell invasion by the malaria parasite is critical for establishing infection in human host and is dependent on discharge of key ligands from organelles like rhoptry and microneme, and these ligands interact with host RBC receptors. In the present study, we demonstrate that phosphorylation of a key rhoptry protein, RhopH3, is critical for host invasion. Phosphorylation regulates its localization to rhoptries and discharge from the parasite. Merozoites formed after asexual division of the malaria parasite invade the host red blood cells (RBCs), which is critical for initiating malaria infection. The process of invasion involves specialized organelles like micronemes and rhoptries that discharge key proteins involved in interaction with host RBC receptors. RhopH complex comprises at least three proteins, which include RhopH3. RhopH3 is critical for the process of red blood cell (RBC) invasion as well as intraerythrocytic development of human malaria parasite Plasmodium falciparum. It is phosphorylated at serine 804 (S804) in the parasite; however, it is unclear if phosphorylation regulates its function. To address this, a CRISPR-CAS9-based approach was used to mutate S804 to alanine (A) in P. falciparum. Using this phosphomutant (R3_S804A) of RhopH3, we demonstrate that the phosphorylation of S804 is critical for host RBC invasion by the parasite but not for its intraerythrocytic development. Importantly, the phosphorylation of RhopH3 regulates its localization to the rhoptries and discharge from the parasite, which is critical for RBC invasion. We also identified P. falciparum CDPK1 (PfCDPK1) as a possible candidate kinase for RhopH3-S804 phosphorylation and found that it regulates RhopH3 secretion from the parasite. These findings provide novel insights into the role of phosphorylation in rhoptry release and invasion, which is poorly understood.
Collapse
|
46
|
Perrin AJ, Patel A, Flueck C, Blackman MJ, Baker DA. cAMP signalling and its role in host cell invasion by malaria parasites. Curr Opin Microbiol 2020; 58:69-74. [PMID: 33032143 DOI: 10.1016/j.mib.2020.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) is an important signalling molecule across evolution, but until recently there was little information on its role in malaria parasites. Advances in gene editing - in particular conditional genetic approaches and mass spectrometry have paved the way for characterisation of the key components of the cAMP signalling pathway in malaria parasites. This has revealed that cAMP signalling plays a critical role in invasion of host red blood cells by Plasmodium falciparum merozoites through regulating the phosphorylation of key parasite proteins by the cAMP-dependent protein kinase (PKA). These insights will help us to investigate parasite cAMP signalling as a target for novel antimalarial drugs.
Collapse
Affiliation(s)
- Abigail J Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| |
Collapse
|
47
|
Govindasamy K, Bhanot P. Overlapping and distinct roles of CDPK family members in the pre-erythrocytic stages of the rodent malaria parasite, Plasmodium berghei. PLoS Pathog 2020; 16:e1008131. [PMID: 32866196 PMCID: PMC7485973 DOI: 10.1371/journal.ppat.1008131] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 09/11/2020] [Accepted: 07/08/2020] [Indexed: 11/29/2022] Open
Abstract
Invasion of hepatocytes by Plasmodium sporozoites initiates the pre-erythrocytic step of a malaria infection. Subsequent development of the parasite within hepatocytes and exit from them is essential for starting the disease-causing erythrocytic cycle. Identification of signaling pathways that operate in pre-erythrocytic stages provides insight into a critical step of infection and potential targets for chemoprotection from malaria. We demonstrate that P. berghei homologs of Calcium Dependent Protein Kinase 1 (CDPK1), CDPK4 and CDPK5 play overlapping but distinct roles in sporozoite invasion and parasite egress from hepatocytes. All three kinases are expressed in sporozoites. All three are required for optimal motility of sporozoites and consequently their invasion of hepatocytes. Increased cGMP can compensate for the functional loss of CDPK1 and CDPK5 during sporozoite invasion but cannot overcome loss of CDPK4. CDPK1 and CDPK5 expression is downregulated after sporozoite invasion. CDPK5 reappears in a subset of late stage liver stages and is present in all merosomes. Chemical inhibition of CDPK4 and depletion of CDPK5 in liver stages implicate these kinases in the formation and/or release of merosomes from mature liver stages. Furthermore, depletion of CDPK5 in merosomes significantly delays initiation of the erythrocytic cycle without affecting infectivity of hepatic merozoites. These data suggest that CDPK5 may be required for the rupture of merosomes. Our work provides evidence that sporozoite invasion requires CDPK1 and CDPK5, and suggests that CDPK5 participates in the release of hepatic merozoites. The malaria-parasite Plasmodium begins its mammalian cycle by infecting hepatocytes in the liver. A single parasite differentiates into tens of thousands of hepatic merozoites which exit the host cell in vesicles called merosomes. Hepatic merozoites initiate the first round of erythrocytic infection that eventually causes disease. We show that optimal invasion of liver cells by Plasmodium requires the action of three closely-related parasite kinases, CDPK1, 4 and 5. Loss of any of the three enzymes in the parasite significantly reduces infection of liver cells. Furthermore, CDPK5 is likely required for release of hepatic merozoites from merosomes and therefore for initiation of the erythrocytic cycle. A better understanding of how these kinases function could lead to drugs that prevent malaria.
Collapse
Affiliation(s)
- Kavitha Govindasamy
- Rutgers New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Newark, New Jersey, United States of America
| | - Purnima Bhanot
- Rutgers New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
48
|
Phosphorylation-Dependent Assembly of a 14-3-3 Mediated Signaling Complex during Red Blood Cell Invasion by Plasmodium falciparum Merozoites. mBio 2020; 11:mBio.01287-20. [PMID: 32817103 PMCID: PMC7439480 DOI: 10.1128/mbio.01287-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Red blood cell (RBC) invasion by Plasmodium merozoites requires multiple steps that are regulated by signaling pathways. Exposure of P. falciparum merozoites to the physiological signal of low K+, as found in blood plasma, leads to a rise in cytosolic Ca2+, which mediates microneme secretion, motility, and invasion. We have used global phosphoproteomic analysis of merozoites to identify signaling pathways that are activated during invasion. Using quantitative phosphoproteomics, we found 394 protein phosphorylation site changes in merozoites subjected to different ionic environments (high K+/low K+), 143 of which were Ca2+ dependent. These included a number of signaling proteins such as catalytic and regulatory subunits of protein kinase A (PfPKAc and PfPKAr) and calcium-dependent protein kinase 1 (PfCDPK1). Proteins of the 14-3-3 family interact with phosphorylated target proteins to assemble signaling complexes. Here, using coimmunoprecipitation and gel filtration chromatography, we demonstrate that Pf14-3-3I binds phosphorylated PfPKAr and PfCDPK1 to mediate the assembly of a multiprotein complex in P. falciparum merozoites. A phospho-peptide, P1, based on the Ca2+-dependent phosphosites of PKAr, binds Pf14-3-3I and disrupts assembly of the Pf14-3-3I-mediated multiprotein complex. Disruption of the multiprotein complex with P1 inhibits microneme secretion and RBC invasion. This study thus identifies a novel signaling complex that plays a key role in merozoite invasion of RBCs. Disruption of this signaling complex could serve as a novel approach to inhibit blood-stage growth of malaria parasites.IMPORTANCE Invasion of red blood cells (RBCs) by Plasmodium falciparum merozoites is a complex process that is regulated by intricate signaling pathways. Here, we used phosphoproteomic profiling to identify the key proteins involved in signaling events during invasion. We found changes in the phosphorylation of various merozoite proteins, including multiple kinases previously implicated in the process of invasion. We also found that a phosphorylation-dependent multiprotein complex including signaling kinases assembles during the process of invasion. Disruption of this multiprotein complex impairs merozoite invasion of RBCs, providing a novel approach for the development of inhibitors to block the growth of blood-stage malaria parasites.
Collapse
|
49
|
Vanaerschot M, Murithi JM, Pasaje CFA, Ghidelli-Disse S, Dwomoh L, Bird M, Spottiswoode N, Mittal N, Arendse LB, Owen ES, Wicht KJ, Siciliano G, Bösche M, Yeo T, Kumar TRS, Mok S, Carpenter EF, Giddins MJ, Sanz O, Ottilie S, Alano P, Chibale K, Llinás M, Uhlemann AC, Delves M, Tobin AB, Doerig C, Winzeler EA, Lee MCS, Niles JC, Fidock DA. Inhibition of Resistance-Refractory P. falciparum Kinase PKG Delivers Prophylactic, Blood Stage, and Transmission-Blocking Antiplasmodial Activity. Cell Chem Biol 2020; 27:806-816.e8. [PMID: 32359426 PMCID: PMC7369637 DOI: 10.1016/j.chembiol.2020.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022]
Abstract
The search for antimalarial chemotypes with modes of action unrelated to existing drugs has intensified with the recent failure of first-line therapies across Southeast Asia. Here, we show that the trisubstituted imidazole MMV030084 potently inhibits hepatocyte invasion by Plasmodium sporozoites, merozoite egress from asexual blood stage schizonts, and male gamete exflagellation. Metabolomic, phosphoproteomic, and chemoproteomic studies, validated with conditional knockdown parasites, molecular docking, and recombinant kinase assays, identified cGMP-dependent protein kinase (PKG) as the primary target of MMV030084. PKG is known to play essential roles in Plasmodium invasion of and egress from host cells, matching MMV030084's activity profile. Resistance selections and gene editing identified tyrosine kinase-like protein 3 as a low-level resistance mediator for PKG inhibitors, while PKG itself never mutated under pressure. These studies highlight PKG as a resistance-refractory antimalarial target throughout the Plasmodium life cycle and promote MMV030084 as a promising Plasmodium PKG-targeting chemotype.
Collapse
Affiliation(s)
- Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - James M Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Charisse Flerida A Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Louis Dwomoh
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK, Scotland
| | - Megan Bird
- Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Natasha Spottiswoode
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nimisha Mittal
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Lauren B Arendse
- Drug Discovery and Development Centre (H3D), South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Edward S Owen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16801, USA; Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Markus Bösche
- Cellzome GmbH, GlaxoSmithKline, 69117 Heidelberg, Germany
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emma F Carpenter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Marla J Giddins
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Olalla Sanz
- Diseases of the Developing World Global Health Pharma Unit, GlaxoSmithKline, 28760 Tres Cantos, Spain
| | - Sabine Ottilie
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16801, USA; Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael Delves
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK, Scotland
| | - Christian Doerig
- Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora VIC 3083, Australia
| | | | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
50
|
Paul AS, Miliu A, Paulo JA, Goldberg JM, Bonilla AM, Berry L, Seveno M, Braun-Breton C, Kosber AL, Elsworth B, Arriola JSN, Lebrun M, Gygi SP, Lamarque MH, Duraisingh MT. Co-option of Plasmodium falciparum PP1 for egress from host erythrocytes. Nat Commun 2020; 11:3532. [PMID: 32669539 PMCID: PMC7363832 DOI: 10.1038/s41467-020-17306-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Asexual proliferation of the Plasmodium parasites that cause malaria follows a developmental program that alternates non-canonical intraerythrocytic replication with dissemination to new host cells. We carried out a functional analysis of the Plasmodium falciparum homolog of Protein Phosphatase 1 (PfPP1), a universally conserved cell cycle factor in eukaryotes, to investigate regulation of parasite proliferation. PfPP1 is indeed required for efficient replication, but is absolutely essential for egress of parasites from host red blood cells. By phosphoproteomic and chemical-genetic analysis, we isolate two functional targets of PfPP1 for egress: a HECT E3 protein-ubiquitin ligase; and GCα, a fusion protein composed of a guanylyl cyclase and a phospholipid transporter domain. We hypothesize that PfPP1 regulates lipid sensing by GCα and find that phosphatidylcholine stimulates PfPP1-dependent egress. PfPP1 acts as a key regulator that integrates multiple cell-intrinsic pathways with external signals to direct parasite egress from host cells.
Collapse
Affiliation(s)
- Aditya S Paul
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Alexandra Miliu
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, 02115, MA, USA
| | - Jonathan M Goldberg
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Arianna M Bonilla
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Laurence Berry
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Marie Seveno
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Catherine Braun-Breton
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Aziz L Kosber
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Jose S N Arriola
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, 02115, MA, USA
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France.
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA.
| |
Collapse
|