1
|
Feng Q, Su C, Yang C, Wu M, Li X, Lin X, Zeng Y, He J, Wang Y, Guo L, Wen C, Cai F, Zhang J, Fan X, Guan M. RXRα/MR signaling promotes diabetic kidney disease by facilitating renal tubular epithelial cells senescence and metabolic reprogramming. Transl Res 2024; 274:101-117. [PMID: 39424127 DOI: 10.1016/j.trsl.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Cell senescence and metabolic reprogramming are significant features of diabetic kidney disease (DKD). However, the underlying mechanisms between cell senescence and metabolic reprogramming are poorly defined. Here, we report that retinoid X receptor α (RXRα), a key nuclear receptor transcription factor, regulates cell senescence and metabolic reprogramming in DKD. Through high-throughput sequencing, bioinformatic analysis and experimental validation, we confirmed the critical role of RXRα in promoting cell senescence and metabolic dysregulation in renal tubular epithelial cells (RTECs) induced by lipid overload. In vivo, in situ injection of AAV9-shRxra into the kidney reduced proteinuria, RTECs senescence and insulin resistance in DKD mice. In vitro, knockdown of RXRα markedly improved G2/M phase arrest and suppressed the expression of senescence-associated secretory phenotypes (SASPs). Protein-protein interaction (PPI) analysis and unbiased bioinformatics were employed to identify the direct interactions between RXRα and the mineralocorticoid receptor (MR), which were subsequently validated through coimmunoprecipitation. Gene network analysis revealed the collaborative regulatory role of RXRα and MR in RTECs senescence. In an accelerated aging mouse model, treatment with a MR antagonist has been shown to inhibite the RXRα/MR signaling, improve RTECs senescence, and reduce interstitial fibrosis and lipid deposition in the kidneys. These findings indicate that inhibition of RXRα/MR signaling could alleviate cell senescence during metabolic disorders. Thus, our study revealed that RXRα/MR signaling serves as a critical regulatory factor mediating the crosstalk between cell senescence and metabolic reprogramming, shedding light on a novel mechanism for targeting cell senescence and metabolic dysregulation in DKD.
Collapse
Affiliation(s)
- Qijian Feng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515; Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Chang Su
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Chuyi Yang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Minghai Wu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Xuelin Li
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Xiaochun Lin
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Yanmei Zeng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Jintao He
- School of Medicine, South China University of Technology, Guangzhou 510080, PR China
| | - Yuan Wang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Lei Guo
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Churan Wen
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Feifei Cai
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Jin Zhang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Xinzhao Fan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Meiping Guan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515.
| |
Collapse
|
2
|
de Oliveira VM, Malospirito CC, da Silva FB, Videira NB, Dias MMG, Sanches MN, Leite VBP, Figueira ACM. Exploring the molecular pathways of the activation process in PPARγ recurrent bladder cancer mutants. J Chem Phys 2024; 161:165102. [PMID: 39440760 DOI: 10.1063/5.0232041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The intricate involvement of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in glucose homeostasis and adipogenesis is well-established. However, its role in cancer, particularly luminal bladder cancer, remains debated. The overexpression and activation of PPARγ are implicated in tumorigenesis. Specific gain-of-function mutations (M280I, I290M, and T475M) within the ligand-binding domain of PPARγ are associated with bladder cancer and receptor activation. The underlying molecular pathways prompted by these mutations remain unclear. We employed a dual-basin structure-based model (db-SBM) to explore the conformational dynamics between the inactive and active states of PPARγ and examined the effects of the M280I, I290M, and T475M mutations. Our findings, consistent with the existing literature, reveal heightened ligand-independent transcriptional activity in the I290M and T475M mutants. Both mutants showed enhanced stabilization of the active state compared to the wild-type receptor, with the I290M mutation promoting a specific transition route, making it a prime candidate for further study. Electrostatic analysis identified residues K303 and E488 as pivotal in the I290M activation cascade. Biophysical assays confirmed that disrupting the K303-E488 interaction reduced the thermal stabilization characteristic of the I290M mutation. Our study demonstrates the predictive capabilities of combining simulation and cheminformatics methods, validated by biochemical experiments, to gain insights into molecular activation mechanisms and identify target residues for protein modulation.
Collapse
Affiliation(s)
- Vinícius M de Oliveira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas, SP, Brazil
| | - Caique C Malospirito
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas, SP, Brazil
| | | | - Natália B Videira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas, SP, Brazil
| | - Marieli M G Dias
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas, SP, Brazil
| | - Murilo N Sanches
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities, and Exact Sciences, São José do Rio Preto, SP, Brazil
| | - Vitor B P Leite
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities, and Exact Sciences, São José do Rio Preto, SP, Brazil
| | - Ana Carolina M Figueira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas, SP, Brazil
| |
Collapse
|
3
|
Dimitrov G, Mangaldzhiev R, Slavov C, Popov E. Contemporary Molecular Markers for Predicting Systemic Treatment Response in Urothelial Bladder Cancer: A Narrative Review. Cancers (Basel) 2024; 16:3056. [PMID: 39272913 PMCID: PMC11394076 DOI: 10.3390/cancers16173056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The search for dependable molecular biomarkers to enhance routine clinical practice is a compelling challenge across all oncology fields. Urothelial bladder carcinoma, known for its significant heterogeneity, presents difficulties in predicting responses to systemic therapies and outcomes post-radical cystectomy. Recent advancements in molecular cancer biology offer promising avenues to understand the disease's biology and identify emerging predictive biomarkers. Stratifying patients based on their recurrence risk post-curative treatment or predicting the efficacy of conventional and targeted therapies could catalyze personalized treatment selection and disease surveillance. Despite progress, reliable molecular biomarkers to forecast responses to systemic agents, in neoadjuvant, adjuvant, or palliative treatment settings, are still lacking, underscoring an urgent unmet need. This review aims to delve into the utilization of current and emerging molecular signatures across various stages of urothelial bladder carcinoma to predict responses to systemic therapy.
Collapse
Affiliation(s)
- George Dimitrov
- Department of Medical Oncology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| | - Radoslav Mangaldzhiev
- Department of Medical Oncology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| | - Chavdar Slavov
- Department of Urology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| | - Elenko Popov
- Department of Urology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| |
Collapse
|
4
|
Wang X, Liu X, Xiao R, Fang Y, Zhou F, Gu M, Luo X, Jiang D, Tang Y, You L, Zhao Y. Histone lactylation dynamics: Unlocking the triad of metabolism, epigenetics, and immune regulation in metastatic cascade of pancreatic cancer. Cancer Lett 2024; 598:217117. [PMID: 39019144 DOI: 10.1016/j.canlet.2024.217117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Cancer cells rewire metabolism to sculpt the immune tumor microenvironment (TME) and propel tumor advancement, which intricately tied to post-translational modifications. Histone lactylation has emerged as a novel player in modulating protein functions, whereas little is known about its pathological role in pancreatic ductal adenocarcinoma (PDAC) progression. Employing a multi-omics approach encompassing bulk and single-cell RNA sequencing, metabolomics, ATAC-seq, and CUT&Tag methodologies, we unveiled the potential of histone lactylation in prognostic prediction, patient stratification and TME characterization. Notably, "LDHA-H4K12la-immuno-genes" axis has introduced a novel node into the regulatory framework of "metabolism-epigenetics-immunity," shedding new light on the landscape of PDAC progression. Furthermore, the heightened interplay between cancer cells and immune counterparts via Nectin-2 in liver metastasis with elevated HLS unraveled a positive feedback loop in driving immune evasion. Simultaneously, immune cells exhibited altered HLS and autonomous functionality across the metastatic cascade. Consequently, the exploration of innovative combination strategies targeting the metabolism-epigenetics-immunity axis holds promise in curbing distant metastasis and improving survival prospects for individuals grappling with challenges of PDAC.
Collapse
Affiliation(s)
- Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Xiyuan Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Decheng Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Yuemeng Tang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| |
Collapse
|
5
|
Tuo Z, Zhang Y, Li D, Wang Y, Wu R, Wang J, Yu Q, Ye L, Shao F, Wusiman D, Yang Y, Yoo KH, Ke M, Okoli UA, Cho WC, Heavey S, Wei W, Feng D. Relationship between clonal evolution and drug resistance in bladder cancer: A genomic research review. Pharmacol Res 2024; 206:107302. [PMID: 39004242 DOI: 10.1016/j.phrs.2024.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Bladder cancer stands as a prevalent global malignancy, exhibiting notable sex-based variations in both incidence and prognosis. Despite substantial strides in therapeutic approaches, the formidable challenge of drug resistance persists. The genomic landscape of bladder cancer, characterized by intricate clonal heterogeneity, emerges as a pivotal determinant in fostering this resistance. Clonal evolution, encapsulating the dynamic transformations within subpopulations of tumor cells over time, is implicated in the emergence of drug-resistant traits. Within this review, we illuminate contemporary insights into the role of clonal evolution in bladder cancer, elucidating its influence as a driver in tumor initiation, disease progression, and the formidable obstacle of therapy resistance.
Collapse
Affiliation(s)
- Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yetong Wang
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400038, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province 315211, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Chongqing, Wanzhou 404000, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK; Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK.
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK.
| |
Collapse
|
6
|
Zhang P, Liu N, Xue M, Zhang M, Xiao Z, Xu C, Fan Y, Qiu J, Zhang Q, Zhou Y. β-Sitosterol Reduces the Content of Triglyceride and Cholesterol in a High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Zebrafish ( Danio rerio) Model. Animals (Basel) 2024; 14:1289. [PMID: 38731293 PMCID: PMC11083524 DOI: 10.3390/ani14091289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/01/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is strongly associated with hyperlipidemia, which is closely related to high levels of sugar and fat. β-sitosterol is a natural product with significant hypolipidemic and cholesterol-lowering effects. However, the underlying mechanism of its action on aquatic products is not completely understood. METHODS A high-fat diet (HFD)-induced NAFLD zebrafish model was successfully established, and the anti-hyperlipidemic effect and potential mechanism of β-sitosterol were studied using oil red O staining, filipin staining, and lipid metabolomics. RESULTS β-sitosterol significantly reduced the accumulation of triglyceride, glucose, and cholesterol in the zebrafish model. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that differential lipid molecules in β-sitosterol mainly regulated the lipid metabolism and signal transduction function of the zebrafish model. β-sitosterol mainly affected steroid biosynthesis and steroid hormone biosynthesis in the zebrafish model. Compared with the HFD group, the addition of 500 mg/100 g of β-sitosterol significantly inhibited the expression of Ppar-γ and Rxr-α in the zebrafish model by at least 50% and 25%, respectively. CONCLUSIONS β-sitosterol can reduce lipid accumulation in the zebrafish model of NAFLD by regulating lipid metabolism and signal transduction and inhibiting adipogenesis and lipid storage.
Collapse
Affiliation(s)
- Peng Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Naicheng Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
| | - Mengjie Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Zidong Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
| | - Junqiang Qiu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
| |
Collapse
|
7
|
MacTavish B, Zhu D, Shang J, Shao Q, Yang ZJ, Kamenecka TM, Kojetin DJ. Ligand efficacy shifts a nuclear receptor conformational ensemble between transcriptionally active and repressive states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590805. [PMID: 38712087 PMCID: PMC11071369 DOI: 10.1101/2024.04.23.590805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Nuclear receptors (NRs) are thought to dynamically alternate between transcriptionally active and repressive conformations, which are stabilized upon ligand binding. Most NR ligand series exhibit limited bias, primarily consisting of transcriptionally active agonists or neutral antagonists, but not repressive inverse agonists-a limitation that restricts understanding of the functional NR conformational ensemble. Here, we report a NR ligand series for peroxisome proliferator-activated receptor gamma (PPARγ) that spans a pharmacological spectrum from repression (inverse agonism) to activation (agonism) where subtle structural modifications switch compound activity. While crystal structures provide snapshots of the fully repressive state, NMR spectroscopy and conformation-activity relationship analysis reveals that compounds within the series shift the PPARγ conformational ensemble between transcriptionally active and repressive conformations that are populated in the apo/ligand-free ensemble. Our findings reveal a molecular framework for minimal chemical modifications that enhance PPARγ inverse agonism and elucidate their influence on the dynamic PPARγ conformational ensemble.
Collapse
Affiliation(s)
- Brian MacTavish
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Di Zhu
- Department of Molecular Medicine, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Jinsai Shang
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Qianzhen Shao
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Zhongyue J. Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, Tennessee 37232, United States
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Theodore M. Kamenecka
- Department of Molecular Medicine, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Douglas J. Kojetin
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
- Department of Molecular Medicine, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
8
|
Chen M, Wang H, Cui Q, Shi J, Hou Y. Dual function of activated PPARγ by ligands on tumor growth and immunotherapy. Med Oncol 2024; 41:114. [PMID: 38619661 DOI: 10.1007/s12032-024-02363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
As one of the peroxisome-proliferator-activated receptors (PPARs) members, PPARγ is a ligand binding and activated nuclear hormone receptor, which is an important regulator in metabolism, proliferation, tumor progression, and immune response. Increased evidence suggests that activation of PPARγ in response to ligands inhibits multiple types of cancer proliferation, metastasis, and tumor growth and induces cell apoptosis including breast cancer, colon cancer, lung cancer, and bladder cancer. Conversely, some reports suggest that activation of PPARγ is associated with tumor growth. In addition to regulating tumor progression, PPARγ could promote or inhibit tumor immunotherapy by affecting macrophage differentiation or T cell activity. These controversial findings may be derived from cancer cell types, conditions, and ligands, since some ligands are independent of PPARγ activity. Therefore, this review discussed the dual role of PPARγ on tumor progression and immunotherapy.
Collapse
Affiliation(s)
- Mingjun Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Huijie Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Qian Cui
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China.
| |
Collapse
|
9
|
Hashemi Gheinani A, Kim J, You S, Adam RM. Bioinformatics in urology - molecular characterization of pathophysiology and response to treatment. Nat Rev Urol 2024; 21:214-242. [PMID: 37604982 DOI: 10.1038/s41585-023-00805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/23/2023]
Abstract
The application of bioinformatics has revolutionized the practice of medicine in the past 20 years. From early studies that uncovered subtypes of cancer to broad efforts spearheaded by the Cancer Genome Atlas initiative, the use of bioinformatics strategies to analyse high-dimensional data has provided unprecedented insights into the molecular basis of disease. In addition to the identification of disease subtypes - which enables risk stratification - informatics analysis has facilitated the identification of novel risk factors and drivers of disease, biomarkers of progression and treatment response, as well as possibilities for drug repurposing or repositioning; moreover, bioinformatics has guided research towards precision and personalized medicine. Implementation of specific computational approaches such as artificial intelligence, machine learning and molecular subtyping has yet to become widespread in urology clinical practice for reasons of cost, disruption of clinical workflow and need for prospective validation of informatics approaches in independent patient cohorts. Solving these challenges might accelerate routine integration of bioinformatics into clinical settings.
Collapse
Affiliation(s)
- Ali Hashemi Gheinani
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Urology, Inselspital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Jina Kim
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosalyn M Adam
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Fan J, Chen B, Luo Q, Li J, Huang Y, Zhu M, Chen Z, Li J, Wang J, Liu L, Wei Q, Cao D. Potential molecular biomarkers for the diagnosis and prognosis of bladder cancer. Biomed Pharmacother 2024; 173:116312. [PMID: 38417288 DOI: 10.1016/j.biopha.2024.116312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024] Open
Abstract
Bladder cancer (BC) is a common malignant tumor of urinary system, which can be divided into muscle-invasive BC (MIBC) and nonmuscle-invasive BC (NMIBC). The number of BC patients has been gradually increasing currently. At present, bladder tumours are diagnosed and followed-up using a combination of cystoscopic examination, cytology and histology. However, the detection of early grade tumors, which is much easier to treat effectively than advanced stage disease, is still insufficient. It frequently recurs and can progress when not expeditiously diagnosed and monitored following initial therapy for NMIBC. Treatment strategies are totally different for different stage diseases. Therefore, it is of great practical significance to study new biomarkers for diagnosis and prognosis. In this review, we summarize the current state of biomarker development in BC diagnosis and prognosis prediction. We retrospectively analyse eight diagnostic biomarkers and eight prognostic biomarkers, in which CK, P53, PPARγ, PTEN and ncRNA are emphasized for discussion. Eight molecular subtype systems are also identified. Clinical translation of biomarkers for diagnosis, prognosis, monitoring and treatment will hopefully improve outcomes for patients. These potential biomarkers provide an opportunity to diagnose tumors earlier and with greater accuracy, and help identify those patients most at risk of disease recurrence.
Collapse
Affiliation(s)
- Junping Fan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Qiuping Luo
- Out-patient Department, West China Hospital, Sichuan University, Chengdu, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Yin Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Mengli Zhu
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Zhang Y, Xiao B, Liu Y, Wu S, Xiang Q, Xiao Y, Zhao J, Yuan R, Xie K, Li L. Roles of PPAR activation in cancer therapeutic resistance: Implications for combination therapy and drug development. Eur J Pharmacol 2024; 964:176304. [PMID: 38142851 DOI: 10.1016/j.ejphar.2023.176304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.
Collapse
Affiliation(s)
- Yanxia Zhang
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China; Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yunduo Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yuhan Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junxiu Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Keping Xie
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
12
|
Liu Y, Qi P, Chen G, Lang Z, Wang J, Wang X. Nanoreactor based on single-atom nanoenzymes promotes ferroptosis for cancer immunotherapy. BIOMATERIALS ADVANCES 2024; 157:213758. [PMID: 38199000 DOI: 10.1016/j.bioadv.2024.213758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Immunotherapy is a promising mainstream approach in anti-tumor therapy. It boasts advantages such as durable responses and lower side effects. However, there are still some limitations to be addressed. Current cancer immunotherapy has shown low response rates due to inadequate immunogenicity of certain tumor cells. To address these challenges, an acid-specific nanoreactor was developed, designed to induce immunogenicity by triggering ferroptosis in tumor cells. The nanoreactor integrates glucose oxidase (GOx) with a single-atom nanoenzyme (SAE), which exhibits high peroxidase (POD)-like activity in the acidic tumor microenvironment (TME). This specific acid-sensitivity transforms endogenous hydrogen peroxide (H2O2) into cytotoxic hydroxyl radicals (•OH). GOx enhances the POD-like SAE activity in the nanoreactor by metabolizing glucose in tumor cells, producing gluconic acid and H2O2. This nanoreactor induces high levels of oxidative stress within tumor cells through the synergistic action of SAE and GOx, leading to depletion of GSH and subsequently triggering ferroptosis. The resulting nanoreactor-induced ferroptosis leads to immunogenic cell death (ICD) and significantly recruits T lymphocyte infiltration in tumor tissues. This study was designed with the concept of triggering ferroptosis-dependent ICD mechanism in bladder cancer cells, and developed an acid-specific nanoreactor to enhance the immunotherapy efficacy for bladder cancer, which introduces a novel approach for immunotherapy of bladder cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Key Laboratory of Urological Diseases, Wuhan University, Wuhan 430071, China
| | - Pengyuan Qi
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaojie Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Key Laboratory of Urological Diseases, Wuhan University, Wuhan 430071, China
| | - Zhiquan Lang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jike Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Key Laboratory of Urological Diseases, Wuhan University, Wuhan 430071, China; Medical Research Institute, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
13
|
Yu D, Zhang J, Li X, Xiao S, Xing J, Li J. Developing the novel diagnostic model and potential drugs by integrating bioinformatics and machine learning for aldosterone-producing adenomas. Front Mol Biosci 2024; 10:1308754. [PMID: 38239411 PMCID: PMC10794617 DOI: 10.3389/fmolb.2023.1308754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Background: Aldosterone-producing adenomas (APA) are a common cause of primary aldosteronism (PA), a clinical syndrome characterized by hypertension and electrolyte disturbances. If untreated, it may lead to serious cardiovascular complications. Therefore, there is an urgent need for potential biomarkers and targeted drugs for the diagnosis and treatment of aldosteronism. Methods: We downloaded two datasets (GSE156931 and GSE60042) from the GEO database and merged them by de-batch effect, then screened the top50 of differential genes using PPI and enriched them, followed by screening the Aldosterone adenoma-related genes (ARGs) in the top50 using three machine learning algorithms. We performed GSEA analysis on the ARGs separately and constructed artificial neural networks based on the ARGs. Finally, the Enrich platform was utilized to identify drugs with potential therapeutic effects on APA by tARGseting the ARGs. Results: We identified 190 differential genes by differential analysis, and then identified the top50 genes by PPI, and the enrichment analysis showed that they were mainly enriched in amino acid metabolic pathways. Then three machine learning algorithms identified five ARGs, namely, SST, RAB3C, PPY, CYP3A4, CDH10, and the ANN constructed on the basis of these five ARGs had better diagnostic effect on APA, in which the AUC of the training set is 1 and the AUC of the validation set is 0.755. And then the Enrich platform identified drugs tARGseting the ARGs with potential therapeutic effects on APA. Conclusion: We identified five ARGs for APA through bioinformatic analysis and constructed Artificial neural network (ANN) based on them with better diagnostic effects, and identified drugs with potential therapeutic effects on APA by tARGseting these ARGs. Our study provides more options for the diagnosis and treatment of APA.
Collapse
Affiliation(s)
- Deshui Yu
- Department of Urology, Air Force Medical Center, Beijing, China
- China Medical University, Shenyang, China
| | - Jinxuan Zhang
- Department of Urology, Air Force Medical Center, Beijing, China
- China Medical University, Shenyang, China
| | - Xintao Li
- Department of Urology, Air Force Medical Center, Beijing, China
| | - Shuwei Xiao
- Department of Urology, Air Force Medical Center, Beijing, China
| | - Jizhang Xing
- Department of Urology, Air Force Medical Center, Beijing, China
| | - Jianye Li
- Department of Urology, Air Force Medical Center, Beijing, China
- China Medical University, Shenyang, China
| |
Collapse
|
14
|
Ramal M, Corral S, Kalisz M, Lapi E, Real FX. The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene 2024; 43:1-21. [PMID: 37996699 DOI: 10.1038/s41388-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The urothelium is a stratified epithelium composed of basal cells, one or more layers of intermediate cells, and an upper layer of differentiated umbrella cells. Most bladder cancers (BLCA) are urothelial carcinomas. Loss of urothelial lineage fidelity results in altered differentiation, highlighted by the taxonomic classification into basal and luminal tumors. There is a need to better understand the urothelial transcriptional networks. To systematically identify transcription factors (TFs) relevant for urothelial identity, we defined highly expressed TFs in normal human bladder using RNA-Seq data and inferred their genomic binding using ATAC-Seq data. To focus on epithelial TFs, we analyzed RNA-Seq data from patient-derived organoids recapitulating features of basal/luminal tumors. We classified TFs as "luminal-enriched", "basal-enriched" or "common" according to expression in organoids. We validated our classification by differential gene expression analysis in Luminal Papillary vs. Basal/Squamous tumors. Genomic analyses revealed well-known TFs associated with luminal (e.g., PPARG, GATA3, FOXA1) and basal (e.g., TP63, TFAP2) phenotypes and novel candidates to play a role in urothelial differentiation or BLCA (e.g., MECOM, TBX3). We also identified TF families (e.g., KLFs, AP1, circadian clock, sex hormone receptors) for which there is suggestive evidence of their involvement in urothelial differentiation and/or BLCA. Genomic alterations in these TFs are associated with BLCA. We uncover a TF network involved in urothelial cell identity and BLCA. We identify novel candidate TFs involved in differentiation and cancer that provide opportunities for a better understanding of the underlying biology and therapeutic intervention.
Collapse
Affiliation(s)
- Maria Ramal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
15
|
Wang J, Su X, Jiang L, Boudreau MW, Chatkewitz LE, Kilgore JA, Zahid KR, Williams NS, Chen Y, Liu S, Hergenrother PJ, Huang X. Augmented Concentration of Isopentyl-Deoxynyboquinone in Tumors Selectively Kills NAD(P)H Quinone Oxidoreductase 1-Positive Cancer Cells through Programmed Necrotic and Apoptotic Mechanisms. Cancers (Basel) 2023; 15:5844. [PMID: 38136388 PMCID: PMC10741405 DOI: 10.3390/cancers15245844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Lung and breast cancers rank as two of the most common and lethal tumors, accounting for a substantial number of cancer-related deaths worldwide. While the past two decades have witnessed promising progress in tumor therapy, developing targeted tumor therapies continues to pose a significant challenge. NAD(P)H quinone oxidoreductase 1 (NQO1), a two-electron reductase, has been reported as a promising therapeutic target across various solid tumors. β-Lapachone (β-Lap) and deoxynyboquinone (DNQ) are two NQO1 bioactivatable drugs that have demonstrated potent antitumor effects. However, their curative efficacy has been constrained by adverse effects and moderate lethality. To enhance the curative potential of NQO1 bioactivatable drugs, we developed a novel DNQ derivative termed isopentyl-deoxynyboquinone (IP-DNQ). Our study revealed that IP-DNQ treatment significantly increased reactive oxygen species generation, leading to double-strand break (DSB) formation, PARP1 hyperactivation, and catastrophic energy loss. Notably, we discovered that this novel drug induced both apoptosis and programmed necrosis events, which makes it entirely distinct from other NQO1 bioactivatable drugs. Furthermore, IP-DNQ monotherapy demonstrated significant antitumor efficacy and extended mice survival in A549 orthotopic xenograft models. Lastly, we identified that in mice IP-DNQ levels were significantly elevated in the plasma and tumor compared with IB-DNQ levels. This study provides novel preclinical evidence supporting IP-DNQ efficacy in NQO1+ NSCLC and breast cancer cells.
Collapse
Affiliation(s)
- Jiangwei Wang
- Department of Radiation Oncology, Indianapolis, IN 46202, USA
| | - Xiaolin Su
- Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202, USA
| | - Lingxiang Jiang
- Department of Radiation Oncology, Indianapolis, IN 46202, USA
| | - Matthew W. Boudreau
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lindsay E. Chatkewitz
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jessica A. Kilgore
- Department of Biochemistry, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA (N.S.W.)
| | | | - Noelle S. Williams
- Department of Biochemistry, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA (N.S.W.)
| | - Yaomin Chen
- Indiana University Health Pathology Laboratory, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shaohui Liu
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Paul J. Hergenrother
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiumei Huang
- Department of Radiation Oncology, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
16
|
Zhao Z, Shen X, Zhao S, Wang J, Tian Y, Wang X, Tang B. A novel telomere-related genes model for predicting prognosis and treatment responsiveness in diffuse large B-cell lymphoma. Aging (Albany NY) 2023; 15:12927-12951. [PMID: 37976136 DOI: 10.18632/aging.205211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a highly heterogeneous disease with diverse clinical and molecular features. Telomere maintenance is widely present in tumors, but there is a lack of relevant reports on the role of telomere-related genes (TRGs) in DLBCL. In this study, we used consensus clustering based on TRGs expression to identify two molecular clusters with distinct prognoses and immune cell infiltration. We developed a TRGs scoring model using univariate Cox regression and LASSO regression in the GSE10846 training cohort. DLBCL patients in the high-risk group had a worse prognosis than those in the low-risk group, as revealed by Kaplan-Meier curves. The scoring model was validated in the GSE10846 testing cohort and GSE87371 cohort, respectively. The high-risk group was characterized by elevated infiltration of activated DCs, CD56 dim natural killer cells, myeloid-derived suppressor cells, monocytes, and plasmacytoid DCs, along with reduced infiltration of activated CD4 T cells, Type 2 T helper cells, γδ T cells, NK cells, and neutrophils. Overexpression of immune checkpoints, such as PDCD1, CD274, and LAG3, was observed in the high-risk group. Furthermore, high-risk DLBCL patients exhibited increased sensitivity to bortezomib, rapamycin, AZD6244, and BMS.536924, while low-risk DLBCL patients showed sensitivity to cisplatin and ABT.263. Using RT-qPCR, we found that three protective model genes, namely TCEAL7, EPHA4, and ELOVL4, were down-regulated in DLBCL tissues compared with control tissues. In conclusion, our novel TRGs-based model has great predictive value for the prognosis of DLBCL patients and provides a promising direction for treatment optimization.
Collapse
Affiliation(s)
- Zhijia Zhao
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People’s Republic of China
| | - Xiaochen Shen
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People’s Republic of China
| | - Siqi Zhao
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People’s Republic of China
| | - Jinhua Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People’s Republic of China
| | - Yuqin Tian
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People’s Republic of China
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People’s Republic of China
| | - Bo Tang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People’s Republic of China
| |
Collapse
|
17
|
Ghorani E, Swanton C, Quezada SA. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 2023; 56:2270-2295. [PMID: 37820584 DOI: 10.1016/j.immuni.2023.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials.
Collapse
Affiliation(s)
- Ehsan Ghorani
- Cancer Immunology and Immunotherapy Unit, Department of Surgery and Cancer, Imperial College London, London, UK; Department of Medical Oncology, Imperial College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, London, UK.
| |
Collapse
|
18
|
Yu A, Hu J, Fu L, Huang G, Deng D, Zhang M, Wang Y, Shu G, Jing L, Li H, Chen X, Yang T, Wei J, Chen Z, Zu X, Luo J. Bladder cancer intrinsic LRFN2 drives anticancer immunotherapy resistance by attenuating CD8 + T cell infiltration and functional transition. J Immunother Cancer 2023; 11:e007230. [PMID: 37802603 PMCID: PMC10565151 DOI: 10.1136/jitc-2023-007230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) therapy improves the survival of patients with advanced bladder cancer (BLCA); however, its overall effectiveness is limited, and many patients still develop immunotherapy resistance. The leucine-rich repeat and fibronectin type-III domain-containing protein (LRFN) family has previously been implicated in regulating brain dysfunction; however, the mechanisms underlying the effect of LRFN2 on the tumor microenvironment (TME) and immunotherapy remain unclear. METHODS Here we combined bulk RNA sequencing, single-cell RNA sequencing, ProcartaPlex multiple immunoassays, functional experiments, and TissueFAXS panoramic tissue quantification assays to demonstrate that LRFN2 shapes a non-inflammatory TME in BLCA. RESULTS First, comprehensive multiomics analysis identified LRFN2 as a novel immunosuppressive target specific to BLCA. We found that tumor-intrinsic LRFN2 inhibited the recruitment and functional transition of CD8+ T cells by reducing the secretion of pro-inflammatory cytokines and chemokines, and this mechanism was verified in vitro and in vivo. LRFN2 restrained antitumor immunity by inhibiting the infiltration, proliferation, and differentiation of CD8+ T cells in vitro. Furthermore, a spatial exclusivity relationship was observed between LRFN2+ tumor cells and CD8+ T cells and cell markers programmed cell death-1 (PD-1) and T cell factor 1 (TCF-1). Preclinically, LRFN2 knockdown significantly enhanced the efficacy of ICI therapy. Clinically, LRFN2 can predict immunotherapy responses in real-world and public immunotherapy cohorts. Our results reveal a new role for LRFN2 in tumor immune evasion by regulating chemokine secretion and inhibiting CD8+ T-cell recruitment and functional transition. CONCLUSIONS Thus, LRFN2 represents a new target that can be combined with ICIs to provide a potential treatment option for BLCA.
Collapse
Affiliation(s)
- Anze Yu
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Liangmin Fu
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Gaowei Huang
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Dingshan Deng
- Department of Urology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Mingxiao Zhang
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Yinghan Wang
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Guannan Shu
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Lanyu Jing
- Department of Breast Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Taowei Yang
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Jinhuan Wei
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Zhenhua Chen
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Junhang Luo
- Department of Urology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Abdel-Hafiz HA, Kailasam Mani SK, Huang W, Gouin KH, Chang Y, Xiao T, Ma Q, Li Z, Knott SR, Theodorescu D. Single-cell profiling of murine bladder cancer identifies sex-specific transcriptional signatures with prognostic relevance. iScience 2023; 26:107703. [PMID: 37701814 PMCID: PMC10494466 DOI: 10.1016/j.isci.2023.107703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/18/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Bladder cancer (BLCA) is more common in men but more aggressive in women. Sex-based differences in cancer biology are commonly studied using a murine model with BLCA generated by N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN). While tumors in the BBN model have been profiled, these profiles provide limited information on the tumor microenvironment. Here, we applied single-cell RNA sequencing to characterize cell-type specific transcriptional differences between male and female BBN-induced tumors. We found proportional and gene expression differences in epithelial and non-epithelial subpopulations between male and female tumors. Expression of several genes predicted sex-specific survival in several human BLCA datasets. We identified novel and clinically relevant sex-specific transcriptional signatures including immune cells in the tumor microenvironment and it validated the relevance of the BBN model for studying sex differences in human BLCA. This work highlights the importance of considering sex as a biological variable in the development of new and accurate cancer markers.
Collapse
Affiliation(s)
- Hany A. Abdel-Hafiz
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | | | - Wesley Huang
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenneth H. Gouin
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yuzhou Chang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – The James, Columbus, OH 43210, USA
| | - Tong Xiao
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – The James, Columbus, OH 43210, USA
| | - Qin Ma
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – The James, Columbus, OH 43210, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – The James, Columbus, OH 43210, USA
| | - Simon R.V. Knott
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
20
|
Burgermeister E. Mitogen-Activated Protein Kinase and Nuclear Hormone Receptor Crosstalk in Cancer Immunotherapy. Int J Mol Sci 2023; 24:13661. [PMID: 37686465 PMCID: PMC10488039 DOI: 10.3390/ijms241713661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The three major MAP-kinase (MAPK) pathways, ERK1/2, p38 and JNK/SAPK, are upstream regulators of the nuclear "hormone" receptor superfamily (NHRSF), with a prime example given by the estrogen receptor in breast cancer. These ligand-activated transcription factors exert non-genomic and genomic functions, where they are either post-translationally modified by phosphorylation or directly interact with components of the MAPK pathways, events that govern their transcriptional activity towards target genes involved in cell differentiation, proliferation, metabolism and host immunity. This molecular crosstalk takes place not only in normal epithelial or tumor cells, but also in a plethora of immune cells from the adaptive and innate immune system in the tumor-stroma tissue microenvironment. Thus, the drugability of both the MAPK and the NHRSF pathways suggests potential for intervention therapies, especially for cancer immunotherapy. This review summarizes the existing literature covering the expression and function of NHRSF subclasses in human tumors, both solid and leukemias, and their effects in combination with current clinically approved therapeutics against immune checkpoint molecules (e.g., PD1).
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
21
|
Wang Q, Shi Y, Bian Q, Zhang N, Wang M, Wang J, Li X, Lai L, Zhao Z, Yu H. Molecular mechanisms of syncytin-1 in tumors and placental development related diseases. Discov Oncol 2023; 14:104. [PMID: 37326913 DOI: 10.1007/s12672-023-00702-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Human endogenous retroviruses (HERVs) have evolved from exogenous retroviruses and account for approximately 8% of the human genome. A growing number of findings suggest that the abnormal expression of HERV genes is associated with schizophrenia, multiple sclerosis, endometriosis, breast cancer, bladder cancer and other diseases. HERV-W env (syncytin-1) is a membrane glycoprotein which plays an important role in placental development. It includes embryo implantation, fusion of syncytiotrophoblasts and of fertilized eggs, and immune response. The abnormal expression of syncytin-1 is related to placental development-related diseases such as preeclampsia, infertility, and intrauterine growth restriction, as well as tumors such as neuroblastoma, endometrial cancer, and endometriosis. This review mainly focused on the molecular interactions of syncytin-1 in placental development-related diseases and tumors, to explore whether syncytin-1 can be an emerging biological marker and potential therapeutic target.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Ying Shi
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Qiang Bian
- Collaborative Innovation Center, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
- Department of Pathophysiology, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Naibin Zhang
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Meng Wang
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Jianing Wang
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Xuan Li
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Luhao Lai
- Collaborative Innovation Center, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
| | - Zhankui Zhao
- The Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China.
| | - Honglian Yu
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China.
- Collaborative Innovation Center, Jining Medical University, Jining, 272067, Shandong, People's Republic of China.
| |
Collapse
|
22
|
Gou Q, Che S, Chen M, Chen H, Shi J, Hou Y. PPARγ inhibited tumor immune escape by inducing PD-L1 autophagic degradation. Cancer Sci 2023. [PMID: 37096255 DOI: 10.1111/cas.15818] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Blockade of the programmed death 1 (PD-1)/ programmed death ligand 1 (PD-L1) immune checkpoint could increase antitumor immunotherapy for multiple types of cancer, but the response rate of patients is about 10%-40%. Peroxisome proliferator activated receptor γ (PPARγ) plays an important role in regulating cell metabolism, inflammation, immunity, and cancer progression, while the mechanism of PPARγ on cancer cell immune escape is still unclear. Here we found that PPARγ expression exhibits a positive correlation with activation of T cells in non-small-cell lung cancer (NSCLC) by clinical analysis. Deficiency of PPARγ promoted immune escape of NSCLC by inhibiting T-cell activity, which was associated with increased PD-L1 protein level. Further analysis showed that PPARγ reduced PD-L1 expression independent of its transcriptional activity. PPARγ contains the microtubule-associated protein 1A/1B-light chain 3 (LC3) interacting region motif, which acts as an autophagy receptor for PPARγ binding to LC3, leading to degradation of PD-L1 in lysosomes, which in turn suppresses NSCLC tumor growth by increasing T-cell activity. These findings suggest that PPARγ inhibits the tumor immune escape of NSCLC by inducing PD-L1 autophagic degradation.
Collapse
Affiliation(s)
- Qian Gou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Suning Che
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mingjun Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Huiqing Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
23
|
Ruan R, Li L, Li X, Huang C, Zhang Z, Zhong H, Zeng S, Shi Q, Xia Y, Zeng Q, Wen Q, Chen J, Dai X, Xiong J, Xiang X, Lei W, Deng J. Unleashing the potential of combining FGFR inhibitor and immune checkpoint blockade for FGF/FGFR signaling in tumor microenvironment. Mol Cancer 2023; 22:60. [PMID: 36966334 PMCID: PMC10039534 DOI: 10.1186/s12943-023-01761-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Fibroblast growth factors (FGFs) and their receptors (FGFRs) play a crucial role in cell fate and angiogenesis, with dysregulation of the signaling axis driving tumorigenesis. Therefore, many studies have targeted FGF/FGFR signaling for cancer therapy and several FGFR inhibitors have promising results in different tumors but treatment efficiency may still be improved. The clinical use of immune checkpoint blockade (ICB) has resulted in sustained remission for patients. MAIN: Although there is limited data linking FGFR inhibitors and immunotherapy, preclinical research suggest that FGF/FGFR signaling is involved in regulating the tumor microenvironment (TME) including immune cells, vasculogenesis, and epithelial-mesenchymal transition (EMT). This raises the possibility that ICB in combination with FGFR-tyrosine kinase inhibitors (FGFR-TKIs) may be feasible for treatment option for patients with dysregulated FGF/FGFR signaling. CONCLUSION Here, we review the role of FGF/FGFR signaling in TME regulation and the potential mechanisms of FGFR-TKI in combination with ICB. In addition, we review clinical data surrounding ICB alone or in combination with FGFR-TKI for the treatment of FGFR-dysregulated tumors, highlighting that FGFR inhibitors may sensitize the response to ICB by impacting various stages of the "cancer-immune cycle".
Collapse
Affiliation(s)
- Ruiwen Ruan
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Li Li
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xuan Li
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Chunye Huang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Zhanmin Zhang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Hongguang Zhong
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Shaocheng Zeng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qianqian Shi
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Yang Xia
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qinru Zeng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qin Wen
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Jingyi Chen
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xiaofeng Dai
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Jianping Xiong
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xiaojun Xiang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Wan Lei
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Jun Deng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
24
|
Wang X, Zhou M, Jiang L. The oncogenic and immunological roles of histidine triad nucleotide-binding protein 1 in human cancers and their experimental validation in the MCF-7 cell line. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:147. [PMID: 36846002 PMCID: PMC9951023 DOI: 10.21037/atm-22-6637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Background Histidine triad nucleotide binding protein 1 (HINT1) is a haplo-insufficient tumor suppressor gene that plays a significant role in cell proliferation and survival. However, to date, no systematic pan-cancer analysis has been conducted to explore its function in prognosis, and its oncogenic and immunological roles. We also analyzed the role of HINT1 in breast cancer (BC) progression in vitro. Methods An analysis of the HINT1 expression pattern was performed using the TIMER database. The infiltration of immune cells into several cancer types was also studied using the Xena Shiny tool. To determine the relationship between stemness and the expression of HINT1 mRNA, the Spearman correlation test was used with the SangerBox tool. The correlation between HINT1 and functional states in various cancers was determined from the CancerSEA database. The potential role of HINT1 in BC oncogenesis was also investigated by Western blot and Annexin V/PI assays. Results The Cancer Genome Atlas pan-cancer data analysis suggested that HINT1 was extensively altered in most tumor tissues but not in most adjacent normal tissues. A high expression of HINT1 was associated with the decreased infiltration of cluster of differentiation (CD)4+ T cells. Importantly, increased HINT1 expression was also associated with a large majority of tumors with high stemness and lower stromal, immune, and estimate scores. Further, the expression of HINT1 was significantly associated with the tumor mutational burden (TMB) and microsatellite instability (MSI) in certain tumor types. Finally, HINT1 overexpression was found to impair BC progression by promoting cell apoptosis. HINT1 upregulation also reduced the expression of microphthalmia transcription factor (MITF) and β-catenin in BC Michigan Cancer Foundation-7 (MCF-7) cells, and the phosphorylation of protein kinase B (p-Akt). Conclusions The present study showed that HINT1 plays an oncogenic role in various cancers and could also be used as a biomarker for BC.
Collapse
Affiliation(s)
- Xuzhen Wang
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Min Zhou
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Liping Jiang
- Department of Gynecology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
25
|
Parry MA, Grist E, Mendes L, Dutey-Magni P, Sachdeva A, Brawley C, Murphy L, Proudfoot J, Lall S, Liu Y, Friedrich S, Ismail M, Hoyle A, Ali A, Haran A, Wingate A, Zakka L, Wetterskog D, Amos CL, Atako NB, Wang V, Rush HL, Jones RJ, Leung H, Cross WR, Gillessen S, Parker CC, Chowdhury S, Lotan T, Marafioti T, Urbanucci A, Schaeffer EM, Spratt DE, Waugh D, Powles T, Berney DM, Sydes MR, Parmar MK, Hamid AA, Feng FY, Sweeney CJ, Davicioni E, Clarke NW, James ND, Brown LC, Attard G. Clinical testing of transcriptome-wide expression profiles in high-risk localized and metastatic prostate cancer starting androgen deprivation therapy: an ancillary study of the STAMPEDE abiraterone Phase 3 trial. RESEARCH SQUARE 2023:rs.3.rs-2488586. [PMID: 36798177 PMCID: PMC9934744 DOI: 10.21203/rs.3.rs-2488586/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Metastatic and high-risk localized prostate cancer respond to hormone therapy but outcomes vary. Following a pre-specified statistical plan, we used Cox models adjusted for clinical variables to test associations with survival of multi-gene expression-based classifiers from 781 patients randomized to androgen deprivation with or without abiraterone in the STAMPEDE trial. Decipher score was strongly prognostic (p<2×10-5) and identified clinically-relevant differences in absolute benefit, especially for localized cancers. In metastatic disease, classifiers of proliferation, PTEN or TP53 loss and treatment-persistent cells were prognostic. In localized disease, androgen receptor activity was protective whilst interferon signaling (that strongly associated with tumor lymphocyte infiltration) was detrimental. Post-Operative Radiation-Therapy Outcomes Score was prognostic in localized but not metastatic disease (interaction p=0.0001) suggesting the impact of tumor biology on clinical outcome is context-dependent on metastatic state. Transcriptome-wide testing has clinical utility for advanced prostate cancer and identified worse outcomes for localized cancers with tumor-promoting inflammation.
Collapse
Affiliation(s)
| | - Emily Grist
- Cancer Institute, University College London; London, UK
| | | | - Peter Dutey-Magni
- MRC Clinical Trials Unit at University College London, Institute of Clinical Trials and Methodology, University College London; London, UK
| | - Ashwin Sachdeva
- Genito-Urinary Cancer Research Group, Division of Cancer Sciences, Manchester Cancer Research Centre, The University of Manchester; Manchester, UK
| | - Christopher Brawley
- MRC Clinical Trials Unit at University College London, Institute of Clinical Trials and Methodology, University College London; London, UK
| | - Laura Murphy
- MRC Clinical Trials Unit at University College London, Institute of Clinical Trials and Methodology, University College London; London, UK
| | | | | | | | | | | | - Alex Hoyle
- Genito-Urinary Cancer Research Group, Division of Cancer Sciences, Manchester Cancer Research Centre, The University of Manchester; Manchester, UK
- Department of Surgery, The Christie and Salford Royal Hospitals; Manchester, UK
| | - Adnan Ali
- Genito-Urinary Cancer Research Group, Division of Cancer Sciences, Manchester Cancer Research Centre, The University of Manchester; Manchester, UK
| | - Aine Haran
- Genito-Urinary Cancer Research Group, Division of Cancer Sciences, Manchester Cancer Research Centre, The University of Manchester; Manchester, UK
- Department of Surgery, The Christie and Salford Royal Hospitals; Manchester, UK
| | - Anna Wingate
- Cancer Institute, University College London; London, UK
| | - Leila Zakka
- Cancer Institute, University College London; London, UK
| | | | - Claire L. Amos
- MRC Clinical Trials Unit at University College London, Institute of Clinical Trials and Methodology, University College London; London, UK
| | - Nafisah B. Atako
- MRC Clinical Trials Unit at University College London, Institute of Clinical Trials and Methodology, University College London; London, UK
| | - Victoria Wang
- Department of Data Science, Dana-Farber Cancer Institute; Boston, USA
| | - Hannah L. Rush
- MRC Clinical Trials Unit at University College London, Institute of Clinical Trials and Methodology, University College London; London, UK
| | - Robert J. Jones
- University of Glasgow, Beatson West of Scotland Cancer Centre; Glasgow, UK
| | - Hing Leung
- University of Glasgow, Beatson West of Scotland Cancer Centre; Glasgow, UK
| | | | - Silke Gillessen
- Istituto Oncologico della Svizzera Italiana, EOC; Bellinzona, Switzerland
- Università della Svizzera Italiana; Lugano, Switzerland
| | - Chris C. Parker
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research; London, UK
| | | | | | - Tamara Lotan
- Johns Hopkins University School of Medicine; Baltimore, USA
| | | | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital; Oslo, Norway
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital; Tampere, Finland
| | - Edward M. Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine; Chicago, USA
| | - Daniel E. Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center; Cleveland, USA
| | - David Waugh
- Queensland University of Technology; Brisbane, Australia
| | - Thomas Powles
- Barts Experimental Cancer Medicine Centre, Barts Cancer Institute, Queen Mary University of London; London, UK
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London; London, UK
| | - Matthew R. Sydes
- MRC Clinical Trials Unit at University College London, Institute of Clinical Trials and Methodology, University College London; London, UK
| | - Mahesh K.B. Parmar
- MRC Clinical Trials Unit at University College London, Institute of Clinical Trials and Methodology, University College London; London, UK
| | - Anis A. Hamid
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, USA
| | - Felix Y. Feng
- University of California San Francisco; San Francisco, USA
| | | | | | - Noel W. Clarke
- Genito-Urinary Cancer Research Group, Division of Cancer Sciences, Manchester Cancer Research Centre, The University of Manchester; Manchester, UK
- Department of Surgery, The Christie and Salford Royal Hospitals; Manchester, UK
| | - Nicholas D. James
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research; London, UK
| | - Louise C. Brown
- MRC Clinical Trials Unit at University College London, Institute of Clinical Trials and Methodology, University College London; London, UK
| | | |
Collapse
|
26
|
Orsi D, Pook E, Bräuer N, Friberg A, Lienau P, Lemke CT, Stellfeld T, Brüggemeier U, Pütter V, Meyer H, Baco M, Tang S, Cherniack AD, Westlake L, Bender SA, Kocak M, Strathdee CA, Meyerson M, Eis K, Goldstein JT. Discovery and Structure-Based Design of Potent Covalent PPARγ Inverse-Agonists BAY-4931 and BAY-0069. J Med Chem 2022; 65:14843-14863. [PMID: 36270630 PMCID: PMC9662185 DOI: 10.1021/acs.jmedchem.2c01379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 11/29/2022]
Abstract
The ligand-activated nuclear receptor peroxisome-proliferator-activated receptor-γ (PPARG or PPARγ) represents a potential target for a new generation of cancer therapeutics, especially in muscle-invasive luminal bladder cancer where PPARγ is a critical lineage driver. Here we disclose the discovery of a series of chloro-nitro-arene covalent inverse-agonists of PPARγ that exploit a benzoxazole core to improve interactions with corepressors NCOR1 and NCOR2. In vitro treatment of sensitive cell lines with these compounds results in the robust regulation of PPARγ target genes and antiproliferative effects. Despite their imperfect physicochemical properties, the compounds showed modest pharmacodynamic target regulation in vivo. Improvements to the in vitro potency and efficacy of BAY-4931 and BAY-0069 compared to those of previously described PPARγ inverse-agonists show that these compounds are novel tools for probing the in vitro biology of PPARγ inverse-agonism.
Collapse
Affiliation(s)
- Douglas
L. Orsi
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Elisabeth Pook
- Research
and Development, Pharmaceuticals, Bayer
AG, 13353 Berlin, Germany
| | | | | | - Philip Lienau
- Research
and Development, Pharmaceuticals, Bayer
AG, 13353 Berlin, Germany
| | - Christopher T. Lemke
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | | | - Ulf Brüggemeier
- Research
and Development, Pharmaceuticals, Bayer
AG, 13353 Berlin, Germany
| | | | | | - Maria Baco
- Cancer
Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Stephanie Tang
- Cancer
Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Andrew D. Cherniack
- Cancer
Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
| | - Lindsay Westlake
- Cancer
Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Samantha A. Bender
- Cancer
Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Mustafa Kocak
- Cancer
Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Craig A. Strathdee
- Cancer
Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Matthew Meyerson
- Cancer
Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Center for
Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Genetics and Medicine, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Knut Eis
- Research
and Development, Pharmaceuticals, Bayer
AG, 13353 Berlin, Germany
| | - Jonathan T. Goldstein
- Cancer
Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
27
|
Zhang Q, Nie H, Pan J, Xu H, Zhan Q. FMNL3 is Overexpressed in Tumor Tissues and Predicts an Immuno-Hot Phenotype in Pancreatic Cancer. Int J Gen Med 2022; 15:8285-8298. [DOI: 10.2147/ijgm.s384195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
|
28
|
Irwin S, Karr C, Furman C, Tsai J, Gee P, Banka D, Wibowo AS, Dementiev AA, O'Shea M, Yang J, Lowe J, Mitchell L, Ruppel S, Fekkes P, Zhu P, Korpal M, Larsen NA. Biochemical and structural basis for the pharmacological inhibition of nuclear hormone receptor PPARγ by inverse agonists. J Biol Chem 2022; 298:102539. [PMID: 36179791 PMCID: PMC9626935 DOI: 10.1016/j.jbc.2022.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/15/2022] Open
Abstract
Recent studies have reported that the peroxisome proliferator–activated receptor gamma (PPARγ) pathway is activated in approximately 40% of patients with muscle-invasive bladder cancer. This led us to investigate pharmacological repression of PPARγ as a possible intervention strategy. Here, we characterize PPARγ antagonists and inverse agonists and find that the former behave as silent ligands, whereas inverse agonists (T0070907 and SR10221) repress downstream PPARγ target genes leading to growth inhibition in bladder cancer cell lines. To understand the mechanism, we determined the ternary crystal structure of PPARγ bound to T0070907 and the corepressor (co-R) peptide NCOR1. The structure shows that the AF-2 helix 12 (H12) rearranges to bind inside the ligand-binding domain, where it forms stabilizing interactions with the compound. This dramatic movement in H12 unveils a large interface for co-R binding. In contrast, the crystal structure of PPARγ bound to a SR10221 analog shows more subtle structural differences, where the compound binds and pushes H12 away from the ligand-binding domain to allow co-R binding. Interestingly, we found that both classes of compound promote recruitment of co-R proteins in biochemical assays but with distinct conformational changes in H12. We validate our structural models using both site-directed mutagenesis and chemical probes. Our findings offer new mechanistic insights into pharmacological modulation of PPARγ signaling.
Collapse
Affiliation(s)
- Sean Irwin
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed)
| | - Craig Karr
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed)
| | - Craig Furman
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed)
| | - Jennifer Tsai
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed); Monta Rosa Therapeutics, Boston MA (present affiliation)
| | - Patricia Gee
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed)
| | - Deepti Banka
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed)
| | - Ardian S Wibowo
- Shamrock Structure, Woodridge IL (where work was performed); Helix Biostructures, Indianapolis IN (present affiliation)
| | - Alexey A Dementiev
- Shamrock Structure, Woodridge IL (where work was performed); Schrodinger Inc., Natick MA (present affiliation)
| | - Morgan O'Shea
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed); C4 Therapeutics, Watertown MA (present affiliation)
| | - Joyce Yang
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed); Blueprint Medicines, Cambridge MA (present affiliation)
| | - Jason Lowe
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed); Foghorn Therapeutics, Cambridge MA (present affiliation)
| | - Lorna Mitchell
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed); Certa Therapeutics, Melbourne VIC, Australia (present affiliation)
| | - Sabine Ruppel
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed); Ikena Oncology, Boston MA (present affiliation)
| | - Peter Fekkes
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed); 54 Gene, Washington DC (present affiliation)
| | - Ping Zhu
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed)
| | - Manav Korpal
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed)
| | - Nicholas A Larsen
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed).
| |
Collapse
|
29
|
Ruoff F, Kersten N, Anderle N, Jerbi S, Stahl A, Koch A, Staebler A, Hartkopf A, Brucker SY, Hahn M, Schenke-Layland K, Schmees C, Templin MF. Protein Profiling of Breast Carcinomas Reveals Expression of Immune-Suppressive Factors and Signatures Relevant for Patient Outcome. Cancers (Basel) 2022; 14:cancers14184542. [PMID: 36139700 PMCID: PMC9496820 DOI: 10.3390/cancers14184542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
In cancer, the complex interplay between tumor cells and the tumor microenvironment results in the modulation of signaling processes. By assessing the expression of a multitude of proteins and protein variants in cancer tissue, wide-ranging information on signaling pathway activation and the status of the immunological landscape is obtainable and may provide viable information on the treatment response. Archived breast cancer tissues from a cohort of 84 patients (no adjuvant therapy) were analyzed by high-throughput Western blotting, and the expression of 150 proteins covering central cancer pathways and immune cell markers was examined. By assessing CD8α, CD11c, CD16 and CD68 expression, immune cell infiltration was determined and revealed a strong correlation between event-free patient survival and the infiltration of immune cells. The presence of tumor-infiltrating lymphocytes was linked to the pronounced activation of the Jak/Stat signaling pathway and apoptotic processes. The elevated phosphorylation of PPARγ (pS112) in non-immune-infiltrated tumors suggests a novel immune evasion mechanism in breast cancer characterized by increased PPARγ phosphorylation. Multiplexed immune cell marker assessment and the protein profiling of tumor tissue provide functional signaling data facilitating breast cancer patient stratification.
Collapse
Affiliation(s)
- Felix Ruoff
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Nicolas Kersten
- FZI Research Center for Information Technology, Intelligent Systems and Production Engineering (ISPE), 76131 Karlsruhe, Germany
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tuebingen, 72076 Tuebingen, Germany
| | - Nicole Anderle
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Sandra Jerbi
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Aaron Stahl
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - André Koch
- Department of Women’s Health, University of Tuebingen, 72076 Tuebingen, Germany
| | - Annette Staebler
- Institute of Pathology and Neuropathology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Andreas Hartkopf
- Department of Women’s Health, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Women’s Health, University of Ulm, 89081 Ulm, Germany
| | - Sara Y. Brucker
- Department of Women’s Health, University of Tuebingen, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Markus Hahn
- Department of Women’s Health, University of Tuebingen, 72076 Tuebingen, Germany
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tuebingen, 72076 Tuebingen, Germany
| | - Christian Schmees
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Markus F. Templin
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
- Correspondence: ; Tel.: +49-7121-51530-828
| |
Collapse
|
30
|
Awasthi S, Grass GD, Torres-Roca J, Johnstone PAS, Pow-Sang J, Dhillon J, Park J, Rounbehler RJ, Davicioni E, Hakansson A, Liu Y, Fink AK, DeRenzis A, Creed JH, Poch M, Li R, Manley B, Fernandez D, Naghavi A, Gage K, Lu-Yao G, Katsoulakis E, Burri RJ, Leone A, Ercole CE, Palmer JD, Vapiwala N, Deville C, Rebbeck TR, Dicker AP, Kelly W, Yamoah K. Genomic Testing in Localized Prostate Cancer Can Identify Subsets of African Americans With Aggressive Disease. J Natl Cancer Inst 2022; 114:1656-1664. [PMID: 36053178 PMCID: PMC9745424 DOI: 10.1093/jnci/djac162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/22/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Personalized genomic classifiers have transformed the management of prostate cancer (PCa) by identifying the most aggressive subsets of PCa. Nevertheless, the performance of genomic classifiers to risk classify African American men is thus far lacking in a prospective setting. METHODS This is a prospective study of the Decipher genomic classifier for National Comprehensive Cancer Network low- and intermediate-risk PCa. Study-eligible non-African American men were matched to African American men. Diagnostic biopsy specimens were processed to estimate Decipher scores. Samples accrued in NCT02723734, a prospective study, were interrogated to determine the genomic risk of reclassification (GrR) between conventional clinical risk classifiers and the Decipher score. RESULTS The final analysis included a clinically balanced cohort of 226 patients with complete genomic information (113 African American men and 113 non-African American men). A higher proportion of African American men with National Comprehensive Cancer Network-classified low-risk (18.2%) and favorable intermediate-risk (37.8%) PCa had a higher Decipher score than non-African American men. Self-identified African American men were twice more likely than non-African American men to experience GrR (relative risk [RR] = 2.23, 95% confidence interval [CI] = 1.02 to 4.90; P = .04). In an ancestry-determined race model, we consistently validated a higher risk of reclassification in African American men (RR = 5.26, 95% CI = 1.66 to 16.63; P = .004). Race-stratified analysis of GrR vs non-GrR tumors also revealed molecular differences in these tumor subtypes. CONCLUSIONS Integration of genomic classifiers with clinically based risk classification can help identify the subset of African American men with localized PCa who harbor high genomic risk of early metastatic disease. It is vital to identify and appropriately risk stratify the subset of African American men with aggressive disease who may benefit from more targeted interventions.
Collapse
Affiliation(s)
| | - G Daniel Grass
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | | | - Julio Pow-Sang
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jasreman Dhillon
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jong Park
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | | | | | - Yang Liu
- Veracyte Inc, South San Francisco, CA, USA
| | - Angelina K Fink
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Amanda DeRenzis
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jordan H Creed
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Michael Poch
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Roger Li
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Brandon Manley
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Daniel Fernandez
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Arash Naghavi
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Kenneth Gage
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Grace Lu-Yao
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | - Joshua D Palmer
- The James Cancer Hospital at Ohio State University, Columbus, OH, USA
| | - Neha Vapiwala
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Adam P Dicker
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, USA
| | - William Kelly
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, USA
| | - Kosj Yamoah
- Correspondence: Kosj Yamoah, MD, PhD, Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA (e-mail: )
| |
Collapse
|
31
|
Lang H, Béraud C, Cabel L, Fontugne J, Lassalle M, Krucker C, Dufour F, Groeneveld CS, Dixon V, Meng X, Kamoun A, Chapeaublanc E, De Reynies A, Gamé X, Rischmann P, Bieche I, Masliah-Planchon J, Beaurepere R, Allory Y, Lindner V, Misseri Y, Radvanyi F, Lluel P, Bernard-Pierrot I, Massfelder T. Integrated molecular and pharmacological characterization of patient-derived xenografts from bladder and ureteral cancers identifies new potential therapies. Front Oncol 2022; 12:930731. [PMID: 36033544 PMCID: PMC9405192 DOI: 10.3389/fonc.2022.930731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background Muscle-invasive bladder cancer (MIBC) and upper urinary tract urothelial carcinoma (UTUC) are molecularly heterogeneous. Despite chemotherapies, immunotherapies, or anti-fibroblast growth factor receptor (FGFR) treatments, these tumors are still of a poor outcome. Our objective was to develop a bank of patient-derived xenografts (PDXs) recapitulating the molecular heterogeneity of MIBC and UTUC, to facilitate the preclinical identification of therapies. Methods Fresh tumors were obtained from patients and subcutaneously engrafted into immune-compromised mice. Patient tumors and matched PDXs were compared regarding histopathology, transcriptomic (microarrays), and genomic profiles [targeted Next-Generation Sequencing (NGS)]. Several PDXs were treated with chemotherapy (cisplatin/gemcitabine) or targeted therapies [FGFR and epidermal growth factor (EGFR) inhibitors]. Results A total of 31 PDXs were established from 1 non-MIBC, 25 MIBC, and 5 upper urinary tract tumors, including 28 urothelial (UC) and 3 squamous cell carcinomas (SCCs). Integrated genomic and transcriptomic profiling identified the PDXs of three different consensus molecular subtypes [basal/squamous (Ba/Sq), luminal papillary, and luminal unstable] and included FGFR3-mutated PDXs. High histological and genomic concordance was found between matched patient tumor/PDX. Discordance in molecular subtypes, such as a Ba/Sq patient tumor giving rise to a luminal papillary PDX, was observed (n=5) at molecular and histological levels. Ten models were treated with cisplatin-based chemotherapy, and we did not observe any association between subtypes and the response. Of the three Ba/Sq models treated with anti-EGFR therapy, two models were sensitive, and one model, of the sarcomatoid variant, was resistant. The treatment of three FGFR3-mutant PDXs with combined FGFR/EGFR inhibitors was more efficient than anti-FGFR3 treatment alone. Conclusions We developed preclinical PDX models that recapitulate the molecular heterogeneity of MIBCs and UTUC, including actionable mutations, which will represent an essential tool in therapy development. The pharmacological characterization of the PDXs suggested that the upper urinary tract and MIBCs, not only UC but also SCC, with similar molecular characteristics could benefit from the same treatments including anti-FGFR for FGFR3-mutated tumors and anti-EGFR for basal ones and showed a benefit for combined FGFR/EGFR inhibition in FGFR3-mutant PDXs, compared to FGFR inhibition alone.
Collapse
Affiliation(s)
- Hervé Lang
- Department of Urology, New Civil Hospital and Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | | | - Luc Cabel
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
| | - Jacqueline Fontugne
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
- Université de Versailles-Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Versailles, France
| | | | - Clémentine Krucker
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
| | - Florent Dufour
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- Inovarion, Paris, France
| | - Clarice S. Groeneveld
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- La Ligue Contre Le Cancer, Paris, France
| | - Victoria Dixon
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
| | - Xiangyu Meng
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Elodie Chapeaublanc
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
| | | | - Xavier Gamé
- Department of Urology, Rangueil Hospital, Toulouse, France
| | | | - Ivan Bieche
- Department of Genetics, Institut Curie, Paris, France
| | | | | | - Yves Allory
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
- Université de Versailles-Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Versailles, France
| | | | | | - François Radvanyi
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
| | - Philippe Lluel
- Urosphere, Toulouse, France
- *Correspondence: Isabelle Bernard-Pierrot, ; Philippe Lluel,
| | - Isabelle Bernard-Pierrot
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- *Correspondence: Isabelle Bernard-Pierrot, ; Philippe Lluel,
| | - Thierry Massfelder
- INSERM (French National Institute of Health and Medical Research) UMR_S1260, Université de Strasbourg, Regenerative Nanomedicine, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| |
Collapse
|
32
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
33
|
Zhao X, Hu J, Li J, Gu L, Chen J, Othmane B, Gong G, Yuan J, Deng H. THEM6: A Novel Molecular Biomarker Predicts Tumor Microenvironment, Molecular Subtype, and Prognosis in Bladder Cancer. DISEASE MARKERS 2022; 2022:7147279. [PMID: 35909893 PMCID: PMC9334031 DOI: 10.1155/2022/7147279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Thioesterase superfamily member 6 (THEM6) has been implicated in the development and progression of various cancers. However, prior research emphasized on its regulatory role merely, we aim to investigate the effect of THEM6 gene on the immunological role and its relationship with molecular subtype in bladder cancer (BLCA). METHODS Through pan-cancer analysis, we explored the THEM6 expression pattern and immunological role using The Cancer Genome Atlas (TCGA) database. In addition, we performed a correlation of THEM6 and its immunological functions, including immunomodulators, immune checkpoints, cancer immunity cycles, T cell inflamed score, and tumor-infiltrating immune cells in the BLCA tumor microenvironment (TME) based on TCGA and BLCA microarray cohort from Xiangya Hospital. We also assessed the accuracy of THEM6 in predicting the molecular subtype and its response to different interventions in BLCA. Finally, we computed and validated a prediction model established by THEM6-related different expressed immune-related genes that might help in BLCA prognosis. RESULTS THEM6 led to immunosuppression in BLCA TME. Furthermore, there was a downregulation in the immunological functions. Besides, THEM6 could effectively distinguish BLCA molecular subtypes, and THEM6 low expression implied basal subtype that was more effective to several interventions, such as immune checkpoint blockade (ICB) therapies, neoadjuvant chemotherapy, and radiotherapy. While THEM6 high expression indicated luminal subtype, hyperprogression and better response to targeted therapies, such as blocking THEM6 and several immune-inhibited oncogenic pathways. CONCLUSIONS THEM6 may be with potential immune-modulating properties and may become a potential new immunotherapy target for BLCA. THEM6 could accurately predict the molecular subtype of BLCA, which was helpful for guiding the treatment. Simultaneously, the prediction model may exhibit an excellent predictive value in patients with BLCA.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang 550001 Guizhou, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Jiuyi Li
- Department of Anesthesiology, The First People's Hospital of Chenzhou, Chenzhou, 423099 Hunan, China
| | - Lan Gu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Belaydi Othmane
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Guanghui Gong
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Junbin Yuan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Huiyin Deng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| |
Collapse
|
34
|
Yi X, Zheng X, Xu H, Li J, Zhang T, Ge P, Liao D, Li H, Lyu X, Ai J. IGFBP7 and the Tumor Immune Landscape: A Novel Target for Immunotherapy in Bladder Cancer. Front Immunol 2022; 13:898493. [PMID: 35812369 PMCID: PMC9259832 DOI: 10.3389/fimmu.2022.898493] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/26/2022] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor binding protein-7 (IGFBP7) was recently reported to be a ligand of CD93, a potential target to normalize vasculature and attenuate immunotherapy. However, its role in the tumor microenvironment (TME) and immunotherapy response of bladder cancer (BLCA) remains unclear. We comprehensively evaluated the correlation between IGFBP7 and multiple immunological characteristics of BLCA across The Cancer Genome Atlas (TCGA) and two external cohorts. Importantly, the response of IGFBP7-grouped BLCA patients to immunotherapy was predicted and validated by five real-word immunotherapy cohorts. Finally, we developed an IGFBP7-based immune risk model validated by five independent cohorts. IGFBP7 modulated the TME across pan-caners. In BLCA, high expression of IGFBP7 was correlated with more aggressive clinical features. IGFBP7 was positively associated with immunomodulators and promoted tumor-infiltrating lymphocyte trafficking into the tumor microenvironment. However, T cells recognition and tumor cell killing were lower in the high-IGFBP7 group. In addition, high expression of IGFBP7 displayed lower enrichment scores for most pro-immunotherapy pathways. Clinical data from IMvigor210 and GSE176307 indicated that IGFBP7 negatively correlated with the BLCA immunotherapy response. The same trend was also observed in a renal cell carcinoma (RCC) cohort and two melanoma cohorts. Notably, urothelial and luminal differentiation were less frequently observed in the high-IGFBP7 group, while neuroendocrine differentiation was more frequently observed. Mechanistically, high IGFBP7 was associated with an enriched hypoxia pathway and higher expression of key genes in ERBB therapy and antiangiogenic therapy. Furthermore, our IGFBP7-based immune risk model was able to predict the prognosis and response to immunotherapy with good accuracy (5-year AUC = 0.734). Overall, IGFBP7 plays a critical role in the immunoregulation and TME of BLCA and may serve as a novel potential target for combination treatment with immunotherapy for BLCA.
Collapse
Affiliation(s)
- Xianyanling Yi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tianyi Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Ge
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Dazhou Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyan Lyu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Jianzhong Ai, ; Xiaoyan Lyu,
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Jianzhong Ai, ; Xiaoyan Lyu,
| |
Collapse
|
35
|
Wang R, Zhao Y, Huang Z, Zhou Y, Wang W, Xuan Y, Zhen Y, Ju B, Guo S, Zhang S. Self-Assembly of Podophyllotoxin-Loaded Lipid Bilayer Nanoparticles for Highly Effective Chemotherapy and Immunotherapy via Downregulation of Programmed Cell Death Ligand 1 Production. ACS NANO 2022; 16:3943-3954. [PMID: 35166522 DOI: 10.1021/acsnano.1c09391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Low drug delivery efficiency elevates the cost of medication, lowers the therapeutic efficacy, and appears as a leading reason for unmet needs in anticancer therapies. Herein, we report the development of self-assembled podophyllotoxin-loaded lipid bilayer nanoparticles that inhibit the production of programmed cell death ligand 1 in lung cancer cells and promote tumor-specific immune responses, thus offering a strategy for regulating the immunosuppressive microenvironment of tumors. In addition, encapsulation of podophyllotoxin in the nanoparticles reduced its systemic toxicity, enhanced its penetration into tumors, and increased its antitumor efficacy. Systemic injection of the nanoparticles into tumor-bearing mice not only prevented tumor immune escape but also significantly inhibited tumor growth and extended survival. In general, the podophyllotoxin-loaded nanoparticles exhibited both immunological effects and antitumor effects in addition to having better targeting activity and fewer side effects than free podophyllotoxin. We expect our findings to facilitate the development of therapies for lung cancer.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Zhenlong Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yaxin Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education and State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education and State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
36
|
Zhu L, Yang Y, Li H, Xu L, You H, Liu Y, Liu Z, Liu X, Zheng D, Bie J, Li J, Song C, Yang B, Luo J, Chang Q. Exosomal microRNAs induce tumor-associated macrophages via PPARγ during tumor progression in SHH medulloblastoma. Cancer Lett 2022; 535:215630. [PMID: 35304257 DOI: 10.1016/j.canlet.2022.215630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 01/01/2023]
Abstract
Medulloblastoma (MB), the most common malignant pediatric brain tumor, is composed of at least four molecular subgroups with distinct clinical characteristics. The sonic hedgehog (SHH) subgroup exhibits the most abundant tumor-associated microglia/macrophages (TAMs) infiltration. SHH-MB patients treated by anti-SHH drugs showed high drug resistance. However, the comprehensive role of TAMs in SHH-MB remains enigma. The aim of this study is to explore the mechanism of TAM activation/polarization in SHH-MB and discover a potential immunotherapeutic target to reduce drug resistance. We first analyzed expression profiles of immuno-microenvironment (IME) in four subgroups of 48 MB tumors using NanoString PanCancer IO360 panel and found TAMs were the major component of IME in SHH-MBs. We further distinguished M1/M2-like TAMs in tumors and found M2-like macrophages, rather than microglia, were enriched in SHH-MBs. In transgenic SHH-MB mice, these TAMs had close relationship with tumor progression. Polarization of the TAMs could be induced by MB-derived exosomes in vitro. We then screened SHH MB-derived exosomal miRNAs and their target genes using RNA sequencing and luciferase assay to clarify their roles in regulating TAM polarization. We found down-regulated let-7i-5p and miR-221-3p can induce M2-like polarization of TAMs via upregulating peroxisome proliferator activated receptor gamma (PPARγ). Finally, we demonstrated the PPARγ antagonist efficiently improved the antitumor activity of SMO inhibitor in vivo, which may be related to inhibition of M2-like TAMs. Our findings suggest a potential therapeutic strategy for SHH-MB by targeting tumor-supportive M2-like TAMs to enhance the therapeutic effect of SMO inhibitors.
Collapse
Affiliation(s)
- Liangyi Zhu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China; Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Ying Yang
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China; Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Haishuang Li
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China; Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Luzheng Xu
- Peking University Medical and Health Analysis Center, Beijing, 100191, China
| | - Huanyu You
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China; Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Yantao Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China; Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Zongran Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China; Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaodan Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China; Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Danfeng Zheng
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China; Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Juntao Bie
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Jiaqi Li
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China; Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Chao Song
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., No.699-18 Xuanwu Avenue, Xuanwu District, Nanjing, 210042, Jiangsu, China
| | - Bao Yang
- Department of Neuro-surgery, Tiantan Hosipital, Capital University of Medical Science, Beijing, China.
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China.
| | - Qing Chang
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China; Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
37
|
Papaetis GS. Pioglitazone, Bladder Cancer and the Presumption of Innocence. Curr Drug Saf 2022; 17:294-318. [PMID: 35249505 DOI: 10.2174/1574886317666220304124756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Thiazolidinediones are potent exogenous agonists of PPAR-γ, which augment the effects of insulin to its cellular targets and mainly at the level of adipose tissue. Pioglitazone, the main thiazolidinedione in clinical practice, has shown cardiovascular and renal benefits in patients with type 2 diabetes, durable reduction of glycated hemoglobulin levels, important improvements of several components of the metabolic syndrome and beneficial effects of non-alcoholic fatty liver disease. OBJECTIVE Despite all of its established advantages, the controversy for an increased risk of developing bladder cancer, combined with the advent of newer drug classes that achieved major cardiorenal effects have significantly limited its use spreading a persistent shadow of doubt for its future role. METHODS Pubmed, Google and Scope databases have been thoroughly searched and relevant studies were selected. RESULTS This paper explores thoroughly both in vitro and in vivo (animal models and humans) studies that investigated the possible association of pioglitazone with bladder cancer. CONCLUSION Currently the association of pioglitazone with bladder cancer cannot be based on solid evidence. This evidence cannot justify its low clinical administration, especially in the present era of individualised treatment strategies. Definite clarification of this issue is imperative and urgently anticipated from future high quality and rigorous pharmacoepidemiologic research, keeping in mind its unique mechanism of action and its significant pleiotropic effects.
Collapse
Affiliation(s)
- Georgios S Papaetis
- Internal Medicine and Diabetes Clinic, Eleftherios Venizelos Avenue 62, Paphos, Cyprus.
- CDA College, 73 Democratias Avenue, Paphos, Cyprus
| |
Collapse
|
38
|
Zhang Q, Pan J, Nie H, Wang H, An F, Zhan Q. Dishevelled-Associated Activator of Morphogenesis 2 (DAAM2) Predicts the Immuno-Hot Phenotype in Pancreatic Adenocarcinoma. Front Mol Biosci 2022; 9:750083. [PMID: 35281277 PMCID: PMC8907973 DOI: 10.3389/fmolb.2022.750083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: DAAM2 participates in the oncogenesis and progression of human cancers. Although the role of DAAM2 in cancers has been preliminarily investigated, its correlations with antitumor immunity are unclear.Methods: A pancancer analysis was conducted to explore the immunological role of DAAM2 based on RNA sequencing (RNA-seq) data downloaded from The Cancer Genome Atlas (TCGA). Next, correlations between DAAM2 and immunological characteristics in the tumor microenvironment (TME) of pancreatic adenocarcinoma (PAAD) were evaluated. In addition, the role of DAAM2 in predicting the clinical characteristics and the response to various therapies in PAAD were also assessed. In addition, the correlations between DAAM2 and the emerging immunobiomarker N6-methyladenosine (m6A) genes were also evaluated.Results: Pancancer analysis revealed that DAAM2 exhibited positive correlations with a majority of immunomodulators, tumor-infiltrating immune cells (TIICs) and inhibitory immune checkpoints in several cancer types, including PAAD. In addition, DAAM2 was associated with an inflamed phenotype in the tumor microenvironment (TME). DAAM2 also predicted significantly higher responses to chemotherapy, anti-EGFR therapy and immunotherapy but lower responses to anti-ERBB2 and antiangiogenic therapy. In addition, DAAM2 was correlated with immune-related microbiota.Conclusion: In PAAD, DAAM2 is associated with an immuno-hot phenotype and can help predict the outcome of various therapeutic options. Overall, DAAM2 is a promising indicator for assessing high immunogenicity in PAAD.
Collapse
Affiliation(s)
| | | | | | | | - Fangmei An
- *Correspondence: Qiang Zhang, ; Fangmei An,
| | - Qiang Zhan
- *Correspondence: Qiang Zhang, ; Fangmei An,
| |
Collapse
|
39
|
Zhang F, Liang J, Feng D, Liu S, Wu J, Tang Y, Liu Z, Lu Y, Wang X, Wei X. Integrated Analysis of Energy Metabolism Signature-Identified Distinct Subtypes of Bladder Urothelial Carcinoma. Front Cell Dev Biol 2022; 10:814735. [PMID: 35281080 PMCID: PMC8905247 DOI: 10.3389/fcell.2022.814735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/03/2022] [Indexed: 01/08/2023] Open
Abstract
Background: Bladder urothelial carcinoma (BLCA) is the most common type of bladder cancer. In this study, the correlation between the metabolic status and the outcome of patients with BLCA was evaluated using data from the Cancer Genome Atlas and Gene Expression Omnibus datasets. Methods: The clinical and transcriptomic data of patients with BLCA were downloaded from the Cancer Genome Atlas and cBioPortal datasets, and energy metabolism-related gene sets were obtained from the Molecular Signature Database. A consensus clustering algorithm was then conducted to classify the patients into two clusters. Tumor prognosis, clinicopathological features, mutations, functional analysis, ferroptosis status analysis, immune infiltration, immune checkpoint-related gene expression level, chemotherapy resistance, and tumor stem cells were analyzed between clusters. An energy metabolism-related signature was further developed and verified using data from cBioPortal datasets. Results: Two clusters (C1 and C2) were identified using a consensus clustering algorithm based on an energy metabolism-related signature. The patients with subtype C1 had more metabolism-related pathways, different ferroptosis status, higher cancer stem cell scores, higher chemotherapy resistance, and better prognosis. Subtype C2 was characterized by an increased number of advanced BLCA cases and immune-related pathways. Higher immune and stromal scores were also observed for the C2 subtype. A signature containing 16 energy metabolism-related genes was then identified, which can accurately predict the prognosis of patients with BLCA. Conclusion: We found that the energy metabolism-associated subtypes of BLCA are closely related to the immune microenvironment, immune checkpoint-related gene expression, ferroptosis status, CSCs, chemotherapy resistance, prognosis, and progression of BLCA patients. The established energy metabolism-related gene signature was able to predict survival in patients with BLCA.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Shengzhuo Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiapei Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongquan Tang
- Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiping Lu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xianding Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xianding Wang, ; Xin Wei,
| | - Xin Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xianding Wang, ; Xin Wei,
| |
Collapse
|
40
|
Chen L, Dong J, Li Z, Chen Y, Zhang Y. The B7H4-PDL1 classifier stratifies immuno-phenotype in cervical cancer. Cancer Cell Int 2022; 22:3. [PMID: 34983532 PMCID: PMC8728907 DOI: 10.1186/s12935-021-02423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been revealed that B7H4 is negatively correlated with PDL1 and identifies immuno-cold tumors in glioma. However, the application of the B7H4-PDL1 classifier in cancers has not been well testified. METHODS A pan-cancer analysis was conducted to evaluate the immunological role of B7H4 using the RNA-sequencing data downloaded from the Cancer Genome Atlas (TCGA). Immunohistochemistry (IHC) and multiplexed quantitative immunofluorescence (QIF) were performed to validate the primary results revealed by bioinformatics analysis. RESULTS The pan-cancer analysis revealed that B7H4 was negatively correlated with PDL1 expression and immune cell infiltration in CeCa. In addition, patients with high B7H4 exhibited the shortest overall survival (OS) and relapse-free survival (RFS) while those with high PDL1 exhibited a better prognosis. Multiplexed QIF showed that B7H4 was mutually exclusive with PDL1 expression and the B7H4-high group exhibited the lowest CD8 + T cell infiltration. Besides, B7H4-high predicted highly proliferative subtypes, which expressed the highest Ki67 antigen. Moreover, B7H4-high also indicated a lower response to multiple therapies. CONCLUSIONS Totally, the B7H4-PDL1 classifier identifies the immunogenicity and predicts proliferative subtypes and limited therapeutic options in CeCa, which may be a convenient and feasible biomarker in clinical practice.
Collapse
Affiliation(s)
- Lingyan Chen
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48 Huaishu Road, Wuxi, 214000, China
| | - Jianfeng Dong
- Department of Pathology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214000, China
| | - Zeying Li
- Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214000, China
| | - Yu Chen
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48 Huaishu Road, Wuxi, 214000, China.
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48 Huaishu Road, Wuxi, 214000, China.
| |
Collapse
|
41
|
Thorne JL, Cioccoloni G. Nuclear Receptors and Lipid Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:83-105. [DOI: 10.1007/978-3-031-11836-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
42
|
Hurst CD, Cheng G, Platt FM, Castro MAA, Marzouka NADS, Eriksson P, Black EVI, Alder O, Lawson ARJ, Lindskrog SV, Burns JE, Jain S, Roulson JA, Brown JC, Koster J, Robertson AG, Martincorena I, Dyrskjøt L, Höglund M, Knowles MA. Stage-stratified molecular profiling of non-muscle-invasive bladder cancer enhances biological, clinical, and therapeutic insight. Cell Rep Med 2021; 2:100472. [PMID: 35028613 PMCID: PMC8714941 DOI: 10.1016/j.xcrm.2021.100472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022]
Abstract
Understanding the molecular determinants that underpin the clinical heterogeneity of non-muscle-invasive bladder cancer (NMIBC) is essential for prognostication and therapy development. Stage T1 disease in particular presents a high risk of progression and requires improved understanding. We present a detailed multi-omics study containing gene expression, copy number, and mutational profiles that show relationships to immune infiltration, disease recurrence, and progression to muscle invasion. We compare expression and genomic subtypes derived from all NMIBCs with those derived from the individual disease stages Ta and T1. We show that sufficient molecular heterogeneity exists within the separate stages to allow subclassification and that this is more clinically meaningful for stage T1 disease than that derived from all NMIBCs. This provides improved biological understanding and identifies subtypes of T1 tumors that may benefit from chemo- or immunotherapy.
Collapse
Affiliation(s)
- Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Guo Cheng
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Fiona M Platt
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba, Brazil
| | | | - Pontus Eriksson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma V I Black
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Olivia Alder
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Andrew R J Lawson
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Sia V Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julie E Burns
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Sunjay Jain
- Pyrah Department of Urology, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Jo-An Roulson
- Department of Histopathology, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Joanne C Brown
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Jan Koster
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Center, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Inigo Martincorena
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mattias Höglund
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
43
|
Galdadas I, Bonis V, Vgenopoulou P, Papadourakis M, Kakoulidis P, Stergiou G, Cournia Z, Klinakis A. The effect of S427F mutation on RXRα activity depends on its dimeric partner. Chem Sci 2021; 12:14700-14710. [PMID: 34820085 PMCID: PMC8597827 DOI: 10.1039/d1sc04465f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 12/24/2022] Open
Abstract
RXRs are nuclear receptors acting as transcription regulators that control key cellular processes in all tissues. All type II nuclear receptors require RXRs for transcriptional activity by forming heterodimeric complexes. Recent whole-exome sequencing studies have identified the RXRα S427F hotspot mutation in 5% of the bladder cancer patients, which is always located at the interface of RXRα with its obligatory dimerization partners. Here, we show that mutation of S427 deregulates transcriptional activity of RXRα dimers, albeit with diverse allosteric mechanisms of action depending on its dimeric partner. S427F acts by allosteric mechanisms, which range from inducing the collapse of the binding pocket to allosteric stabilization of active co-activator competent RXRα states. Unexpectedly, RXR S427F heterodimerization leads to either loss- or gain-of-function complexes, in both cases likely compromising its tumor suppressor activity. This is the first report of a cancer-associated single amino acid substitution that affects the function of the mutant protein variably depending on its dimerization partner.
Collapse
Affiliation(s)
| | - Vangelis Bonis
- Biomedical Research Foundation Academy of Athens Athens Greece
| | | | | | - Panos Kakoulidis
- Biomedical Research Foundation Academy of Athens Athens Greece
- Data Science and Information Technologies, Department of Informatics and Telecommunication, National and Kapodistrian University of Athens Athens Greece
| | - Georgia Stergiou
- Biomedical Research Foundation Academy of Athens Athens Greece
- Data Science and Information Technologies, Department of Informatics and Telecommunication, National and Kapodistrian University of Athens Athens Greece
| | - Zoe Cournia
- Biomedical Research Foundation Academy of Athens Athens Greece
- Data Science and Information Technologies, Department of Informatics and Telecommunication, National and Kapodistrian University of Athens Athens Greece
| | | |
Collapse
|
44
|
Jiang J, Yuan J, Hu Z, Xu M, Zhang Y, Long M, Fan Y, Montone K, Tanyi JL, Tavana O, Chan HM, Zhang L, Hu X. Systematic pan-cancer characterization of nuclear receptors identifies potential cancer biomarkers and therapeutic targets. Cancer Res 2021; 82:46-59. [PMID: 34750098 DOI: 10.1158/0008-5472.can-20-3458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/15/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
The nuclear receptor (NR) superfamily is one of the major druggable gene families, representing targets of approximately 13.5% of approved drugs. Certain NRs, such as estrogen receptor and androgen receptor, have been well demonstrated to be functionally involved in cancer and serve as informative biomarkers and therapeutic targets in oncology. However, the spectrum of NR dysregulation across cancers remains to be comprehensively characterized. Through computational integration of genetic, genomic, and pharmacologic profiles, we characterized the expression, recurrent genomic alterations, and cancer dependency of NRs at a large scale across primary tumor specimens and cancer cell lines. Expression levels of NRs were highly cancer-type specific and globally downregulated in tumors compared to corresponding normal tissue. Although the majority of NRs showed copy number losses in cancer, both recurrent focal gains and losses were identified in select NRs. Recurrent mutations and transcript fusions of NRs were observed in a small portion of cancers, serving as actionable genomic alterations. Analysis of large-scale CRISPR and RNAi screening datasets identified 10 NRs as strongly selective essential genes for cancer cell growth. In a subpopulation of tumor cells, growth dependencies correlated significantly with expression or genomic alterations. Overall, our comprehensive characterization of NRs across cancers may facilitate the identification and prioritization of potential biomarkers and therapeutic targets, as well as the selection of patients for precision cancer treatment.
Collapse
Affiliation(s)
| | - Jiao Yuan
- Ob and Gyn, University of Pennsylvania
| | - Zhongyi Hu
- Department of Obstetrics and Gynecology, University of Pennsylvania
| | - Mu Xu
- Department of Obstetrics and Gynecology, University of Pennsylvania
| | | | - Meixiao Long
- Comprehensive Cancer Center, The Ohio State University
| | - Yi Fan
- Radiation Oncology, University of Pennsylvania
| | | | | | | | - Ho Man Chan
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca (United States)
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania
| | | |
Collapse
|
45
|
Liu S, Knochelmann HM, Lomeli SH, Hong A, Richardson M, Yang Z, Lim RJ, Wang Y, Dumitras C, Krysan K, Timmers C, Romeo MJ, Krieg C, O’Quinn EC, Horton JD, Dubinett SM, Paulos CM, Neskey DM, Lo RS. Response and recurrence correlates in individuals treated with neoadjuvant anti-PD-1 therapy for resectable oral cavity squamous cell carcinoma. Cell Rep Med 2021; 2:100411. [PMID: 34755131 PMCID: PMC8561238 DOI: 10.1016/j.xcrm.2021.100411] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/06/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023]
Abstract
Neoadjuvant PD-1 blockade may be efficacious in some individuals with high-risk, resectable oral cavity head and neck cancer. To explore correlates of response patterns to neoadjuvant nivolumab treatment and post-surgical recurrences, we analyzed longitudinal tumor and blood samples in a cohort of 12 individuals displaying 33% responsiveness. Pretreatment tumor-based detection of FLT4 mutations and PTEN signature enrichment favors response, and high tumor mutational burden improves recurrence-free survival. In contrast, preexisting and/or acquired mutations (in CDKN2A, YAP1, or JAK2) correlate with innate resistance and/or tumor recurrence. Immunologically, tumor response after therapy entails T cell receptor repertoire diversification in peripheral blood and intratumoral expansion of preexisting T cell clones. A high ratio of regulatory T to T helper 17 cells in pretreatment blood predicts low T cell receptor repertoire diversity in pretreatment blood, a low cytolytic T cell signature in pretreatment tumors, and innate resistance. Our study provides a molecular framework to advance neoadjuvant anti-PD-1 therapy for individuals with resectable head and neck cancer.
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/surgery
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/immunology
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Immune Checkpoint Inhibitors/therapeutic use
- Janus Kinase 2/genetics
- Janus Kinase 2/immunology
- Mouth Neoplasms/drug therapy
- Mouth Neoplasms/genetics
- Mouth Neoplasms/immunology
- Mouth Neoplasms/surgery
- Mutation
- Neoadjuvant Therapy/methods
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/surgery
- Nivolumab/therapeutic use
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/immunology
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Survival Analysis
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/pathology
- Treatment Outcome
- Vascular Endothelial Growth Factor Receptor-3/genetics
- Vascular Endothelial Growth Factor Receptor-3/immunology
- YAP-Signaling Proteins/genetics
- YAP-Signaling Proteins/immunology
Collapse
Affiliation(s)
- Sixue Liu
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hannah M. Knochelmann
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shirley H. Lomeli
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aayoung Hong
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mary Richardson
- Department of Pathology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zhentao Yang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Raymond J. Lim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yan Wang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Camelia Dumitras
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kostyantyn Krysan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Martin J. Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carsten Krieg
- Department of Immunology and Microbiology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth C. O’Quinn
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joshua D. Horton
- Department of Otolaryngology – Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Steve M. Dubinett
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chrystal M. Paulos
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - David M. Neskey
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Otolaryngology – Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Roger S. Lo
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
46
|
Kim J, Kim SY, Ma SX, Kim SM, Shin SJ, Lee YS, Chang H, Chang HS, Park CS, Lim SB. PPARγ Targets-Derived Diagnostic and Prognostic Index for Papillary Thyroid Cancer. Cancers (Basel) 2021; 13:cancers13205110. [PMID: 34680260 PMCID: PMC8533916 DOI: 10.3390/cancers13205110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Through targeted next-generation sequencing of thyroid cancer-related genes in monozygotic twins with papillary thyroid cancer (PTC), we identified common variants of the gene encoding peroxisome proliferator activated receptor gamma (PPARG). Notably, the expression levels of PPARγ target genes were frequently deregulated in PTC compared to benign tissues and were closely associated with disease-specific survival (DSS) outcomes in a TCGA-PTC cohort. Machine learning-powered personalized scoring index comprising 10 PPARγ targets, termed as PPARGi, achieved a near-perfect accuracy in distinguishing cancers from benign tissues, and further identified a small subpopulation of patients at high-risk across different profiling platforms. Abstract In most cases, papillary thyroid cancer (PTC) is highly curable and associated with an excellent prognosis. Yet, there are several clinicopathological features that lead to a poor prognosis, underscoring the need for a better genomic strategy to refine prognostication and patient management. We hypothesized that PPARγ targets could be potential markers for better diagnosis and prognosis due to the variants found in PPARG in three pairs of monozygotic twins with PTC. Here, we developed a 10-gene personalized prognostic index, designated PPARGi, based on gene expression of 10 PPARγ targets. Through scRNA-seq data analysis of PTC tissues derived from patients, we found that PPARGi genes were predominantly expressed in macrophages and epithelial cells. Machine learning algorithms showed a near-perfect performance of PPARGi in deciding the presence of the disease and in selecting a small subset of patients with poor disease-specific survival in TCGA-THCA and newly developed merged microarray data (MMD) consisting exclusively of thyroid cancers and normal tissues.
Collapse
Affiliation(s)
- Jaehyung Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Soo Young Kim
- Department of Surgery, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Shi-Xun Ma
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Seok-Mo Kim
- Thyroid Cancer Center, Department of Surgery, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.S.L.); (H.C.); (H.-S.C.)
- Correspondence: (S.-M.K.); (S.B.L.); Tel.: +82-2-2019-3370 (S.-M.K.); +82-31-219-5056 (S.B.L.)
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Yong Sang Lee
- Thyroid Cancer Center, Department of Surgery, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.S.L.); (H.C.); (H.-S.C.)
| | - Hojin Chang
- Thyroid Cancer Center, Department of Surgery, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.S.L.); (H.C.); (H.-S.C.)
| | - Hang-Seok Chang
- Thyroid Cancer Center, Department of Surgery, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.S.L.); (H.C.); (H.-S.C.)
| | - Cheong Soo Park
- CHA Ilsan Medical Center, Department of Surgery, Goyang-si 10414, Korea;
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea;
- Correspondence: (S.-M.K.); (S.B.L.); Tel.: +82-2-2019-3370 (S.-M.K.); +82-31-219-5056 (S.B.L.)
| |
Collapse
|
47
|
Chi T, Wang M, Wang X, Yang K, Xie F, Liao Z, Wei P. PPAR-γ Modulators as Current and Potential Cancer Treatments. Front Oncol 2021; 11:737776. [PMID: 34631571 PMCID: PMC8495261 DOI: 10.3389/fonc.2021.737776] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, cancer has become one of the leading causes of mortality. Peroxisome Proliferator-Activated Receptors (PPARs) is a family of critical sensors of lipids as well as regulators of diverse metabolic pathways. They are also equipped with the capability to promote eNOS activation, regulate immunity and inflammation response. Aside from the established properties, emerging discoveries are also made in PPAR's functions in the cancer field. All considerations are given, there exists great potential in PPAR modulators which may hold in the management of cancers. In particular, PPAR-γ, the most expressed subtype in adipose tissues with two isoforms of different tissue distribution, has been proven to be able to inhibit cell proliferation, induce cell cycle termination and apoptosis of multiple cancer cells, promote intercellular adhesion, and cripple the inflamed state of tumor microenvironment, both on transcriptional and protein level. However, despite the multi-functionalities, the safety of PPAR-γ modulators is still of clinical concern in terms of dosage, drug interactions, cancer types and stages, etc. This review aims to consolidate the functions of PPAR-γ, the current and potential applications of PPAR-γ modulators, and the challenges in applying PPAR-γ modulators to cancer treatment, in both laboratory and clinical settings. We sincerely hope to provide a comprehensive perspective on the prospect of PPAR-γ applicability in the field of cancer treatment.
Collapse
Affiliation(s)
- Tiange Chi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Feiyu Xie
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Oncology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
48
|
Cai Y, Ji W, Sun C, Xu R, Chen X, Deng Y, Pan J, Yang J, Zhu H, Mei J. Interferon-Induced Transmembrane Protein 3 Shapes an Inflamed Tumor Microenvironment and Identifies Immuno-Hot Tumors. Front Immunol 2021; 12:704965. [PMID: 34456915 PMCID: PMC8385493 DOI: 10.3389/fimmu.2021.704965] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is an interferon-induced membrane protein, which has been identified as a functional gene in multiple human cancers. The role of IFITM3 in cancer has been preliminarily summarized, but its relationship to antitumor immunity is still unclear. A pancancer analysis was conducted to investigate the expression pattern and immunological role of IFITM3 based on transcriptomic data downloaded from The Cancer Genome Atlas (TCGA) database. Next, correlations between IFITM3 and immunological features in the bladder cancer (BLCA) tumor microenvironment (TME) were assessed. In addition, the role of IFITM3 in estimating the clinical characteristics and the response to various therapies in BLCA was also evaluated. These results were next confirmed in the IMvigor210 cohort and a recruited cohort. In addition, correlations between IFITM3 and emerging immunobiomarkers, such as microbiota and N6-methyladenosine (m6A) genes, were assessed. IFITM3 was enhanced in most tumor tissues in comparison with adjacent tissues. IFITM3 was positively correlated with immunomodulators, tumor-infiltrating immune cells (TIICs), cancer immunity cycles, and inhibitory immune checkpoints. In addition, IFITM3 was associated with an inflamed phenotype and several established molecular subtypes. IFITM3 expression also predicted a notably higher response to chemotherapy, anti-EGFR therapy, and immunotherapy but a low response to anti-ERBB2, anti-ERBB4, and antiangiogenic therapy. In addition, IFITM3 was correlated with immune-related microbiota and m6A genes. In addition to BLCA, IFITM3 is expected to be a marker of high immunogenicity in most human cancers. In conclusion, IFITM3 expression can be used to identify immuno-hot tumors in most cancers, and IFITM3 may be a promising pancancer biomarker to estimate the immunological features of tumors.
Collapse
Affiliation(s)
- Yun Cai
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China
| | - Wenfei Ji
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China
| | - Chuan Sun
- Department of Geriatrics, Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, China
| | - Rui Xu
- Wuxi College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xuechun Chen
- College of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yifan Deng
- College of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiadong Pan
- Wuxi College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jiayue Yang
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Hongjun Zhu
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China
| | - Jie Mei
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China.,Wuxi College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Prognostic Implications of Immune-Related Gene Pairs Signatures in Bladder Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5345181. [PMID: 34354750 PMCID: PMC8331311 DOI: 10.1155/2021/5345181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023]
Abstract
Compelling evidence indicates that immune function is correlated with the prognosis of bladder cancer (BC). Here, we aimed to develop a clinically translatable immune-related gene pairs (IRGPs) prognostic signature to estimate the overall survival (OS) of bladder cancer. From the 251 prognostic-related IRGPs, 37 prognostic-related IRGPs were identified using LASSO regression. We identified IRGPs with the potential to be prognostic markers. The established risk scores divided BC patients into high and low risk score groups, and the survival analysis showed that risk score was related to OS in the TCGA-training set (p < 0.001; HR = 7.5 [5.3, 10]). ROC curve analysis showed that the AUC for the 1-year, 3-year, and 5-year follow-up was 0.820, 0.883, and 0.879, respectively. The model was verified in the TCGA-testing set and external dataset GSE13507. Multivariate analysis showed that risk score was an independent prognostic predictor in patients with BC. In addition, significant differences were found in gene mutations, copy number variations, and gene expression levels in patients with BC between the high and low risk score groups. Gene set enrichment analysis showed that, in the high-risk score group, multiple immune-related pathways were inhibited, and multiple mesenchymal phenotype-related pathways were activated. Immune infiltration analysis revealed that immune cells associated with poor prognosis of BC were upregulated in the high-risk score group, whereas immune cells associated with a better prognosis of BC were downregulated in the high-risk score group. Other immunoregulatory genes were also differentially expressed between high and low risk score groups. A 37 IRGPs-based risk score signature is presented in this study. This signature can efficiently classify BC patients into high and low risk score groups. This signature can be exploited to select high-risk BC patients for more targeted treatment.
Collapse
|
50
|
Primary Aldosteronism: Metabolic Reprogramming and the Pathogenesis of Aldosterone-Producing Adenomas. Cancers (Basel) 2021; 13:cancers13153716. [PMID: 34359615 PMCID: PMC8345059 DOI: 10.3390/cancers13153716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Primary aldosteronism is a common form of endocrine hypertension often caused by a hyper-secreting tumor of the adrenal cortex called an aldosterone-producing adenoma. Metabolic reprogramming plays a role in tumor progression and influences the tumor immune microenvironment by limiting immune-cell infiltration and suppressing its anti-tumor function. We hypothesized that the development of aldosterone-producing adenomas involves metabolic adaptations of its component tumor cells and intrinsically influences tumor pathogenesis. Herein, we use state-of-the-art computational tools for the comprehensive analysis of array-based gene expression profiles to demonstrate metabolic reprogramming and remodeling of the immune microenvironment in aldosterone-producing adenomas compared with paired adjacent adrenal cortical tissue. Our findings suggest metabolic alterations may function in the pathogenesis of aldosterone-producing adenomas by conferring survival advantages to their component tumor cells. Abstract Aldosterone-producing adenomas (APAs) are characterized by aldosterone hypersecretion and deregulated adrenocortical cell growth. Increased energy consumption required to maintain cellular tumorigenic properties triggers metabolic alterations that shape the tumor microenvironment to acquire necessary nutrients, yet our knowledge of this adaptation in APAs is limited. Here, we investigated adrenocortical cell-intrinsic metabolism and the tumor immune microenvironment of APAs and their potential roles in mediating aldosterone production and growth of adrenocortical cells. Using multiple advanced bioinformatics methods, we analyzed gene expression datasets to generate distinct metabolic and immune cell profiles of APAs versus paired adjacent cortex. APAs displayed activation of lipid metabolism, especially fatty acid β-oxidation regulated by PPARα, and glycolysis. We identified an immunosuppressive microenvironment in APAs, with reduced infiltration of CD45+ immune cells compared with adjacent cortex, validated by CD45 immunohistochemistry (3.45-fold, p < 0.001). APAs also displayed an association of lipid metabolism with ferroptosis and upregulation of antioxidant systems. In conclusion, APAs exhibit metabolic reprogramming towards fatty acid β-oxidation and glycolysis. Increased lipid metabolism via PPARα may serve as a key mechanism to modulate lipid peroxidation, a hallmark of regulated cell death by ferroptosis. These findings highlight survival advantages for APA tumor cells with metabolic reprogramming properties.
Collapse
|