1
|
Bieroza MZ, Hallberg L, Livsey J, Wynants M. Climate change accelerates water and biogeochemical cycles in temperate agricultural catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175365. [PMID: 39117230 DOI: 10.1016/j.scitotenv.2024.175365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Climate change is expected to significantly deteriorate water quality in heavily managed agricultural landscapes, however, the exact mechanisms of these impacts are unknown. In this study we adopted a modelling approach to predict the multiple effects of climate change on hydrological and biogeochemical responses for dominant solutes and particulates in two agriculture-dominated temperate headwater catchments. We used climatic projections from three climatic models to simulate future flows, mobilisation and delivery of solutes and particulates. This allowed an examination of potential drivers by identifying changes in flow pathway distribution and key environmental variables. We found that future climate conditions will lead to a general increase in stream discharge as well as higher concentrations and loads of solutes and particulates. However, unlike previous studies, we observed a higher magnitude of change during the warmer part of the year. These changes will reduce the relative importance of winter flows on solute and particulate transport, leading to both higher and more evenly distributed concentrations and loads between seasons. We linked these changes to the higher importance of superficial flow pathways of tile and surface runoff driven by more rapid transition from extremely wet to dry conditions. Overall, the observed increase in solute and particulate mobilisation and delivery will lead to widespread water quality deterioration. Mitigation of this deterioration would require adequate management efforts to address the direct and indirect negative effects on stream biota and water scarcity.
Collapse
Affiliation(s)
- M Z Bieroza
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden.
| | - L Hallberg
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - J Livsey
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - M Wynants
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden; Isotope Bioscience Laboratory - ISOFYS, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
2
|
Neofytou G, Chrysargyris A, Antoniou MG, Tzortzakis N. Radish and Spinach Seedling Production and Early Growth in Response to Struvite Use as a Phosphorus Source. PLANTS (BASEL, SWITZERLAND) 2024; 13:2917. [PMID: 39458865 PMCID: PMC11511442 DOI: 10.3390/plants13202917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
To sustain the increasing needs of a rapidly growing population, agriculture has relied on the use of synthetic fertilizers to intensify its production. However, the economical, environmental and health impacts associated with their use have raised significant concerns, especially given the scarcity of phosphorus. Utilizing nutrient-recovered materials like struvite can enhance circularity in agriculture and reduce its reliance on synthetic fertilizers. The objective of this study was to assess the implementation of struvite as a complete substitute to triple superphosphate, for radish and spinach seedling production and early growth, with or without supplementary fertigation. In addition, two rates of struvite were examined (0.68 and 1.37 g L-1 substrate) to evaluate its solubility. In the germination of radish, struvite had similar performance with conventional fertilization, while in spinach, the use of struvite decreased mean germination times. Both plants maintained comparable growth, chlorophyll content and antioxidant capacity when struvite was used, in comparison to conventional fertilizers. However, higher struvite rates under un-fertigated conditions significantly increased the chlorophyll b and total chlorophylls in the spinach, while phenolics and flavonoids decreased, contingent on the fertigation applications. In the radish, struvite maintained similar MDA and H2O2 levels to conventional fertilization, while decreases occurred in the spinach, with the application of ST1 under un-fertigated conditions, compared with conventional fertilization. The P and N contents of the plants were also affected, though these effects varied depending on the plant species, fertigation applications and struvite rates. This variance can be attributed to the characteristics of struvite, the plant species and the cultivation practices. The results of this study suggest that struvite can be successfully implemented in seedling production, establishing significant prospects for its commercialization and use in nurseries.
Collapse
Affiliation(s)
- Giannis Neofytou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus
| | - Maria G. Antoniou
- Department of Chemical Engineering, Cyprus University of Technology, 3603 Limassol, Cyprus
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus
| |
Collapse
|
3
|
Dupas R, Faucheux M, Senga Kiessé T, Casanova A, Brekenfeld N, Fovet O. High-intensity rainfall following drought triggers extreme nutrient concentrations in a small agricultural catchment. WATER RESEARCH 2024; 264:122108. [PMID: 39126744 DOI: 10.1016/j.watres.2024.122108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
The profound influence of climate change on the hydrological cycle raises concerns about its potential impacts on water quality, particularly in agricultural catchments. Here, we analysed 200 storm events monitored for nitrate and total phosphorus (TP) at sub-hourly intervals from 2016 to 2023 in the Kervidy-Naizin catchment (north-western France). Using Extreme Value theory, we identified storm events with extreme concentrations and compared their hydroclimatic characteristics to those of non-extreme events. We hypothesised that extreme concentration events occurred under extreme hydroclimatic conditions, which are projected to become more frequent in the future. The extreme events identified showed dilution patterns for nitrate, with concentrations decreasing by up to 41 %, and accretion patterns for TP, with concentrations increasing by up to 1400 % compared to non-extreme events. Hydroclimatic conditions during extreme concentration events were characterised by high rainfall intensities and low antecedent discharge, but no particular conditions for mean discharge. During non-extreme events, nitrate concentration-discharge relationships exhibited primarily clockwise hysteresis, whereas TP displayed an equal mix of clockwise and anticlockwise loops. In contrast, extreme events showed more anticlockwise hysteresis for nitrate and weak hysteresis for TP. We interpreted these dynamics and their hydroclimatic controls as the result of infiltration-excess overland flow diluting nitrate-rich groundwater and exporting large amounts of TP during intensive rainfall events following droughts, while groundwater fluctuations in the riparian zone and streambed remobilization control nutrient exports during non-extreme events. Given the increasing frequency and intensity of hydroclimatic extremes, such retrospective analyses can provide valuable insights into future nutrient dynamics in streams draining agricultural catchments.
Collapse
Affiliation(s)
- Rémi Dupas
- Institut Agro, UMR1069 SAS, INRAE, 65 rue de Saint-Brieuc, Rennes, CEDEX 35000, France.
| | - Mikaël Faucheux
- Institut Agro, UMR1069 SAS, INRAE, 65 rue de Saint-Brieuc, Rennes, CEDEX 35000, France
| | - Tristan Senga Kiessé
- Institut Agro, UMR1069 SAS, INRAE, 65 rue de Saint-Brieuc, Rennes, CEDEX 35000, France
| | - Andrés Casanova
- Institut Agro, UMR1069 SAS, INRAE, 65 rue de Saint-Brieuc, Rennes, CEDEX 35000, France
| | - Nicolai Brekenfeld
- Institut Agro, UMR1069 SAS, INRAE, 65 rue de Saint-Brieuc, Rennes, CEDEX 35000, France
| | - Ophélie Fovet
- Institut Agro, UMR1069 SAS, INRAE, 65 rue de Saint-Brieuc, Rennes, CEDEX 35000, France
| |
Collapse
|
4
|
Mellander PE, Ezzati G, Murphy C, Jordan P, Pulley S, Collins AL. Far-future hydrology will differentially change the phosphorus transfer continuum. DISCOVER GEOSCIENCE 2024; 2:60. [PMID: 39301477 PMCID: PMC11412086 DOI: 10.1007/s44288-024-00067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Climate change is likely to exacerbate land to water phosphorus (P) transfers, causing a degradation of water quality in freshwater bodies in Northwestern Europe. Planning for mitigation measures requires an understanding of P loss processes under such conditions. This study assesses how climate induced changes to hydrology will likely influence the P transfer continuum in six contrasting river catchments using Irish national observatories as exemplars. Changes or stability of total P (TP) and total reactive P (TRP) transfer processes were estimated using far-future scenarios (RCP4.5 and RCP8.5) of modelled river discharge under climate change and observed links between hydrological regimes (baseflow and flashiness indices) and transfer processes (mobilisation and delivery indices). While there were no differences in P mobilisation between RCP4.5 and RCP8.5, both mobilisation and delivery were higher for TP. Comparing data from 2080 (2070-2099) with 2020 (2010-2039), suggests that P mobilisation is expected to be relatively stable for the different catchments. While P delivery is highest in hydrologically flashy catchments, the largest increases were in groundwater-fed catchments in RCP8.5 (+ 22% for TRP and + 24% for TP). The inter-annual variability of P delivery in the groundwater-fed catchments is also expected to increase. Since the magnitude of a P source may not fully define its mobility, and hydrological connections of mobilisation areas are expected to increase, we recommend identifying critical mobilisation areas to target future mitigation strategies. These are hydrologically connected areas where controls such as soil/bedrock chemistry, biological activity and hydrological processes are favourable for P mobilisation.
Collapse
Affiliation(s)
- Per-Erik Mellander
- Agricultural Catchments Programme, Department of Environment, Soils and Landuse, Teagasc, Johnstown Castle, Ireland
| | - Golnaz Ezzati
- Agricultural Catchments Programme, Department of Environment, Soils and Landuse, Teagasc, Johnstown Castle, Ireland
| | - Conor Murphy
- Irish Climate Analysis and Research Units, Department of Geography, Maynooth University, Co. Kildare, Ireland
| | - Phil Jordan
- Co-Centre for Climate + Biodiversity + Water, School of Geography and Environmental Sciences, Ulster University, Coleraine, Northern Ireland
| | - Simon Pulley
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, UK
| | - Adrian L Collins
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, UK
| |
Collapse
|
5
|
Yang Y, Tilman D, Jin Z, Smith P, Barrett CB, Zhu YG, Burney J, D'Odorico P, Fantke P, Fargione J, Finlay JC, Rulli MC, Sloat L, Jan van Groenigen K, West PC, Ziska L, Michalak AM, Lobell DB, Clark M, Colquhoun J, Garg T, Garrett KA, Geels C, Hernandez RR, Herrero M, Hutchison WD, Jain M, Jungers JM, Liu B, Mueller ND, Ortiz-Bobea A, Schewe J, Song J, Verheyen J, Vitousek P, Wada Y, Xia L, Zhang X, Zhuang M. Climate change exacerbates the environmental impacts of agriculture. Science 2024; 385:eadn3747. [PMID: 39236181 DOI: 10.1126/science.adn3747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Agriculture's global environmental impacts are widely expected to continue expanding, driven by population and economic growth and dietary changes. This Review highlights climate change as an additional amplifier of agriculture's environmental impacts, by reducing agricultural productivity, reducing the efficacy of agrochemicals, increasing soil erosion, accelerating the growth and expanding the range of crop diseases and pests, and increasing land clearing. We identify multiple pathways through which climate change intensifies agricultural greenhouse gas emissions, creating a potentially powerful climate change-reinforcing feedback loop. The challenges raised by climate change underscore the urgent need to transition to sustainable, climate-resilient agricultural systems. This requires investments that both accelerate adoption of proven solutions that provide multiple benefits, and that discover and scale new beneficial processes and food products.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
- The National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing 400045, PR China
- The Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, PR China
| | - David Tilman
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Zhenong Jin
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, Scotland
| | - Christopher B Barrett
- CH Dyson School of Applied Economics and Management, JE Brooks School of Public Policy, and Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14850, USA
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jennifer Burney
- School of Global Policy and Strategy, University of California, San Diego, La Jolla, CA 92093, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla CA 92037 USA
| | - Paolo D'Odorico
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - Peter Fantke
- substitute ApS, Graaspurvevej 55, 2400 Copenhagen, Denmark
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Joe Fargione
- The Nature Conservancy, Minneapolis, MN 55415, USA
| | - Jacques C Finlay
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
- St. Anthony Falls Laboratory, Dept. of Civil, Environmental, and Geo-Engineering, University of Minnesota, MN 55414, USA
| | | | - Lindsey Sloat
- World Resources Institute, Washington, DC 20002, USA
| | | | - Paul C West
- Department of Applied Economics, University of Minnesota, St. Paul, MN 55108, USA
- Project Drawdown, St. Paul, MN 55101, USA
| | - Lewis Ziska
- Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Anna M Michalak
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, CA 94305, USA
- Department of Earth System Science, and Department of Biology, Stanford University, Stanford, CA 94305, USA
- Google Research, Mountain View, CA 94043, USA
| | - David B Lobell
- Department of Earth System Science and Center on Food Security and the Environment, Stanford University, Stanford, CA 94305, USA
| | - Michael Clark
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jed Colquhoun
- The National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing 400045, PR China
| | - Teevrat Garg
- The Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, PR China
| | - Karen A Garrett
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Camilla Geels
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Rebecca R Hernandez
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Mario Herrero
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, Scotland
| | - William D Hutchison
- CH Dyson School of Applied Economics and Management, JE Brooks School of Public Policy, and Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14850, USA
| | - Meha Jain
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jacob M Jungers
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Beibei Liu
- School of Global Policy and Strategy, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathaniel D Mueller
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla CA 92037 USA
| | - Ariel Ortiz-Bobea
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - Jacob Schewe
- substitute ApS, Graaspurvevej 55, 2400 Copenhagen, Denmark
| | - Jie Song
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Peter Vitousek
- St. Anthony Falls Laboratory, Dept. of Civil, Environmental, and Geo-Engineering, University of Minnesota, MN 55414, USA
| | - Yoshihide Wada
- Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Longlong Xia
- World Resources Institute, Washington, DC 20002, USA
| | - Xin Zhang
- Department of Geography, University of Exeter, Exeter EX4 4RJ, UK
| | - Minghao Zhuang
- Department of Applied Economics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
6
|
Service T, Cassidy R, Atcheson K, Farrow L, Harrison T, Jack P, Jordan P. A national-scale high-resolution runoff risk and channel network mapping workflow for diffuse pollution management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122110. [PMID: 39116813 DOI: 10.1016/j.jenvman.2024.122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/24/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Managing diffuse pollution from agricultural land requires a spatially explicit risk assessment that can be applied over large areas. Major components of such assessments are the precise definition of both channel networks that often originate as small channels and streams, and Hydrologically Sensitive Areas (HSAs) of storm runoff that occur on land surfaces. Challenges relate to regions of complex topography and land use patterns, particularly those which have been heavily modified by arterial drainage. In this study, a national scale, transferrable workflow and analysis were developed using a specifically commissioned LiDAR survey. Research on the first half of Northern Ireland (6927 km2) is reported where field-edge drain to major river channels were mapped from 1 m (16 points per metre) digital terrain models, and in-field HSAs were defined across over 400,000 fields with a median field size of 0.86 ha. Manual drainage mapping supplemented with a novel automated drainage channel correction process resulted in an unparalleled high-resolution national drainage network with 37,320 km of channels, increasing mapped channel density from 0.9 km km-2 to 5.5 km km-2. The HSAs were based on a Soil Topographic Index (STI) system using hillslope and contributing area models combined with soil hydraulic characteristics. In all, 249 km2 of runoff risk HSAs were identified by extracting the top 95th percentile of the modelled STI as the areas with the highest propensity to generate in-field runoff. At field and individual farm scale these targeted risk maps of diffuse pollution were delivered to over 13,000 farmers and form part of the nationwide Soil Nutrient Health Scheme programme.
Collapse
Affiliation(s)
- Thomas Service
- Agri-Environment Branch, Agri-Food and Biosciences Institute (AFBI), Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK.
| | - Rachel Cassidy
- Agri-Environment Branch, Agri-Food and Biosciences Institute (AFBI), Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK
| | - Kevin Atcheson
- School of Geography and Environmental Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Luke Farrow
- Agri-Environment Branch, Agri-Food and Biosciences Institute (AFBI), Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK
| | - Taylor Harrison
- Agri-Environment Branch, Agri-Food and Biosciences Institute (AFBI), Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK
| | - Paddy Jack
- Agri-Environment Branch, Agri-Food and Biosciences Institute (AFBI), Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK
| | - Phil Jordan
- School of Geography and Environmental Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| |
Collapse
|
7
|
Baker J, Schunk N, Scholz M, Merck A, Muenich RL, Westerhoff P, Elser JJ, Duckworth OW, Gatiboni L, Islam M, Marshall AM, Sozzani R, Mayer BK. Global-to-Local Dependencies in Phosphorus Mass Flows and Markets: Pathways to Improving System Resiliency in Response to Exogenous Shocks. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:493-502. [PMID: 38882202 PMCID: PMC11171449 DOI: 10.1021/acs.estlett.4c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024]
Abstract
Uneven global distribution of phosphate rock deposits and the supply chains to transport phosphorus (P) make P fertilizers vulnerable to exogenous shocks, including commodity market shocks; extreme weather events or natural disasters; and geopolitical instability, such as trade disputes, disruption of shipping routes, and war. Understanding bidirectional risk transmission (global-to-local and local-to-global) in P supply and consumption chains is thus essential. Ignoring P system interdependencies and associated risks could have major impacts on critical infrastructure operations and increase the vulnerability of global food systems. We highlight recent unanticipated events and cascading effects that have impacted P markets globally. We discuss the need to account for exogenous shocks in local assessments of P flows, policies, and infrastructure design choices. We also provide examples of how accounting for undervalued global risks to the P industry can hasten the transition to a sustainable P future. For example, leveraging internal P recycling loops, improving plant P use efficiency, and utilizing legacy soil P all enhance system resiliency in the face of exogenous shocks and long-term anticipated threats. Strategies applied at the local level, which are embedded within national and global policy systems, can have global-scale impacts in derisking the P supply chain.
Collapse
Affiliation(s)
- Justin Baker
- Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nathan Schunk
- Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Matt Scholz
- Global Institute of Sustainability and Innovation, Arizona State University, Tempe, Arizona 85287 United States
| | - Ashton Merck
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Rebecca Logsdon Muenich
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85259, United States
| | - James J Elser
- School of Sustainability and Sustainable Phosphorus Alliance, Arizona State University, Tempe, Arizona 85281, United States
| | - Owen W Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Luke Gatiboni
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Minhazul Islam
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85259, United States
| | - Anna-Maria Marshall
- Department of Sociology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rosangela Sozzani
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
8
|
Liu Y, Guo W, Wei C, Huang H, Nan F, Liu X, Liu Q, Lv J, Feng J, Xie S. Rainfall-induced changes in aquatic microbial communities and stability of dissolved organic matter: Insight from a Fen river analysis. ENVIRONMENTAL RESEARCH 2024; 246:118107. [PMID: 38181848 DOI: 10.1016/j.envres.2024.118107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Microbial communities are pivotal in aquatic ecosystems, as they affect water quality, energy dynamics, nutrient cycling, and hydrological stability. This study explored the effects of rainfall on hydrological and photosynthetic parameters, microbial composition, and functional gene profiles in the Fen River. Our results demonstrated that rainfall-induced decreases in stream temperature, dissolved oxygen, pH, total phosphorus, chemical oxygen demand, and dissolved organic carbon concentrations. In contrast, rainfall increased total dissolved solids, salinity, and ammonia-nitrogen concentrations. A detailed microbial community structure analysis revealed that Cyanobacteria was the dominant microbial taxon in the Fen River, accounting for approximately 75% and 25% of the microalgal and bacterial communities, respectively. The abundance of Chlorophyta and Bacillariophyta increased by 47.66% and 29.92%, respectively, whereas the relative abundance of Bacteroidetes decreased by 37.55% under rainfall conditions. Stochastic processes predominantly affected the assembly of the bacterial community on rainy days. Functional gene analysis revealed variations in bacterial functions between sunny (Sun) and rainy (Rain) conditions, particularly in genes associated with the carbon cycle. The 3-oxoacyl-[acyl-carrier-protein] reductase gene was more abundant in the Fen River bacterial community. Particular genes involved in metabolism and environmental information processing, including the acetyl-CoA C-acetyltransferase (atoB), enoyl-CoA hydratase (paaF), and branched-chain amino acid transport system gene (livK), which are integral to environmental information processing, were more abundant in Sun than the Rain conditions. In contrast, the phosphate transport system gene, the galactose metabolic gene, and the pyruvate metabolic gene were more abundant in Rain. The excitation-emission matrix analysis with parallel factor analysis identified four fluorescence components (C1-C4) in the river, which were predominantly protein- (C1) and humic-like (C2-C4) substances. Rainfall affected organic matter production and transport, leading to changes in the degradation and stability of dissolved organic matter. Overall, this study offers insight into how rainfall affects aquatic ecosystems.
Collapse
Affiliation(s)
- Yang Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Weinan Guo
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Caihua Wei
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Hanjie Huang
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Fangru Nan
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xudong Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Qi Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Junping Lv
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jia Feng
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shulian Xie
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
9
|
McDowell RW, Pletnyakov P, Haygarth PM. Phosphorus applications adjusted to optimal crop yields can help sustain global phosphorus reserves. NATURE FOOD 2024; 5:332-339. [PMID: 38528194 PMCID: PMC11045449 DOI: 10.1038/s43016-024-00952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
With the longevity of phosphorus reserves uncertain, distributing phosphorus to meet food production needs is a global challenge. Here we match plant-available soil Olsen phosphorus concentrations to thresholds for optimal productivity of improved grassland and 28 of the world's most widely grown and valuable crops. We find more land (73%) below optimal production thresholds than above. We calculate that an initial capital application of 56,954 kt could boost soil Olsen phosphorus to their threshold concentrations and that 28,067 kt yr-1 (17,500 kt yr-1 to cropland) could maintain these thresholds. Without additional reserves becoming available, it would take 454 years at the current rate of application (20,500 kt yr-1) to exhaust estimated reserves (2020 value), compared with 531 years at our estimated maintenance rate and 469 years if phosphorus deficits were alleviated. More judicious use of phosphorus fertilizers to account for soil Olsen phosphorus can help achieve optimal production without accelerating the depletion of phosphorus reserves.
Collapse
Affiliation(s)
- R W McDowell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand.
- AgResearch, Lincoln Science Centre, Christchurch, New Zealand.
| | - P Pletnyakov
- AgResearch, Lincoln Science Centre, Christchurch, New Zealand
| | - P M Haygarth
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
10
|
Bieroza M, Hallberg L, Livsey J, Prischl LA, Wynants M. Recognizing Agricultural Headwaters as Critical Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4852-4858. [PMID: 38438992 PMCID: PMC10956425 DOI: 10.1021/acs.est.3c10165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Agricultural headwaters are positioned at the interface between terrestrial and aquatic ecosystems and, therefore, at the margins of scientific disciplines. They are deemed devoid of biodiversity and too polluted by ecologists, overlooked by hydrologists, and are perceived as a nuisance by landowners and water authorities. While agricultural streams are widespread and represent a major habitat in terms of stream length, they remain understudied and thereby undervalued. Agricultural headwater streams are significantly modified and polluted but at the same time are the critical linkages among land, air, and water ecosystems. They exhibit the largest variation in streamflow, water quality, and greenhouse gas emission with cascading effects on the entire stream networks, yet they are underrepresented in monitoring, remediation, and restoration. Therefore, we call for more intense efforts to characterize and understand the inherent variability and sensitivity of these ecosystems to global change drivers through scientific and regulatory monitoring and to improve their ecosystem conditions and functions through purposeful and evidence-based remediation.
Collapse
Affiliation(s)
- Magdalena Bieroza
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - Lukas Hallberg
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - John Livsey
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - Laura-Ainhoa Prischl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - Maarten Wynants
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| |
Collapse
|
11
|
Larned ST, Snelder TH. Meeting the Growing Need for Land-Water System Modelling to Assess Land Management Actions. ENVIRONMENTAL MANAGEMENT 2024; 73:1-18. [PMID: 37845574 DOI: 10.1007/s00267-023-01894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Elevated contaminant levels and hydrological alterations resulting from land use are degrading aquatic ecosystems on a global scale. A range of land management actions may be used to reduce or prevent this degradation. To select among alternative management actions, decision makers require predictions of their effectiveness, their economic impacts, estimated uncertainty in the predictions, and estimated time lags between management actions and environmental responses. There are multiple methods for generating these predictions, but the most rigorous and transparent methods involve quantitative modelling. The challenge for modellers is two-fold. First, they must employ models that represent complex land-water systems, including the causal chains linking land use to contaminant loss and water use, catchment processes that alter contaminant loads and flow regimes, and ecological responses in aquatic environments. Second, they must ensure that these models meet the needs of endusers in terms of reliability, usefulness, feasibility and transparency. Integrated modelling using coupled models to represent the land-water system can meet both challenges and has advantages over alternative approaches. The need for integrated land-water system modelling is growing as the extent and intensity of human land use increases, and regulatory agencies seek more effective land management actions to counter the adverse effects. Here we present recommendations for modelling teams, to help them improve current practices and meet the growing need for land-water system models. The recommendations address several aspects of integrated modelling: (1) assembling modelling teams; (2) problem framing and conceptual modelling; (3) developing spatial frameworks; (4) integrating economic and biophysical models; (5) selecting and coupling models.
Collapse
Affiliation(s)
- Scott T Larned
- National Institute of Water and Atmospheric Research, Christchurch, New Zealand.
| | | |
Collapse
|
12
|
Rahat SH, Steissberg T, Chang W, Chen X, Mandavya G, Tracy J, Wasti A, Atreya G, Saki S, Bhuiyan MAE, Ray P. Remote sensing-enabled machine learning for river water quality modeling under multidimensional uncertainty. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165504. [PMID: 37459982 DOI: 10.1016/j.scitotenv.2023.165504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Two fundamental problems have inhibited progress in the simulation of river water quality under climate (and other) uncertainty: 1) insufficient data, and 2) the inability of existing models to account for the complexity of factors (e.g., hydro-climatic, basin characteristics, land use features) affecting river water quality. To address these concerns this study presents a technique for augmenting limited ground-based observations of water quality variables with remote-sensed surface reflectance data by leveraging a machine learning model capable of accommodating the multidimensionality of water quality influences. Total Suspended Solids (TSS) can serve as a surrogate for chemical and biological pollutants of concern in surface water bodies. Historically, TSS data collection in the United States has been limited to the location of water treatment plants where state or federal agencies conduct regularly-scheduled water sampling. Mathematical models relating riverine TSS concentration to the explanatory factors have therefore been limited and the relationships between climate extremes and water contamination events have not been effectively diagnosed. This paper presents a method to identify these issues by utilizing a Long Short-Term Memory Network (LSTM) model trained on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite reflectance data, which is calibrated to TSS data collected by the Ohio River Valley Water Sanitation Commission (ORSANCO). The methodology developed enables a thorough empirical analysis and data-driven algorithms able to account for spatial variability within the watershed and provide effective water quality prediction under uncertainty.
Collapse
Affiliation(s)
- Saiful Haque Rahat
- Geosyntec Consultants, 920 SW 6th Ave Suite, 600, Portland, OR 97204, United States of America.
| | - Todd Steissberg
- U. S. Army Engineer Research and Development Center (ERDC), 707 Fourth St., Davis, CA 95616, United States of America
| | - Won Chang
- Department of Statistics, University of Cincinnati, 5516 French Hall, 2815, Commons Way, University of Cincinnati, Cincinnati, OH 45221, United States of America
| | - Xi Chen
- Department of Geography, University of Cincinnati, Braunstein Hall, A&S Geography, 0131, Cincinnati, OH 45221, United States of America
| | - Garima Mandavya
- Department of Chemical and Environmental Engineering, University of Cincinnati, 601, Engineering Research Center, Cincinnati, OH 45221-0012, United States of America
| | - Jacob Tracy
- Department of Chemical and Environmental Engineering, University of Cincinnati, 601, Engineering Research Center, Cincinnati, OH 45221-0012, United States of America
| | - Asphota Wasti
- Department of Chemical and Environmental Engineering, University of Cincinnati, 601, Engineering Research Center, Cincinnati, OH 45221-0012, United States of America
| | - Gaurav Atreya
- Department of Chemical and Environmental Engineering, University of Cincinnati, 601, Engineering Research Center, Cincinnati, OH 45221-0012, United States of America
| | - Shah Saki
- Department of Civil and Environmental Engineering, University of Connecticut, 261 Glenbrook Road Unit, 3037, Storrs, CT 06269-3037, United States of America
| | - Md Abul Ehsan Bhuiyan
- Climate Prediction Center, National Oceanic & Atmospheric Administration (NOAA), College Park, MA 20742, United States of America
| | - Patrick Ray
- Department of Chemical and Environmental Engineering, University of Cincinnati, 601, Engineering Research Center, Cincinnati, OH 45221-0012, United States of America
| |
Collapse
|
13
|
Wan L, Kendall AD, Martin SL, Hamlin QF, Hyndman DW. Important Role of Overland Flows and Tile Field Pathways in Nutrient Transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17061-17075. [PMID: 37871005 PMCID: PMC10634344 DOI: 10.1021/acs.est.3c03741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023]
Abstract
Nitrogen and phosphorus pollution is of great concern to aquatic life and human well-being. While most of these nutrients are applied to the landscape, little is known about the complex interplay among nutrient applications, transport attenuation processes, and coastal loads. Here, we enhance and apply the Spatially Explicit Nutrient Source Estimate and Flux model (SENSEflux) to simulate the total annual nitrogen and phosphorus loads from the US Great Lakes Basin to the coastline, identify nutrient delivery hotspots, and estimate the relative contributions of different sources and pathways at a high resolution (120 m). In addition to in-stream uptake, the main novelty of this model is that SENSEflux explicitly describes nutrient attenuation through four distinct pathways that are seldom described jointly in other models: runoff from tile-drained agricultural fields, overland runoff, groundwater flow, and septic plumes within groundwater. Our analysis shows that agricultural sources are dominant for both total nitrogen (TN) (58%) and total phosphorus (TP) (46%) deliveries to the Great Lakes. In addition, this study reveals that the surface pathways (sum of overland flow and tile field drainage) dominate nutrient delivery, transporting 66% of the TN and 76% of the TP loads to the US Great Lakes coastline. Importantly, this study provides the first basin-wide estimates of both nonseptic groundwater (TN: 26%; TP: 5%) and septic-plume groundwater (TN: 4%; TP: 2%) deliveries of nutrients to the lakes. This work provides valuable information for environmental managers to target efforts to reduce nutrient loads to the Great Lakes, which could be transferred to other regions worldwide that are facing similar nutrient management challenges.
Collapse
Affiliation(s)
- Luwen Wan
- Department
of Earth and Environmental Sciences, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Anthony D. Kendall
- Department
of Earth and Environmental Sciences, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Sherry L. Martin
- Department
of Earth and Environmental Sciences, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Quercus F. Hamlin
- Department
of Earth and Environmental Sciences, Michigan
State University, East Lansing, Michigan 48824, United States
| | - David W. Hyndman
- Department
of Earth and Environmental Sciences, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
14
|
Bai Z, Liu L, Obersteiner M, Mosnier A, Chen X, Yuan Z, Ma L. Agricultural trade impacts global phosphorus use and partial productivity. NATURE FOOD 2023; 4:762-773. [PMID: 37550541 DOI: 10.1038/s43016-023-00822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
The spatio-temporal distribution, flow and end use of phosphorus (P) embedded in traded agricultural products are poorly understood. Here we use global trade matrices to analyse the partial factor productivity of P (output per unit of P input) for crop and livestock products in 200 countries and their cumulative contributions to the export or import of agricultural products over 1961-2019. In these six decades, the trade of agricultural P products has increased global partial factor productivity for crop and livestock production and has theoretically saved 67 Tg P in fertilizers and 1.6 Tg P in feed. However, trade is now at risk of contributing to wasteful use of P resources globally due to a decline in trade optimality, as agricultural products are increasingly exported from low to high partial factor productivity countries and due to P embedded in imported agricultural products mainly lost to the environment without recycling. Integrated crop-livestock production systems and P-recycling technologies can help.
Collapse
Affiliation(s)
- Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, China.
- Xiongan Institute of Innovation, The Chinese Academy of Sciences, Xiongan, China.
| | - Ling Liu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, China
| | - Michael Obersteiner
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Aline Mosnier
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- Sustainable Development Solutions Network, Paris, France
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, China.
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China.
| |
Collapse
|
15
|
Lv C, Tian Y, Huang L, Shan H, Chou Q, Zhang W, Su H, Li K, Zhang X, Ni L, Cao T, Jeppesen E. Buffering capacity of submerged macrophytes against nutrient pulses increase with its coverage in shallow lakes. CHEMOSPHERE 2023; 332:138899. [PMID: 37169089 DOI: 10.1016/j.chemosphere.2023.138899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/09/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
Submerged macrophytes can improve water quality and buffer the effects of external nutrient loading, which helps to maintain a clear-water state in shallow lakes. We constructed 12 large enclosures with contrasting coverages (treatments) of submerged macrophytes (SMC) to elucidate their buffering capacity and resilience to nutrient pulses. We found that aquatic ecosystems with high SMC had higher buffering capacity and resilience, vice versa, i. e, the enclosures with high SMC quickly buffered the nutrient pulse and rebounded to clear-water state after a short stay in turbid-water state dominated by algae, while the treatments with low SMC could not fully buffer the pulse and rebound to clear-water state, and they slowly entered the transitional state after staying in turbid-water state. This means that the enclosures with high SMC had a better water quality than those with low SMC, i.e., the levels of nutrients and Chl-a were lower in the treatments with high plant coverage. In addition, plant coverage had a significantly positive buffering effect against nitrogen and phosphorus pulses, i.e., the nutrient concentrations in the treatments with high SMC took shorter time to return to the pre-pulse level. Overall, our results evidenced that the higher that the SMCs is, the better is the water quality and buffering capacity against nutrient pulses, i.e. the more stable is the clear-water state. However, low SMC may not be able to resist the impact of such strong nutrient pulse. Our results provide reference and guidance for water pollution control and water ecological restoration.
Collapse
Affiliation(s)
- Chaochao Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuqing Tian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liangliang Huang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
| | - Hang Shan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qingchuan Chou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Wei Zhang
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Haojie Su
- Institute for Ecological and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xiaolin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Leyi Ni
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Te Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Erik Jeppesen
- Institute for Ecological and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China; Aarhus University, Department of Ecoscience, Aarhus, 8000, Denmark; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
16
|
Tang S, Liang J, Li O, Shao N, Jin Y, Ni J, Fei X, Li Z. Morphology-Tailored Hydroxyapatite Nanocarrier for Rhizosphere-Targeted Phosphorus Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206954. [PMID: 36599675 DOI: 10.1002/smll.202206954] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
High hydrophilicity and soil fixation collectively hamper the delivery of phosphorus (P) released from conventional chemical phosphorus fertilizers (CPFs) to plant rhizosphere for efficient uptake. Here, a phosphorus nutrient nanocarrier (PNC) based on morphology-tailored nanohydroxyapatite (HAP) is constructed. By virtue of kinetic control of building blocks with designed calcium phosphate intermediates, rod-like and hexagonal prism-like PNCs are synthesized, both having satisfactory hydrophobicity (water contact angle of 105.4- 132.9°) and zeta potential (-17.43 to -58.4 mV at pH range from 3 to 13). Greenhouse experiments demonstrate that the P contents increase by up to 183% in maize rhizosphere and up to 16% in maize biomass when compared to the CPF. Due to the water potential gradient driven by photosynthesis and transpiration, both PNCs are stably transported to maize rhizosphere, and they are capable to counteract soil fixation prior to uptake by plant roots. Within the synergies of the HAP morphological characteristics and triggered phosphate starvation response, root anatomy confirms that two pathways are elucidated to enhance plant P replenishment from the PNCs. Together with structure tunability and facile synthesis, our results offer a new nanodelivery prototype to accommodate plant physiological traits by tailoring the morphology of HAP.
Collapse
Affiliation(s)
- Siqi Tang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing, 100871, P. R. China
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiaming Liang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ouyang Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ningning Shao
- Institute of Technology for Marine Civil Engineering, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Yongsheng Jin
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, 102208, P. R. China
| | - Jinren Ni
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhenshan Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
17
|
Dodd RJ, Chadwick DR, Hill PW, Hayes F, Sánchez-Rodríguez AR, Gwynn-Jones D, Smart SM, Jones DL. Resilience of ecosystem service delivery in grasslands in response to single and compound extreme weather events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160660. [PMID: 36464051 DOI: 10.1016/j.scitotenv.2022.160660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Extreme weather events are increasing in frequency and magnitude with profound effects on ecosystem functioning. Further, there is now a greater likelihood that multiple extreme events are occurring within a single year. Here we investigated the effect of a single drought, flood or compound (flood + drought) extreme event on temperate grassland ecosystem processes in a field experiment. To assess system resistance and resilience, we studied changes in a wide range of above- and below-ground indicators (plant diversity and productivity, greenhouse gas emissions, soil chemical, physical and biological metrics) during the 8 week stress events and then for 2 years post-stress. We hypothesized that agricultural grasslands would have different degrees of resistance and resilience to flood and drought stress. We also investigated two alternative hypotheses that the combined flood + drought treatment would either, (A) promote ecosystem resilience through more rapid recovery of soil moisture conditions or (B) exacerbate the impact of the single flood or drought event. Our results showed that flooding had a much greater effect than drought on ecosystem processes and that the grassland was more resistant and resilient to drought than to flood. The immediate impact of flooding on all indicators was negative, especially for those related to production, and climate and water regulation. Flooding stress caused pronounced and persistent shifts in soil microbial and plant communities with large implications for nutrient cycling and long-term ecosystem function. The compound flood + drought treatment failed to show a more severe impact than the single extreme events. Rather, there was an indication of quicker recovery of soil and microbial parameters suggesting greater resilience in line with hypothesis (A). This study clearly reveals that contrasting extreme weather events differentially affect grassland ecosystem function but that concurrent events of a contrasting nature may promote ecosystem resilience to future stress.
Collapse
Affiliation(s)
- Rosalind J Dodd
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Ave, Bailrigg LA1 4AP, UK; Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - David R Chadwick
- Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Paul W Hill
- Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Felicity Hayes
- UK Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, Gwynedd LL57 2UW, UK
| | - Antonio R Sánchez-Rodríguez
- Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Departamento de Agronomía, Universidad de Córdoba, Córdoba 14071, Spain
| | - Dylan Gwynn-Jones
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3DA, UK
| | - Simon M Smart
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Ave, Bailrigg LA1 4AP, UK
| | - Davey L Jones
- Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| |
Collapse
|
18
|
Ding S, Jiao L, He J, Li L, Liu W, Liu Y, Zhu Y, Zheng J. Biogeochemical dynamics of particulate organic phosphorus and its potential environmental implication in a typical "algae-type" eutrophic lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120240. [PMID: 36152715 DOI: 10.1016/j.envpol.2022.120240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Organic phosphorus (Po) plays a very important role in the process of lake eutrophication, but there is still a lack of knowledge about the internal cycle of Po in suspended particulate matter (SPM) dominated by algal debris. In this study, the characterization of bioavailable Po by sequential extraction and enzymatic hydrolysis showed that 45% of extracted TP was Po in SPM of Lake Dianchi, and 43-98% of total Po in H2O, NaHCO3 and NaOH fractions was enzymatically hydrolyzable Po (EHP, H2O-EHP: 31-53%). Importantly, labile monoester P was the main organic form (68%) of EHP, and its potential bioavailability was higher than that of diester P and phytate-like P. According to the estimation of P pools in SPM of the whole lake, the total load of Pi plus EHP in the H2O extract of SPM was 74.9 t and had great potential risk to enhance eutrophication in the lake water environment. Accordingly, reducing the amount of SPM in the water during the algal blooming period is likely to be a necessary measure that can successfully interfere with or block the continuous stress of unhealthy levels of P on the aquatic ecosystem.
Collapse
Affiliation(s)
- Shuai Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Environmental Standard Institute, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jia He
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Lingping Li
- Shenzhen Green Creating Promotion Center of Living Environment, Shenzhen, 518040, China
| | - Wenbin Liu
- Ecological Engineering Company Limited of CCCC First Harbor Engineering Co., Ltd., Shenzhen, 518107, China
| | - Yan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Environmental Standard Institute, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, China
| | - Yuanrong Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jinlong Zheng
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| |
Collapse
|
19
|
Ross CA, Moslenko LL, Biagi KM, Oswald CJ, Wellen CC, Thomas JL, Raby M, Sorichetti RJ. Total and dissolved phosphorus losses from agricultural headwater streams during extreme runoff events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157736. [PMID: 35926630 DOI: 10.1016/j.scitotenv.2022.157736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/17/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Eutrophication continues to be a concerning global water quality issue. Managing and mitigating harmful algal blooms demands clear information on the conditions promoting large phosphorus losses from contributing watersheds. Of particular concern is the amount and form of phosphorus loading to receiving water bodies during extreme runoff events, which are expected to increase in frequency due to climate change. Five years (2015 to 2020) of water quantity and quality data from 11 agricultural watersheds in the lower Great Lakes basin were analyzed and used to model total and dissolved phosphorus losses. This study aimed to assess temporal dynamics in phosphorus concentrations and losses over runoff events covering a wide range of hydrologic conditions and to quantify their relative importance on annual phosphorus losses. Event concentration-discharge relationships for total and dissolved phosphorus were hysteretic and had contrasting dominant patterns across watersheds. The proportion of annual phosphorus losses during events was highly variable between watersheds, accounting for 47-94 %. Extreme events were particularly impactful: as few as three events per year were found to be responsible for nearly half of total phosphorus (20-50 %) and total dissolved phosphorus (14-44 %) losses. Variability in total and dissolved phosphorus losses and concentrations over a wide range of flow conditions suggests that event magnitude is an important control on the relative mobility of particulate and dissolved phosphorus fractions. This study showed that insights into nutrient dynamics and phosphorus budgets in the lower Great Lakes basin and agriculture dominated environments more broadly can be gained by assessing event nutrient losses with respect to flow conditions and patterns in concentration-discharge relationships.
Collapse
Affiliation(s)
- C A Ross
- Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto M5B 2K3, Canada.
| | - L L Moslenko
- Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto M5B 2K3, Canada
| | - K M Biagi
- Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto M5B 2K3, Canada
| | - C J Oswald
- Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto M5B 2K3, Canada
| | - C C Wellen
- Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto M5B 2K3, Canada
| | - J L Thomas
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto M9P 3V6, Canada
| | - M Raby
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto M9P 3V6, Canada
| | - R J Sorichetti
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto M9P 3V6, Canada
| |
Collapse
|
20
|
Xu G, Fan H, Oliver DM, Dai Y, Li H, Shi Y, Long H, Xiong K, Zhao Z. Decoding river pollution trends and their landscape determinants in an ecologically fragile karst basin using a machine learning model. ENVIRONMENTAL RESEARCH 2022; 214:113843. [PMID: 35931190 DOI: 10.1016/j.envres.2022.113843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Karst watersheds accommodate high landscape complexity and are influenced by both human-induced and natural activity, which affects the formation and process of runoff, sediment connectivity and contaminant transport and alters natural hydrological and nutrient cycling. However, physical monitoring stations are costly and labor-intensive, which has confined the assessment of water quality impairments on spatial scale. The geographical characteristics of catchments are potential influencing factors of water quality, often overlooked in previous studies of highly heterogeneous karst landscape. To solve this problem, we developed a machining learning method and applied Extreme Gradient Boosting (XGBoost) to predict the spatial distribution of water quality in the world's most ecologically fragile karst watershed. We used the Shapley Addition interpretation (SHAP) to explain the potential determinants. Before this process, we first used the water quality damage index (WQI-DET) to evaluate the water quality impairment status and determined that CODMn, TN and TP were causing river water quality impairments in the WRB. Second, we selected 46 watershed features based on the three key processes (sources-mobilization-transport) which affect the temporal and spatial variation of river pollutants to predict water quality in unmonitored reaches and decipher the potential determinants of river impairments. The predicting range of CODMn spanned from 1.39 mg/L to 17.40 mg/L. The predictions of TP and TN ranged from 0.02 to 1.31 mg/L and 0.25-5.72 mg/L, respectively. In general, the XGBoost model performs well in predicting the concentration of water quality in the WRB. SHAP explained that pollutant levels may be driven by three factors: anthropogenic sources (agricultural pollution inputs), fragile soils (low organic carbon content and high soil permeability to water flow), and pollutant transport mechanisms (TWI, carbonate rocks). Our study provides key data to support decision-making for water quality restoration projects in the WRB and information to help bridge the science:policy gap.
Collapse
Affiliation(s)
- Guoyu Xu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxiang Fan
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - David M Oliver
- Biological & Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Yibin Dai
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Hengpeng Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Yuejie Shi
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haifei Long
- Guizhou Provincial Bureau of Hydrological Resources, Guiyang, 550002, China
| | - Kangning Xiong
- School of Karst Science / State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550001, China
| | - Zhongming Zhao
- Department of Geography, King's College London, London, WC2R 2LS, UK
| |
Collapse
|
21
|
Taslakyan L, Baker MC, Shrestha DS, Strawn DG, Möller G. CO 2 e footprint and eco-impact of ultralow phosphorus removal by hydrous ferric oxide reactive filtration: A municipal wastewater LCA case study. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10777. [PMID: 36004674 PMCID: PMC9540262 DOI: 10.1002/wer.10777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Dual upflow reactive filtration by a slowly moving sand bed with continuously renewed, hydrous ferric oxide-coated sand is used for removing polluting substances and for meeting the ultralow 0.05 mg/l total phosphorus discharge permit limits at a 1.2 million liters per day (0.32 million gallons per day) water resource recovery facility in Plummer, Idaho, in the United States. A life cycle assessment (LCA) of this reactive filtration installation was carried out to assess the environmental hotspots in the system and analyze alternative system configurations with a focus on CO2 equivalent (CO2 e) global warming potential, freshwater and marine eutrophication, and mineral resource scarcity. "What if" scenarios with alternative inputs for the energy, metal salts, and air compressor optimization show trade-offs between the impact categories. Key results that show a comparative reduction of global warming potential include the use of Fe versus Al metal salts, the use of renewable energy, and the energy efficiency benefit of optimizing process inputs, such as compressor air pressure, to match operational demand. The LCA shows a 2 × 10-2 kg CO2 e footprint per cubic meter of water, with 47% from housing concrete, and an overall freshwater eutrophication impact reduced by 99% versus no treatment. The use of renewable hydropower energy at this site isolates construction concrete as a target for lowering the CO2 e footprint. PRACTITIONER POINTS: The main LCA eco-impact hotspots in this dual reactive filtration tertiary treatment are construction concrete and the ferric sulfate used. Iron salts show smaller impact in global warming, freshwater eutrophication, and mineral resource scarcity than "what if scenario" aluminum salts. The energy mix for this site is predominantly hydropower; other energy mix "what if" scenarios show larger impacts. Operational energy efficiency and thermodynamic analysis show that fine tuning the air compressor helps reduce carbon footprint and energy use. LCA shows a favorable 2 x 10-2 kg CO2e/m3 water impact with 99% reduction of freshwater eutrophication potential versus no treatment.
Collapse
Affiliation(s)
- Lusine Taslakyan
- Department of Soil and Water SystemsUniversity of IdahoMoscowIdahoUSA
- Water Resources ProgramUniversity of IdahoMoscowIdahoUSA
| | - Martin C. Baker
- Department of Soil and Water SystemsUniversity of IdahoMoscowIdahoUSA
| | - Dev S. Shrestha
- Department of Chemical and Biological EngineeringUniversity of IdahoMoscowIdahoUSA
| | - Daniel G. Strawn
- Department of Soil and Water SystemsUniversity of IdahoMoscowIdahoUSA
- Water Resources ProgramUniversity of IdahoMoscowIdahoUSA
| | - Gregory Möller
- Department of Soil and Water SystemsUniversity of IdahoMoscowIdahoUSA
- Department of Chemical and Biological EngineeringUniversity of IdahoMoscowIdahoUSA
- Water Resources ProgramUniversity of IdahoMoscowIdahoUSA
| |
Collapse
|
22
|
Atcheson K, Mellander PE, Cassidy R, Cook S, Floyd S, McRoberts C, Morton PA, Jordan P. Quantifying MCPA load pathways at catchment scale using high temporal resolution data. WATER RESEARCH 2022; 220:118654. [PMID: 35635916 DOI: 10.1016/j.watres.2022.118654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Detection of the agricultural acid herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) in drinking water source catchments is of growing concern, with economic and environmental implications for water utilities and wider ecosystem services. MCPA is poorly adsorbed to soil and highly mobile in water, but hydrological pathway processes are relatively unknown at the catchment scale and limited by coarse resolution data. This understanding is required to target mitigation measures and to provide a framework to monitor their effectiveness. To address this knowledge gap, this study reports findings from river discharge and synchronous MCPA concentration datasets (continuous 7 hour and with additional hourly sampling during storm events) collected over a 7 month herbicide spraying season. The study was undertaken in a surface (source) water catchment (384 km2-of which 154 km2 is agricultural land use) in the cross-border area of Ireland. Combined into loads, and using two pathway separation techniques, the MCPA data were apportioned into event and baseload components and the former was further separated to quantify a quickflow (QF) and other event pathways. Based on the 7 hourly dataset, 85.2 kg (0.22 kg km-2 by catchment area, or 0.55 kg km-2 by agricultural area) of MCPA was exported from the catchment in 7 months. Of this load, 87.7 % was transported via event flow pathways with 72.0 % transported via surface dominated (QF) pathways. Approximately 12 % of the MCPA load was transported via deep baseflows, indicating a persistence in this delayed pathway, and this was the primary pathway condition monitored in a weekly regulatory sampling programme. However, overall, the data indicated a dominant acute, storm dependent process of incidental MCPA loss during the spraying season. Reducing use and/or implementing extensive surface pathway disconnection measures are the mitigation options with greatest potential, the success of which can only be assessed using high temporal resolution monitoring techniques.
Collapse
Affiliation(s)
- Kevin Atcheson
- School of Geography and Environmental Sciences, Ulster University, Coleraine, UK.
| | - Per-Erik Mellander
- Agricultural Catchments Programme, Teagasc, Johnstown Castle, Wexford, Ireland
| | - Rachel Cassidy
- Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast, UK
| | - Sally Cook
- School of Geography and Environmental Sciences, Ulster University, Coleraine, UK
| | - Stewart Floyd
- Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast, UK
| | - Colin McRoberts
- Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast, UK
| | - Phoebe A Morton
- Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast, UK
| | - Phil Jordan
- School of Geography and Environmental Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
23
|
Separating natural from human enhanced methane emissions in headwater streams. Nat Commun 2022; 13:3810. [PMID: 35778387 PMCID: PMC9249869 DOI: 10.1038/s41467-022-31559-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/22/2022] [Indexed: 12/05/2022] Open
Abstract
Headwater streams are natural sources of methane but are suffering severe anthropogenic disturbance, particularly land use change and climate warming. The widespread intensification of agriculture since the 1940s has increased the export of fine sediments from land to streams, but systematic assessment of their effects on stream methane is lacking. Here we show that excess fine sediment delivery is widespread in UK streams (n = 236) and, set against a pre-1940s baseline, has markedly increased streambed organic matter (23 to 100 g m−2), amplified streambed methane production and ultimately tripled methane emissions (0.2 to 0.7 mmol CH4 m−2 d−1, n = 29). While streambed methane production responds strongly to organic matter, we estimate the effect of the approximate 0.7 °C of warming since the 1940s to be comparatively modest. By separating natural from human enhanced methane emissions we highlight how catchment management targeting the delivery of excess fine sediment could mitigate stream methane emissions by some 70%. The effects of fertiliser from intensive agriculture are well recognised, but not so well for fine-sediment. Here we show how widespread ingress of agriculturally derived fine-sediment since the 1940s markedly amplifies methane emissions from streams.
Collapse
|
24
|
Land Use Change to Reduce Freshwater Nitrogen and Phosphorus will Be Effective Even with Projected Climate Change. WATER 2022. [DOI: 10.3390/w14050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Recent studies have demonstrated that projected climate change will likely enhance nitrogen (N) and phosphorus (P) loss from farms and farmland, with the potential to worsen freshwater eutrophication. Here, we investigate the relative importance of the climate and land use drivers of nutrient loss in nine study catchments in Europe and a neighboring country (Turkey), ranging in area from 50 to 12,000 km2. The aim was to quantify whether planned large-scale, land use change aimed at N and P loss reduction would be effective given projected climate change. To this end, catchment-scale biophysical models were applied within a common framework to quantify the integrated effects of projected changes in climate, land use (including wastewater inputs), N deposition, and water use on river and lake water quantity and quality for the mid-21st century. The proposed land use changes were derived from catchment stakeholder workshops, and the assessment quantified changes in mean annual N and P concentrations and loads. At most of the sites, the projected effects of climate change alone on nutrient concentrations and loads were small, whilst land use changes had a larger effect and were of sufficient magnitude that, overall, a move to more environmentally focused farming achieved a reduction in N and P concentrations and loads despite projected climate change. However, at Beyşehir lake in Turkey, increased temperatures and lower precipitation reduced water flows considerably, making climate change, rather than more intensive nutrient usage, the greatest threat to the freshwater ecosystem. Individual site responses did however vary and were dependent on the balance of diffuse and point source inputs. Simulated lake chlorophyll-a changes were not generally proportional to changes in nutrient loading. Further work is required to accurately simulate the flow and water quality extremes and determine how reductions in freshwater N and P translate into an aquatic ecosystem response.
Collapse
|
25
|
Zhang Y, Granger S, Semenov M, Upadhayay H, Collins A. Diffuse water pollution during recent extreme wet-weather in the UK: Environmental damage costs and insight into the future? JOURNAL OF CLEANER PRODUCTION 2022; 338:130633. [PMID: 35241877 PMCID: PMC8872830 DOI: 10.1016/j.jclepro.2022.130633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Periods of extreme wet-weather elevate agricultural diffuse water pollutant loads and climate projections for the UK suggest wetter winters. Within this context, we monitored nitrate and suspended sediment loss using a field and landscape scale platform in SW England during the recent extreme wet-weather of 2019-2020. We compared the recent extreme wet-weather period to both the climatic baseline (1981-2010) and projected near- (2041-2060) and far- (2071-2090) future climates, using the 95th percentiles of conventional rainfall indices generated for climate scenarios downscaled by the LARS-WG weather generator from the 19 global climate models in the CMIP5 ensemble for the RCP8.5 emission scenario. Finally, we explored relationships between pollutant loss and the rainfall indices. Grassland field-scale monthly average nitrate losses increased from 0.39-1.07 kg ha-1 (2016-2019) to 0.70-1.35 kg ha-1 (2019-2020), whereas losses from grassland ploughed up for cereals, increased from 0.63-0.83 kg ha-1 to 2.34-4.09 kg ha-1. Nitrate losses at landscape scale increased during the 2019-2020 extreme wet-weather period to 2.04-4.54 kg ha-1. Field-scale grassland monthly average sediment losses increased from 92-116 kg ha-1 (2016-2019) to 281-333 kg ha-1 (2019-2020), whereas corresponding losses from grassland converted to cereal production increased from 63-80 kg ha-1 to 2124-2146 kg ha-1. Landscape scale monthly sediment losses increased from 8-37 kg ha-1 in 2018 to between 15 and 173 kg ha-1 during the 2019-2020 wet-weather period. 2019-2020 was most representative of the forecast 95th percentiles of >1 mm rainfall for near- and far-future climates and this rainfall index was related to monitored sediment, but not nitrate, loss. The elevated suspended sediment loads generated by the extreme wet-weather of 2019-2020 therefore potentially provide some insight into the responses to the projected >1 mm rainfall extremes under future climates at the study location.
Collapse
Affiliation(s)
- Y. Zhang
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, EX20 2SB, UK
| | - S.J. Granger
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, EX20 2SB, UK
| | - M.A. Semenov
- Plant Sciences Department, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - H.R. Upadhayay
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, EX20 2SB, UK
| | - A.L. Collins
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, EX20 2SB, UK
| |
Collapse
|
26
|
Containing the Risk of Phosphorus Pollution in Agricultural Watersheds. SUSTAINABILITY 2022. [DOI: 10.3390/su14031717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphorus (P) is an essential nutrient to boost crop yields, but P runoff can cause nutrient over-enrichment in agricultural watersheds and can lead to irreversible effects on aquatic ecosystems and their biodiversity. Lake Erie is one prominent example as this watershed has experienced multiple episodes of harmful algal blooms over the last decades. Annual P loads crucially depend on yearly weather variations, which can create the risk of years with high runoff and excessive nutrient loads. Here we apply stochastic modeling to derive sustainable management strategies that balance crop yield optimization with environmental protection, while accounting for weather variability as well as weather trends as a result of climate change. We demonstrate that ignoring annual weather variations results in mitigation efforts for environmental pollution that are largely insufficient. Accounting explicitly for future variations in precipitation allows us to control the risk of emissions exceeding the P target loads. When realistic risk targets are imposed, we find that a package of additional measures is required to avoid P over-enrichment in the Lake Erie watershed. This package consists of a substantial reduction of P inputs (approximately 30% for different accepted risk levels), adoption of cover crops throughout the near- and mid-century, and cultivation of less nutrient-intensive crops (30% more soy at the expense of corn). Although climate change reinforces these conclusions, we find that the accepted risk level of exceeding P target loads is the predominant factor in defining a sustainable nutrient management policy.
Collapse
|
27
|
Ecological Role of Bacteria Involved in the Biogeochemical Cycles of Mangroves Based on Functional Genes Detected through GeoChip 5.0. mSphere 2022; 7:e0093621. [PMID: 35019668 PMCID: PMC8754168 DOI: 10.1128/msphere.00936-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mangroves provide a variety of ecosystem services and contribute greatly to the global biogeochemical cycle. Microorganisms play important roles in biogeochemical cycles and maintain the dynamic balance of mangroves. However, the roles of bacteria in the biogeochemical cycles of mangroves and their ecological distribution and functions remain largely uncharacterized. This study thus sought to analyze and compare the ecological distributions and potential roles of bacteria in typical mangroves using 16S rRNA gene amplicon sequencing and GeoChip. Interestingly, the bacterial community compositions were largely similar in the studied mangroves, including Shenzhen, Yunxiao, Zhanjiang, Hainan, Hongkong, Fangchenggang, and Beihai mangroves. Moreover, gamma-proteobacterium_uncultured and Woeseia were the most abundant microorganisms in the mangroves. Furthermore, most of the bacterial communities were significantly correlated with phosphorus levels (P < 0.05; −0.93 < R < 0.93), suggesting that this nutrient is a vital driver of bacterial community composition. Additionally, GeoChip analysis indicated that the functional genes amyA, narG, dsrA, and ppx were highly abundant in the studied mangroves, suggesting that carbon degradation, denitrification, sulfite reduction, and polyphosphate degradation are crucial processes in typical mangroves. Moreover, several genera were found to synergistically participate in biogeochemical cycles in mangroves. For instance, Neisseria, Ruegeria, Rhodococcus, Desulfotomaculum, and Gordonia were synergistically involved in the carbon, nitrogen, and sulfur cycles, whereas Neisseria and Treponema were synergistically involved in the nitrogen cycle and the sulfur cycle. Taken together, our findings provide novel insights into the ecological roles of bacteria in the biogeochemical cycles of mangroves. IMPORTANCE Bacteria have important functions in biogeochemical cycles, but studies on their function in an important ecosystem, mangroves, are still limited. Here, we investigated the ecological role of bacteria involved in biogeochemical cycles in seven representative mangroves of southern China. Furthermore, various functional genes from bacteria involved in biogeochemical cycles were identified by GeoChip 5.0. The functional genes associated with the carbon cycle (particularly carbon degradation) were the most abundant, suggesting that carbon degradation is the most active process in mangroves. Additionally, some high-abundance bacterial populations were found to synergistically mediate key biogeochemical cycles in the mangroves, including Neisseria, Pseudomonas, Treponema, Desulfotomaculum, and Nitrosospira. In a word, our study gives novel insights into the function of bacteria in biogeochemical cycles in mangroves.
Collapse
|
28
|
Implementation of a watershed modelling framework to support adaptive management in the Canadian side of the Lake Erie basin. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Stutter M, Richards S, Ibiyemi A, Watson H. Spatial representation of in-stream sediment phosphorus release combining channel network approaches and in-situ experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148790. [PMID: 34247091 DOI: 10.1016/j.scitotenv.2021.148790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/14/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Impairment of rivers by elevated phosphorus (P) concentration is an issue often studied at outlets of mesoscale catchments. Our objective was to evaluate within-catchment spatio-temporal processes along connected reaches to understand processes of internal P loading associated with sediment input, accumulations in channels and sediment-water column P exchange. Our overall hypothesis was that heterogeneous sediment residence within the channel of a 52 km2 mixed land cover catchment resulted in key zones for sediment-water P exchange. We evaluated the channel network through ground-survey, spatial data methods establishing connectivity and energy gradients. This gave a background to understand sampling of sediments and P release/uptake to the water column using 90 s in-situ resuspension isolating a portion of streambed over five sets of three-location transects in May (spring storms, recent active erosion) and September (summer low flow, longer sediment residence). Simple transect position models (top, mid, bottom) predicted increased sediment resuspension yields and P contents in lower settings. Sediment P release following resuspension were mean (and range) 0.5 (-0.8 to 1.8) and 0.5 (-2.5 to 3.6) mg soluble reactive P/m2 bed in May and September, respectively, strengthening generally down the transects but inconsistently. Relationships (log form) showed a steepening rise in fine sediments, P content, background and disturbance-released dissolved P, with specific stream power < 40 W/m2. In-situ methods showed sediments dominantly (12 cases May, 13 cases Sep) as P sources capable of influencing dissolved P concentrations and with potential explanation that heterogeneous locations of internal P loading influence the systems longer-term observed P trends. Combining channel network, stream power assessment and in-situ sorption studies improved the understanding of influential zones of sediment-water P exchange within this mesoscale catchment. Such methods have potential to inform P model development and management.
Collapse
Affiliation(s)
- Marc Stutter
- The James Hutton Institute, Craigiebuckler, Aberdeen AB158QH, UK; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Samia Richards
- The James Hutton Institute, Craigiebuckler, Aberdeen AB158QH, UK
| | - Adekunle Ibiyemi
- The James Hutton Institute, Craigiebuckler, Aberdeen AB158QH, UK
| | - Helen Watson
- The James Hutton Institute, Craigiebuckler, Aberdeen AB158QH, UK
| |
Collapse
|
30
|
Roberts WM, Couldrick LB, Williams G, Robins D, Cooper D. Mapping the potential for Payments for Ecosystem Services schemes to improve water quality in agricultural catchments: A multi-criteria approach based on the supply and demand concept. WATER RESEARCH 2021; 206:117693. [PMID: 34628296 DOI: 10.1016/j.watres.2021.117693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Payments for Ecosystem Services (PES) schemes are an increasingly popular form of catchment management for improving surface water and groundwater quality. In these schemes, downstream water users who are impacted by agricultural diffuse pollution incentivise upstream farmers to adopt better practices. However, this type of scheme will not be successful in all situations, in part, due to a lack of potential for agriculture to improve the suuply of good water quality and/or a lack in demand from downstream users for good water quality. As such, this study aims to present a flexible approach to mapping the potential for PES schemes to improve water quality in agricultural catchments. The approach is based on multi-criteria analysis, with supply and demand as key criteria. It uses expert judgement or current guidance on PES to select supply and demand sub-criteria, expert judgement to weight all criteria through pairwise comparisons and readily available, national datasets to indicate criteria. Once indicator data are normalized, it combines them in a weighted sums analysis and presents results spatially at the national scale, all within a geographical information system. The approach can easily be applied to the country or region of interest by using locally relevant criteria, expert judgement and data. For example, when applied to the situation for river waterbodies in England, supply sub-criteria were the contribution of agriculture to loads of the major pollutants (nitrogen, phosphorus and sediments) and demand sub-criteria were the different downstream water users present (water companies and, tourist and local recreational users). Experts assigned equal weight to supply and demand criteria and the highest weights to sediments and water companies for sub-criteria, respectively. When national scale datasets to indicate these criteria were combined in a weighted sums analysis, it was possible to identify areas of high potential for PES. This would hopefully motivate more detailed research at the individual catchment level into the constraints in linking supply and demand. Three case-study schemes were also examined to show how some of these constraints are being identified and overcome. As such, the approach forms the first tier in a two-tier framework for establishing PES schemes to improve water quality in agricultural catchments.
Collapse
Affiliation(s)
- William M Roberts
- University of Chichester Business School, Bognor Regis Campus, Upper Bognor Road, Bognor Regis, West Sussex, PO21 1HR, England; Currently at: Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, England.
| | - Laurence B Couldrick
- Westcountry Rivers Trust, Rain-Charm House, Kyl Cober Parc, Stoke Climsland, Cornwall, PL17 8PY, England
| | - Gareth Williams
- Environment Agency, Guildbourne House, Chatsworth Road, Worthing, West Sussex, BN11 1LD, England
| | - Dawn Robins
- University of Chichester Business School, Bognor Regis Campus, Upper Bognor Road, Bognor Regis, West Sussex, PO21 1HR, England
| | - Dave Cooper
- University of Chichester Business School, Bognor Regis Campus, Upper Bognor Road, Bognor Regis, West Sussex, PO21 1HR, England
| |
Collapse
|
31
|
Maharajan T, Ceasar SA, Krishna TPA, Ignacimuthu S. Management of phosphorus nutrient amid climate change for sustainable agriculture. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1303-1324. [PMID: 34559407 DOI: 10.1002/jeq2.20292] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/15/2021] [Indexed: 05/17/2023]
Abstract
Nutrients are essential for plant growth and development and influence overall agricultural production. Phosphorus (P) is a major nutrient required for many physiological and biochemical functions of a plant. Phosphate rock is the major source of phosphate fertilizer but is becoming increasingly limited in both developing and developed countries. The resources of phosphate rock need to be conserved, and import dependency on phosphate fertilizer needs to be minimized; this will help increase the availability of phosphate fertilizer over the next 300 yr. Climate change creates new challenges in the management of nutrients including P, affecting the overall production of crops. The availability, acquisition, and translocation of P are influenced by the fluctuation of temperatures, pH, drought, and elevated CO2 . Both lower and higher soil temperatures reduce uptake and translocation of P. High soil pH affects P concentration and decreases the rate of plant P uptake. Low soil pH decreases the activity of soil microorganisms, the rate of transpiration, and P uptake and utilization. Elevated CO2 decreases P uptake from soil by the plants. Future research is needed on chemical, molecular, microbiological, and physiological aspects to improve the understanding on how temperature, pH, drought, and elevated CO2 affect the availability, acquisition, and transport of P by plants. Better P management strategies are required to secure the P supply to ensure long-term protection of soil fertility and to avoid environmental impacts such as eutrophication and water pollution, ensuring sustainable food production.
Collapse
Affiliation(s)
- Theivanayagam Maharajan
- Dep. of Biosciences, Rajagiri College of Social Sciences, Cochin - 683104, Kalamassery, Kerala, India
| | - Stanislaus Antony Ceasar
- Dep. of Biosciences, Rajagiri College of Social Sciences, Cochin - 683104, Kalamassery, Kerala, India
| | | | - Savarimuthu Ignacimuthu
- Xavier Research Foundation, St. Xavier's College, Tirunelveli- 620002, Palayamkottai, Tamil Nadu, India
| |
Collapse
|
32
|
Fang W, Williams PN, Zhang H, Yang Y, Yin D, Liu Z, Sun H, Luo J. Combining Multiple High-Resolution In Situ Techniques to Understand Phosphorous Availability Around Rice Roots. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13082-13092. [PMID: 34554745 DOI: 10.1021/acs.est.1c05358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Resolving chemical/biological drivers of P behavior around lowland/flooded rice roots remains a challenge because of the heterogeneity of the plant-soil interactions, compounded by sampling and analytical constraints. High-spatial-resolution (sub-mm) visualization enables these processes to be isolated, characterized, and deciphered. Here, three advanced soil imaging systems, diffusive gradients in thin-film technique coupled with laser ablation-ICPMS (DGT-LA-ICPMS), O2 planar optode, and soil zymography, were integrated. This trio of approaches was then applied to a rice life cycle study to quantify solute-P supply, through two dimensions, in situ, and low-disturbance high-resolution (HR) chemical imaging. This allowed mechanisms of P release to be delineated by O2, Fe, and phosphatase activity mapping at the same scale. HR-DGT revealed P depletion around both living and dead rice roots but with highly spatially variable Fe/P ratios (∼0.2-12.0) which aligned with changing redox conditions and root activities. Partnering of HR-DGT and soil zymography revealed concurrent P depletion and phosphatase hotspots in the rhizosphere and detritusphere zones (Mantel: 0.610-0.810, p < 0.01). This close affinity between these responses (Pearson correlation: -0.265 to -0.660, p < 0.01) cross-validates the measurements and reaffirms that P depletion stimulates phosphatase activity and Porg mineralization. The μ-scale biogeochemical landscape of rice rhizospheres and detritusphere, as documented here, needs greater consideration when implementing interventions to improve sustainable P nutrition.
Collapse
Affiliation(s)
- Wen Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Paul N Williams
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast BT9 5BN, Northern Ireland
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Yi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Daixia Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhaodong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Haitao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
33
|
Mellander PE, Jordan P. Charting a perfect storm of water quality pressures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147576. [PMID: 34000530 DOI: 10.1016/j.scitotenv.2021.147576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
The agri-food economy can be a significant driver of water quality pressures but the role of hydro-meteorological patterns in a changing climate also requires consideration. For this purpose, an assessment was made of a ten-year synchronous high temporal resolution water quality and hydro-meteorological dataset in Irish agricultural catchments. Changes occurring to rainfall intensity and soil temperature patterns were found to be important drivers of nutrient mobility in soils. There were links between the intensity of the North Atlantic Oscillation over the decade and large shifts in baseline nutrient concentrations in catchments. The data also revealed extreme weather impacts to pollution patterns including short periods of rain induced nutrient flux, that exceeded average annual mass loads in these catchments, and drought influences on point source pollution. These influences need consideration, and may require different mitigation strategies, as links between water quality land use pressure and water quality state in regulatory reviews. In a decade of both increased land use source and hydro-meteorological transport pressures, water quality natural capital in Ireland has faced a perfect storm. Such conditions are difficult to model and only revealed in high temporal resolution datasets.
Collapse
Affiliation(s)
- Per-Erik Mellander
- Agricultural Catchments Programme, Department of Environment, Soils and Landuse, Teagasc, Johnstown Castle Environment Research Centre, Wexford, Co. Wexford, Ireland.
| | - Phil Jordan
- School of Geography and Environmental Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
34
|
Periphytic microbial response to environmental phosphate bioavailability - relevance to P management in paddy fields. Appl Environ Microbiol 2021; 87:e0120121. [PMID: 34347511 DOI: 10.1128/aem.01201-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periphyton occurs widely in shallow-water ecosystems such as paddy fields and plays critical parts in regulating local phosphorus cycling. As such, understanding the mechanisms of the biofilm's response to environmental P variability may lead to better perceptions of P utilization and retention in rice farms. Present study aims at exploring the biological and biochemical processes underlying periphyton's P buffering capability through examining changes in community structure, phosphorus uptake and storage, and molecular makeup of exometabolome at different levels of P availability. Under stressed (both excessive and scarce) phosphorus conditions, we found increased populations of the bacterial genus capable of transforming orthophosphate to polyphosphate, as well as mixotrophic algae who can survive through phagotrophy. These results were corroborated by observed polyphosphate buildup under low and high P treatment. Exometabolomic analyses further revealed that periphytic organisms may substitute S-containing lipids for phospholipids, use siderophores to dissolve iron (hydr)oxides to scavenge adsorbed P, and synthesize auxins to resist phosphorus starvation. These findings not only shed light on the mechanistic insights responsible for driving the periphytic P buffer but attest to the ecological roles of periphyton in aiding plants such as rice to overcome P limitations in natural environment. Importance The ability of periphyton to buffer environmental P in shallow aquatic ecosystems may be a natural lesson on P utilization and retention in paddy fields. This work revealed the routes and tools through which periphytic organisms adapt to and regulate ambient P fluctuation. The mechanistic understanding further implicates that the biofilm may serve rice plants to alleviate P stress. Additional results from extracellular metabolite analyses suggest the dissolved periphytic exometabolome can be a valuable nutrient source for soil microbes and plants to reduce biosynthetic costs. These discoveries have the potential to improve our understanding of biogeochemical cycling of phosphorus in general and to refine P management strategies for rice farm in particular.
Collapse
|
35
|
Haygarth PM, Rufino MC. Local solutions to global phosphorus imbalances. NATURE FOOD 2021; 2:459-460. [PMID: 37117672 DOI: 10.1038/s43016-021-00301-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
| | - Mariana C Rufino
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
36
|
Mogollón JM, Bouwman AF, Beusen AHW, Lassaletta L, van Grinsven HJM, Westhoek H. More efficient phosphorus use can avoid cropland expansion. NATURE FOOD 2021; 2:509-518. [PMID: 37117673 DOI: 10.1038/s43016-021-00303-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/17/2021] [Indexed: 04/30/2023]
Abstract
Global projections indicate that approximately 500 Mha of new arable land will be required to meet crop demand by 2050. Applying a dynamic phosphorus (P) pool simulator under different socioeconomic scenarios, we find that cropland expansion can be avoided with less than 7% additional cumulative P fertilizer over 2006-2050 when comparing with cropland expansion scenarios, mostly targeted at nutrient-depleted soils of sub-Saharan Africa. Additional P fertilizer would replenish P withdrawn from crop production, thereby allowing higher productivity levels. We also show that further agronomic improvements such as those that allow for better (legacy) P use in soils could reduce both P outflows to freshwater and coastal ecosystems and the overall demand for P fertilizer.
Collapse
Affiliation(s)
- José M Mogollón
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.
| | - Alexander F Bouwman
- Department of Earth Sciences - Geochemistry, Utrecht University, Utrecht, the Netherlands
- PBL Netherlands Environmental Assessment Agency, The Hague, the Netherlands
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Arthur H W Beusen
- Department of Earth Sciences - Geochemistry, Utrecht University, Utrecht, the Netherlands
- PBL Netherlands Environmental Assessment Agency, The Hague, the Netherlands
| | - Luis Lassaletta
- CEIGRAM/Department of Agricultural Production, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Henk Westhoek
- PBL Netherlands Environmental Assessment Agency, The Hague, the Netherlands
| |
Collapse
|
37
|
Thompson J, Pelc CE, Jordan TE. Water quality sampling methods may bias evaluations of watershed management practices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142739. [PMID: 33097255 DOI: 10.1016/j.scitotenv.2020.142739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Accurate measurement of the discharge of total suspended solids (TSS) from watersheds is complicated by the extreme temporal variability of suspended solid concentrations during periods of high stream flow. Consequently, TSS loads estimated from data collected at different temporal frequencies may differ in accuracy and precision. Moreover, there remains a need for optimal sampling methods which yield the highest possible accuracy for the least effort. We investigated the effect of sampling frequency on estimations of TSS loads and retention within a restored stream in Maryland, USA. We found that coarser temporal sampling methods can lead to erroneous conclusions of restoration efficacy with poor accuracy and precision in estimates of sediment retention. Additionally, we synthesized 28 years of continuous turbidity-based TSS data from Europe and North America to assess the effect of sampling frequency. Our synthesis suggests that flow-paced composite sampling may be the most accurate and precise sampling method. This method is also economical, requiring analysis of only one sample per week. Thus, the flow-paced method may be a potential solution to economize and standardize water quality monitoring.
Collapse
Affiliation(s)
- J Thompson
- Smithsonian Environmental Research Center, Edgewater, MD, USA.
| | - C E Pelc
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - T E Jordan
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| |
Collapse
|
38
|
Allafta H, Opp C, Kolli M. Combined impact of land cover, precipitation, and catchment area on discharge and phosphorus in the Mississippi basin's subcatchments. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:198-214. [PMID: 33300123 DOI: 10.1002/jeq2.20177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Phosphorus (P) supplies (concentrations and fluxes) are essential drivers for biological activities in rivers and should be controlled to prevent eutrophication that usually results from urbanization and agricultural expansion. In this study, data from 26 subcatchments in the Mississippi basin were compiled from 2013 to 2017 to identify how catchment area, precipitation, and land cover affect discharge and total P (TP) and how TP yield diverges from a generalized local response mode. Results revealed that area-weighted discharge (Qarea ) is controlled by precipitation and land cover (i.e., increases with precipitation and with both urban and forestland covers and decreases with both shrub/scrub and pasture/grassland covers). Total P concentration increases with agricultural land cover and decreases with both forest and water/wetland covers. Total P yield (Qarea × concentration) is governed mainly by Qarea because the latter changes by a higher order of magnitude compared with concentration in the current study. Hence, TP yield follows the same trends that Qarea exhibits with precipitation and land cover. In all catchments, TP yield varied significantly (p < .05) and positively with instantaneous discharge. However, the rate of yield variations with discharge exhibited a significant (p < .0001) strong negative (r2 = -.74) correlation with catchment area. This study provided a robust model that can predict the TP concentration and yield across different catchment scales in the Mississippi basin by means of discharge readings.
Collapse
Affiliation(s)
- Hadi Allafta
- Faculty of Geography, Philipps-Univ. of Marburg, Deutschhausstr. 10, Marburg, 35037, Germany
| | - Christian Opp
- Faculty of Geography, Philipps-Univ. of Marburg, Deutschhausstr. 10, Marburg, 35037, Germany
| | - Meena Kolli
- Faculty of Geography, Philipps-Univ. of Marburg, Deutschhausstr. 10, Marburg, 35037, Germany
| |
Collapse
|
39
|
Hydrological and Chemical Controls on Nutrient and Contaminant Loss to Water in Agricultural Landscapes. WATER 2020. [DOI: 10.3390/w12123379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nutrient and contaminant losses in agricultural landscapes are directly controlled by hydrological (flow pathways), chemical (sorption, speciation and transformations), biological processes (fixation, uptake) and indirectly by demographic (growing population), economic (food production) and societal drivers (individual attitudes, farming tradition) that control how agricultural landscapes are managed [...]
Collapse
|
40
|
Liu W, Ciais P, Liu X, Yang H, Hoekstra AY, Tang Q, Wang X, Li X, Cheng L. Global Phosphorus Losses from Croplands under Future Precipitation Scenarios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14761-14771. [PMID: 33138381 DOI: 10.1021/acs.est.0c03978] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phosphorus (P) losses from fertilized croplands to inland water bodies cause serious environmental problems. During wet years, high precipitation disproportionately contributes to P losses. We combine simulations of a gridded crop model and outputs from a number of hydrological and climate models to assess global impacts of changes in precipitation regimes on P losses during the 21st century. Under the baseline climate during 1991-2010, median P losses are 2.7 ± 0.5 kg P ha-1 year-1 over global croplands of four major crops, while during wet years, P losses are 3.6 ± 0.7 kg P ha-1 year-1. By the end of this century, P losses in wet years would reach 4.2 ± 1.0 (RCP2.6) and 4.7 ± 1.3 (RCP8.5) kg P ha-1 year-1 due to increases in high annual precipitation alone. The increases in P losses are the highest (up to 200%) in the arid regions of Middle East, Central Asia, and northern Africa. Consequently, in three quarters of the world's river basins, representing about 40% of total global runoff and home up to 7 billion people, P dilution capacity of freshwater could be exceeded due to P losses from croplands by the end of this century.
Collapse
Affiliation(s)
- Wenfeng Liu
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Xingcai Liu
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Yang
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland
- Department of Environmental Sciences, MGU, University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Arjen Y Hoekstra
- Twente Water Centre, University of Twente, 7522 NB Enschede, The Netherlands
- Institute of Water Policy, Lee Kuan Yew School of Public Policy, National University of Singapore, 259772 Singapore
| | - Qiuhong Tang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuhui Wang
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaodong Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
- Hubei Provincial Collaborative Innovation Center for Water Resources Security, Wuhan 430072, China
| |
Collapse
|
41
|
Jarvie HP, Pallett DW, Schäfer SM, Macrae ML, Bowes MJ, Farrand P, Warwick AC, King SM, Williams RJ, Armstrong L, Nicholls DJE, Lord WD, Rylett D, Roberts C, Fisher N. Biogeochemical and climate drivers of wetland phosphorus and nitrogen release: Implications for nutrient legacies and eutrophication risk. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:1703-1716. [PMID: 33459392 DOI: 10.1002/jeq2.20155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
The dynamics and processes of nutrient cycling and release were examined for a lowland wetland-pond system, draining woodland in southern England. Hydrochemical and meteorological data were analyzed from 1997 to 2017, along with high-resolution in situ sensor measurements from 2016 to 2017. The results showed that even a relatively pristine wetland can become a source of highly bioavailable phosphorus (P), nitrogen (N), and silicon (Si) during low-flow periods of high ecological sensitivity. The drivers of nutrient release were primary production and accumulation of biomass, which provided a carbon (C) source for microbial respiration and, via mineralization, a source of bioavailable nutrients for P and N co-limited microorganisms. During high-intensity nutrient release events, the dominant N-cycling process switched from denitrification to nitrate ammonification, and a positive feedback cycle of P and N release was sustained over several months during summer and fall. Temperature controls on microbial activity were the primary drivers of short-term (day-to-day) variability in P release, with subdaily (diurnal) fluctuations in P concentrations driven by water body metabolism. Interannual relationships between nutrient release and climate variables indicated "memory" effects of antecedent climate drivers through accumulated legacy organic matter from the previous year's biomass production. Natural flood management initiatives promote the use of wetlands as "nature-based solutions" in climate change adaptation, flood management, and soil and water conservation. This study highlights potential water quality trade-offs and shows how the convergence of climate and biogeochemical drivers of wetland nutrient release can amplify background nutrient signals by mobilizing legacy nutrients, causing water quality impairment and accelerating eutrophication risk.
Collapse
Affiliation(s)
- Helen P Jarvie
- Dep. of Geography and Environmental Management, Univ. of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Water Institute, Univ. of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | | | | | - Merrin L Macrae
- Dep. of Geography and Environmental Management, Univ. of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Water Institute, Univ. of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Michael J Bowes
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Philip Farrand
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Alan C Warwick
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Stephen M King
- STFC Rutherford Appleton Lab., Harwell Campus, Didcot, OX11 0QX, UK
| | | | - Linda Armstrong
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | | | - William D Lord
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Daniel Rylett
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Colin Roberts
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Nigel Fisher
- Wytham Woods, Univ. of Oxford, Oxford, OX2 8QQ, UK
| |
Collapse
|
42
|
Skarbøvik E, Jordan P, Lepistö A, Kronvang B, Stutter MI, Vermaat JE. Catchment effects of a future Nordic bioeconomy: From land use to water resources. AMBIO 2020; 49:1697-1709. [PMID: 32929619 PMCID: PMC7502635 DOI: 10.1007/s13280-020-01391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
In the future, the world is expected to rely increasingly on renewable biomass resources for food, fodder, fibre and fuel. The sustainability of this transition to bioeconomy for our water systems depends to a large extent on how we manage our land resources. Changes in land use together with climate change will affect water quantity and quality, which again will have implications for the ecosystem services provided by water resources. These are the main topics of this Ambio special issue on "Environmental effects of a green bio-economy". This paper offers a summary of the eleven papers included in this issue and, at the same time, outlines an approach to quantify and mitigate the impacts of bioeconomy on water resources and their ecosystem services, with indications of useful tools and knowledge needs.
Collapse
Affiliation(s)
- Eva Skarbøvik
- Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 Ås, Norway
| | - Philip Jordan
- School of Geography and Environmental Sciences, Ulster University, Coleraine, UK
| | - Ahti Lepistö
- Finnish Environment Institute (SYKE), Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Brian Kronvang
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Marc I. Stutter
- Environmental and Biochemical Sciences Dept, James Hutton Institute, Aberdeen, UK
| | - Jan E. Vermaat
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU-MINA), Ås, Norway
| |
Collapse
|
43
|
Shi K, Zhang Y, Zhang Y, Qin B, Zhu G. Understanding the long-term trend of particulate phosphorus in a cyanobacteria-dominated lake using MODIS-Aqua observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139736. [PMID: 32512302 DOI: 10.1016/j.scitotenv.2020.139736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Information on the long-term trends in phosphorus (P) in lake waters is critical for clarifying transformation and biogeochemical cycling processes of P. We developed and validated an empirical model for deriving particulate phosphorus (PP, a dominant form of P) from MODIS-Aqua (Moderate Resolution Imaging Spectroradiometer) images. Subsequently, the long-term trend in PP in Lake Taihu from 2003 to 2017 and the driving factors were clarified. Based on the spectral index of the combination of remote sensing reflectance at 645 nm and 859 nm, a simple linear model was developed to derive PP for turbid cyanobacteria-dominated inland waters from MODIS-Aqua data (R2 = 0.65; RMSE = 0.048 mg/L). Long-term MODIS observations show that PP demonstrated distinct spatial variations in Lake Taihu, with higher PP levels in cyanobacterial bloom-sensitive regions. There was a clear increasing trend in the PP of Lake Taihu, and the yearly average PP value increased from 0.089 mg/L in 2003 to 0.10 mg/L in 2017. A relatively strong positive correlation between 15-year spatially averaged PP data and algal bloom frequency revealed that cyanobacterial blooms mainly controlled the PP spatial variations. The daily average water temperature was significantly correlated with the daily PP derived from MODIS-Aqua data, indicating that the increasing water temperature was responsible for the PP increasing trend. An increase in water temperature can facilitate algal growth, thus resulting in a significant change in aquatic biogeochemical conditions, inducing more P release from the sediment and thereby increasing water PP levels. Our study has significant implications for understanding and controlling the P biogeochemical cycle in a cyanobacterial-dominated lake under the background of global warming.
Collapse
Affiliation(s)
- Kun Shi
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China.
| | - Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yibo Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei Zhu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Alewell C, Ringeval B, Ballabio C, Robinson DA, Panagos P, Borrelli P. Global phosphorus shortage will be aggravated by soil erosion. Nat Commun 2020; 11:4546. [PMID: 32917863 PMCID: PMC7486398 DOI: 10.1038/s41467-020-18326-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/20/2020] [Indexed: 11/09/2022] Open
Abstract
Soil phosphorus (P) loss from agricultural systems will limit food and feed production in the future. Here, we combine spatially distributed global soil erosion estimates (only considering sheet and rill erosion by water) with spatially distributed global P content for cropland soils to assess global soil P loss. The world's soils are currently being depleted in P in spite of high chemical fertilizer input. Africa (not being able to afford the high costs of chemical fertilizer) as well as South America (due to non-efficient organic P management) and Eastern Europe (for a combination of the two previous reasons) have the highest P depletion rates. In a future world, with an assumed absolute shortage of mineral P fertilizer, agricultural soils worldwide will be depleted by between 4-19 kg ha-1 yr-1, with average losses of P due to erosion by water contributing over 50% of total P losses.
Collapse
Affiliation(s)
- Christine Alewell
- Environmental Geosciences, Department of Environmental Science, University of Basel, Basel, Switzerland.
| | - Bruno Ringeval
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France
| | | | - David A Robinson
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, United Kingdom
| | - Panos Panagos
- European Commission, Joint Research Centre, Ispra, Italy
| | - Pasquale Borrelli
- Environmental Geosciences, Department of Environmental Science, University of Basel, Basel, Switzerland.,Department of Biological Environment, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| |
Collapse
|
45
|
Withers PJA, Forber KG, Lyon C, Rothwell S, Doody DG, Jarvie HP, Martin-Ortega J, Jacobs B, Cordell D, Patton M, Camargo-Valero MA, Cassidy R. Towards resolving the phosphorus chaos created by food systems. AMBIO 2020; 49:1076-1089. [PMID: 31542888 PMCID: PMC7067724 DOI: 10.1007/s13280-019-01255-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/11/2019] [Accepted: 08/31/2019] [Indexed: 05/22/2023]
Abstract
The chaotic distribution and dispersal of phosphorus (P) used in food systems (defined here as disorderly disruptions to the P cycle) is harming our environment beyond acceptable limits. An analysis of P stores and flows across Europe in 2005 showed that high fertiliser P inputs relative to productive outputs was driving low system P efficiency (38 % overall). Regional P imbalance (P surplus) and system P losses were highly correlated to total system P inputs and animal densities, causing unnecessary P accumulation in soils and rivers. Reducing regional P surpluses to zero increased system P efficiency (+ 16 %) and decreased total P losses by 35 %, but required a reduction in system P inputs of ca. 40 %, largely as fertiliser. We discuss transdisciplinary and transformative solutions that tackle the P chaos by collective stakeholder actions across the entire food value chain. Lowering system P demand and better regional governance of P resources appear necessary for more efficient and sustainable food systems.
Collapse
Affiliation(s)
- Paul J. A. Withers
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | - Kirsty G. Forber
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | - Christopher Lyon
- Sustainability Research Institute, University of Leeds, Leeds, LS2 9TJ UK
| | - Shane Rothwell
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | | | - Helen P. Jarvie
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB UK
| | | | - Brent Jacobs
- Institute for Sustainable Futures, University of Technology, Sydney, Australia
| | - Dana Cordell
- Institute for Sustainable Futures, University of Technology, Sydney, Australia
| | - Myles Patton
- Agri-Food and Bioscience Institute, Belfast, BT9 5BX UK
| | - Miller A. Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, LS2 9JT UK
| | | |
Collapse
|
46
|
Identification of Critical Source Areas of Nitrogen Load in the Miyun Reservoir Watershed under Different Hydrological Conditions. SUSTAINABILITY 2020. [DOI: 10.3390/su12030964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spatiotemporal distribution of critical source areas (CSAs) will change with hydrological conditions. In this study, the CSAs of nitrogen load under different hydrological conditions in the Chaohe River watershed were identified using the cumulative pollution load curve method determined from the nitrogen pollution simulated using the Soil and Water Assessment Tool (SWAT) model. The results showed that: (1) The order of factors impacting nitrogen load intensity is as follows: fertilization intensity, rainfall, runoff, land use type, slope type, and soil type. (2) The primary and secondary CSAs are concentrated in the upper and lower areas of the watershed, where cultivated land (8.36%) and grassland (52.55%) are more abundant. The potential pollution source areas are concentrated in the upper and middle areas of the watershed, where cultivated land (6.99%), grassland (42.37%), and forest land (48.18%) are evenly distributed. The low-risk source areas are concentrated in the middle and left bank of the watershed, where forest land (67.65%) is dominant and the vegetation coverage is highest. The research results have significance for improving the accuracy of the implementation of best management practices, and can provide a reference for the formulation of drinking water protection policies for Beijing.
Collapse
|
47
|
Abstract
Abstract
Nutrient reduction in impacted lowland freshwater systems is ecologically and culturally important. Gaining a greater insight into how lakes respond to lowering nutrient loads and how climate-driven physical limnology affects present and future cycling of available nutrients is important for ecosystem resource management. This study examines the nutrient decline in a hypereutrophic freshwater lake (Rostherne Mere, Cheshire, UK) 25 years after sewage effluent diversion, a uniquely long-term analysis of a recovering nutrient-rich deep lake. Using nutrient, phytoplankton, climate and catchment hydrological monitoring, the contemporary lake system is compared to previous studies from 1990 to 2002. Nutrient change since point source load diversion showed annual average and maximum phosphorus (P) concentrations decreased significantly for the first 10 years (1992: ~ 600 µg P L−1; 2002: ~ 200 µg P L−1), but have since stabilised due to a substantial legacy sediment P internal load. Dissolved inorganic nitrogen (DIN) concentrations have not substantially changed since diversion, resulting in the alteration of the DIN/SRP ratio from a system characterised by N limitation (N:P ~ 5), to one predominantly P limited (N:P > 20). Nutrient changes over this time are shown to drive ecological change, especially in the cyanobacterial and algal communities. Furthermore, very high-resolution monitoring of lake inflow and outflow (every 5 min during 2016) shows that water residence time at this lake is significantly shorter than previously estimated (~ 0.8 years compared to previous estimates of ~ 1.6–2.4 years). Together with long-term data demonstrating that the stratification period at Rostherne Mere has increased by 40 days over the last ~ 50 years (due to later autumnal mixing), we show that a rapid rate of epilimnetic flushing together with a long stratification period substantially reduces the available epilimnetic P during the summer cyanobacterial bloom. This is of growing importance for many such lakes, given widespread climate-driven lengthening of stratification and a national trend of decreasing summer rainfall (decreasing seasonal flushing) but more intense summer storm events (resulting in short-term flushing events).
Collapse
|
48
|
Smith DR, Macrae ML, Kleinman PJA, Jarvie HP, King KW, Bryant RB. The Latitudes, Attitudes, and Platitudes of Watershed Phosphorus Management in North America. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1176-1190. [PMID: 31589709 DOI: 10.2134/jeq2019.03.0136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phosphorus (P) plays a crucial role in agriculture as a primary fertilizer nutrient-and as a cause of the eutrophication of surface waters. Despite decades of efforts to keep P on agricultural fields and reduce losses to waterways, frequent algal blooms persist, triggering not only ecological disruption but also economic, social, and political consequences. We investigate historical and persistent factors affecting agricultural P mitigation in a transect of major watersheds across North America: Lake Winnipeg, Lake Erie, the Chesapeake Bay, and Lake Okeechobee/Everglades. These water bodies span 26 degrees of latitude, from the cold climate of central Canada to the subtropics of the southeastern United States. These water bodies and their associated watersheds have tracked trajectories of P mitigation that manifest remarkable similarities, and all have faced challenges in the application of science to agricultural management that continue to this day. An evolution of knowledge and experience in watershed P mitigation calls into question uniform solutions as well as efforts to transfer strategies from other arenas. As a result, there is a need to admit to shortcomings of past approaches, plotting a future for watershed P mitigation that accepts the sometimes two-sided nature of Hennig Brandt's "Devil's Element."
Collapse
|
49
|
Osmond DL, Shober AL, Sharpley AN, Duncan EW, Hoag DLK. Increasing the Effectiveness and Adoption of Agricultural Phosphorus Management Strategies to Minimize Water Quality Impairment. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1204-1217. [PMID: 31589706 DOI: 10.2134/jeq2019.03.0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phosphorus (P) is essential for optimum agricultural production, but it also causes water quality degradation when lost through erosion (sediment-attached P), runoff (soluble reactive P; SRP), or leaching (sediment-attached P or SRP). Implementation of conservation practices (CP) affects P at the source (avoiding), during transport (controlling), or at the water resource edge (trapping). Trade-offs often occur with CP implementation. For instance, multiple researchers have shown that conservation tillage reduces total P by over 50%, while increasing SRP by upward of 40%. Conservation tillage may increase water quality degradation as SRP is more bioavailable than is particulate P. Conservation practices must be implemented as a system of practices to increase redundancy and to address all loss pathways, such as P management with conservation tillage and a riparian buffer. Further, planning and adoption must be at a watershed scale to ensure practices are placed in critical source areas, thereby providing the most treatment for the least price. Farmers must be involved in watershed planning, which should include financial backstopping and educational outreach. It is imperative that CPs be used more effectively to reduce and retard off-site P losses. New and innovative CPs are needed to improve control of P leaching, address legacy stores of soil test P, and mitigate increased P losses expected with climate change. Without immediate changes to CP implementation, P losses will increase due to climate change, with a concomitant degradation of water quality. These changes must be made at a watershed scale and in an intentional and transparent manner.
Collapse
|
50
|
Bieroza M, Bergström L, Ulén B, Djodjic F, Tonderski K, Heeb A, Svensson J, Malgeryd J. Hydrologic Extremes and Legacy Sources Can Override Efforts to Mitigate Nutrient and Sediment Losses at the Catchment Scale. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1314-1324. [PMID: 31589708 DOI: 10.2134/jeq2019.02.0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combating eutrophication requires changes in land and water management in agricultural catchments and implementation of mitigation measures to reduce phosphorus (P), nitrogen (N) and suspended sediment (SS) losses. To date, such mitigation measures have been built in many agricultural catchments, but there is a lack of studies evaluating their effectiveness. Here we evaluated the effectiveness of mitigation measures in a clay soil-dominated headwater catchment by combining the evaluation of long-term and high-frequency data with punctual measurements upstream and downstream of three mitigation measures: lime-filter drains, a two-stage ditch, and a sedimentation pond. Long-term hydrochemical data at the catchment outlet showed a significant decrease in P (-15%) and SS (-28%) and an increase in nitrate nitrogen (NO-N, +13%) concentrations. High-frequency (hourly) measurements with a wet-chemistry analyzer (total and reactive P) and optical sensor (NO-N and SS) showed that the catchment is an abundant source of nutrients and sediments and that their transport is exacerbated by prolonged drought and resuspension of stream sediments during storm events. Lime-filter drains showed a decrease in SS by 76% and total P by 80% and an increase in NO-N by 45% compared with traditional drains, potentially indicating pollution swapping. The effectiveness of two-stage ditch and sedimentation pond was less evident and depended on the prevalent hydrometeorological conditions that drove the resuspension of bed sediments and associated sediment-bound P transport. These results suggest that increased frequency of prolonged drought due to changing weather patterns and resuspension of SS and sediment-bound P during storm events can override the generally positive effect of mitigation measures.
Collapse
|