1
|
Harino T, Tanaka K, Motooka D, Masuike Y, Takahashi T, Yamashita K, Saito T, Yamamoto K, Makino T, Kurokawa Y, Nakajima K, Eguchi H, Doki Y. D-loop mutations in mitochondrial DNA are a risk factor for chemotherapy resistance in esophageal cancer. Sci Rep 2024; 14:31653. [PMID: 39738117 DOI: 10.1038/s41598-024-80226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored. We aimed to identify such mutations in esophageal cancer, pre- and post-chemotherapy, and explore the relationship between them and clinicopathological factors associated with chemotherapy resistance. We investigated mtDNA mutations in Human esophageal squamous cell carcinoma (ESCC) cancer cell lines (TE8 and TE11) and patient samples (27 pre- and post-chemotherapy, and 96 post-chemotherapy) using next-generation sequencing. Our analysis revealed a rise in mtDNA mutations following chemotherapy, particularly within the D-loop region. Moreover, mutations in a specific D-loop segment (hypervariable segment 1; HVS1) were associated with lower mtDNA copy number, poorer response to chemotherapy, and decreased five-year survival rates. These findings suggest that HVS1 mutations in mtDNA acquired after chemotherapy may contribute to treatment resistance and poorer clinical outcomes in patients with esophageal cancer. This study sheds light on the mechanisms of chemotherapy resistance and provides valuable insights for future research to overcome this challenge.
Collapse
Affiliation(s)
- Takashi Harino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yasunori Masuike
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kazuyoshi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Bettinazzi S, Liang J, Rodriguez E, Bonneau M, Holt R, Whitehead B, Dowling DK, Lane N, Camus MF. Assessing the role of mitonuclear interactions on mitochondrial function and organismal fitness in natural Drosophila populations. Evol Lett 2024; 8:916-926. [PMID: 39677574 PMCID: PMC11637609 DOI: 10.1093/evlett/qrae043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondrial function depends on the effective interactions between proteins and RNA encoded by the mitochondrial and nuclear genomes. Evidence suggests that both genomes respond to thermal selection and promote adaptation. However, the contribution of their epistatic interactions to life history phenotypes in the wild remains elusive. We investigated the evolutionary implications of mitonuclear interactions in a real-world scenario that sees populations adapted to different environments, altering their geographical distribution while experiencing flow and admixture. We created a Drosophila melanogaster panel with replicate native populations from the ends of the Australian east-coast cline, into which we substituted the mtDNA haplotypes that were either predominant or rare at each cline-end, thus creating putatively mitonuclear matched and mismatched populations. Our results suggest that mismatching may impact phenotype, with populations harboring the rarer mtDNA haplotype suffering a trade-off between aerobic capacity and key fitness aspects such as reproduction, growth, and survival. We discuss the significance of mitonuclear interactions as modulators of life history phenotypes in the context of future adaptation and population persistence.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jane Liang
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Enrique Rodriguez
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marion Bonneau
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ruben Holt
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ben Whitehead
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
3
|
Wang D, Pan H, Cheng S, Huang Z, Shi Z, Deng H, Yang J, Jin C, Dai J. Construction and Validation of a Prognostic Model Based on Mitochondrial Genes in Prostate Cancer. Horm Metab Res 2024; 56:807-817. [PMID: 38870985 DOI: 10.1055/a-2330-3696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This study attempted to build a prostate cancer (PC) prognostic risk model with mitochondrial feature genes. PC-related MTGs were screened for Cox regression analyses, followed by establishing a prognostic model. Model validity was analyzed via survival analysis and receiver operating characteristic (ROC) curves, and model accuracy was validated in the GEO dataset. Combining risk score with clinical factors, the independence of the risk score was verified by using Cox analysis, followed by generating a nomogram. The Gleason score, microsatellite instability (MSI), immune microenvironment, and tumor mutation burden were analyzed in two risk groups. Finally, the prognostic feature genes were verified through a q-PCR test. Ten PC-associated MTGs were screened, and a prognostic model was built. Survival analysis and ROC curves illustrated that the model was a good predictor for the risk of PC. Cox regression analysis revealed that risk score acted as an independent prognostic factor. The Gleason score and MSI in the high-risk group were substantially higher than in the low-risk group. Levels of ESTIMATE Score, Immune Score, Stromal Score, immune cells, immune function, immune checkpoint, and immunopheno score of partial immune checkpoints in the high-risk group were significantly lower than in the low-risk group. Genes with the highest mutation frequencies in the two groups were SPOP, TTN, and TP53. The q-PCR results of the feature genes were consistent with the gene expression results in the database. The 10-gene model based on MTGs could accurately predict the prognosis of PC patients and their responses to immunotherapy.
Collapse
Affiliation(s)
- Dan Wang
- Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Hui Pan
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Shaoping Cheng
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Zhigang Huang
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Zhenlei Shi
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Hao Deng
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Junwu Yang
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Chenghua Jin
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Jin Dai
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| |
Collapse
|
4
|
Aminuddin A, Ng PY, Leong CO, Makpol S, Chua EW. Potential role of heteroplasmic mitochondrial DNA mutations in modulating the subtype-specific adaptation of oral squamous cell carcinoma to cisplatin therapy. Discov Oncol 2024; 15:573. [PMID: 39425872 PMCID: PMC11490477 DOI: 10.1007/s12672-024-01445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Cancer cells are constantly evolving to adapt to environmental changes, particularly during exposure to drug treatment. In this work, we aimed to characterize genetic and epigenetic changes in mitochondrial DNA (mtDNA) that may increase the resistance of oral squamous cell carcinoma (OSCC) to cisplatin. We first derived drug-resistant cells from two human OSCC cell lines, namely SAS and H103, by continual cisplatin treatments for about 4 months. To determine mtDNA changes induced by cisplatin, we performed nanopore sequencing and quantitative polymerase chain reaction analysis of mtDNA extracted from the cells pre- and post-treatment. We also assessed the mitochondrial functions of the cells and their capacity to generate intracellular reactive oxygen species (ROS). We found that in the cisplatin-resistant cells derived from SAS, there was a reduction in mtDNA content and significant enrichment of a m.3910G > C mutation in the MT-ND1 gene. However, such changes were not detected in cisplatin-resistant H103 cells. The cisplatin treatment also altered methylation patterns in both SAS and H103 cells and decreased their sensitivity to ROS-induced cytotoxicity. We suggest that the sequence alterations and epigenetic changes in mtDNA and the reduction in mtDNA content could be key drivers of cisplatin resistance in OSCC. These mtDNA alterations may participate in cellular adaptation that serves as a response to adverse changes in the environment, particularly exposure to cytotoxic agents. Importantly, the observed mtDNA changes may be influenced by the distinct genetic landscapes of various cancer subtypes. Overall, this study reveals significant insights into cisplatin resistance driven by complex mtDNA dynamics, particularly in OSCC. This underscores the need for targeted therapies tailored to the genetic profiles of individual OSCC patients to improve disease prognosis.
Collapse
Affiliation(s)
- Amnani Aminuddin
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Pei Yuen Ng
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chee Onn Leong
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- AGTC Genomics, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Wang Z, Yu H, Bao W, Qu M, Wang Y, Zhang L, Liu X, Liu C, He M, Li J, Dong Z, Zhang Y, Yang B, Hou J, Xu C, Wang L, Li X, Gao X, Yang C. Proteomic and phosphoproteomic landscape of localized prostate cancer unveils distinct molecular subtypes and insights into precision therapeutics. Proc Natl Acad Sci U S A 2024; 121:e2402741121. [PMID: 39320917 PMCID: PMC11459144 DOI: 10.1073/pnas.2402741121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Building upon our previous investigation of genomic, epigenomic, and transcriptomic profiles of prostate cancer in China, we conducted a comprehensive analysis of proteomic and phosphoproteomic profiles of 82 tumor tissues and matched adjacent normal tissues from 41 Chinese patients with localized prostate cancer. We identified three distinct proteomic subtypes with significant difference in both molecular features and clinical prognosis. Notably, these proteomic subtypes exhibited a parallel degree of heterogeneity in the phosphoproteome, featuring unique metabolism, proliferation, and immune infiltration characteristics. We further demonstrated that a combination of proteins and phosphosites serves as the most effective biomarkers in prostate cancer to predict biochemical recurrence. Through an integrated multiomics analysis, we revealed mechanistic differences underlying different proteomic subtypes and highlighted the potential significance of Serine/arginine-rich splicing factor 1 (SRSF1) phosphorylation in promoting the malignant characteristics of prostate cancer cells. Our multiomics data provide valuable resources for understanding the molecular mechanisms of prostate cancer within the Chinese population, which have the potential to inform the development of personalized treatment strategies and enhance prognostic analyses for prostate cancer patients.
Collapse
Affiliation(s)
- Zengming Wang
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Haolan Yu
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Wei Bao
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Min Qu
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| | - Yan Wang
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| | - Liandong Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Xubing Liu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Chen Liu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Miaoxia He
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai200433, China
| | - Jing Li
- Center for Translational Medicine, Second Military Medical University (Naval Medical University), Shanghai200433, China
| | - Zhenyang Dong
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
| | - Yun Zhang
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
| | - Bo Yang
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| | - Jianguo Hou
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| | - Xin Li
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Xu Gao
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai200433, China
| |
Collapse
|
6
|
Piergentili R, Sechi S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int J Mol Sci 2024; 25:7498. [PMID: 39000605 PMCID: PMC11242419 DOI: 10.3390/ijms25137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.
Collapse
Affiliation(s)
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
7
|
Zhuang X, Ye R, Zhou Y, Cheng MY, Cui H, Wang L, Zhang S, Wang S, Cui Y, Zhang W. Leveraging new methods for comprehensive characterization of mitochondrial DNA in esophageal squamous cell carcinoma. Genome Med 2024; 16:50. [PMID: 38566210 PMCID: PMC10985887 DOI: 10.1186/s13073-024-01319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Mitochondria play essential roles in tumorigenesis; however, little is known about the contribution of mitochondrial DNA (mtDNA) to esophageal squamous cell carcinoma (ESCC). Whole-genome sequencing (WGS) is by far the most efficient technology to fully characterize the molecular features of mtDNA; however, due to the high redundancy and heterogeneity of mtDNA in regular WGS data, methods for mtDNA analysis are far from satisfactory. METHODS Here, we developed a likelihood-based method dMTLV to identify low-heteroplasmic mtDNA variants. In addition, we described fNUMT, which can simultaneously detect non-reference nuclear sequences of mitochondrial origin (non-ref NUMTs) and their derived artifacts. Using these new methods, we explored the contribution of mtDNA to ESCC utilizing the multi-omics data of 663 paired tumor-normal samples. RESULTS dMTLV outperformed the existing methods in sensitivity without sacrificing specificity. The verification using Nanopore long-read sequencing data showed that fNUMT has superior specificity and more accurate breakpoint identification than the current methods. Leveraging the new method, we identified a significant association between the ESCC overall survival and the ratio of mtDNA copy number of paired tumor-normal samples, which could be potentially explained by the differential expression of genes enriched in pathways related to metabolism, DNA damage repair, and cell cycle checkpoint. Additionally, we observed that the expression of CBWD1 was downregulated by the non-ref NUMTs inserted into its intron region, which might provide precursor conditions for the tumor cells to adapt to a hypoxic environment. Moreover, we identified a strong positive relationship between the number of mtDNA truncating mutations and the contribution of signatures linked to tumorigenesis and treatment response. CONCLUSIONS Our new frameworks promote the characterization of mtDNA features, which enables the elucidation of the landscapes and roles of mtDNA in ESCC essential for extending the current understanding of ESCC etiology. dMTLV and fNUMT are freely available from https://github.com/sunnyzxh/dMTLV and https://github.com/sunnyzxh/fNUMT , respectively.
Collapse
Affiliation(s)
- Xuehan Zhuang
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China
| | - Rui Ye
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yong Zhou
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China
| | - Matthew Yibo Cheng
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China
| | - Heyang Cui
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China
| | - Longlong Wang
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China
| | - Shuangping Zhang
- The Department of Thoracic Surgery, Shanxi Cancer Hospital; Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Shubin Wang
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China
| | - Yongping Cui
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China.
- The Department of Thoracic Surgery, Shanxi Cancer Hospital; Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| | - Weimin Zhang
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China.
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100142, China.
| |
Collapse
|
8
|
Roy S, Das A, Bairagi A, Das D, Jha A, Srivastava AK, Chatterjee N. Mitochondria act as a key regulatory factor in cancer progression: Current concepts on mutations, mitochondrial dynamics, and therapeutic approach. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108490. [PMID: 38460864 DOI: 10.1016/j.mrrev.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
The diversified impacts of mitochondrial function vs. dysfunction have been observed in almost all disease conditions including cancers. Mitochondria play crucial roles in cellular homeostasis and integrity, however, mitochondrial dysfunctions influenced by alterations in the mtDNA can disrupt cellular balance. Many external stimuli or cellular defects that cause cellular integrity abnormalities, also impact mitochondrial functions. Imbalances in mitochondrial activity can initiate and lead to accumulations of genetic mutations and can promote the processes of tumorigenesis, progression, and survival. This comprehensive review summarizes epigenetic and genetic alterations that affect the functionality of the mitochondria, with considerations of cellular metabolism, and as influenced by ethnicity. We have also reviewed recent insights regarding mitochondrial dynamics, miRNAs, exosomes that play pivotal roles in cancer promotion, and the impact of mitochondrial dynamics on immune cell mechanisms. The review also summarizes recent therapeutic approaches targeting mitochondria in anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Sraddhya Roy
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ananya Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Aparajita Bairagi
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Debangshi Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ashna Jha
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Amit Kumar Srivastava
- CSIR-IICB Translational Research Unit Of Excellence, CN-6, Salt Lake, Sector - V, Kolkata 700091, India
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
9
|
Chen J, Zheng Q, Hicks JL, Trabzonlu L, Ozbek B, Jones T, Vaghasia AM, Larman TC, Wang R, Markowski MC, Denmeade SR, Pienta KJ, Hruban RH, Antonarakis ES, Gupta A, Dang CV, Yegnasubramanian S, De Marzo AM. MYC-driven increases in mitochondrial DNA copy number occur early and persist throughout prostatic cancer progression. JCI Insight 2023; 8:e169868. [PMID: 37971875 PMCID: PMC10807718 DOI: 10.1172/jci.insight.169868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Increased mitochondrial function may render some cancers vulnerable to mitochondrial inhibitors. Since mitochondrial function is regulated partly by mitochondrial DNA copy number (mtDNAcn), accurate measurements of mtDNAcn could help reveal which cancers are driven by increased mitochondrial function and may be candidates for mitochondrial inhibition. However, prior studies have employed bulk macrodissections that fail to account for cell type-specific or tumor cell heterogeneity in mtDNAcn. These studies have often produced unclear results, particularly in prostate cancer. Herein, we developed a multiplex in situ method to spatially quantify cell type-specific mtDNAcn. We show that mtDNAcn is increased in luminal cells of high-grade prostatic intraepithelial neoplasia (HGPIN), is increased in prostatic adenocarcinomas (PCa), and is further elevated in metastatic castration-resistant prostate cancer. Increased PCa mtDNAcn was validated by 2 orthogonal methods and is accompanied by increases in mtRNAs and enzymatic activity. Mechanistically, MYC inhibition in prostate cancer cells decreases mtDNA replication and expression of several mtDNA replication genes, and MYC activation in the mouse prostate leads to increased mtDNA levels in the neoplastic prostate cells. Our in situ approach also revealed elevated mtDNAcn in precancerous lesions of the pancreas and colon/rectum, demonstrating generalization across cancer types using clinical tissue samples.
Collapse
Affiliation(s)
- Jiayu Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica L. Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Levent Trabzonlu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Busra Ozbek
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tracy Jones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Tatianna C. Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Sam R. Denmeade
- Department of Oncology and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J. Pienta
- Department of Oncology and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ralph H. Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Emmanuel S. Antonarakis
- Department of Oncology and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Chi V. Dang
- Department of Oncology and
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Soh PXY, Mmekwa N, Petersen DC, Gheybi K, van Zyl S, Jiang J, Patrick SM, Campbell R, Jaratlerdseri W, Mutambirwa SBA, Bornman MSR, Hayes VM. Prostate cancer genetic risk and associated aggressive disease in men of African ancestry. Nat Commun 2023; 14:8037. [PMID: 38052806 PMCID: PMC10697980 DOI: 10.1038/s41467-023-43726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
African ancestry is a significant risk factor for prostate cancer and advanced disease. Yet, genetic studies have largely been conducted outside the context of Sub-Saharan Africa, identifying 278 common risk variants contributing to a multiethnic polygenic risk score, with rare variants focused on a panel of roughly 20 pathogenic genes. Based on this knowledge, we are unable to determine polygenic risk or differentiate prostate cancer status interrogating whole genome data for 113 Black South African men. To further assess for potentially functional common and rare variant associations, here we interrogate 247,780 exomic variants for 798 Black South African men using a case versus control or aggressive versus non-aggressive study design. Notable genes of interest include HCP5, RFX6 and H3C1 for risk, and MKI67 and KLF5 for aggressive disease. Our study highlights the need for further inclusion across the African diaspora to establish African-relevant risk models aimed at reducing prostate cancer health disparities.
Collapse
Affiliation(s)
- Pamela X Y Soh
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Naledi Mmekwa
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Desiree C Petersen
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kazzem Gheybi
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Smit van Zyl
- Faculty of Health Sciences, University of Limpopo, Turfloop Campus, South Africa
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | | | - Weerachai Jaratlerdseri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa, South Africa
| | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
- Faculty of Health Sciences, University of Limpopo, Turfloop Campus, South Africa.
- Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
11
|
Simón L, Arazo-Rusindo M, Quest AFG, Mariotti-Celis MS. Phlorotannins: Novel Orally Administrated Bioactive Compounds That Induce Mitochondrial Dysfunction and Oxidative Stress in Cancer. Antioxidants (Basel) 2023; 12:1734. [PMID: 37760037 PMCID: PMC10525198 DOI: 10.3390/antiox12091734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial dysfunction is an interesting therapeutic target to help reduce cancer deaths, and the use of bioactive compounds has emerged as a novel and safe approach to solve this problem. Here, we discuss the information available related to phlorotannins, a type of polyphenol present in brown seaweeds that reportedly functions as antioxidants/pro-oxidants and anti-inflammatory and anti-tumorigenic agents. Specifically, available evidence indicates that dieckol and phloroglucinol promote mitochondrial membrane depolarization and mitochondria-dependent apoptosis. Phlorotannins also reduce pro-tumorigenic, -inflammatory, and -angiogenic signaling mechanisms involving RAS/MAPK/ERK, PI3K/Akt/mTOR, NF-κB, and VEGF. In doing so, they inhibit pathways that favor cancer development and progression. Unfortunately, these compounds are rather labile and, therefore, this review also summarizes approaches permitting the encapsulation of bioactive compounds, like phlorotannins, and their subsequent oral administration as novel and non-invasive therapeutic alternatives for cancer treatment.
Collapse
Affiliation(s)
- Layla Simón
- Nutrition and Dietetic School, Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
| | - Migdalia Arazo-Rusindo
- Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Andrew F. G. Quest
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | | |
Collapse
|
12
|
Behnam B, Taghizadeh-Hesary F. Mitochondrial Metabolism: A New Dimension of Personalized Oncology. Cancers (Basel) 2023; 15:4058. [PMID: 37627086 PMCID: PMC10452105 DOI: 10.3390/cancers15164058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Energy is needed by cancer cells to stay alive and communicate with their surroundings. The primary organelles for cellular metabolism and energy synthesis are mitochondria. Researchers recently proved that cancer cells can steal immune cells' mitochondria using nanoscale tubes. This finding demonstrates the dependence of cancer cells on normal cells for their living and function. It also denotes the importance of mitochondria in cancer cells' biology. Emerging evidence has demonstrated how mitochondria are essential for cancer cells to survive in the harsh tumor microenvironments, evade the immune system, obtain more aggressive features, and resist treatments. For instance, functional mitochondria can improve cancer resistance against radiotherapy by scavenging the released reactive oxygen species. Therefore, targeting mitochondria can potentially enhance oncological outcomes, according to this notion. The tumors' responses to anticancer treatments vary, ranging from a complete response to even cancer progression during treatment. Therefore, personalized cancer treatment is of crucial importance. So far, personalized cancer treatment has been based on genomic analysis. Evidence shows that tumors with high mitochondrial content are more resistant to treatment. This paper illustrates how mitochondrial metabolism can participate in cancer resistance to chemotherapy, immunotherapy, and radiotherapy. Pretreatment evaluation of mitochondrial metabolism can provide additional information to genomic analysis and can help to improve personalized oncological treatments. This article outlines the importance of mitochondrial metabolism in cancer biology and personalized treatments.
Collapse
Affiliation(s)
- Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, NSF International, Germantown, MD 20874, USA
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran 1445613131, Iran
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran 1445613131, Iran
| |
Collapse
|
13
|
Picca A, Guerra F, Calvani R, Coelho-Júnior HJ, Leeuwenburgh C, Bucci C, Marzetti E. The contribution of mitochondrial DNA alterations to aging, cancer, and neurodegeneration. Exp Gerontol 2023; 178:112203. [PMID: 37172915 DOI: 10.1016/j.exger.2023.112203] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Mitochondrial DNA (mtDNA) is as a double-stranded molecule existing in hundreds to thousands copies in cells depending on cell metabolism and exposure to endogenous and/or environmental stressors. The coordination of mtDNA replication and transcription regulates the pace of mitochondrial biogenesis to guarantee the minimum number of organelles per cell. mtDNA inheritance follows a maternal lineage, although bi-parental inheritance has been reported in some species and in the case of mitochondrial diseases in humans. mtDNA mutations (e.g., point mutations, deletions, copy number variations) have been identified in the setting of several human diseases. For instance, sporadic and inherited rare disorders involving the nervous system as well higher risk of developing cancer and neurodegenerative conditions, including Parkinson's and Alzheimer's disease, have been associated with polymorphic mtDNA variants. An accrual of mtDNA mutations has also been identified in several tissues and organs, including heart and muscle, of old experimental animals and humans, which may contribute to the development of aging phenotypes. The role played by mtDNA homeostasis and mtDNA quality control pathways in human health is actively investigated for the possibility of developing targeted therapeutics for a wide range of conditions.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
14
|
Mahmood M, Liu EM, Shergold AL, Tolla E, Tait-Mulder J, Huerta Uribe A, Shokry E, Young AL, Lilla S, Kim M, Park T, Manchon J, Rodríguez-Antona C, Walters RC, Springett RJ, Blaza JN, Zanivan S, Sumpton D, Roberts EW, Reznik E, Gammage PA. Tumour mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533091. [PMID: 36993533 PMCID: PMC10055208 DOI: 10.1101/2023.03.21.533091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The mitochondrial genome encodes essential machinery for respiration and metabolic homeostasis but is paradoxically among the most common targets of somatic mutation in the cancer genome, with truncating mutations in respiratory complex I genes being most over-represented1. While mitochondrial DNA (mtDNA) mutations have been associated with both improved and worsened prognoses in several tumour lineages1-3, whether these mutations are drivers or exert any functional effect on tumour biology remains controversial. Here we discovered that complex I-encoding mtDNA mutations are sufficient to remodel the tumour immune landscape and therapeutic resistance to immune checkpoint blockade. Using mtDNA base editing technology4 we engineered recurrent truncating mutations in the mtDNA-encoded complex I gene, Mt-Nd5, into murine models of melanoma. Mechanistically, these mutations promoted utilisation of pyruvate as a terminal electron acceptor and increased glycolytic flux without major effects on oxygen consumption, driven by an over-reduced NAD pool and NADH shuttling between GAPDH and MDH1, mediating a Warburg-like metabolic shift. In turn, without modifying tumour growth, this altered cancer cell-intrinsic metabolism reshaped the tumour microenvironment in both mice and humans, promoting an anti-tumour immune response characterised by loss of resident neutrophils. This subsequently sensitised tumours bearing high mtDNA mutant heteroplasmy to immune checkpoint blockade, with phenocopy of key metabolic changes being sufficient to mediate this effect. Strikingly, patient lesions bearing >50% mtDNA mutation heteroplasmy also demonstrated a >2.5-fold improved response rate to checkpoint inhibitor blockade. Taken together these data nominate mtDNA mutations as functional regulators of cancer metabolism and tumour biology, with potential for therapeutic exploitation and treatment stratification.
Collapse
Affiliation(s)
| | - Eric Minwei Liu
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Engy Shokry
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Minsoo Kim
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tricia Park
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J.L. Manchon
- Centro Nacional de Investigaciones Oncológicas(CNIO), Madrid, Spain
| | - Crístina Rodríguez-Antona
- Centro Nacional de Investigaciones Oncológicas(CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER, Madrid, Spain
| | - Rowan C. Walters
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, UK
| | - Roger J. Springett
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, UK
| | - James N. Blaza
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, UK
| | | | - Edward W. Roberts
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, UK
| | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Payam A. Gammage
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, UK
| |
Collapse
|
15
|
Chen J, Zheng Q, Hicks JL, Trabzonlu L, Ozbek B, Jones T, Vaghasia A, Larman TC, Wang R, Markowski MC, Denmeade SR, Pienta KJ, Hruban RH, Antonarakis ES, Gupta A, Dang CV, Yegnasubramanian S, De Marzo AM. MYC-driven increases in mitochondrial DNA copy number occur early and persist throughout prostatic cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529259. [PMID: 36865273 PMCID: PMC9979994 DOI: 10.1101/2023.02.20.529259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Increased mitochondrial function may render some cancers vulnerable to mitochondrial inhibitors. Since mitochondrial function is regulated partly by mitochondrial DNA copy number (mtDNAcn), accurate measurements of mtDNAcn could help reveal which cancers are driven by increased mitochondrial function and may be candidates for mitochondrial inhibition. However, prior studies have employed bulk macrodissections that fail to account for cell type-specific or tumor cell heterogeneity in mtDNAcn. These studies have often produced unclear results, particularly in prostate cancer. Herein, we developed a multiplex in situ method to spatially quantify cell type specific mtDNAcn. We show that mtDNAcn is increased in luminal cells of high-grade prostatic intraepithelial neoplasia (HGPIN), is increased in prostatic adenocarcinomas (PCa), and is further elevated in metastatic castration-resistant prostate cancer. Increased PCa mtDNAcn was validated by two orthogonal methods and is accompanied by increases in mtRNAs and enzymatic activity. Mechanistically, MYC inhibition in prostate cancer cells decreases mtDNA replication and expression of several mtDNA replication genes, and MYC activation in the mouse prostate leads to increased mtDNA levels in the neoplastic prostate cells. Our in situ approach also revealed elevated mtDNAcn in precancerous lesions of the pancreas and colon/rectum, demonstrating generalization across cancer types using clinical tissue samples.
Collapse
Affiliation(s)
- Jiayu Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica L. Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Levent Trabzonlu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Busra Ozbek
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tracy Jones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ajay Vaghasia
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tatianna C. Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rulin Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark C. Markowski
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sam R. Denmeade
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J. Pienta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ralph H. Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Emmanuel S. Antonarakis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anuj Gupta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chi V Dang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Establishment of four head and neck squamous cell carcinoma cell lines: importance of reference DNA for accurate genomic characterisation. J Laryngol Otol 2023; 137:301-307. [PMID: 35317874 PMCID: PMC9975763 DOI: 10.1017/s0022215122000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE There is significant interest in developing early passage cell lines with matched normal reference DNA to facilitate a precision medicine approach in assessing drug response. This study aimed to establish early passage cell lines, and perform whole exome sequencing and short tandem repeat profiling on matched normal reference DNA, primary tumour and corresponding cell lines. METHODS A cell culture based, in vitro study was conducted of patients with primary human papillomavirus positive and human papillomavirus negative tumours. RESULTS Four early passage cell lines were established. Two cell lines were human papillomavirus positive, confirmed by sequencing and p16 immunoblotting. Short tandem repeat profiling confirmed that all cell lines were established from their index tumours. Whole exome sequencing revealed that the matched normal reference DNA was critical for accurate mutational analysis: a high rate of false positive mutation calls were excluded (87.6 per cent). CONCLUSION Early passage cell lines were successfully established. Patient-matched reference DNA is important for accurate cell line mutational calls.
Collapse
|
17
|
Chouhan S, Sawant M, Weimholt C, Luo J, Sprung RW, Terrado M, Mueller DM, Earp HS, Mahajan NP. TNK2/ACK1-mediated phosphorylation of ATP5F1A (ATP synthase F1 subunit alpha) selectively augments survival of prostate cancer while engendering mitochondrial vulnerability. Autophagy 2023; 19:1000-1025. [PMID: 35895804 PMCID: PMC9980697 DOI: 10.1080/15548627.2022.2103961] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022] Open
Abstract
The challenge of rapid macromolecular synthesis enforces the energy-hungry cancer cell mitochondria to switch their metabolic phenotypes, accomplished by activation of oncogenic tyrosine kinases. Precisely how kinase activity is directly exploited by cancer cell mitochondria to meet high-energy demand, remains to be deciphered. Here we show that a non-receptor tyrosine kinase, TNK2/ACK1 (tyrosine kinase non receptor 2), phosphorylated ATP5F1A (ATP synthase F1 subunit alpha) at Tyr243 and Tyr246 (Tyr200 and 203 in the mature protein, respectively) that not only increased the stability of complex V, but also increased mitochondrial energy output in cancer cells. Further, phospho-ATP5F1A (p-Y-ATP5F1A) prevented its binding to its physiological inhibitor, ATP5IF1 (ATP synthase inhibitory factor subunit 1), causing sustained mitochondrial activity to promote cancer cell growth. TNK2 inhibitor, (R)-9b reversed this process and induced mitophagy-based autophagy to mitigate prostate tumor growth while sparing normal prostate cells. Further, depletion of p-Y-ATP5F1A was needed for (R)-9b-mediated mitophagic response and tumor growth. Moreover, Tnk2 transgenic mice displayed increased p-Y-ATP5F1A and loss of mitophagy and exhibited formation of prostatic intraepithelial neoplasia (PINs). Consistent with these data, a marked increase in p-Y-ATP5F1A was seen as prostate cancer progressed to the malignant stage. Overall, this study uncovered the molecular intricacy of tyrosine kinase-mediated mitochondrial energy regulation as a distinct cancer cell mitochondrial vulnerability and provided evidence that TNK2 inhibitors can act as "mitocans" to induce cancer-specific mitophagy.Abbreviations: ATP5F1A: ATP synthase F1 subunit alpha; ATP5IF1: ATP synthase inhibitory factor subunit 1; CRPC: castration-resistant prostate cancer; DNM1L: dynamin 1 like; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Mdivi-1: mitochondrial division inhibitor 1; Mut-ATP5F1A: Y243,246A mutant of ATP5F1A; OXPHOS: oxidative phosphorylation; PC: prostate cancer; PINK1: PTEN induced kinase 1; p-Y-ATP5F1A: phosphorylated tyrosine 243 and 246 on ATP5F1A; TNK2/ACK1: tyrosine kinase non receptor 2; Ub: ubiquitin; WT: wild type.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
- Division of Urologic Surgery Washington University, St. Louis, MO, USA
| | - Mithila Sawant
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
- Division of Urologic Surgery Washington University, St. Louis, MO, USA
| | - Cody Weimholt
- Department of Pathology & Immunology Washington University, St. Louis, MO, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Washington University, St. Louis, MO, USA
| | - Robert W. Sprung
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
| | - Mailyn Terrado
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - David M. Mueller
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - H. Shelton Earp
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Nupam P. Mahajan
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
- Division of Urologic Surgery Washington University, St. Louis, MO, USA
- Siteman Cancer Center Washington University, St. Louis, MO, USA
| |
Collapse
|
18
|
Mitochondrial Alterations in Prostate Cancer: Roles in Pathobiology and Racial Disparities. Int J Mol Sci 2023; 24:ijms24054482. [PMID: 36901912 PMCID: PMC10003184 DOI: 10.3390/ijms24054482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/12/2023] Open
Abstract
Prostate cancer (PCa) affects millions of men worldwide and is a major cause of cancer-related mortality. Race-associated PCa health disparities are also common and are of both social and clinical concern. Most PCa is diagnosed early due to PSA-based screening, but it fails to discern between indolent and aggressive PCa. Androgen or androgen receptor-targeted therapies are standard care of treatment for locally advanced and metastatic disease, but therapy resistance is common. Mitochondria, the powerhouse of cells, are unique subcellular organelles that have their own genome. A large majority of mitochondrial proteins are, however, nuclear-encoded and imported after cytoplasmic translation. Mitochondrial alterations are common in cancer, including PCa, leading to their altered functions. Aberrant mitochondrial function affects nuclear gene expression in retrograde signaling and promotes tumor-supportive stromal remodeling. In this article, we discuss mitochondrial alterations that have been reported in PCa and review the literature related to their roles in PCa pathobiology, therapy resistance, and racial disparities. We also discuss the translational potential of mitochondrial alterations as prognostic biomarkers and as effective targets for PCa therapy.
Collapse
|
19
|
Unraveling the Peculiar Features of Mitochondrial Metabolism and Dynamics in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15041192. [PMID: 36831534 PMCID: PMC9953833 DOI: 10.3390/cancers15041192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer deaths among men in Western countries. Mitochondria, the "powerhouse" of cells, undergo distinctive metabolic and structural dynamics in different types of cancer. PCa cells experience peculiar metabolic changes during their progression from normal epithelial cells to early-stage and, progressively, to late-stage cancer cells. Specifically, healthy cells display a truncated tricarboxylic acid (TCA) cycle and inefficient oxidative phosphorylation (OXPHOS) due to the high accumulation of zinc that impairs the activity of m-aconitase, the enzyme of the TCA cycle responsible for the oxidation of citrate. During the early phase of cancer development, intracellular zinc levels decrease leading to the reactivation of m-aconitase, TCA cycle and OXPHOS. PCa cells change their metabolic features again when progressing to the late stage of cancer. In particular, the Warburg effect was consistently shown to be the main metabolic feature of late-stage PCa cells. However, accumulating evidence sustains that both the TCA cycle and the OXPHOS pathway are still present and active in these cells. The androgen receptor axis as well as mutations in mitochondrial genes involved in metabolic rewiring were shown to play a key role in PCa cell metabolic reprogramming. Mitochondrial structural dynamics, such as biogenesis, fusion/fission and mitophagy, were also observed in PCa cells. In this review, we focus on the mitochondrial metabolic and structural dynamics occurring in PCa during tumor development and progression; their role as effective molecular targets for novel therapeutic strategies in PCa patients is also discussed.
Collapse
|
20
|
Gene-Transcript Expression in Urine Supernatant and Urine Cell-Sediment Are Different but Equally Useful for Detecting Prostate Cancer. Cancers (Basel) 2023; 15:cancers15030789. [PMID: 36765747 PMCID: PMC9913640 DOI: 10.3390/cancers15030789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/02/2023] Open
Abstract
There is considerable interest in urine as a non-invasive liquid biopsy to detect prostate cancer (PCa). PCa-specific transcripts such as the TMPRSS2:ERG fusion gene can be found in both urine extracellular vesicles (EVs) and urine cell-sediment (Cell) but the relative usefulness of these and other genes in each fraction in PCa detection has not been fully elucidated. Urine samples from 76 men (PCa n = 40, non-cancer n = 36) were analysed by NanoString for 154 PCa-associated genes-probes, 11 tissue-specific, and six housekeeping. Comparison to qRT-PCR data for four genes (PCA3, OR51E2, FOLH1, and RPLP2) was strong (r = 0.51-0.95, Spearman p < 0.00001). Comparing EV to Cells, differential gene expression analysis found 57 gene-probes significantly more highly expressed in 100 ng of amplified cDNA products from the EV fraction, and 26 in Cells (p < 0.05; edgeR). Expression levels of prostate-specific genes (KLK2, KLK3) measured were ~20× higher in EVs, while PTPRC (white-blood Cells) was ~1000× higher in Cells. Boruta analysis identified 11 gene-probes as useful in detecting PCa: two were useful in both fractions (PCA3, HOXC6), five in EVs alone (GJB1, RPS10, TMPRSS2:ERG, ERG_Exons_4-5, HPN) and four from Cell (ERG_Exons_6-7, OR51E2, SPINK1, IMPDH2), suggesting that it is beneficial to fractionate whole urine prior to analysis. The five housekeeping genes were not significantly differentially expressed between PCa and non-cancer samples. Expression signatures from Cell, EV and combined data did not show evidence for one fraction providing superior information over the other.
Collapse
|
21
|
Cosemans C, Wang C, Martens DS, Janssen BG, Vanpoucke C, Lefebvre W, Smeets K, Nawrot TS, Plusquin M. In Utero Exposure to Air Pollutants and Mitochondrial Heteroplasmy in Neonates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:350-359. [PMID: 36516295 DOI: 10.1021/acs.est.2c02556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mitochondria are sensitive to oxidative stress, which can be caused by traffic-related air pollution. Placental mitochondrial DNA (mtDNA) mutations have been previously linked with air pollution. However, the relationship between prenatal air pollution and cord-blood mtDNA mutations has been poorly understood. Therefore, we hypothesized that prenatal particulate matter (PM2.5) and NO2 exposures are associated with cord-blood mtDNA heteroplasmy. As part of the ENVIRONAGE cohort, 200 mother-newborn pairs were recruited. Cord-blood mitochondrial single-nucleotide polymorphisms were identified by whole mitochondrial genome sequencing, and heteroplasmy levels were evaluated based on the variant allele frequency (VAF). Outdoor PM2.5 and NO2 concentrations were determined by a high-resolution spatial-temporal interpolation method based on the maternal residential address. Distributed lag linear models were used to determine sensitive time windows for the association between NO2 exposure and cord-blood mtDNA heteroplasmy. A 5 μg/m3 increment in NO2 was linked with MT-D-Loop16311T>C heteroplasmy from gestational weeks 17-25. MT-CYTB14766C>T was negatively associated with NO2 exposure in mid pregnancy, from weeks 14-17, and positively associated in late pregnancy, from weeks 31-36. No significant associations were observed with prenatal PM2.5 exposure. This is the first study to show that prenatal NO2 exposure is associated with cord-blood mitochondrial mutations and suggests two critical windows of exposure in mid-to-late pregnancy.
Collapse
Affiliation(s)
- Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Charlotte Vanpoucke
- Belgian Interregional Environment Agency, IRCEL-CELINE, 1000 Brussels, Belgium
| | - Wouter Lefebvre
- Flemish Institute for Technological Research, VITO, 2400 Mol, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- School of Public Health, Occupational & Environmental Medicine, Leuven University, 3000 Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
22
|
Eickelschulte S, Riediger AL, Angeles AK, Janke F, Duensing S, Sültmann H, Görtz M. Biomarkers for the Detection and Risk Stratification of Aggressive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14246094. [PMID: 36551580 PMCID: PMC9777028 DOI: 10.3390/cancers14246094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Current strategies for the clinical management of prostate cancer are inadequate for a precise risk stratification between indolent and aggressive tumors. Recently developed tissue-based molecular biomarkers have refined the risk assessment of the disease. The characterization of tissue biopsy components and subsequent identification of relevant tissue-based molecular alterations have the potential to improve the clinical decision making and patient outcomes. However, tissue biopsies are invasive and spatially restricted due to tumor heterogeneity. Therefore, there is an urgent need for complementary diagnostic and prognostic options. Liquid biopsy approaches are minimally invasive with potential utility for the early detection, risk stratification, and monitoring of tumors. In this review, we focus on tissue and liquid biopsy biomarkers for early diagnosis and risk stratification of prostate cancer, including modifications on the genomic, epigenomic, transcriptomic, and proteomic levels. High-risk molecular alterations combined with orthogonal clinical parameters can improve the identification of aggressive tumors and increase patient survival.
Collapse
Affiliation(s)
- Samaneh Eickelschulte
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Anja Lisa Riediger
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Magdalena Görtz
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-42-2603
| |
Collapse
|
23
|
Kim M, Mahmood M, Reznik E, Gammage PA. Mitochondrial DNA is a major source of driver mutations in cancer. Trends Cancer 2022; 8:1046-1059. [PMID: 36041967 PMCID: PMC9671861 DOI: 10.1016/j.trecan.2022.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations are among the most common genetic events in all tumors and directly impact metabolic homeostasis. Despite the central role mitochondria play in energy metabolism and cellular physiology, the role of mutations in the mitochondrial genomes of tumors has been contentious. Until recently, genomic and functional studies of mtDNA variants were impeded by a lack of adequate tumor mtDNA sequencing data and available methods for mitochondrial genome engineering. These barriers and a conceptual fog surrounding the functional impact of mtDNA mutations in tumors have begun to lift, revealing a path to understanding the role of this essential metabolic genome in cancer initiation and progression. Here we discuss the history, recent developments, and challenges that remain for mitochondrial oncogenetics as the impact of a major new class of cancer-associated mutations is unveiled.
Collapse
Affiliation(s)
- Minsoo Kim
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Payam A Gammage
- CRUK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
24
|
Abstract
Due to late onset hypogonadism (LOH), there is an increased usage of testosterone replacement therapy (TRT) in the aging male population. Since prostate is a target organ for androgens and anti-androgenic strategies are used to treat and palliate benign prostate hyperplasia (BPH) and prostate cancer (PC), the prevalence of both increases with age, the possible influence of TRT on prostate health becomes highly relevant. The present review summarizes existing data on the associations between endogenous hormone concentrations and prostate growth and concludes that circulating concentrations of androgens do not appear to be associated with the risks of development of BPH or initiation or progression of PC. The explanation for these findings relates to an apparent insensitivity of prostatic tissue to changes of testosterone concentrations within the physiological range.
Collapse
Affiliation(s)
- Karin Welén
- grid.8761.80000 0000 9919 9582Department of Urology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan-Erik Damber
- grid.8761.80000 0000 9919 9582Department of Urology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Mito-SiPE is a sequence-independent and PCR-free mtDNA enrichment method for accurate ultra-deep mitochondrial sequencing. Commun Biol 2022; 5:1269. [PMID: 36402890 PMCID: PMC9675811 DOI: 10.1038/s42003-022-04182-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
The analysis of somatic variation in the mitochondrial genome requires deep sequencing of mitochondrial DNA. This is ordinarily achieved by selective enrichment methods, such as PCR amplification or probe hybridization. These methods can introduce bias and are prone to contamination by nuclear-mitochondrial sequences (NUMTs), elements that can introduce artefacts into heteroplasmy analysis. We isolated intact mitochondria using differential centrifugation and alkaline lysis and subjected purified mitochondrial DNA to a sequence-independent and PCR-free method to obtain ultra-deep (>80,000X) sequencing coverage of the mitochondrial genome. This methodology avoids false-heteroplasmy calls that occur when long-range PCR amplification is used for mitochondrial DNA enrichment. Previously published methods employing mitochondrial DNA purification did not measure mitochondrial DNA enrichment or utilise high coverage short-read sequencing. Here, we describe a protocol that yields mitochondrial DNA and have quantified the increased level of mitochondrial DNA post-enrichment in 7 different mouse tissues. This method will enable researchers to identify changes in low frequency heteroplasmy without introducing PCR biases or NUMT contamination that are incorrectly identified as heteroplasmy when long-range PCR is used.
Collapse
|
26
|
Vikramdeo KS, Sudan SK, Singh AP, Singh S, Dasgupta S. Mitochondrial respiratory complexes: Significance in human mitochondrial disorders and cancers. J Cell Physiol 2022; 237:4049-4078. [PMID: 36074903 DOI: 10.1002/jcp.30869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria are pivotal organelles that govern cellular energy production through the oxidative phosphorylation system utilizing five respiratory complexes. In addition, mitochondria also contribute to various critical signaling pathways including apoptosis, damage-associated molecular patterns, calcium homeostasis, lipid, and amino acid biosynthesis. Among these diverse functions, the energy generation program oversee by mitochondria represents an immaculate orchestration and functional coordination between the mitochondria and nuclear encoded molecules. Perturbation in this program through respiratory complexes' alteration results in the manifestation of various mitochondrial disorders and malignancy, which is alarmingly becoming evident in the recent literature. Considering the clinical relevance and importance of this emerging medical problem, this review sheds light on the timing and nature of molecular alterations in various respiratory complexes and their functional consequences observed in various mitochondrial disorders and human cancers. Finally, we discussed how this wealth of information could be exploited and tailored to develop respiratory complex targeted personalized therapeutics and biomarkers for better management of various incurable human mitochondrial disorders and cancers.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Santanu Dasgupta
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
27
|
Agnoletto C, Volinia S. Mitochondria dysfunction in circulating tumor cells. Front Oncol 2022; 12:947479. [PMID: 35992829 PMCID: PMC9386562 DOI: 10.3389/fonc.2022.947479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Circulating tumor cells (CTCs) represent a subset of heterogeneous cells, which, once released from a tumor site, have the potential to give rise to metastasis in secondary sites. Recent research focused on the attempt to detect and characterize these rare cells in the circulation, and advancements in defining their molecular profile have been reported in diverse tumor species, with potential implications for clinical applications. Of note, metabolic alterations, involving mitochondria, have been implicated in the metastatic process, as key determinants in the transition of tumor cells to a mesenchymal or stemness-like phenotype, in drug resistance, and in induction of apoptosis. This review aimed to briefly analyse the most recent knowledge relative to mitochondria dysfunction in CTCs, and to envision implications of altered mitochondria in CTCs for a potential utility in clinics.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Rete Oncologica Veneta (ROV), Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Stefano Volinia
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Biological and Chemical Research Centre (CNBCh UW), University of Warsaw, Warsaw, Poland
- Center of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Inigo JR, Chandra D. The mitochondrial unfolded protein response (UPR mt): shielding against toxicity to mitochondria in cancer. J Hematol Oncol 2022; 15:98. [PMID: 35864539 PMCID: PMC9306209 DOI: 10.1186/s13045-022-01317-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/11/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are essential for tumor growth and progression. However, the heavy demand for mitochondrial activity in cancer leads to increased production of mitochondrial reactive oxygen species (mtROS), accumulation of mutations in mitochondrial DNA, and development of mitochondrial dysfunction. If left unchecked, excessive mtROS can damage and unfold proteins in the mitochondria to an extent that becomes lethal to the tumor. Cellular systems have evolved to combat mtROS and alleviate mitochondrial stress through a quality control mechanism called the mitochondrial unfolded protein response (UPRmt). The UPRmt system is composed of chaperones and proteases, which promote protein folding or eliminate mitochondrial proteins damaged by mtROS, respectively. UPRmt is conserved and activated in cancer in response to mitochondrial stress to maintain mitochondrial integrity and support tumor growth. In this review, we discuss how mitochondria become dysfunctional in cancer and highlight the tumor-promoting functions of key components of the UPRmt.
Collapse
Affiliation(s)
- Joseph R Inigo
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
29
|
Long read mitochondrial genome sequencing using Cas9-guided adaptor ligation. Mitochondrion 2022; 65:176-183. [PMID: 35787470 DOI: 10.1016/j.mito.2022.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022]
Abstract
The mitochondrial genome (mtDNA) is an important source of disease-causing genetic variability, but existing sequencing methods limit understanding, precluding phased measurement of mutations and clear detection of large sporadic deletions. We adapted a method for amplification-free sequence enrichment using Cas9 cleavage to obtain full length nanopore reads of mtDNA. We then utilized the long reads to phase mutations in a patient with an mtDNA-linked syndrome and demonstrated that this method can map age-induced mtDNA deletions. We believe this method will offer deeper insight into our understanding of mtDNA variation.
Collapse
|
30
|
Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ 2022; 29:1304-1317. [PMID: 35831624 PMCID: PMC9287557 DOI: 10.1038/s41418-022-01022-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
During decades, the research field of cancer metabolism was based on the Warburg effect, described almost one century ago. Lately, the key role of mitochondria in cancer development has been demonstrated. Many mitochondrial pathways including oxidative phosphorylation, fatty acid, glutamine, and one carbon metabolism are altered in tumors, due to mutations in oncogenes and tumor suppressor genes, as well as in metabolic enzymes. This results in metabolic reprogramming that sustains rapid cell proliferation and can lead to an increase in reactive oxygen species used by cancer cells to maintain pro-tumorigenic signaling pathways while avoiding cellular death. The knowledge acquired on the importance of mitochondrial cancer metabolism is now being translated into clinical practice. Detailed genomic, transcriptomic, and metabolomic analysis of tumors are necessary to develop more precise treatments. The successful use of drugs targeting metabolic mitochondrial enzymes has highlighted the potential for their use in precision medicine and many therapeutic candidates are in clinical trials. However, development of efficient personalized drugs has proved challenging and the combination with other strategies such as chemocytotoxic drugs, immunotherapy, and ketogenic or calorie restriction diets is likely necessary to boost their potential. In this review, we summarize the main mitochondrial features, metabolic pathways, and their alterations in different cancer types. We also present an overview of current inhibitors, highlight enzymes that are attractive targets, and discuss challenges with translation of these approaches into clinical practice. The role of mitochondria in cancer is indisputable and presents several attractive targets for both tailored and personalized cancer therapy. ![]()
Collapse
Affiliation(s)
- Lourdes Sainero-Alcolado
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - María Victoria Ruiz-Pérez
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
31
|
Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol 2022; 82:68-93. [PMID: 34844845 PMCID: PMC9106849 DOI: 10.1016/j.semcancer.2021.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a prevalent malignancy that occurs primarily in old males. Prostate tumors in different patients manifest significant inter-patient heterogeneity with respect to histo-morphological presentations and molecular architecture. An individual patient tumor also harbors genetically distinct clones in which PCa cells display intra-tumor heterogeneity in molecular features and phenotypic marker expression. This inherent PCa cell heterogeneity, e.g., in the expression of androgen receptor (AR), constitutes a barrier to the long-term therapeutic efficacy of AR-targeting therapies. Furthermore, tumor progression as well as therapeutic treatments induce PCa cell plasticity such that AR-positive PCa cells may turn into AR-negative cells and prostate tumors may switch lineage identity from adenocarcinomas to neuroendocrine-like tumors. This induced PCa cell plasticity similarly confers resistance to AR-targeting and other therapies. In this review, I first discuss PCa from the perspective of an abnormal organ development and deregulated cellular differentiation, and discuss the luminal progenitor cells as the likely cells of origin for PCa. I then focus on intrinsic PCa cell heterogeneity in treatment-naïve tumors with the presence of prostate cancer stem cells (PCSCs). I further elaborate on PCa cell plasticity induced by genetic alterations and therapeutic interventions, and present potential strategies to therapeutically tackle PCa cell heterogeneity and plasticity. My discussions will make it clear that, to achieve enduring clinical efficacy, both intrinsic PCa cell heterogeneity and induced PCa cell plasticity need to be targeted with novel combinatorial approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Experimental Therapeutics (ET) Graduate Program, The University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
32
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
33
|
Ji X, Guo W, Gu X, Guo S, Zhou K, Su L, Yuan Q, Liu Y, Guo X, Huang Q, Xing J. Mutational profiling of mtDNA control region reveals tumor-specific evolutionary selection involved in mitochondrial dysfunction. EBioMedicine 2022; 80:104058. [PMID: 35594659 PMCID: PMC9121266 DOI: 10.1016/j.ebiom.2022.104058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) mutations alter mitochondrial function in oxidative metabolism and play an important role in tumorigenesis. A series of studies have demonstrated that the mtDNA control region (mtCTR), which is essential for mtDNA replication and transcription, represents a mutational hotspot in human tumors. However, a comprehensive pan-cancer evolutionary pattern analysis of mtCTR mutations is urgently needed. Methods We generated a comprehensive combined dataset containing 10026 mtDNA somatic mutations from 4664 patients, covering 20 tumor types based on public and private next-generation sequencing data. Findings Our results demonstrated a significantly higher and much more variable mutation rate in mtCTR than in the coding region across different tumor types. Moreover, our data showed a remarkable distributional bias of tumor somatic mutations between the hypervariable segment (HVS) and non-HVS, with a significantly higher mutation density and average mutation sites in HVS. Importantly, the tumor-specific mutational pattern between mtCTR HVS and non-HVS was identified, which was classified into three evolutionary selection types (relaxed, moderate, and strict constraint types). Analysis of substitution patterns revealed that the prevalence of CH > TH in non-HVS greatly contributed to the mutational selection pattern of mtCTR across different tumor types. Furthermore, we found that the mutational pattern of mtCTR in the four tumor types was clearly associated with mitochondrial biogenesis, mitochondrial oxidative metabolism, and the overall survival of patients. Interpretation Our results suggest that somatic mutations in mtCTR may be shaped by tumor-specific selective pressure and are involved in tumorigenesis. Fundings National Natural Science Foundation of China [grants 82020108023, 81830070, 81872302], and Autonomous Project of State Key Laboratory of Cancer Biology, China [grants CBSKL2019ZZ06, CBSKL2019ZZ27].
Collapse
|
34
|
Comprehensive profiling of 1015 patients' exomes reveals genomic-clinical associations in colorectal cancer. Nat Commun 2022; 13:2342. [PMID: 35487942 PMCID: PMC9055073 DOI: 10.1038/s41467-022-30062-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/14/2022] [Indexed: 01/12/2023] Open
Abstract
The genetic basis of colorectal cancer (CRC) and its clinical associations remain poorly understood due to limited samples or targeted genes in current studies. Here, we perform ultradeep whole-exome sequencing on 1015 patients with CRC as part of the ChangKang Project. We identify 46 high-confident significantly mutated genes, 8 of which mutate in 14.9% of patients: LYST, DAPK1, CR2, KIF16B, NPIPB15, SYTL2, ZNF91, and KIAA0586. With an unsupervised clustering algorithm, we propose a subtyping strategy that classisfies CRC patients into four genomic subtypes with distinct clinical characteristics, including hypermutated, chromosome instability with high risk, chromosome instability with low risk, and genome stability. Analysis of immunogenicity uncover the association of immunogenicity reduction with genomic subtypes and poor prognosis in CRC. Moreover, we find that mitochondrial DNA copy number is an independent factor for predicting the survival outcome of CRCs. Overall, our results provide CRC-related molecular features for clinical practice and a valuable resource for translational research.
Collapse
|
35
|
Papachristodoulou A, Abate-Shen C. Precision intervention for prostate cancer: Re-evaluating who is at risk. Cancer Lett 2022; 538:215709. [DOI: 10.1016/j.canlet.2022.215709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
|
36
|
Almeida J, Pérez-Figueroa A, Alves JM, Valecha M, Prado-López S, Alvariño P, Cameselle-Teijeiro JM, Chantada D, Fonseca MM, Posada D. Single-cell mtDNA heteroplasmy in colorectal cancer. Genomics 2022; 114:110315. [PMID: 35181467 DOI: 10.1016/j.ygeno.2022.110315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
Abstract
Human mitochondria can be genetically distinct within the same individual, a phenomenon known as heteroplasmy. In cancer, this phenomenon seems exacerbated, and most mitochondrial mutations seem to be heteroplasmic. How this genetic variation is arranged within and among normal and tumor cells is not well understood. To address this question, here we sequenced single-cell mitochondrial genomes from multiple normal and tumoral locations in four colorectal cancer patients. Our results suggest that single cells, both normal and tumoral, can carry various mitochondrial haplotypes. Remarkably, this intra-cell heteroplasmy can arise before tumor development and be maintained afterward in specific tumoral cell subpopulations. At least in the colorectal patients studied here, the somatic mutations in the single-cells do not seem to have a prominent role in tumorigenesis.
Collapse
Affiliation(s)
- João Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - Andrés Pérez-Figueroa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal; CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - João M Alves
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Monica Valecha
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Sonia Prado-López
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Pilar Alvariño
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Clinical University Hospital, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain; Medical Faculty, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Débora Chantada
- Department of Pathology, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Miguel M Fonseca
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
37
|
Li CH, Haider S, Boutros PC. Age influences on the molecular presentation of tumours. Nat Commun 2022; 13:208. [PMID: 35017538 PMCID: PMC8752853 DOI: 10.1038/s41467-021-27889-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is often called a disease of aging. There are numerous ways in which cancer epidemiology and behaviour change with the age of the patient. The molecular bases for these relationships remain largely underexplored. To characterise them, we analyse age-associations in the nuclear and mitochondrial somatic mutational landscape of 20,033 tumours across 35 tumour-types. Age influences both the number of mutations in a tumour (0.077 mutations per megabase per year) and their evolutionary timing. Specific mutational signatures are associated with age, reflecting differences in exogenous and endogenous oncogenic processes such as a greater influence of tobacco use in the tumours of younger patients, but higher activity of DNA damage repair signatures in those of older patients. We find that known cancer driver genes such as CDKN2A and CREBBP are mutated in age-associated frequencies, and these alter the transcriptome and predict for clinical outcomes. These effects are most striking in brain cancers where alterations like SUFU loss and ATRX mutation are age-dependent prognostic biomarkers. Using three cancer datasets, we show that age shapes the somatic mutational landscape of cancer, with clinical implications.
Collapse
Affiliation(s)
- Constance H Li
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Human Genetics, University of California, Los Angeles, CA, USA.
- Department of Urology, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
- Institute for Precision Health, University of California, Los Angeles, CA, USA.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada.
| |
Collapse
|
38
|
Khoo A, Liu LY, Nyalwidhe JO, Semmes OJ, Vesprini D, Downes MR, Boutros PC, Liu SK, Kislinger T. Proteomic discovery of non-invasive biomarkers of localized prostate cancer using mass spectrometry. Nat Rev Urol 2021; 18:707-724. [PMID: 34453155 PMCID: PMC8639658 DOI: 10.1038/s41585-021-00500-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Prostate cancer is the second most frequently diagnosed non-skin cancer in men worldwide. Patient outcomes are remarkably heterogeneous and the best existing clinical prognostic tools such as International Society of Urological Pathology Grade Group, pretreatment serum PSA concentration and T-category, do not accurately predict disease outcome for individual patients. Thus, patients newly diagnosed with prostate cancer are often overtreated or undertreated, reducing quality of life and increasing disease-specific mortality. Biomarkers that can improve the risk stratification of these patients are, therefore, urgently needed. The ideal biomarker in this setting will be non-invasive and affordable, enabling longitudinal evaluation of disease status. Prostatic secretions, urine and blood can be sources of biomarker discovery, validation and clinical implementation, and mass spectrometry can be used to detect and quantify proteins in these fluids. Protein biomarkers currently in use for diagnosis, prognosis and relapse-monitoring of localized prostate cancer in fluids remain centred around PSA and its variants, and opportunities exist for clinically validating novel and complimentary candidate protein biomarkers and deploying them into the clinic.
Collapse
Affiliation(s)
- Amanda Khoo
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Lydia Y Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julius O Nyalwidhe
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - O John Semmes
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Danny Vesprini
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Odette Cancer Research Program, Sunnybrook Research Institute, Toronto, Canada
| | - Michelle R Downes
- Division of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Vector Institute for Artificial Intelligence, Toronto, Canada.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Canada.
- Odette Cancer Research Program, Sunnybrook Research Institute, Toronto, Canada.
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
| |
Collapse
|
39
|
Hu Y, Zhang X, Wang O, Xing X, Cui M, Wang M, Song C, Liao Q. Spectrum of mitochondrial genomic variation in parathyroid neoplasms. Endocrine 2021; 74:690-697. [PMID: 34296389 DOI: 10.1007/s12020-021-02825-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Mitochondrial DNA (mtDNA) variations have been implicated in various cancer types. Several attempts have been made in benign parathyroid adenoma (PA); however, mtDNA variants and copy number alterations have not been investigated in parathyroid carcinoma (PC). The present study aimed to explore the variations in the mitochondrial genome in parathyroid neoplasms. METHODS In this study, ultradeep targeted sequencing of mtDNA was performed in 12 cases with PC and 25 cases with PA. Germline and somatic variants in the mitochondrial genome were analysed according to clinical features. The mtDNA copy number relative to nuclear DNA was measured. RESULTS A total of 821 germline variants and 23 somatic mutations were identified. All 160 germline nonsynonymous variants in the coding sequence (CDS) were predicted to be likely benign, and germline variants frequently occurred (26.3%) in the displacement loop region. Tumour somatic mutation in a CDS with heteroplasmic factor (HF) >0.8 showed a higher mtDNA copy number (p = 0.039). Using Spearman's rank test, tumour mtDNA copy number revealed a positive correlation with serum levels of intact parathyroid hormone and calcium. CONCLUSION Our results demonstrate that null recurrent mtDNA mutational hotspots were PC specific. An increased mtDNA copy number in parathyroid neoplasms was associated with somatic CDS mutations with a high HF and major clinical features. Larger cohort investigations should be performed in future analyses.
Collapse
Affiliation(s)
- Ya Hu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiang Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ou Wang
- Department of Endocrinology, Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoping Xing
- Department of Endocrinology, Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chengli Song
- Novogene Bioinformatics Institute, Beijing, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
40
|
Zhang X, Dong W, Zhang J, Liu W, Yin J, Shi D, Ma W. A Novel Mitochondrial-Related Nuclear Gene Signature Predicts Overall Survival of Lung Adenocarcinoma Patients. Front Cell Dev Biol 2021; 9:740487. [PMID: 34760888 PMCID: PMC8573348 DOI: 10.3389/fcell.2021.740487] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/28/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Lung cancer is the leading cause of cancer-related death worldwide, of which lung adenocarcinoma (LUAD) is one of the main histological subtypes. Mitochondria are vital for maintaining the physiological function, and their dysfunction has been found to be correlated with tumorigenesis and disease progression. Although, some mitochondrial-related genes have been found to correlate with the clinical outcomes of multiple tumors solely. The integrated relationship between nuclear mitochondrial genes (NMGs) and the prognosis of LUAD remains unclear. Methods: The list of NMGs, gene expression data, and related clinical information of LUAD were downloaded from public databases. Bioinformatics methods were used and obtained 18 prognostic related NMGs to construct a risk signature. Results: There were 18 NMGs (NDUFS2, ATP8A2, SCO1, COX14, COA6, RRM2B, TFAM, DARS2, GARS, YARS2, EFG1, GFM1, MRPL3, MRPL44, ISCU, CABC1, HSPD1, and ETHE1) identified by LASSO regression analysis. The mRNA expression of these 18 genes was positively correlated with their relative linear copy number alteration (CNA). Meanwhile, the established risk signature could effectively distinguish high- and low-risk patients, and its predictive capacity was validated in three independent gene expression omnibus (GEO) cohorts. Notably, a significantly lower prevalence of actionable EGFR alterations was presented in patients with high-risk NMGs signature but accompanied with a more inflame immune tumor microenvironment. Additionally, multicomponent Cox regression analysis showed that the model was stable when risk score, tumor stage, and lymph node stage were considered, and the 1-, 3-, and 5-year AUC were 0.74, 0.75, and 0.70, respectively. Conclusion: Together, this study established a signature based on NMGs that is a prognostic biomarker for LUAD patients and has the potential to be widely applied in future clinical settings.
Collapse
Affiliation(s)
- Xiangwei Zhang
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Dong
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jishuai Zhang
- Department of General Thoracic, Feicheng Hospital Affiliated to Shandong First Medical University, Feicheng, China
| | - Wenqiang Liu
- Department of General Thoracic, Shenxian County People's Hospital of Shandong Provincial Group, Liaocheng, China
| | - Jingjing Yin
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Duozhi Shi
- Lifehealthcare Clinical Laboratories, Hangzhou, China
| | - Wei Ma
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
41
|
Thomas LW, Ashcroft M. The Contextual Essentiality of Mitochondrial Genes in Cancer. Front Cell Dev Biol 2021; 9:695351. [PMID: 34746119 PMCID: PMC8569703 DOI: 10.3389/fcell.2021.695351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondria are key organelles in eukaryotic evolution that perform crucial roles as metabolic and cellular signaling hubs. Mitochondrial function and dysfunction are associated with a range of diseases, including cancer. Mitochondria support cancer cell proliferation through biosynthetic reactions and their role in signaling, and can also promote tumorigenesis via processes such as the production of reactive oxygen species (ROS). The advent of (nuclear) genome-wide CRISPR-Cas9 deletion screens has provided gene-level resolution of the requirement of nuclear-encoded mitochondrial genes (NEMGs) for cancer cell viability (essentiality). More recently, it has become apparent that the essentiality of NEMGs is highly dependent on the cancer cell context. In particular, key tumor microenvironmental factors such as hypoxia, and changes in nutrient (e.g., glucose) availability, significantly influence the essentiality of NEMGs. In this mini-review we will discuss recent advances in our understanding of the contribution of NEMGs to cancer from CRISPR-Cas9 deletion screens, and discuss emerging concepts surrounding the context-dependent nature of mitochondrial gene essentiality.
Collapse
Affiliation(s)
- Luke W. Thomas
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
42
|
Singh R, Mills IG. The Interplay Between Prostate Cancer Genomics, Metabolism, and the Epigenome: Perspectives and Future Prospects. Front Oncol 2021; 11:704353. [PMID: 34660272 PMCID: PMC8511631 DOI: 10.3389/fonc.2021.704353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is a high-incidence cancer, often detected late in life. The prostate gland is an accessory gland that secretes citrate; an impaired citrate secretion reflects imbalances in the activity of enzymes in the TCA Cycle in mitochondria. Profiling studies on prostate tumours have identified significant metabolite, proteomic, and transcriptional modulations with an increased mitochondrial metabolic activity associated with localised prostate cancer. Here, we focus on the androgen receptor, c-Myc, phosphatase and tensin Homolog deleted on chromosome 10 (PTEN), and p53 as amongst the best-characterised genomic drivers of prostate cancer implicated in metabolic dysregulation and prostate cancer progression. We outline their impact on metabolic function before discussing how this may affect metabolite pools and in turn chromatin structure and the epigenome. We reflect on some recent literature indicating that mitochondrial mutations and OGlcNAcylation may also contribute to this crosstalk. Finally, we discuss the technological challenges of assessing crosstalk given the significant differences in the spatial sensitivity and throughput of genomic and metabolomic profiling approaches.
Collapse
Affiliation(s)
- Reema Singh
- Nuffield Department of Surgical Sciences John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ian G. Mills
- Nuffield Department of Surgical Sciences John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Patrick G Johnston Centre for Cancer Research, Queen’s University of Belfast, Belfast, United Kingdom
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
43
|
Papachristodoulou A, Rodriguez-Calero A, Panja S, Margolskee E, Virk RK, Milner TA, Martina LP, Kim JY, Di Bernardo M, Williams AB, Maliza EA, Caputo JM, Haas C, Wang V, De Castro GJ, Wenske S, Hibshoosh H, McKiernan JM, Shen MM, Rubin MA, Mitrofanova A, Dutta A, Abate-Shen C. NKX3.1 Localization to Mitochondria Suppresses Prostate Cancer Initiation. Cancer Discov 2021; 11:2316-2333. [PMID: 33893149 PMCID: PMC7611624 DOI: 10.1158/2159-8290.cd-20-1765] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
Mitochondria provide the first line of defense against the tumor-promoting effects of oxidative stress. Here we show that the prostate-specific homeoprotein NKX3.1 suppresses prostate cancer initiation by protecting mitochondria from oxidative stress. Integrating analyses of genetically engineered mouse models, human prostate cancer cells, and human prostate cancer organotypic cultures, we find that, in response to oxidative stress, NKX3.1 is imported to mitochondria via the chaperone protein HSPA9, where it regulates transcription of mitochondrial-encoded electron transport chain (ETC) genes, thereby restoring oxidative phosphorylation and preventing cancer initiation. Germline polymorphisms of NKX3.1 associated with increased cancer risk fail to protect from oxidative stress or suppress tumorigenicity. Low expression levels of NKX3.1 combined with low expression of mitochondrial ETC genes are associated with adverse clinical outcome, whereas high levels of mitochondrial NKX3.1 protein are associated with favorable outcome. This work reveals an extranuclear role for NKX3.1 in suppression of prostate cancer by protecting mitochondrial function. SIGNIFICANCE: Our findings uncover a nonnuclear function for NKX3.1 that is a key mechanism for suppression of prostate cancer. Analyses of the expression levels and subcellular localization of NKX3.1 in patients at risk of cancer progression may improve risk assessment in a precision prevention paradigm, particularly for men undergoing active surveillance.See related commentary by Finch and Baena, p. 2132.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Alexandros Papachristodoulou
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Antonio Rodriguez-Calero
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Institute of Pathology, University of Bern and Inselspital, Bern, Switzerland
| | - Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Elizabeth Margolskee
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Renu K Virk
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Luis Pina Martina
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Jaime Y Kim
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Matteo Di Bernardo
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Alanna B Williams
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Elvis A Maliza
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Joseph M Caputo
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Christopher Haas
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Vinson Wang
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Guarionex Joel De Castro
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Sven Wenske
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - James M McKiernan
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Michael M Shen
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Mark A Rubin
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Aditya Dutta
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York.
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
44
|
Freeland J, Crowell PD, Giafaglione JM, Boutros PC, Goldstein AS. Aging of the progenitor cells that initiate prostate cancer. Cancer Lett 2021; 515:28-35. [PMID: 34052326 PMCID: PMC8494000 DOI: 10.1016/j.canlet.2021.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
Many organs experience a loss of tissue mass and a decline in regenerative capacity during aging. In contrast, the prostate continues to grow in volume. In fact, age is the most important risk factor for prostate cancer. However, the age-related factors that influence the composition, morphology and molecular features of prostate epithelial progenitor cells, the cells-of-origin for prostate cancer, are poorly understood. Here, we review the evidence that prostate luminal progenitor cells are expanded with age. We explore the age-related changes to the microenvironment that may influence prostate epithelial cells and risk of transformation. Finally, we raise a series of questions about models of aging and regulators of prostate aging which need to be addressed. A fundamental understanding of aging in the prostate will yield critical insights into mechanisms that promote the development of age-related prostatic disease.
Collapse
Affiliation(s)
- Jack Freeland
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, USA
| | - Preston D Crowell
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, USA
| | - Jenna M Giafaglione
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, USA
| | - Paul C Boutros
- Departments of Human Genetics & Urology, Jonsson Comprehensive Cancer Center and Institute for Precision Health, University of California, Los Angeles, USA
| | - Andrew S Goldstein
- Departments of Molecular, Cell and Developmental Biology & Urology, Broad Stem Cell Research Center and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA.
| |
Collapse
|
45
|
Chan W, Ham YH. Probing the Hidden Role of Mitochondrial DNA Damage and Dysfunction in the Etiology of Aristolochic Acid Nephropathy. Chem Res Toxicol 2021; 34:1903-1909. [PMID: 34255491 DOI: 10.1021/acs.chemrestox.1c00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aristolochic acid nephropathy (AAN) is a unique type of progressive renal interstitial fibrotic disease caused by prolonged exposure to aristolochic acids (AAs) through AA-containing herbal medicines or AA-tainted food. Despite decades of research and affecting millions of people around the world, the pathophysiology of AAN remains incompletely understood. In this study, we tested the potential causative role of mitochondrial dysfunction in AAN development. Our findings revealed AA exposure induces an exposure concentration and duration dependent lowering of adenosine triphosphate in both cultured human kidney and liver cells, highlighting an AA exposure effect on mitochondrial energy production in the kidney and liver, which both are highly metabolically active and energy-demanding organs. Analysis with liquid chromatography-tandem mass spectrometry coupled with stable isotope dilution method detected high levels of mutagenic 8-oxo-2'-deoxyguanosine and 7-(deoxyadenosine-N6-yl)-aristolactam adduct on mitochondrial DNA isolated from AA-treated cells, unmasking a potentially important causative, but previously unknown role of mitochondrial DNA mutation in the pathophysiology of AAN development.
Collapse
Affiliation(s)
- Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
46
|
Oresta B, Pozzi C, Braga D, Hurle R, Lazzeri M, Colombo P, Frego N, Erreni M, Faccani C, Elefante G, Barcella M, Guazzoni G, Rescigno M. Mitochondrial metabolic reprogramming controls the induction of immunogenic cell death and efficacy of chemotherapy in bladder cancer. Sci Transl Med 2021; 13:13/575/eaba6110. [PMID: 33408185 DOI: 10.1126/scitranslmed.aba6110] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
Although chemotherapeutic agents have been used for decades, the mechanisms of action, mechanisms of resistance, and the best treatment schedule remain elusive. Mitomycin C (MMC) is the gold standard treatment for non-muscle-invasive bladder cancer (NMIBC). However, it is effective only in a subset of patients, suggesting that, aside from cytotoxicity, other mechanisms could be involved in mediating the success of the treatment. Here, we showed that MMC promotes immunogenic cell death (ICD) and in vivo tumor protection. MMC-induced ICD relied on metabolic reprogramming of tumor cells toward increased oxidative phosphorylation. This favored increased mitochondrial permeability leading to the cytoplasmic release of mitochondrial DNA, which activated the inflammasome for efficient IL-1β (interleukin-1β) secretion that promoted dendritic cell maturation. Resistance to ICD was associated with mitochondrial dysfunction related to low abundance of complex I of the respiratory chain. Analysis of complex I in patient tumors indicated that low abundance of this mitochondrial complex was associated with recurrence incidence after chemotherapy in patients with NMIBC. The identification of mitochondria-mediated ICD as a mechanism of action of MMC offers opportunities to optimize bladder cancer management and provides potential markers of treatment efficacy that could be used for patient stratification.
Collapse
Affiliation(s)
- Bianca Oresta
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Chiara Pozzi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Daniele Braga
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Rodolfo Hurle
- Department of Urology, Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Massimo Lazzeri
- Department of Urology, Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Piergiuseppe Colombo
- Department of Pathology, Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Nicola Frego
- Department of Urology, Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Marco Erreni
- Unit of Advanced Optical Microscopy, Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Cristina Faccani
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Grazia Elefante
- Department of Pathology, Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Matteo Barcella
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy
| | - Giorgio Guazzoni
- Department of Urology, Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy.,Humanitas University, Department of Biomedical Sciences, via Rita Levi Montalcini 4, 20090 Pieve Emanuele (Milan), Italy
| | - Maria Rescigno
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy. .,Humanitas University, Department of Biomedical Sciences, via Rita Levi Montalcini 4, 20090 Pieve Emanuele (Milan), Italy
| |
Collapse
|
47
|
Pérez-Amado CJ, Bazan-Cordoba A, Hidalgo-Miranda A, Jiménez-Morales S. Mitochondrial Heteroplasmy Shifting as a Potential Biomarker of Cancer Progression. Int J Mol Sci 2021; 22:7369. [PMID: 34298989 PMCID: PMC8304746 DOI: 10.3390/ijms22147369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is a serious health problem with a high mortality rate worldwide. Given the relevance of mitochondria in numerous physiological and pathological mechanisms, such as adenosine triphosphate (ATP) synthesis, apoptosis, metabolism, cancer progression and drug resistance, mitochondrial genome (mtDNA) analysis has become of great interest in the study of human diseases, including cancer. To date, a high number of variants and mutations have been identified in different types of tumors, which coexist with normal alleles, a phenomenon named heteroplasmy. This mechanism is considered an intermediate state between the fixation or elimination of the acquired mutations. It is suggested that mutations, which confer adaptive advantages to tumor growth and invasion, are enriched in malignant cells. Notably, many recent studies have reported a heteroplasmy-shifting phenomenon as a potential shaper in tumor progression and treatment response, and we suggest that each cancer type also has a unique mitochondrial heteroplasmy-shifting profile. So far, a plethora of data evidencing correlations among heteroplasmy and cancer-related phenotypes are available, but still, not authentic demonstrations, and whether the heteroplasmy or the variation in mtDNA copy number (mtCNV) in cancer are cause or consequence remained unknown. Further studies are needed to support these findings and decipher their clinical implications and impact in the field of drug discovery aimed at treating human cancer.
Collapse
Affiliation(s)
- Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
- Programa de Maestría y Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Amellalli Bazan-Cordoba
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
- Programa de Maestría y Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
| |
Collapse
|
48
|
Abstract
Variation in the mitochondrial DNA (mtDNA) sequence is common in certain tumours. Two classes of cancer mtDNA variants can be identified: de novo mutations that act as 'inducers' of carcinogenesis and functional variants that act as 'adaptors', permitting cancer cells to thrive in different environments. These mtDNA variants have three origins: inherited variants, which run in families, somatic mutations arising within each cell or individual, and variants that are also associated with ancient mtDNA lineages (haplogroups) and are thought to permit adaptation to changing tissue or geographic environments. In addition to mtDNA sequence variation, mtDNA copy number and perhaps transfer of mtDNA sequences into the nucleus can contribute to certain cancers. Strong functional relevance of mtDNA variation has been demonstrated in oncocytoma and prostate cancer, while mtDNA variation has been reported in multiple other cancer types. Alterations in nuclear DNA-encoded mitochondrial genes have confirmed the importance of mitochondrial metabolism in cancer, affecting mitochondrial reactive oxygen species production, redox state and mitochondrial intermediates that act as substrates for chromatin-modifying enzymes. Hence, subtle changes in the mitochondrial genotype can have profound effects on the nucleus, as well as carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Piotr K Kopinski
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiping Zhang
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie T Lott
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Division of Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Kaneva K, O’Halloran K, Triska P, Liu X, Merkurjev D, Bootwalla M, Ryutov A, Cotter JA, Ostrow D, Biegel JA, Gai X. The spectrum of mitochondrial DNA (mtDNA) mutations in pediatric CNS tumors. Neurooncol Adv 2021; 3:vdab074. [PMID: 34337412 PMCID: PMC8320689 DOI: 10.1093/noajnl/vdab074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND We previously established the landscape of mitochondrial DNA (mtDNA) mutations in 23 subtypes of pediatric malignancies, characterized mtDNA mutation profiles among these subtypes, and provided statistically significant evidence for a contributory role of mtDNA mutations to pediatric malignancies. METHODS To further delineate the spectrum of mtDNA mutations in pediatric central nervous system (CNS) tumors, we analyzed 545 tumor-normal paired whole-genome sequencing datasets from the Children's Brain Tumor Tissue Consortium. RESULTS Germline mtDNA variants were used to determine the haplogroup, and maternal ancestry, which was not significantly different among tumor types. Among 166 (30.5%) tumors we detected 220 somatic mtDNA mutations, primarily missense mutations (36.8%), as well as 22 loss-of-function mutations. Different pediatric CNS tumor subtypes had distinct mtDNA mutation profiles. The number of mtDNA mutations per tumor ranged from 0.20 (dysembryoplastic neuroepithelial tumor [DNET]) to 0.75 (meningiomas). The average heteroplasmy was 10.7%, ranging from 4.6% in atypical teratoid/rhabdoid tumor (AT/RT) to 26% in diffuse intrinsic pontine glioma. High-grade gliomas had a significant higher number of mtDNA mutations per sample than low-grade gliomas (0.6 vs 0.27) (P = .004), with almost twice as many missense mtDNA mutations per sample (0.24 vs 0.11), and higher average heteroplasmy levels (16% vs 10%). Recurrent mtDNA mutations may represent hotspots which may serve as biologic markers of disease. CONCLUSIONS Our findings demonstrate varying contributions of mtDNA mutations in different subtypes of CNS tumors. Sequencing the mtDNA genome may ultimately be used to characterize CNS tumors at diagnosis and monitor disease progression.
Collapse
Affiliation(s)
- Kristiyana Kaneva
- Division of Hematology-Oncology, Neuro-Oncology & Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA,Present address: Tempus Labs, Inc., Chicago, Illinois, USA
| | - Katrina O’Halloran
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Petr Triska
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine of Charles University, Prague, Czech Republic
| | - Xiyu Liu
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Daria Merkurjev
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Moiz Bootwalla
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Alex Ryutov
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Jennifer A Cotter
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Dejerianne Ostrow
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Jaclyn A Biegel
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Xiaowu Gai
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA,Corresponding Author: Xiaowu Gai, PhD, Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, 4650 Sunset Blvd., Mailstop #173, Los Angeles, CA 90027, USA ()
| |
Collapse
|
50
|
Latzko L, Schöpf B, Weissensteiner H, Fazzini F, Fendt L, Steiner E, Bruckmoser E, Schäfer G, Moncayo RC, Klocker H, Laimer J. Implications of Standardized Uptake Values of Oral Squamous Cell Carcinoma in PET-CT on Prognosis, Tumor Characteristics and Mitochondrial DNA Heteroplasmy. Cancers (Basel) 2021; 13:2273. [PMID: 34068489 PMCID: PMC8125984 DOI: 10.3390/cancers13092273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/17/2021] [Accepted: 05/05/2021] [Indexed: 11/27/2022] Open
Abstract
Under aerobic conditions, some cancers switch to glycolysis to cover their energy requirements. Taking advantage of this process, functional imaging techniques such as PET-CT can be used to detect and assess tumorous tissues. The aim of this study was to investigate standardized uptake values and mitochondrial DNA mutations in oral squamous cell carcinoma. A cohort of 57 patients underwent 18[F]FDG-PET-CT and standardized uptake values were collected. In 15 patients, data on mitochondrial DNA mutations of the tumor were available. Kaplan-Meier curves were calculated, and correlation analyses as well as univariate Cox proportional hazard models were performed. Using ROC analysis to determine a statistical threshold for SUVmax in PET investigations, a cut-off value was determined at 9.765 MB/mL. Survival analysis for SUVmax in these groups showed a Hazard Ratio of 4 (95% CI 1.7-9) in the high SUVmax group with 5-year survival rates of 23.5% (p = 0.00042). For SUVmax and clinicopathological tumor features, significant correlations were found. A tendency towards higher mtDNA heteroplasmy levels in high SUVmax groups could be observed. We were able to confirm the prognostic value of SUVmax in OSCC, showing higher survival rates at lower SUVmax levels. Correlations between SUVmax and distinct tumor characteristics were highly significant, providing evidence that SUVmax may act as a reliable diagnostic parameter. Correlation analysis of mtDNA mutations suggests an influence on metabolic activity in OSCC.
Collapse
Affiliation(s)
- Lukas Latzko
- University Hospital for Craniomaxillofacial and Oral Surgery, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Bernd Schöpf
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (B.S.); (H.W.); (F.F.); (L.F.)
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (B.S.); (H.W.); (F.F.); (L.F.)
| | - Federica Fazzini
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (B.S.); (H.W.); (F.F.); (L.F.)
| | - Liane Fendt
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (B.S.); (H.W.); (F.F.); (L.F.)
| | - Eberhard Steiner
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (E.S.); (H.K.)
| | - Emanuel Bruckmoser
- Oral and Maxillofacial Surgeon, Private Practice, A-5020 Salzburg, Austria;
| | - Georg Schäfer
- Institute for Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| | | | - Helmut Klocker
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (E.S.); (H.K.)
| | - Johannes Laimer
- University Hospital for Craniomaxillofacial and Oral Surgery, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| |
Collapse
|