1
|
Nadal A, Cardesa A, Agaimy A, Almangush A, Franchi A, Hellquist H, Leivo I, Zidar N, Ferlito A. Massive parallel sequencing of head and neck conventional squamous cell carcinomas: A comprehensive review. Virchows Arch 2024; 485:965-976. [PMID: 39613893 DOI: 10.1007/s00428-024-03987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is a cause of significant mortality and morbidity. The epidemiology of this cancer varies worldwide due to either genetic differences in populations or differences in carcinogen exposure. The application of massive parallel sequencing-based techniques in HNSCC should provide a helpful understanding of the genetic alterations that eventually lead to HNSCC development and progression, and ideally, could be used for personalized therapy. In this review, the reader will find an overview of the mutational profile of conventional HNSCC according to published results on massive parallel sequencing data that confirm the pivotal role of TP53 and the frequent involvement of CDKN2A and PIK3CA. The reader will also find a more detailed description of the genes, such as NOTCH1 and FBXW7, that were not identified in HNSCCs before the development of these techniques, the differences that can be site-specific, such as the different mutational signatures that indicate specific carcinogens for various subsites of the head and neck, and finally, the actionability of these findings that should allow more personalized therapy for patients.
Collapse
Affiliation(s)
- Alfons Nadal
- Pathology Department, Department of Clinical Fundamentals, Universitat de Barcelona, IDIBAPS, Clínic Barcelona, Barcelona, Spain.
| | | | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Alhadi Almangush
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland
| | - Alessandro Franchi
- Section of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Henrik Hellquist
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Turku University Central Hospital, 20521, Turku, Finland
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
2
|
Chan XY, Chang KP, Yang CY, Liu CR, Hung CM, Huang CC, Liu HP, Wu CC. Upregulation of ENAH by a PI3K/AKT/β-catenin cascade promotes oral cancer cell migration and growth via an ITGB5/Src axis. Cell Mol Biol Lett 2024; 29:136. [PMID: 39511483 PMCID: PMC11545229 DOI: 10.1186/s11658-024-00651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Oral cancer accounts for 2% of cancer-related deaths globally, with over 90% of cases being oral cavity squamous cell carcinomas (OSCCs). Approximately 50% of patients with OSCC succumb to the disease within 5 years, primarily due to the advanced stage at which it is typically diagnosed. This underscores an urgent need to identify proteins related to OSCC progression to develop effective diagnostic and therapeutic strategies. METHODS To identify OSCC progression-related proteins, we conducted integrated proteome and transcriptome analyses on cancer tissues from patients and patient-derived xenograft (PDX) model mice. We investigated the role of protein-enabled homolog (ENAH), identified as an OSCC progression-associated protein, through proliferation, transwell migration, and invasion assays in OSCC cells. The mechanisms underlying ENAH-mediated functions were elucidated using gene knockdown and ectopic expression techniques in OSCC cells. RESULTS ENAH was identified as a candidate associated with OSCC progression based on integrated analyses, which showed increased ENAH levels in primary OSCC tissues compared with adjacent noncancerous counterparts, and sustained overexpression in the cancer tissues of PDX models. We confirmed that level of ENAH is increased in OSCC tissues and that its elevated expression correlates with poorer survival rates in patients with OSCC. Furthermore, the upregulation of ENAH in OSCC cells results from the activation of the GSK3β/β-catenin axis by the EGFR/PI3K/AKT cascade. ENAH expression enhances cell proliferation and mobility by upregulating integrin β5 in oral cancer cells. CONCLUSIONS The upregulation of ENAH through a PI3K/AKT/β-catenin signaling cascade enhances oral cancer cell migration and growth via the ITGB5/Src axis. These findings offer a new interpretation of the ENAH function in the OSCC progression and provide crucial information for developing new OSCC treatment strategies.
Collapse
Affiliation(s)
- Xiu-Ya Chan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Yu Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-Rou Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chu-Mi Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Chueh Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Ching Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Creighton CJ. Clinical proteomics towards multiomics in cancer. MASS SPECTROMETRY REVIEWS 2024; 43:1255-1269. [PMID: 36495097 DOI: 10.1002/mas.21827] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent technological advancements in mass spectrometry (MS)-based proteomics technologies have accelerated its application to study greater and greater numbers of human tumor specimens. Over the last several years, the Clinical Proteomic Tumor Analysis Consortium, the International Cancer Proteogenome Consortium, and others have generated MS-based proteomic profiling data combined with corresponding multiomics data on thousands of human tumors to date. Proteomic data sets in the public domain can be re-examined by other researchers with different questions in mind from what the original studies explored. In this review, we examine the increasing role of proteomics in studying cancer, along with the potential for previous studies and their associated data sets to contribute to improving the diagnosis and treatment of cancer in the clinical setting. We also explore publicly available proteomics and multi-omics data from cancer cell line models to show how such data may aid in identifying therapeutic strategies for cancer subsets.
Collapse
Affiliation(s)
- Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Chen YT, Tsai HJ, Kan CH, Ma CP, Chen HW, Chang IYF, Liu H, Wu CC, Chu WY, Wu YC, Chang KP, Yu JS, Tan BCM. Noncanonical formation of SNX5 gene-derived circular RNA regulates cancer growth. Cell Death Dis 2024; 15:599. [PMID: 39155279 PMCID: PMC11330969 DOI: 10.1038/s41419-024-06980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent cancer worldwide, exhibiting unique regional prevalence. Despite advancements in diagnostics and therapy, the 5-year survival rate for patients has seen limited improvement. A deeper understanding of OSCC pathogenesis, especially its molecular underpinnings, is essential for improving detection, prevention, and treatment. In this context, noncoding RNAs, such as circular RNAs (circRNAs), have gained recognition as crucial regulators and potential biomarkers in OSCC progression. Our study highlights the discovery of previously uncharacterized circRNAs, including a SNX5 gene-derived circRNA, circSNX5, through deep sequencing of OSCC patient tissue transcriptomes. We established circSNX5's tumor-specific expression and its strong correlation with patient survival using structure-specific and quantitative PCR analyses. In vitro and in vivo experiments underscored circSNX5 RNA's regulatory role in cancer growth and metastasis. Further, our omics profiling and functional assays revealed that ADAM10 is a critical effector in circSNX5-mediated cancer progression, with circSNX5 maintaining ADAM10 expression by sponging miR-323. This novel circRNA-miRNA-mRNA regulatory axis significantly contributes to oral cancer progression and malignancy. Moreover, we discovered that circSNX5 RNA is produced via noncanonical sequential back-splicing of pre-mRNA, a process negatively regulated by the RNA-binding protein STAU1. This finding adds a new dimension to our understanding of exonic circRNA biogenesis in the eukaryotic transcriptome. Collectively, our findings offer a detailed mechanistic dissection and functional interpretation of a novel circRNA, shedding light on the role of the noncoding transcriptome in cancer biology and potentially paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Yi-Tung Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chia-Hua Kan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chung-Pei Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Hui-Wen Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Division of Colon and Rectal Surgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Wei-Yun Chu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ya-Chun Wu
- Asia American International Academy, New Taipei City, Taiwan
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Otolaryngology-Head & Neck Surgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, 333, Taiwan.
| |
Collapse
|
5
|
Ren J, Gao Z, Lu Y, Li M, Hong J, Wu J, Wu D, Deng W, Xi D, Chong Y. Application of GWAS and mGWAS in Livestock and Poultry Breeding. Animals (Basel) 2024; 14:2382. [PMID: 39199916 PMCID: PMC11350712 DOI: 10.3390/ani14162382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/04/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
In recent years, genome-wide association studies (GWAS) and metabolome genome-wide association studies (mGWAS) have emerged as crucial methods for investigating complex traits in animals and plants. These have played pivotal roles in research on livestock and poultry breeding, facilitating a deeper understanding of genetic diversity, the relationship between genes, and genetic bases in livestock and poultry. This article provides a review of the applications of GWAS and mGWAS in animal genetic breeding, aiming to offer reference and inspiration for relevant researchers, promote innovation in animal genetic improvement and breeding methods, and contribute to the sustainable development of animal husbandry.
Collapse
Affiliation(s)
- Jing Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China;
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.G.); : (M.L.); (J.H.); (J.W.); (D.W.); (W.D.)
| | - Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.G.); : (M.L.); (J.H.); (J.W.); (D.W.); (W.D.)
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.G.); : (M.L.); (J.H.); (J.W.); (D.W.); (W.D.)
| | - Mengfei Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.G.); : (M.L.); (J.H.); (J.W.); (D.W.); (W.D.)
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.G.); : (M.L.); (J.H.); (J.W.); (D.W.); (W.D.)
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.G.); : (M.L.); (J.H.); (J.W.); (D.W.); (W.D.)
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.G.); : (M.L.); (J.H.); (J.W.); (D.W.); (W.D.)
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.G.); : (M.L.); (J.H.); (J.W.); (D.W.); (W.D.)
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.G.); : (M.L.); (J.H.); (J.W.); (D.W.); (W.D.)
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.G.); : (M.L.); (J.H.); (J.W.); (D.W.); (W.D.)
| |
Collapse
|
6
|
Lei KF, Pai PC, Liu H. Development of a Folding Paper System To Enable the Analysis of Gene Profile of Short- and Long-Distance Cancer Cell Migration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38931-38941. [PMID: 38959088 DOI: 10.1021/acsami.4c05170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
In cancer metastasis, where mortality rates remain high despite advancements in medical treatments, understanding the molecular pathways and cellular dynamics underlying tumor spread is critical for devising more effective therapeutic strategies. Here, a folding paper system was proposed and developed to mimic native tumor microenvironment. This system, composed of 7 stacked layers of paper enclosed in a holder, allows for the culture of cancer cells under conditions mimicking those found in solid tumors, including limited oxygen and nutrients. Because of the migratory capabilities of cancer cells, the cells in the center layer could migrated to outer layers of the paper stack, enabling the differentiation of cells based on their migratory potential. Subsequent gene expression analysis, conducted through RT-PCR and RNA sequencing, revealed significant correlations between cancer cell migration distance and the expression of genes associated with hypoxia, metabolism, ATP production, and cellular process. Moreover, our study identified cells with aggressive phenotypic traits from the outer layers of the paper stack, highlighting the potential of this system for enabling the study of aggressive cancer cell characteristics. Validation of the folding paper system against clinical carcinoma tissue demonstrated its ability to faithfully mimic the native tumor microenvironment. Overall, our findings underscore the utility of the folding paper system as a valuable tool for investigating and identifying critical molecular pathways involved in cancer metastasis.
Collapse
Affiliation(s)
- Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul 03722, Korea
| | - Ping-Ching Pai
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Hsuan Liu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
7
|
Chi ZC. Progress in understanding of relationship between inflammation and tumors. Shijie Huaren Xiaohua Zazhi 2024; 32:23-40. [DOI: 10.11569/wcjd.v32.i1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Over the past decade, there has been clear evidence that inflammation plays a key role in tumorigenesis. Tumor extrinsic inflammation is caused by many factors, including bacterial and viral infections, autoimmune diseases, obesity, smoking, excessive alcohol consumption, etc., all of which can increase cancer risk and stimulate malignant progression. Conversely, inflammation inherent in cancer or caused by cancer can be triggered by cancer-initiating mutations and can promote malignant progression through recruitment and activation of inflammatory cells. Both exogenous and endogenous inflammation can lead to immunosuppression, thus providing a preferred opportunity for tumor development. Studies have confirmed that chronic inflammation is involved in various steps of tumorigenesis, including cell transformation, promotion, survival, prolifer-ation, invasion, angiogenesis, and metastasis. Recent research has shed new light on the molecular and cellular circuits between inflammation and cancer. Two pathways have been preliminarily identified: Intrinsic and extrinsic. In the intrinsic pathway, genetic events leading to tumors initiate the expression of inflammatory related programs and guide the construction of the inflammatory microenvironment. In the extrinsic pathway, inflammatory conditions promote the development of cancer. This article reviews the recent progress in the understanding of the relationship between inflammation and tumors.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
8
|
Joshi SK, Piehowski P, Liu T, Gosline SJC, McDermott JE, Druker BJ, Traer E, Tyner JW, Agarwal A, Tognon CE, Rodland KD. Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine. Annu Rev Pharmacol Toxicol 2024; 64:455-479. [PMID: 37738504 PMCID: PMC10950354 DOI: 10.1146/annurev-pharmtox-022723-113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors. This review describes the novel insights into tumor biology and drug resistance derived from proteogenomic analysis while highlighting the clinical potential of proteogenomic observations and advances in technique and analysis tools.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sara J C Gosline
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason E McDermott
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karin D Rodland
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
9
|
Carpenter MA, Temiz NA, Ibrahim MA, Jarvis MC, Brown MR, Argyris PP, Brown WL, Starrett GJ, Yee D, Harris RS. Mutational impact of APOBEC3A and APOBEC3B in a human cell line and comparisons to breast cancer. PLoS Genet 2023; 19:e1011043. [PMID: 38033156 PMCID: PMC10715669 DOI: 10.1371/journal.pgen.1011043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H. The human cell line, HAP1, is engineered to express the thymidine kinase (TK) gene of HSV-1, which confers sensitivity to ganciclovir. Expression of APOBEC3A and APOBEC3B, but not catalytic mutant controls or APOBEC3H, triggers increased frequencies of TK mutation and similar TC-biased cytosine mutation profiles in the selectable TK reporter gene. Whole genome sequences from independent clones enabled an analysis of thousands of single base substitution mutations and extraction of local sequence preferences with APOBEC3A preferring YTCW motifs 70% of the time and APOBEC3B 50% of the time (Y = C/T; W = A/T). Signature comparisons with breast tumor whole genome sequences indicate that most malignancies manifest intermediate percentages of APOBEC3 signature mutations in YTCW motifs, mostly between 50 and 70%, suggesting that both enzymes contribute in a combinatorial manner to the overall mutation landscape. Although the vast majority of APOBEC3A- and APOBEC3B-induced single base substitution mutations occur outside of predicted chromosomal DNA hairpin structures, whole genome sequence analyses and supporting biochemical studies also indicate that both enzymes are capable of deaminating the single-stranded loop regions of DNA hairpins at elevated rates. These studies combine to help resolve a long-standing etiologic debate on the source of APOBEC3 signature mutations in cancer and indicate that future diagnostic and therapeutic efforts should focus on both APOBEC3A and APOBEC3B.
Collapse
Affiliation(s)
- Michael A. Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Nuri A. Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mahmoud A. Ibrahim
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Matthew C. Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Margaret R. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prokopios P. Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gabriel J. Starrett
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
10
|
Wu HW, Wu JD, Yeh YP, Wu TH, Chao CH, Wang W, Chen TW. DoSurvive: A webtool for investigating the prognostic power of a single or combined cancer biomarker. iScience 2023; 26:107269. [PMID: 37609633 PMCID: PMC10440714 DOI: 10.1016/j.isci.2023.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/26/2023] [Accepted: 06/28/2023] [Indexed: 08/24/2023] Open
Abstract
We present DoSurvive, a user-friendly survival analysis web tool and a cancer prognostic biomarker centered database. DoSurvive is the first database that allows users to perform multivariant survival analysis for cancers with customized gene/patient list. DoSurvive offers three survival analysis methods, Log rank test, Cox regression and accelerated failure time model (AFT), for users to analyze five types of quantitative features (mRNA, miRNA, lncRNA, protein and methylation of CpG islands) with four survival types, i.e. overall survival, disease-specific survival, disease-free interval, and progression-free interval, in 33 cancer types. Notably, the implemented AFT model provides an alternative method for genes/features which failed the proportional hazard assumption in Cox regression. With the unprecedented number of survival models implemented and high flexibility in analysis, DoSurvive is a unique platform for the identification of clinically relevant targets for cancer researcher and practitioners. DoSurvive is freely available at http://dosurvive.lab.nycu.edu.tw/.
Collapse
Affiliation(s)
- Hao-Wei Wu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Jian-De Wu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Yen-Ping Yeh
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Timothy H. Wu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Hong Chao
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Weijing Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| |
Collapse
|
11
|
Lai TY, Ko YC, Chen YL, Lin SF. The Way to Malignant Transformation: Can Epigenetic Alterations Be Used to Diagnose Early-Stage Head and Neck Cancer? Biomedicines 2023; 11:1717. [PMID: 37371812 PMCID: PMC10296077 DOI: 10.3390/biomedicines11061717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Identifying and treating tumors early is the key to secondary prevention in cancer control. At present, prevention of oral cancer is still challenging because the molecular drivers responsible for malignant transformation of the 11 clinically defined oral potentially malignant disorders are still unknown. In this review, we focused on studies that elucidate the epigenetic alterations demarcating malignant and nonmalignant epigenomes and prioritized findings from clinical samples. Head and neck included, the genomes of many cancer types are largely hypomethylated and accompanied by focal hypermethylation on certain specific regions. We revisited prior studies that demonstrated that sufficient uptake of folate, the primary dietary methyl donor, is associated with oral cancer reduction. As epigenetically driven phenotypic plasticity, a newly recognized hallmark of cancer, has been linked to tumor initiation, cell fate determination, and drug resistance, we discussed prior findings that might be associated with this hallmark, including gene clusters (11q13.3, 19q13.43, 20q11.2, 22q11-13) with great potential for oral cancer biomarkers, and successful examples in screening early-stage nasopharyngeal carcinoma. Although one-size-fits-all approaches have been shown to be ineffective in most cancer therapies, the rapid development of epigenome sequencing methods raises the possibility that this nonmutagenic approach may be an exception. Only time will tell.
Collapse
Affiliation(s)
- Ting-Yu Lai
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; (Y.-C.K.); (Y.-L.C.)
| | - Ying-Chieh Ko
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; (Y.-C.K.); (Y.-L.C.)
| | - Yu-Lian Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; (Y.-C.K.); (Y.-L.C.)
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; (Y.-C.K.); (Y.-L.C.)
| |
Collapse
|
12
|
Yang J, Xiang T, Zhu S, Lao Y, Wang Y, Liu T, Li K, Ma Y, Zhong C, Zhang S, Tan W, Lin D, Wu C. Comprehensive Analyses Reveal Effects on Tumor Immune Infiltration and Immunotherapy Response of APOBEC Mutagenesis and Its Molecular Mechanisms in Esophageal Squamous Cell Carcinoma. Int J Biol Sci 2023; 19:2551-2571. [PMID: 37215984 PMCID: PMC10197887 DOI: 10.7150/ijbs.83824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
The apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC) mutagenesis is prevalent in esophageal squamous cell carcinoma (ESCC). However, the functional role of APOBEC mutagenesis has yet to be fully delineated. To address this, we collect matched multi-omics data of 169 ESCC patients and evaluate characteristics of immune infiltration using multiple bioinformatic approaches based on bulk and single-cell RNA sequencing (scRNA-seq) data and verified by functional assays. We find that APOBEC mutagenesis prolongs overall survival (OS) of ESCC patients. The reason for this outcome is probably due to high anti-tumor immune infiltration, immune checkpoints expression and immune related pathway enrichment, such as interferon (IFN) signaling, innate and adaptive immune system. The elevated AOBEC3A (A3A) activity paramountly contributes to the footprints of APOBEC mutagenesis and is first discovered to be transactivated by FOSL1. Mechanistically, upregulated A3A exacerbates cytosolic double-stranded DNA (dsDNA) accumulation, thus stimulating cGAS-STING pathway. Simultaneously, A3A is associated with immunotherapy response which is predicted by TIDE algorithm, validated in a clinical cohort and further confirmed in mouse models. These findings systematically elucidate the clinical relevance, immunological characteristics, prognostic value for immunotherapy and underlying mechanisms of APOBEC mutagenesis in ESCC, which demonstrate great potential in clinical utility to facilitate clinical decisions.
Collapse
Affiliation(s)
- Jie Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yueqiong Lao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuqian Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kai Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuling Ma
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ce Zhong
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China
| |
Collapse
|
13
|
Dholariya S, Singh RD, Sonagra A, Yadav D, Vajaria BN, Parchwani D. Integrating Cutting-Edge Methods to Oral Cancer Screening, Analysis, and Prognosis. Crit Rev Oncog 2023; 28:11-44. [PMID: 37830214 DOI: 10.1615/critrevoncog.2023047772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Oral cancer (OC) has become a significant barrier to health worldwide due to its high morbidity and mortality rates. OC is among the most prevalent types of cancer that affect the head and neck region, and the overall survival rate at 5 years is still around 50%. Moreover, it is a multifactorial malignancy instigated by genetic and epigenetic variabilities, and molecular heterogeneity makes it a complex malignancy. Oral potentially malignant disorders (OPMDs) are often the first warning signs of OC, although it is challenging to predict which cases will develop into malignancies. Visual oral examination and histological examination are still the standard initial steps in diagnosing oral lesions; however, these approaches have limitations that might lead to late diagnosis of OC or missed diagnosis of OPMDs in high-risk individuals. The objective of this review is to present a comprehensive overview of the currently used novel techniques viz., liquid biopsy, next-generation sequencing (NGS), microarray, nanotechnology, lab-on-a-chip (LOC) or microfluidics, and artificial intelligence (AI) for the clinical diagnostics and management of this malignancy. The potential of these novel techniques in expanding OC diagnostics and clinical management is also reviewed.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Amit Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | | | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| |
Collapse
|
14
|
Maiti A, Hedger AK, Myint W, Balachandran V, Watts JK, Schiffer CA, Matsuo H. Structure of the catalytically active APOBEC3G bound to a DNA oligonucleotide inhibitor reveals tetrahedral geometry of the transition state. Nat Commun 2022; 13:7117. [PMID: 36402773 PMCID: PMC9675756 DOI: 10.1038/s41467-022-34752-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
APOBEC3 proteins (A3s) are enzymes that catalyze the deamination of cytidine to uridine in single-stranded DNA (ssDNA) substrates, thus playing a key role in innate antiviral immunity. However, the APOBEC3 family has also been linked to many mutational signatures in cancer cells, which has led to an intense interest to develop inhibitors of A3's catalytic activity as therapeutics as well as tools to study A3's biochemistry, structure, and cellular function. Recent studies have shown that ssDNA containing 2'-deoxy-zebularine (dZ-ssDNA) is an inhibitor of A3s such as A3A, A3B, and A3G, although the atomic determinants of this activity have remained unknown. To fill this knowledge gap, we determined a 1.5 Å resolution structure of a dZ-ssDNA inhibitor bound to active A3G. The crystal structure revealed that the activated dZ-H2O mimics the transition state by coordinating the active site Zn2+ and engaging in additional stabilizing interactions, such as the one with the catalytic residue E259. Therefore, this structure allowed us to capture a snapshot of the A3's transition state and suggests that developing transition-state mimicking inhibitors may provide a new opportunity to design more targeted molecules for A3s in the future.
Collapse
Affiliation(s)
- Atanu Maiti
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Adam K. Hedger
- grid.168645.80000 0001 0742 0364Institute for Drug Resistance, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Wazo Myint
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Vanivilasini Balachandran
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Jonathan K. Watts
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Celia A. Schiffer
- grid.168645.80000 0001 0742 0364Institute for Drug Resistance, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Hiroshi Matsuo
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| |
Collapse
|
15
|
Hsueh PC, Chang KP, Liu HP, Chiang WF, Chan XY, Hung CM, Chu LJ, Wu CC. Development of a salivary autoantibody biomarker panel for diagnosis of oral cavity squamous cell carcinoma. Front Oncol 2022; 12:968570. [DOI: 10.3389/fonc.2022.968570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Oral cavity squamous cell carcinoma (OSCC) is a destructive disease with increasing incidence. OSCC is usually diagnosed at an advanced stage, which leads to poor outcomes of OSCC patients. Currently, there is a lack of biomarkers with sufficient effectiveness in early diagnosis of OSCC. To ameliorate OSCC screening, we evaluated the performances of salivary autoantibodies (auto-Abs) to nine proteins (ANXA2, CA2, ISG15, KNG1, MMP1, MMP3, PRDX2, SPARC, and HSPA5) as OSCC biomarkers. A multiplexed immunoassay using a fluorescence bead-based suspension array system was established for simultaneous assessment of the salivary levels of the above nine auto-Abs and a known OSCC-associated auto-Ab, anti-p53. Compared to healthy individuals (n = 140), the salivary levels of nine auto-Abs were significantly elevated in OSCC patients (n = 160). Notably, the salivary levels of the 10 auto-Abs in the early-stage OSCC patients (n = 102) were higher than that in the healthy group. Most importantly, utilizing a marker panel consisting of anti-MMP3, anti-PRDX2, anti-SPARC, and anti-HSPA5 for detection of early-stage OSCC achieved a sensitivity of 63.8% with a specificity of 90%. Collectively, herein we established a multiplex auto-Ab platform for OSCC screening, and demonstrated a four-auto-Ab panel which shows clinical applicability for early diagnosis of OSCC.
Collapse
|
16
|
Ichikawa S, Flaxman HA, Xu W, Vallavoju N, Lloyd HC, Wang B, Shen D, Pratt MR, Woo CM. The E3 ligase adapter cereblon targets the C-terminal cyclic imide degron. Nature 2022; 610:775-782. [PMID: 36261529 PMCID: PMC10316063 DOI: 10.1038/s41586-022-05333-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/09/2022] [Indexed: 12/22/2022]
Abstract
The ubiquitin E3 ligase substrate adapter cereblon (CRBN) is a target of thalidomide and lenalidomide1, therapeutic agents used in the treatment of haematopoietic malignancies2-4 and as ligands for targeted protein degradation5-7. These agents are proposed to mimic a naturally occurring degron; however, the structural motif recognized by the thalidomide-binding domain of CRBN remains unknown. Here we report that C-terminal cyclic imides, post-translational modifications that arise from intramolecular cyclization of glutamine or asparagine residues, are physiological degrons on substrates for CRBN. Dipeptides bearing the C-terminal cyclic imide degron substitute for thalidomide when embedded within bifunctional chemical degraders. Addition of the degron to the C terminus of proteins induces CRBN-dependent ubiquitination and degradation in vitro and in cells. C-terminal cyclic imides form adventitiously on physiologically relevant timescales throughout the human proteome to afford a degron that is endogenously recognized and removed by CRBN. The discovery of the C-terminal cyclic imide degron defines a regulatory process that may affect the physiological function and therapeutic engagement of CRBN.
Collapse
Affiliation(s)
- Saki Ichikawa
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hope A Flaxman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Wenqing Xu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Nandini Vallavoju
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hannah C Lloyd
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Binyou Wang
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Dacheng Shen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
17
|
Abstract
Human papillomavirus (HPV) infection is a causative agent of multiple human cancers, including cervical and head and neck cancers. In these HPV-positive tumors, somatic mutations are caused by aberrant activation of DNA mutators such as members of the apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of cytidine deaminases. APOBEC3 proteins are most notable for their restriction of various viruses, including anti-HPV activity. However, the potential role of APOBEC3 proteins in HPV-induced cancer progression has recently garnered significant attention. Ongoing research stems from the observations that elevated APOBEC3 expression is driven by HPV oncogene expression and that APOBEC3 activity is likely a significant contributor to somatic mutagenesis in HPV-positive cancers. This review focuses on recent advances in the study of APOBEC3 proteins and their roles in HPV infection and HPV-driven oncogenesis. Further, we discuss critical gaps and unanswered questions in our understanding of APOBEC3 in virus-associated cancers.
Collapse
Affiliation(s)
- Cody J Warren
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
18
|
Chen CH, Wei KC, Liao WC, Lin YY, Chen HC, Feng LY, Liu CH, Huang CY, Chen KT, Wu CS, Chang YS, Yu JS, Chang IYF. Prognostic value of an APOBEC3 deletion polymorphism for glioma patients in Taiwan. J Neurosurg 2022; 138:1325-1337. [PMID: 36152319 DOI: 10.3171/2022.7.jns2250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The molecular pathogenesis of malignant gliomas, characterized by diverse tumor histology with differential prognosis, remains largely unelucidated. An APOBEC3 deletion polymorphism, with a deletion in APOBEC3B, has been correlated to risk and prognosis in several cancers, but its role in glioma is unclear. The authors aimed to examine the clinical relevance of the APOBEC3 deletion polymorphism to glioma risk and survival in a glioma patient cohort in Taiwan. METHODS The authors detected deletion genotypes in 403 glioma patients and 1365 healthy individuals in Taiwan and correlated the genotypes with glioma risk, clinicopathological factors, patient survival, and patient sex. APOBEC3 gene family expression was measured and correlated to the germline deletion. A nomogram model was constructed to predict patient survival in glioma. RESULTS The proportion of APOBEC3B-/- and APOBEC3B+/- genotypes was higher in glioblastoma (GBM) patients than healthy individuals and correlated with higher GBM risk in males. A higher percentage of cases with APOBEC3B- was observed in male than female glioma patients. The presence of APOBEC3B-/- was correlated with better overall survival (OS) in male astrocytic glioma patients. No significant correlation of the genotypes to glioma risk and survival was observed in the female patient cohort. Lower APOBEC3B expression was observed in astrocytic glioma patients with APOBEC3B-/- and was positively correlated with better OS. A 5-factor nomogram model was constructed based on male patients with astrocytic gliomas in the study cohort and worked efficiently for predicting patient OS. CONCLUSIONS The germline APOBEC3 deletion was associated with increased GBM risk and better OS in astrocytic glioma patients in the Taiwan male population. The APOBEC3B deletion homozygote was a potential independent prognostic factor predicting better survival in male astrocytic glioma patients.
Collapse
Affiliation(s)
| | - Kuo-Chen Wei
- 2School of Medicine, and.,5Department of Neurosurgery.,7Neuroscience Research Center, and.,11Department of Neurosurgery, New Taipei Municipal Tucheng Hospital, New Taipei City
| | - Wei-Chao Liao
- 1Molecular Medicine Research Center.,4Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Taoyuan
| | - You-Yu Lin
- 9Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei.,10Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei
| | | | - Li-Ying Feng
- 11Department of Neurosurgery, New Taipei Municipal Tucheng Hospital, New Taipei City
| | - Chiung-Hui Liu
- 12Department of Post-Baccalaureate Medicine and.,13PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Chiung-Yin Huang
- 7Neuroscience Research Center, and.,11Department of Neurosurgery, New Taipei Municipal Tucheng Hospital, New Taipei City
| | - Ko-Ting Chen
- 2School of Medicine, and.,5Department of Neurosurgery.,7Neuroscience Research Center, and
| | - Chi-Sheng Wu
- 1Molecular Medicine Research Center.,6Department of Otolaryngology-Head & Neck Surgery
| | | | - Jau-Song Yu
- 1Molecular Medicine Research Center.,3Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan.,8Liver Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan
| | | |
Collapse
|
19
|
McIlroy D, Peltier C, Nguyen ML, Manceau L, Mobuchon L, Le Baut N, Nguyen NK, Tran MC, Nguyen TC, Bressollette-Bodin C. Quantification of APOBEC3 Mutation Rates Affecting the VP1 Gene of BK Polyomavirus In Vivo. Viruses 2022; 14:v14092077. [PMID: 36146883 PMCID: PMC9504301 DOI: 10.3390/v14092077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in the BK polyomavirus (BKPyV) capsid accumulate in kidney transplant (KTx) recipients with persistent virus replication. They are associated with neutralization escape and appear to arise as a result of cytosine deamination by host cell APOBEC3A/B enzymes. To study the mutagenic processes occurring in patients, we amplified the typing region of the VP1 gene, sequenced the amplicons to a depth of 5000–10,000×, and identified rare mutations, which were fitted to COSMIC mutational signatures. Background mutations were identified in amplicons from plasmids carrying the BKPyV genome and compared to mutations observed in 148 samples from 23 KTx recipients in France and in Vietnam. Three mutational signatures were consistently observed in urine, serum, and kidney biopsy samples, two of which, SBS2 and SBS13, corresponded to APOBEC3A/B activity. In addition, a third signature with no known etiology, SBS89, was detected both in patient samples, and in cells infected in vitro with BKPyV. Quantitatively, APOBEC3A/B mutation rates in urine samples were strongly correlated with urine viral load, and also appeared to vary between individuals. These results confirm that APOBEC3A/B is a major, but not the only, source of BKPyV genome mutations in patients.
Collapse
Affiliation(s)
- Dorian McIlroy
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
- Faculté des Sciences et des Techniques, Nantes Université, 44093 Nantes, France
- Correspondence: ; Tel.: +33-02-44-76-81-82
| | - Cécile Peltier
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
| | - My-Linh Nguyen
- Department of Medical Microbiology, Hanoi Medical University, Hanoi 116001, Vietnam
| | - Louise Manceau
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
- CHU Nantes, Nantes Université, Service de Virologie, 44093 Nantes, France
| | - Lenha Mobuchon
- Molecular Biology and Sequencing Services, CHU Nantes, 44000 Nantes, France
| | - Nicolas Le Baut
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Ngoc-Khanh Nguyen
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Minh-Chau Tran
- Department of Kidney Diseases and Dialysis, Vietduc University Hospital, Hanoi 110214, Vietnam
| | - The-Cuong Nguyen
- Department of Medical Microbiology, Hanoi Medical University, Hanoi 116001, Vietnam
| | - Céline Bressollette-Bodin
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
- CHU Nantes, Nantes Université, Service de Virologie, 44093 Nantes, France
| |
Collapse
|
20
|
Li QL, Mao J, Meng XY. Comprehensive Characterization of Immune Landscape Based on Tumor Microenvironment for Oral Squamous Cell Carcinoma Prognosis. Vaccines (Basel) 2022; 10:vaccines10091521. [PMID: 36146599 PMCID: PMC9505673 DOI: 10.3390/vaccines10091521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: This study aims to identify an immune-related signature to predict clinical outcomes of oral squamous cell carcinoma (OSCC) patients. Methods: Gene transcriptome data of both tumor and normal tissues from OSCC and the corresponding clinical information were downloaded from The Cancer Genome Atlas (TCGA). Tumor Immune Estimation Resource algorithm (ESTIMATE) was used to calculate the immune/stromal-related scores. The immune/stromal scores and associated clinical characteristics of OSCC patients were evaluated. Univariate Cox proportional hazards regression analyses, least absolute shrinkage, and selection operator (LASSO) and receiver operating characteristic (ROC) curve analyses were performed to assess the prognostic prediction capacity. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) function annotation were used to analysis the functions of TME-related genes. Results: Eleven predictor genes were identified in the immune-related signature and overall survival (OS) in the high-risk group was significantly shorter than in the low-risk group. An ROC analysis showed the TME-related signature could predict the total OS of OSCC patients. Moreover, GSEA and GO function annotation proved that immunity and immune-related pathways were mainly enriched in the high-risk group. Conclusions: We identified an immune-related signature that was closely correlated with the prognosis and immune response of OSCC patients. This signature may have important implications for improving the clinical survival rate of OSCC patients and provide a potential strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Qi-Lin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430030, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430030, China
| | - Xin-Yao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
21
|
Modular scaffolding by lncRNA HOXA10-AS promotes oral cancer progression. Cell Death Dis 2022; 13:629. [PMID: 35858923 PMCID: PMC9300705 DOI: 10.1038/s41419-022-05071-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023]
Abstract
Recent findings have implicated long noncoding RNAs (lncRNAs) as pivotal gene regulators for diverse biological processes, despite their lack of protein-coding capabilities. Accumulating evidence suggests the significance of lncRNAs in mediating cell signaling pathways, especially those associated with tumorigenesis. Consequently, lncRNAs have emerged as novel functional regulators and indicators of cancer development and malignancy. Recent transcriptomic profiling has recognized a tumor-biased expressed lncRNA, the HOXA10-AS transcript, whose expression is associated with patient survival. Functional cell-based assays show that the HOXA10-AS transcript is essential in the regulation of oral cancer growth and metastasis. LncRNA expression is also associated with drug sensitivity. In this study, we identify that HOXA10-AS serves as a modular scaffold for TP63 mRNA processing and that such involvement regulates cancer growth. These findings provide a functional interpretation of lncRNA-mediated molecular regulation, highlighting the significance of the lncRNA transcriptome in cancer biology.
Collapse
|
22
|
Cai M, Zheng Z, Bai Z, Ouyang K, Wu Q, Xu S, Huang L, Jiang Y, Wang L, Gao J, Pathak JL, Wu L. Overexpression of angiogenic factors and matrix metalloproteinases in the saliva of oral squamous cell carcinoma patients: potential non-invasive diagnostic and therapeutic biomarkers. BMC Cancer 2022; 22:530. [PMID: 35545767 PMCID: PMC9092712 DOI: 10.1186/s12885-022-09630-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Backgrounds Salivary biomarkers hold huge potential for the non-invasive diagnosis of oral squamous cell carcinoma. Angiogenic factors and matrix-metalloproteinases (MMPs) are highly expressed in OSCC tissue, but their expression patterns in the saliva are unknown. This study aimed to analyze the levels of angiogenic factors and MMPs in tumor tissue and saliva of OSCC patients. Methods OSCC-tissue, adjacent normal tissue (ANT), saliva from OSCC patients, and healthy controls were obtained. The expression patterns of angiogenic factors and MMPs were analyzed by immunohistochemistry, protein chip array, and RT-qPCR. Results Results showed higher expression of ANG, ANG-2, HGF, PIGF, VEGF, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-13, TIMP-1, and TIMP-2 in OSCC-tissues compared to the ANT. Among the overexpressed markers in OSCC-tissues, HGF, VEGF, PIGF, PDGF-BB, MMP-1, MMP-3, MMP-8, MMP-9, MMP-10, MMP-13, and TIMP-2 were significantly upregulated in the saliva of OSCC patients compared to healthy controls. Conclusions The levels of HGF, VEGF, PIGF, MMP-1, MMP-3, MMP-8, MMP-9, MMP-10, MMP-13, and TIMP-2 were upregulated both in OSCC tissue and saliva of OSCC patients. Bioinformatic analysis revealed the correlation of these factors with patient survival and cancer functional states in head and neck cancer, indicating these factors as possible saliva-based non-invasive diagnostic/prognostic markers and therapeutic targets of OSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09630-0.
Collapse
Affiliation(s)
- Meijuan Cai
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China.,Stomatological Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China.,Department of Basic Oral Medicine, Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, 510182, Guangdong, China
| | - Zhibao Bai
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kexiong Ouyang
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Qiuyu Wu
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Shaofen Xu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Lihuan Huang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China.,Department of Basic Oral Medicine, Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, 510182, Guangdong, China
| | - Yingtong Jiang
- Department of Stomatology, Hexian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, 511400, Guangdong, China
| | - Lijing Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China.,Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Jie Gao
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China.
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China.
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China. .,Department of Basic Oral Medicine, Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, 510182, Guangdong, China.
| |
Collapse
|
23
|
Wang PW, Su YH, Chou PH, Huang MY, Chen TW. Survival-related genes are diversified across cancers but generally enriched in cancer hallmark pathways. BMC Genomics 2022; 22:918. [PMID: 35508961 PMCID: PMC9066720 DOI: 10.1186/s12864-022-08581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Pan-cancer studies have disclosed many commonalities and differences in mutations, copy number variations, and gene expression alterations among cancers. Some of these features are significantly associated with clinical outcomes, and many prognosis-predictive biomarkers or biosignatures have been proposed for specific cancer types. Here, we systematically explored the biological functions and the distribution of survival-related genes (SRGs) across cancers. Results We carried out two different statistical survival models on the mRNA expression profiles in 33 cancer types from TCGA. We identified SRGs in each cancer type based on the Cox proportional hazards model and the log-rank test. We found a large difference in the number of SRGs among different cancer types, and most of the identified SRGs were specific to a particular cancer type. While these SRGs were unique to each cancer type, they were found mostly enriched in cancer hallmark pathways, e.g., cell proliferation, cell differentiation, DNA metabolism, and RNA metabolism. We also analyzed the association between cancer driver genes and SRGs and did not find significant over-representation amongst most cancers. Conclusions In summary, our work identified all the SRGs for 33 cancer types from TCGA. In addition, the pan-cancer analysis revealed the similarities and the differences in the biological functions of SRGs across cancers. Given the potential of SRGs in clinical utility, our results can serve as a resource for basic research and biotech applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08581-x.
Collapse
Affiliation(s)
- Po-Wen Wang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan
| | - Yi-Hsun Su
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.,Industrial Development PhD Program of the College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan
| | - Po-Hao Chou
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan
| | - Ming-Yueh Huang
- Institute of Statistical Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan. .,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.
| |
Collapse
|
24
|
Yu L, Majerciak V, Zheng ZM. HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23094943. [PMID: 35563334 PMCID: PMC9105396 DOI: 10.3390/ijms23094943] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/18/2022] Open
Abstract
Human papillomaviruses (HPV) are a group of small non-enveloped DNA viruses whose infection causes benign tumors or cancers. HPV16 and HPV18, the two most common high-risk HPVs, are responsible for ~70% of all HPV-related cervical cancers and head and neck cancers. The expression of the HPV genome is highly dependent on cell differentiation and is strictly regulated at the transcriptional and post-transcriptional levels. Both HPV early and late transcripts differentially expressed in the infected cells are intron-containing bicistronic or polycistronic RNAs bearing more than one open reading frame (ORF), because of usage of alternative viral promoters and two alternative viral RNA polyadenylation signals. Papillomaviruses proficiently engage alternative RNA splicing to express individual ORFs from the bicistronic or polycistronic RNA transcripts. In this review, we discuss the genome structures and the updated transcription maps of HPV16 and HPV18, and the latest research advances in understanding RNA cis-elements, intron branch point sequences, and RNA-binding proteins in the regulation of viral RNA processing. Moreover, we briefly discuss the epigenetic modifications, including DNA methylation and possible APOBEC-mediated genome editing in HPV infections and carcinogenesis.
Collapse
|
25
|
Yen WC, Chang IYF, Chang K, Ouyang C, Liu CR, Tsai TL, Zhang YC, Wang CI, Wang YH, Yu AL, Liu H, Wu CC, Chang YS, Yu JS, Yang CY. Genomic and Molecular Signatures of Successful Patient-Derived Xenografts for Oral Cavity Squamous Cell Carcinoma. Front Oncol 2022; 12:792297. [PMID: 35444950 PMCID: PMC9013835 DOI: 10.3389/fonc.2022.792297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/02/2022] [Indexed: 01/16/2023] Open
Abstract
BackgroundOral cavity squamous cell carcinoma (OSCC) is an aggressive malignant tumor with high recurrence and poor prognosis in the advanced stage. Patient-derived xenografts (PDXs) serve as powerful preclinical platforms for drug testing and precision medicine for cancer therapy. We assess which molecular signatures affect tumor engraftment ability and tumor growth rate in OSCC PDXs.MethodsTreatment-naïve OSCC primary tumors were collected for PDX models establishment. Comprehensive genomic analysis, including whole-exome sequencing and RNA-seq, was performed on case-matched tumors and PDXs. Regulatory genes/pathways were analyzed to clarify which molecular signatures affect tumor engraftment ability and the tumor growth rate in OSCC PDXs.ResultsPerineural invasion was found as an important pathological feature related to engraftment ability. Tumor microenvironment with enriched hypoxia, PI3K-Akt, and epithelial–mesenchymal transition pathways and decreased inflammatory responses had high engraftment ability and tumor growth rates in OSCC PDXs. High matrix metalloproteinase-1 (MMP1) expression was found that have a great graft advantage in xenografts and is associated with pooled disease-free survival in cancer patients.ConclusionThis study provides a panel with detailed genomic characteristics of OSCC PDXs, enabling preclinical studies on personalized therapy options for oral cancer. MMP1 could serve as a biomarker for predicting successful xenografts in OSCC patients.
Collapse
Affiliation(s)
- Wei-Chen Yen
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kai‐Ping Chang
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun‐Nan Ouyang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-Rou Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Lin Tsai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Cheng Zhang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-I Wang
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ya-Hui Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- University of California San Diego, San Diego, CA, United States
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ching Wu
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Sun Chang
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Yu Yang
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Chia-Yu Yang,
| |
Collapse
|
26
|
DeWeerd RA, Németh E, Póti Á, Petryk N, Chen CL, Hyrien O, Szüts D, Green AM. Prospectively defined patterns of APOBEC3A mutagenesis are prevalent in human cancers. Cell Rep 2022; 38:110555. [PMID: 35320711 PMCID: PMC9283007 DOI: 10.1016/j.celrep.2022.110555] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
Mutational signatures defined by single base substitution (SBS) patterns in cancer have elucidated potential mutagenic processes that contribute to malignancy. Two prevalent mutational patterns in human cancers are attributed to the APOBEC3 cytidine deaminase enzymes. Among the seven human APOBEC3 proteins, APOBEC3A is a potent deaminase and proposed driver of cancer mutagenesis. In this study, we prospectively examine genome-wide aberrations by expressing human APOBEC3A in avian DT40 cells. From whole-genome sequencing, we detect hundreds to thousands of base substitutions per genome. The APOBEC3A signature includes widespread cytidine mutations and a unique insertion-deletion (indel) signature consisting largely of cytidine deletions. This multi-dimensional APOBEC3A signature is prevalent in human cancer genomes. Our data further reveal replication-associated mutations, the rate of stem-loop and clustered mutations, and deamination of methylated cytidines. This comprehensive signature of APOBEC3A mutagenesis is a tool for future studies and a potential biomarker for APOBEC3 activity in cancer.
Collapse
Affiliation(s)
- Rachel A DeWeerd
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Eszter Németh
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Nataliya Petryk
- Epigenetics & Cell Fate UMR7216, CNRS, University of Paris, 35 rue Hélène Brion, 75013 Paris, France
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, Paris, France
| | - Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, 75005 Paris, France
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
| | - Abby M Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA; Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
27
|
Lim AH, Chan JY, Yu MC, Wu TH, Hong JH, Ng CCY, Low ZJ, Liu W, Vikneswari R, Sung PC, Fan WL, Teh BT, Hsieh SY. Rare Occurrence of Aristolochic Acid Mutational Signatures in Oro-Gastrointestinal Tract Cancers. Cancers (Basel) 2022; 14:cancers14030576. [PMID: 35158844 PMCID: PMC8833562 DOI: 10.3390/cancers14030576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Aristolochic acids (AAs) are potent mutagens commonly found in herbal plant-based remedies widely used throughout Asian countries. PATIENTS AND METHODS To understand whether AA is involved in the tumorigenesis of the oro-gastrointestinal tract, we used whole-exome sequencing to profile 54 cases of four distinct types of oro-gastrointestinal tract cancer (OGITC) from Taiwan. RESULTS A diverse landscape of mutational signatures including those from DNA mismatch repair and reactive oxygen species was observed. APOBEC mutational signatures were observed in 60% of oral squamous cell carcinomas. Only one sample harbored AA mutational signatures, contradictory to prior reports of cancers from Taiwan. The metabolism of AA in the liver and urinary tract, transient exposure time, and high cell turnover rates at OGITC sites may explain our findings. CONCLUSION AA signatures in OGITCs are rare and unlikely to be a major contributing factor in oro-gastrointestinal tract tumorigenesis.
Collapse
Affiliation(s)
- Abner Herbert Lim
- Cheng Kin Ku Herbal Biodiversity & Medicine Program, SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 169610, Singapore; (A.H.L.); (J.H.H.); (C.C.Y.N.); (Z.J.L.); (W.L.)
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.C.); (R.V.)
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.C.); (R.V.)
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Ming-Chin Yu
- Department of Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan; (M.-C.Y.); (T.-H.W.)
- Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Tsung-Han Wu
- Department of Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan; (M.-C.Y.); (T.-H.W.)
| | - Jing Han Hong
- Cheng Kin Ku Herbal Biodiversity & Medicine Program, SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 169610, Singapore; (A.H.L.); (J.H.H.); (C.C.Y.N.); (Z.J.L.); (W.L.)
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Cedric Chuan Young Ng
- Cheng Kin Ku Herbal Biodiversity & Medicine Program, SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 169610, Singapore; (A.H.L.); (J.H.H.); (C.C.Y.N.); (Z.J.L.); (W.L.)
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.C.); (R.V.)
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Zhen Jie Low
- Cheng Kin Ku Herbal Biodiversity & Medicine Program, SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 169610, Singapore; (A.H.L.); (J.H.H.); (C.C.Y.N.); (Z.J.L.); (W.L.)
| | - Wei Liu
- Cheng Kin Ku Herbal Biodiversity & Medicine Program, SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 169610, Singapore; (A.H.L.); (J.H.H.); (C.C.Y.N.); (Z.J.L.); (W.L.)
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.C.); (R.V.)
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Rajasegaran Vikneswari
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.C.); (R.V.)
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Pin-Cheng Sung
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
| | - Wen-Lang Fan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
| | - Bin Tean Teh
- Cheng Kin Ku Herbal Biodiversity & Medicine Program, SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 169610, Singapore; (A.H.L.); (J.H.H.); (C.C.Y.N.); (Z.J.L.); (W.L.)
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.C.); (R.V.)
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore 169610, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence: (B.T.T.); or (S.-Y.H.); Tel.: +65-6436-8000 (B.T.T.); +886-975368031 (S.-Y.H.)
| | - Sen-Yung Hsieh
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
- Correspondence: (B.T.T.); or (S.-Y.H.); Tel.: +65-6436-8000 (B.T.T.); +886-975368031 (S.-Y.H.)
| |
Collapse
|
28
|
Liu W, Deng Y, Li Z, Chen Y, Zhu X, Tan X, Cao G. Cancer Evo-Dev: A Theory of Inflammation-Induced Oncogenesis. Front Immunol 2021; 12:768098. [PMID: 34880864 PMCID: PMC8645856 DOI: 10.3389/fimmu.2021.768098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a prerequisite for the development of cancers. Here, we present the framework of a novel theory termed as Cancer Evolution-Development (Cancer Evo-Dev) based on the current understanding of inflammation-related carcinogenesis, especially hepatocarcinogenesis induced by chronic infection with hepatitis B virus. The interaction between genetic predispositions and environmental exposures, such as viral infection, maintains chronic non-resolving inflammation. Pollution, metabolic syndrome, physical inactivity, ageing, and adverse psychosocial exposure also increase the risk of cancer via inducing chronic low-grade smoldering inflammation. Under the microenvironment of non-resolving inflammation, pro-inflammatory factors facilitate the generation of somatic mutations and viral mutations by inducing the imbalance between the mutagenic forces such as cytidine deaminases and mutation-correcting forces including uracil-DNA glycosylase. Most cells with somatic mutations and mutated viruses are eliminated in survival competition. Only a small percentage of mutated cells survive, adapt to the hostile environment, retro-differentiate, and function as cancer-initiating cells via altering signaling pathways. These cancer-initiating cells acquire stem-ness, reprogram metabolic patterns, and affect the microenvironment. The carcinogenic process follows the law of "mutation-selection-adaptation". Chronic physical activity reduces the levels of inflammation via upregulating the activity and numbers of NK cells and lymphocytes and lengthening leukocyte telomere; downregulating proinflammatory cytokines including interleukin-6 and senescent lymphocytes especially in aged population. Anti-inflammation medication reduces the occurrence and recurrence of cancers. Targeting cancer stemness signaling pathways might lead to cancer eradication. Cancer Evo-Dev not only helps understand the mechanisms by which inflammation promotes the development of cancers, but also lays the foundation for effective prophylaxis and targeted therapy of various cancers.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yang Deng
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Zishuai Li
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yifan Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaoqiong Zhu
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiaojie Tan
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
29
|
Ganini C, Amelio I, Bertolo R, Bove P, Buonomo OC, Candi E, Cipriani C, Di Daniele N, Juhl H, Mauriello A, Marani C, Marshall J, Melino S, Marchetti P, Montanaro M, Natale ME, Novelli F, Palmieri G, Piacentini M, Rendina EA, Roselli M, Sica G, Tesauro M, Rovella V, Tisone G, Shi Y, Wang Y, Melino G. Global mapping of cancers: The Cancer Genome Atlas and beyond. Mol Oncol 2021; 15:2823-2840. [PMID: 34245122 PMCID: PMC8564642 DOI: 10.1002/1878-0261.13056] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer genomes have been explored from the early 2000s through massive exome sequencing efforts, leading to the publication of The Cancer Genome Atlas in 2013. Sequencing techniques have been developed alongside this project and have allowed scientists to bypass the limitation of costs for whole-genome sequencing (WGS) of single specimens by developing more accurate and extensive cancer sequencing projects, such as deep sequencing of whole genomes and transcriptomic analysis. The Pan-Cancer Analysis of Whole Genomes recently published WGS data from more than 2600 human cancers together with almost 1200 related transcriptomes. The application of WGS on a large database allowed, for the first time in history, a global analysis of features such as molecular signatures, large structural variations and noncoding regions of the genome, as well as the evaluation of RNA alterations in the absence of underlying DNA mutations. The vast amount of data generated still needs to be thoroughly deciphered, and the advent of machine-learning approaches will be the next step towards the generation of personalized approaches for cancer medicine. The present manuscript wants to give a broad perspective on some of the biological evidence derived from the largest sequencing attempts on human cancers so far, discussing advantages and limitations of this approach and its power in the era of machine learning.
Collapse
Affiliation(s)
- Carlo Ganini
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- IDI‐IRCCSRomeItaly
| | - Ivano Amelio
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Riccardo Bertolo
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- San Carlo di Nancy HospitalRomeItaly
| | - Pierluigi Bove
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- San Carlo di Nancy HospitalRomeItaly
| | - Oreste Claudio Buonomo
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Eleonora Candi
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- IDI‐IRCCSRomeItaly
| | - Chiara Cipriani
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- San Carlo di Nancy HospitalRomeItaly
| | - Nicola Di Daniele
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | | | - Alessandro Mauriello
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Carla Marani
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- San Carlo di Nancy HospitalRomeItaly
| | - John Marshall
- Medstar Georgetown University HospitalGeorgetown UniversityWashingtonDCUSA
| | - Sonia Melino
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | | | - Manuela Montanaro
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Maria Emanuela Natale
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- San Carlo di Nancy HospitalRomeItaly
| | - Flavia Novelli
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Giampiero Palmieri
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Mauro Piacentini
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | | | - Mario Roselli
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Giuseppe Sica
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Manfredi Tesauro
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Valentina Rovella
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Giuseppe Tisone
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Yufang Shi
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSoochow UniversityChina
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Gerry Melino
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| |
Collapse
|
30
|
Venkatesan S, Angelova M, Puttick C, Zhai H, Caswell DR, Lu WT, Dietzen M, Galanos P, Evangelou K, Bellelli R, Lim EL, Watkins TB, Rowan A, Teixeira VH, Zhao Y, Chen H, Ngo B, Zalmas LP, Bakir MA, Hobor S, Gronroos E, Pennycuick A, Nigro E, Campbell BB, Brown WL, Akarca AU, Marafioti T, Wu MY, Howell M, Boulton SJ, Bertoli C, Fenton TR, de Bruin RA, Maya-Mendoza A, Santoni-Rugiu E, Hynds RE, Gorgoulis VG, Jamal-Hanjani M, McGranahan N, Harris RS, Janes SM, Bartkova J, Bakhoum SF, Bartek J, Kanu N, Swanton C. Induction of APOBEC3 Exacerbates DNA Replication Stress and Chromosomal Instability in Early Breast and Lung Cancer Evolution. Cancer Discov 2021; 11:2456-2473. [PMID: 33947663 PMCID: PMC8487921 DOI: 10.1158/2159-8290.cd-20-0725] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/08/2020] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
APOBEC3 enzymes are cytosine deaminases implicated in cancer. Precisely when APOBEC3 expression is induced during cancer development remains to be defined. Here we show that specific APOBEC3 genes are upregulated in breast ductal carcinoma in situ, and in preinvasive lung cancer lesions coincident with cellular proliferation. We observe evidence of APOBEC3-mediated subclonal mutagenesis propagated from TRACERx preinvasive to invasive non-small cell lung cancer (NSCLC) lesions. We find that APOBEC3B exacerbates DNA replication stress and chromosomal instability through incomplete replication of genomic DNA, manifested by accumulation of mitotic ultrafine bridges and 53BP1 nuclear bodies in the G1 phase of the cell cycle. Analysis of TRACERx NSCLC clinical samples and mouse lung cancer models revealed APOBEC3B expression driving replication stress and chromosome missegregation. We propose that APOBEC3 is functionally implicated in the onset of chromosomal instability and somatic mutational heterogeneity in preinvasive disease, providing fuel for selection early in cancer evolution. SIGNIFICANCE: This study reveals the dynamics and drivers of APOBEC3 gene expression in preinvasive disease and the exacerbation of cellular diversity by APOBEC3B through DNA replication stress to promote chromosomal instability early in cancer evolution.This article is highlighted in the In This Issue feature, p. 2355.
Collapse
Affiliation(s)
- Subramanian Venkatesan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Clare Puttick
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Haoran Zhai
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Deborah R. Caswell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michelle Dietzen
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Genome Evolution Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Panagiotis Galanos
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Roberto Bellelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Emilia L. Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Thomas B.K. Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Vitor H. Teixeira
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Yue Zhao
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bryan Ngo
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | | | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sebastijan Hobor
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Eva Gronroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Adam Pennycuick
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Ersilia Nigro
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Brittany B. Campbell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - William L. Brown
- Masonic Cancer Center, Minneapolis, USA; Institute for Molecular Virology, Minneapolis, USA; Center for Genome Engineering, Minneapolis, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | - Ayse U. Akarca
- Department of Histopathology, University College London, London, United Kingdom
| | - Teresa Marafioti
- Department of Histopathology, University College London, London, United Kingdom
| | - Mary Y. Wu
- High Throughput Screening Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael Howell
- High Throughput Screening Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Simon J. Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Tim R. Fenton
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Robertus A.M. de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | | | - Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Robert E. Hynds
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Genome Evolution Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Reuben S. Harris
- Masonic Cancer Center, Minneapolis, USA; Institute for Molecular Virology, Minneapolis, USA; Center for Genome Engineering, Minneapolis, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, USA
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Jirina Bartkova
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
31
|
Tan X, Zheng S, Liu W, Liu Y, Kang Z, Li Z, Li P, Song J, Hou J, Yang B, Han X, Wang F, Jing C, Cao G. Effect of APOBEC3A functional polymorphism on renal cell carcinoma is influenced by tumor necrosis factor-α and transcriptional repressor ETS1. Am J Cancer Res 2021; 11:4347-4363. [PMID: 34659891 PMCID: PMC8493372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/13/2021] [Indexed: 06/13/2023] Open
Abstract
Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide (APOBEC) 3 cytidine deaminases are the prominent drivers of somatic mutations in cancers. However, the effect of APOBEC3s functional polymorphisms on the development of renal cell carcinoma (RCC) remains unknown. Five genetic polymorphisms affecting the expression of APOBEC3A (A3A), APOBEC3B, and APOBEC4 and uracil DNA glycosylase (UNG) were genotyped in 728 RCC patients and 1500 healthy controls. The effects of tumor necrosis factor-α (TNFα) and interleukin-6 on the activity of the A3A promoter with rs12157810-A or -C in four RCC cell lines (786-O, A498, Caki2, ACHN) and two colorectal cancer cell lines (HCT116, SW620) were evaluated using dual-luciferase assays. Transcriptional repressors to the A3A promoter were identified by chromatin immunoprecipitation-quantitative PCR. The proapoptotic effect of A3A on RCC cells was evaluated using cytometry. The prognostic values of A3A and ETS1 were evaluated by the Cox regression analysis. The expressions of A3A and ETS1 were evaluated in clear cell RCC (ccRCC) specimens with different polymorphic genotypes using quantitative RT-PCR and immunohistochemistry. Of those functional polymorphisms, CC genotype at rs12157810 in the A3A promoter was significantly associated with a decreased risk of ccRCC, compared to the AA genotype (odds ratio adjusted for age and gender, 0.41, 95% confidence interval [CI], 0.28-0.57). Other polymorphic genotypes were not associated with the risk of RCC. The activity of the A3A promoter with rs12157810-C was significantly higher than that with rs12157810-A in the four RCC cell lines and two colorectal cancer cell lines. The activity of the A3A promoter with rs12157810-C was greatly up-regulated by TNFα and predominantly inhibited by a transcriptional repressor ETS1. The binding of ETS1 to the A3A promoter with rs12157810-C was looser than that with rs12157810-A. Ectopic expression of A3A significantly promoted apoptosis in ccRCC cells, rather than in colorectal cancer cells. Higher ETS1 expression predicted a favorable prognosis in ccRCC, with a hazard ratio of 0.58 (95% CI, 0.43-0.78). Rs121567810-C up-regulates the A3A promoter activity, possibly due to higher response to TNFα and looser transcriptional repression by ETS1. Up-regulation of A3A increases apoptosis, thus decreasing ccRCC risk in those carrying rs121567810-C.
Collapse
Affiliation(s)
- Xiaojie Tan
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Shaoling Zheng
- Department of Epidemiology, School of Medicine, Jinan UniversityGuangzhou 510632, China
| | - Wenbin Liu
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Yan Liu
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Zhengchun Kang
- Department of General Surgery, The 1st Affiliated Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Zishuai Li
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Peng Li
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Jiahui Song
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Jianguo Hou
- Department of Urology, The 1st Affiliated Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Bo Yang
- Department of Urology, The 1st Affiliated Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Xue Han
- Department of Chronic Diseases, The Center for Disease Control and Prevention of Yangpu DistrictShanghai 200090, China
| | - Fubo Wang
- Department of Urology, The 1st Affiliated Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan UniversityGuangzhou 510632, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| |
Collapse
|
32
|
Keshishian H, McDonald ER, Mundt F, Melanson R, Krug K, Porter DA, Wallace L, Forestier D, Rabasha B, Marlow SE, Jane‐Valbuena J, Todres E, Specht H, Robinson ML, Jean Beltran PM, Babur O, Olive ME, Golji J, Kuhn E, Burgess M, MacMullan MA, Rejtar T, Wang K, Mani DR, Satpathy S, Gillette MA, Sellers WR, Carr SA. A highly multiplexed quantitative phosphosite assay for biology and preclinical studies. Mol Syst Biol 2021; 17:e10156. [PMID: 34569154 PMCID: PMC8474009 DOI: 10.15252/msb.202010156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Reliable methods to quantify dynamic signaling changes across diverse pathways are needed to better understand the effects of disease and drug treatment in cells and tissues but are presently lacking. Here, we present SigPath, a targeted mass spectrometry (MS) assay that measures 284 phosphosites in 200 phosphoproteins of biological interest. SigPath probes a broad swath of signaling biology with high throughput and quantitative precision. We applied the assay to investigate changes in phospho-signaling in drug-treated cancer cell lines, breast cancer preclinical models, and human medulloblastoma tumors. In addition to validating previous findings, SigPath detected and quantified a large number of differentially regulated phosphosites newly associated with disease models and human tumors at baseline or with drug perturbation. Our results highlight the potential of SigPath to monitor phosphoproteomic signaling events and to nominate mechanistic hypotheses regarding oncogenesis, response, and resistance to therapy.
Collapse
Affiliation(s)
- Hasmik Keshishian
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | | | - Filip Mundt
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
- Present address:
Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
- Present address:
Department of Oncology and PathologyScience for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Randy Melanson
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Dale A Porter
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
- Present address:
Cedilla TherapeuticsCambridgeMAUSA
| | - Luke Wallace
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Dominique Forestier
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Bokang Rabasha
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Sara E Marlow
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Judit Jane‐Valbuena
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Ellen Todres
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Harrison Specht
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | | | | | - Ozgun Babur
- Computer Science DepartmentUniversity of Massachusetts BostonBostonMAUSA
| | - Meagan E Olive
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Javad Golji
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
| | - Eric Kuhn
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Michael Burgess
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Melanie A MacMullan
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Tomas Rejtar
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
| | - Karen Wang
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
| | - DR Mani
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMAUSA
| | - William R Sellers
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMAUSA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| |
Collapse
|
33
|
Velmurugan BK, Chiu CW, Lin YM, Bharath M, Yeh CM, Chen YE, Chung CM, Lin SH. Increased Expression of p-GSK3β Predicts Poor Survival in T -III/IV Stage OSCC Patients. In Vivo 2021; 34:1805-1809. [PMID: 32606150 DOI: 10.21873/invivo.11975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND/AIM Glycogen synthase kinase 3 beta (GSK3-β) acts either as a tumor suppressor or an oncogene in various human cancers. The present study aimed to investigate the expression and activity of p-GSK3-β (Ser9) in oral cancer patients. MATERIALS AND METHODS We investigated the levels of p-GSK3β in 152 oral cancer tissues by immunohistochemistry, and explored their prognostic impact. RESULTS To investigate the role of p-GSK3β (Ser9) in OSCC progression, we first analyzed the expression levels of protein p-GSK3β in normal and oral cancer tissues using immunohistochemical staining. p-GSK3β immunostaining was detected in 32 of 152 (21.1%) oral cancer specimens. High p-GSK3β expression was significantly associated with T (III/IV) stage. Kaplan-Meier survival analysis revealed that high levels of p-GSK3β were correlated with poor survival (p=0.001) in T stage (III/IV) OSCC patients. Multivariate analyses indicated that TN stage, AJCC tumor stage, tumor differentiation status and clinical therapy, but not p-GSK3β levels, were independent prognostic factors. Significant mortality risk was found in T stage (III/IV) oral cancer patients with high levels of p-GSK3β (p=0.0006). CONCLUSION GSK3β inactivation is a key event in oral cancer patients and targeting GSK3β might be valuable in treating oral cancer patients.
Collapse
Affiliation(s)
| | - Chun-Wen Chiu
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
| | - Yueh-Min Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | | | - Chung-Min Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan, R.O.C
| | - Yu-En Chen
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
| | - Chia-Min Chung
- Graduate Institute of BioMedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Environment-Omics-Diseases Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C. .,Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| |
Collapse
|
34
|
Vile RG, Melcher A, Pandha H, Harrington KJ, Pulido JS. APOBEC and Cancer Viroimmunotherapy: Thinking the Unthinkable. Clin Cancer Res 2021; 27:3280-3290. [PMID: 33558423 PMCID: PMC8281496 DOI: 10.1158/1078-0432.ccr-20-1888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/25/2020] [Accepted: 01/19/2021] [Indexed: 01/21/2023]
Abstract
The apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC) family protects against infection by degrading incoming viral genomes through cytosine deamination. Here, we review how the potential to unleash these potent DNA mutagens comes at a price as APOBEC DNA mutagenesis can contribute to development of multiple types of cancer. In addition, because viral infection induces its expression, APOBEC is seen as the enemy of oncolytic virotherapy through mutation of the viral genome and by generating virotherapy-resistant tumors. Therefore, overall APOBEC in cancer has received very poor press. However, we also speculate how there may be silver linings to the storm clouds (kataegis) associated with APOBEC activity. Thus, although mutagenic genomic chaos promotes emergence of ever more aggressive subclones, it also provides significant opportunity for cytotoxic and immune therapies. In particular, the superpower of cancer immunotherapy derives in part from mutation, wherein generation of tumor neoantigens-neoantigenesis-exposes tumor cells to functional T-cell repertoires, and susceptibility to immune checkpoint blockade. Moreover, APOBECs may be able to induce suprathreshold levels of cellular mutation leading to mitotic catastrophe and direct tumor cell killing. Finally, we discuss the possibility that linking predictable APOBEC-induced mutation with escape from specific frontline therapies could identify mutated molecules/pathways that can be targeted with small molecules and/or immunotherapies in a Trap and Ambush strategy. Together, these considerations lead to the counterintuitive hypothesis that, instead of attempting to expunge and excoriate APOBEC activity in cancer therapy, it might be exploited-and even, counterintuitively, encouraged.
Collapse
Affiliation(s)
- Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota.
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Alan Melcher
- The Institute of Cancer Research/Royal Marsden, National Institute for Health Research Biomedical Research Centre, London, United Kingdom
| | - Hardev Pandha
- Surrey Cancer Research Institute, Faculty of Health and Medical Sciences, University of Surrey Guildford, Surrey, United Kingdom
| | - Kevin J Harrington
- The Institute of Cancer Research/Royal Marsden, National Institute for Health Research Biomedical Research Centre, London, United Kingdom
| | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
- Will's Eye Hospital, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Patel K, Bhat FA, Patil S, Routray S, Mohanty N, Nair B, Sidransky D, Ganesh MS, Ray JG, Gowda H, Chatterjee A. Whole-Exome Sequencing Analysis of Oral Squamous Cell Carcinoma Delineated by Tobacco Usage Habits. Front Oncol 2021; 11:660696. [PMID: 34136393 PMCID: PMC8200776 DOI: 10.3389/fonc.2021.660696] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer of the oral cavity in India. Cigarette smoking and chewing tobacco are known risk factors associated with OSCC. However, genomic alterations in OSCC with varied tobacco consumption history are not well-characterized. In this study, we carried out whole-exome sequencing to characterize the mutational landscape of OSCC tumors from subjects with different tobacco consumption habits. We identified several frequently mutated genes, including TP53, NOTCH1, CASP8, RYR2, LRP2, CDKN2A, and ATM. TP53 and HRAS exhibited mutually exclusive mutation patterns. We identified recurrent amplifications in the 1q31, 7q35, 14q11, 22q11, and 22q13 regions and observed amplification of EGFR in 25% of samples with tobacco consumption history. We observed genomic alterations in several genes associated with PTK6 signaling. We observed alterations in clinically actionable targets including ERBB4, HRAS, EGFR, NOTCH1, NOTCH4, and NOTCH3. We observed enrichment of signature 29 in 40% of OSCC samples from tobacco chewers. Signature 15 associated with defective DNA mismatch repair was enriched in 80% of OSCC samples. NOTCH1 was mutated in 36% of samples and harbored truncating as well as missense variants. We observed copy number alterations in 67% of OSCC samples. Several genes associated with non-receptor tyrosine kinase signaling were affected in OSCC. These molecules can serve as potential candidates for therapeutic targeting in OSCC.
Collapse
Affiliation(s)
- Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Firdous Ahmad Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Samapika Routray
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha' O' Anusandhan University, Bhubaneswar, India
| | - Neeta Mohanty
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha' O' Anusandhan University, Bhubaneswar, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Jay Gopal Ray
- Department of Oral Pathology, Dr. R. Ahmed Dental College & Hospital, Kolkata, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India.,Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
36
|
Pradhan S, Das S, Singh AK, Das C, Basu A, Majumder PP, Biswas NK. dbGENVOC: database of GENomic Variants of Oral Cancer, with special reference to India. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6287646. [PMID: 34048545 PMCID: PMC8163239 DOI: 10.1093/database/baab034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 11/18/2022]
Abstract
Oral cancer is highly prevalent in India and is the most frequent cancer type among Indian males. It is also very common in southeast Asia. India has participated in the International Cancer Genome Consortium (ICGC) and some national initiatives to generate large-scale genomic data on oral cancer patients and analyze to identify associations and systematically catalog the associated variants. We have now created an open, web-accessible database of these variants found significantly associated with Indian oral cancer patients, with a user-friendly interface to enable easy mining. We have value added to this database by including relevant data collated from various sources on other global populations, thereby providing opportunities of comparative geographical and/or ethnic analyses. Currently, no other database of similar nature is available on oral cancer. We have developed Database of GENomic Variants of Oral Cancer, a browsable online database framework for storage, retrieval and analysis of large-scale data on genomic variants and make it freely accessible to the scientific community. Presently, the web-accessible database allows potential users to mine data on ∼24 million clinically relevant somatic and germline variants derived from exomes (n = 100) and whole genomes (n = 5) of Indian oral cancer patients; all generated by us. Variant data from The Cancer Genome Atlas and data manually curated from peer-reviewed publications were also incorporated into the database for comparative analyses. It allows users to query the database by a single gene, multiple genes, multiple variant sites, genomic region, patient ID and pathway identities. Database URL: http://research.nibmg.ac.in/dbcares/dbgenvoc/
Collapse
Affiliation(s)
- Sanchari Pradhan
- Human Genetics Unit, National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Subrata Das
- Human Genetics Unit, National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Animesh K Singh
- Human Genetics Unit, National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Chitrarpita Das
- Human Genetics Unit, National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Analabha Basu
- Human Genetics Unit, National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Partha P Majumder
- Human Genetics Unit, National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India.,Human Genetics Unit, Indian Statistical Institute, Kolkata, West Bengal 700108, India
| | - Nidhan K Biswas
- Human Genetics Unit, National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| |
Collapse
|
37
|
Wang HC, Chou MC, Wu CC, Chan LP, Moi SH, Pan MR, Liu TC, Yang CH. Application of the Interaction between Tissue Immunohistochemistry Staining and Clinicopathological Factors for Evaluating the Risk of Oral Cancer Progression by Hierarchical Clustering Analysis: A Case-Control Study in a Taiwanese Population. Diagnostics (Basel) 2021; 11:diagnostics11060925. [PMID: 34063938 PMCID: PMC8224004 DOI: 10.3390/diagnostics11060925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 01/31/2023] Open
Abstract
The aim of this single-center case-control study is to investigate the feasibility and accuracy of oral cancer protein risk stratification (OCPRS) to analyze the risk of cancer progression. All patients diagnosed with oral cancer in Taiwan, between 2012 and 2014, and who underwent surgical intervention were selected for the study. The tissue was further processed for immunohistochemistry (IHC) for 21 target proteins. Analyses were performed using the results of IHC staining, clinicopathological characteristics, and survival outcomes. Novel stratifications with a hierarchical clustering approach and combinations were applied using the Cox proportional hazard regression model. Of the 163 participants recruited, 102 patients were analyzed, and OCPRS successfully identified patients with different progression-free survival (PFS) profiles in high-risk (53 subjects) versus low-risk (49 subjects) groups (p = 0.012). OCPRS was composed of cytoplasmic PLK1, phosphoMet, and SGK2 IHC staining. After controlling for the influence of clinicopathological features, high-risk patients were 2.33 times more likely to experience cancer progression than low-risk patients (p = 0.020). In the multivariate model, patients with extranodal extension (HR = 2.66, p = 0.045) demonstrated a significantly increased risk for disease progression. Risk stratification with OCPRS provided distinct PFS groups for patients with oral cancer after surgical intervention. OCPRS appears suitable for routine clinical use for progression and prognosis estimation.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Meng-Chun Chou
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chun-Chieh Wu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Leong-Perng Chan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital and Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Sin-Hua Moi
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824, Taiwan;
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Correspondence: (M.-R.P.); (T.-C.L.); (C.-H.Y.); Tel.: +886-7-3121101-5092-34 (M.-R.P.); +886-4-781-3888 (T.-C.L.); +886-7-381-4526 (C.-H.Y.); Fax: +886-7-3218309 (M.-R.P.)
| | - Ta-Chih Liu
- Department of Hematology-Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan
- Correspondence: (M.-R.P.); (T.-C.L.); (C.-H.Y.); Tel.: +886-7-3121101-5092-34 (M.-R.P.); +886-4-781-3888 (T.-C.L.); +886-7-381-4526 (C.-H.Y.); Fax: +886-7-3218309 (M.-R.P.)
| | - Cheng-Hong Yang
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
- Ph. D. Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.-R.P.); (T.-C.L.); (C.-H.Y.); Tel.: +886-7-3121101-5092-34 (M.-R.P.); +886-4-781-3888 (T.-C.L.); +886-7-381-4526 (C.-H.Y.); Fax: +886-7-3218309 (M.-R.P.)
| |
Collapse
|
38
|
Pan JW, Zabidi MMA, Chong BK, Meng MY, Ng PS, Hasan SN, Sandey B, Bahnu S, Rajadurai P, Yip CH, Rueda OM, Caldas C, Chin SF, Teo SH. Germline APOBEC3B deletion increases somatic hypermutation in Asian breast cancer that is associated with Her2 subtype, PIK3CA mutations and immune activation. Int J Cancer 2021; 148:2489-2501. [PMID: 33423300 DOI: 10.1002/ijc.33463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
A 30-kb deletion that eliminates the coding region of APOBEC3B (A3B) is >5 times more common in women of Asian descent compared to European descent. This polymorphism creates a chimera with the APOBEC3A (A3A) coding region and A3B 3'UTR, and it is associated with an increased risk for breast cancer in Asian women. Here, we explored the relationship between the A3B deletion polymorphism with tumour characteristics in Asian women. Using whole exome and whole transcriptome sequencing data of 527 breast tumours, we report that germline A3B deletion polymorphism leads to expression of the A3A-B hybrid isoform and increased APOBEC-associated somatic hypermutation. Hypermutated tumours, regardless of A3B germline status, were associated with the Her2 molecular subtype and PIK3CA mutations. Compared to nonhypermutated tumours, hypermutated tumours also had higher neoantigen burden, tumour heterogeneity and immune activation. Taken together, our results suggest that the germline A3B deletion polymorphism, via the A3A-B hybrid isoform, contributes to APOBEC mutagenesis in a significant proportion of Asian breast cancers. In addition, APOBEC somatic hypermutation, regardless of A3B background, may be an important clinical biomarker for Asian breast cancers.
Collapse
Affiliation(s)
- Jia-Wern Pan
- Genomics and Bioinformatics Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | | | - Boon-Keat Chong
- Genomics and Bioinformatics Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Mei-Yee Meng
- Genomics and Bioinformatics Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Pei-Sze Ng
- Genomics and Bioinformatics Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
- University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Siti Norhidayu Hasan
- Genomics and Bioinformatics Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Bethan Sandey
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Cambridge, UK
| | - Saira Bahnu
- Subang Jaya Medical Centre, Subang Jaya, Malaysia
| | | | - Cheng-Har Yip
- University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
- Subang Jaya Medical Centre, Subang Jaya, Malaysia
| | - Oscar M Rueda
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Cambridge, UK
- Cambridge Breast Cancer Research Unit, CRUK Cambridge Cancer Centre, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Suet-Feung Chin
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Cambridge, UK
| | - Soo-Hwang Teo
- Genomics and Bioinformatics Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
- University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Rodriguez H, Zenklusen JC, Staudt LM, Doroshow JH, Lowy DR. The next horizon in precision oncology: Proteogenomics to inform cancer diagnosis and treatment. Cell 2021; 184:1661-1670. [PMID: 33798439 PMCID: PMC8459793 DOI: 10.1016/j.cell.2021.02.055] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
When it comes to precision oncology, proteogenomics may provide better prospects to the clinical characterization of tumors, help make a more accurate diagnosis of cancer, and improve treatment for patients with cancer. This perspective describes the significant contributions of The Cancer Genome Atlas and the Clinical Proteomic Tumor Analysis Consortium to precision oncology and makes the case that proteogenomics needs to be fully integrated into clinical trials and patient care in order for precision oncology to deliver the right cancer treatment to the right patient at the right dose and at the right time.
Collapse
Affiliation(s)
- Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jean Claude Zenklusen
- Center for Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Louis M Staudt
- Center for Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Director, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas R Lowy
- Office of the Director, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Law EK, Levin-Klein R, Jarvis MC, Kim H, Argyris PP, Carpenter MA, Starrett GJ, Temiz NA, Larson LK, Durfee C, Burns MB, Vogel RI, Stavrou S, Aguilera AN, Wagner S, Largaespada DA, Starr TK, Ross SR, Harris RS. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J Exp Med 2021; 217:152061. [PMID: 32870257 PMCID: PMC7953736 DOI: 10.1084/jem.20200261] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
The APOBEC3 family of antiviral DNA cytosine deaminases is implicated as the second largest source of mutation in cancer. This mutational process may be a causal driver or inconsequential passenger to the overall tumor phenotype. We show that human APOBEC3A expression in murine colon and liver tissues increases tumorigenesis. All other APOBEC3 family members, including APOBEC3B, fail to promote liver tumor formation. Tumor DNA sequences from APOBEC3A-expressing animals display hallmark APOBEC signature mutations in TCA/T motifs. Bioinformatic comparisons of the observed APOBEC3A mutation signature in murine tumors, previously reported APOBEC3A and APOBEC3B mutation signatures in yeast, and reanalyzed APOBEC mutation signatures in human tumor datasets support cause-and-effect relationships for APOBEC3A-catalyzed deamination and mutagenesis in driving multiple human cancers.
Collapse
Affiliation(s)
- Emily K Law
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Matthew C Jarvis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Hyoung Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Prokopios P Argyris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Michael A Carpenter
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Gabriel J Starrett
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Health Informatics, University of Minnesota, Minneapolis, MN
| | - Lindsay K Larson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Cameron Durfee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Michael B Burns
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Department of Biology, Loyola University, Chicago, IL
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Spyridon Stavrou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Alexya N Aguilera
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Sandra Wagner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Timothy K Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Susan R Ross
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
41
|
Moura ACD, Assad DX, Amorim Dos Santos J, Porto de Toledo I, Barra GB, Castilho RM, Squarize CH, Guerra ENS. Worldwide prevalence of PI3K-AKT-mTOR pathway mutations in head and neck cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2021; 160:103284. [PMID: 33675910 DOI: 10.1016/j.critrevonc.2021.103284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/03/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
A systematic review (SR) and meta-analysis were conducted to determine the prevalence of PI3K-AKT-mTOR signaling pathway mutations in patients with head and neck cancer (HNC). Overall, 105 studies comprising 8630 patients and 1306 mutations were selected. The estimated mutations prevalence was 13 % for PIK3CA (95 % confidence interval [CI] = 11-14; I2 = 82 %; p < 0.0001), 4% for PTEN (95 % CI = 3-5; I2 = 55 %; p < 0.0001), 3% for MTOR (95 % CI = 2-4; I2 = 5%; p = 0.40), and 2% for AKT (95 % CI = 1-2; I2 = 50 %; p = 0.0001). We further stratified the available data of the participants according to risk factors and tumor characteristics, including HPV infection, tobacco use, alcohol exposure, TNM stage, and histological tumor differentiation, and performed subgroup analysis. We identified significant associations between PI3K-AKT-mTOR pathway-associated mutations and advanced TNM stage (odds ratio [OR] = 0.20; 95 % CI = 0.09-0.44; I² = 71 %; p = 0.0001) and oropharyngeal HPV-positive tumors and PIK3CA mutations (OR = 17.48; 95 % CI = 4.20-72.76; I² = 69 %; p < 0.0002). No associations were found between alcohol and tobacco exposure, and tumor differentiation grade. This SR demonstrated that the PI3K-AKT-mTOR pathway emerges as a potential prognostic factor and could offer a molecular basis for future studies on therapeutic targeting in HNC patients.
Collapse
Affiliation(s)
- Adriana Castelo de Moura
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil; Hospital Universitário de Brasília (HUB-UnB/Ebserh), Brasília, DF, Brazil; Hospital Santa Lúcia, Brasília, DF, Brazil
| | - Daniele Xavier Assad
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil; Medical Oncology Department, Hospital Sírio-Libanês, Brasília, DF, Brazil
| | - Juliana Amorim Dos Santos
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Isabela Porto de Toledo
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Gustavo Barcelos Barra
- Sabin Medicina Diagnóstica, SAAN Quadra 03 Lotes 145/185, Brasília, 70632-340, DF, Brazil
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, Division of Oral Pathology, Radiology and Medicine, University of Michigan School of Dentistry. Ann Arbor, 48109-1078, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, Division of Oral Pathology, Radiology and Medicine, University of Michigan School of Dentistry. Ann Arbor, 48109-1078, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil; Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, Division of Oral Pathology, Radiology and Medicine, University of Michigan School of Dentistry. Ann Arbor, 48109-1078, MI, USA.
| |
Collapse
|
42
|
Chiang SF, Huang HH, Tsai WS, Chin-Ming Tan B, Yang CY, Huang PJ, Yi-Feng Chang I, Lin J, Lu PS, Chin E, Liu YH, Yu JS, Chiang JM, Hung HY, You JF, Liu H. Comprehensive functional genomic analyses link APC somatic mutation and mRNA-miRNA networks to the clinical outcome of stage-III colorectal cancer patients. Biomed J 2021; 45:347-360. [PMID: 35550340 PMCID: PMC9250073 DOI: 10.1016/j.bj.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/25/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Background Colorectal cancer (CRC) is a major health concern globally, but exhibits regional and/or environmental distinctions in terms of outcome especially for patients with stage III CRC. Methods From 2014 to 2016, matched pairs of tumor and adjacent normal tissue samples from 60 patients with stage I–IV CRC from Chang Gung Memorial Hospital in Taiwan were analyzed using next-generation sequencing. The DNA, mRNA, and miRNA sequences of paired tumor tissues were profiled. An observational study with survival analysis was done. Online datasets of The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC) were also integrated and compared. Results The gene that exhibited the highest mutation rate was adenomatous polyposis coli (APC) (75.0%), followed by TP53 (70.0%), KRAS (56.6%), and TTN (48.3%). APC was also the most frequently mutated gene in TCGA and ICGC datasets. Surprisingly, for non-metastatic cases (stages I-III), CRC patients with mutated APC had better outcome in terms of overall survival (p = 0.041) and recurrence free survival (p = 0.0048). Particularly for stage III CRC, the overall survival rate was 94.4% and 67.7%, respectively (p = 0.018), and the recurrence free survival rate was 94.4% and 16.7%, respectively (p = 0.00044). Further clinical and gene expression analyses revealed that the APC wt specimens to a greater extent exhibit poor differentiation state as well as EGFR upregulation, providing molecular basis for the poor prognosis of these patients. Finally, based on integrated transcriptome analysis, we constructed the mRNA-miRNA networks underlying disease recurrence of the stage III CRC and uncovered potential therapeutic targets for this clinical condition. Conclusion For stage III CRC, patients with mutated APC had better overall and recurrence free survival.
Collapse
Affiliation(s)
- Sum-Fu Chiang
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Heng-Hsuan Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Sy Tsai
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Bertrand Chin-Ming Tan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Yu Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jung Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ian Yi-Feng Chang
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Jiarong Lin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Shan Lu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - En Chin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hao Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Jy-Ming Chiang
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsin-Yuan Hung
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jeng-Fu You
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsuan Liu
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
43
|
Wang HC, Chan LP, Wu CC, Chang SJ, Moi SH, Luo CW, Pan MR. Silencing DNA Polymerase β Induces Aneuploidy as a Biomarker of Poor Prognosis in Oral Squamous Cell Cancer. Int J Mol Sci 2021; 22:ijms22052402. [PMID: 33673690 PMCID: PMC7957714 DOI: 10.3390/ijms22052402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Most patients with oral squamous cell cancer (OSCC) have a locally advanced stage at diagnosis. The treatment strategies are diverse, including surgery, radiotherapy and chemotherapy. Despite multimodality treatment, the response rate is unsatisfactory. DNA repair and genetic instability are highly associated with carcinogenesis and treatment outcomes in oral squamous cell cancer, affecting cell growth and proliferation. Therefore, focusing on DNA repair and genetic instability interactions could be a potential target for improving the outcomes of OSCC patients. DNA polymerase-β (POLB) is an important enzyme in base excision repair and contributes to gene instability, leading to tumorigenesis and cancer metastasis. The aim of our study was to confirm POLB regulates the growth of OSCC cells through modulation of cell cycle and chromosomal instability. We analyzed a tissue array from 133 OSCC patients and discovered that low POLB expression was associated with advanced tumor stage and poor overall survival. In multivariate Cox proportional hazards regression analysis, low POLB expression and advanced lymph node status were significantly associated with poor survival. By performing in vitro studies on model cell lines, we demonstrated that POLB silencing regulated cell cycles, exacerbated mitotic abnormalities and enhanced cell proliferation. After POLB depletion, OSCC cells showed chromosomal instability and aneuploidy. Thus, POLB is an important maintainer of karyotypic stability in OSCC cells.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Leong-Perng Chan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital and Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shu-Jyuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Sin-Hua Moi
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, No.1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung 84001, Taiwan;
| | - Chi-Wen Luo
- Department of Surgery, Division of Breast Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101-5092-34; Fax: +886-7-3218309
| |
Collapse
|
44
|
Endogenous APOBEC3B overexpression characterizes HPV-positive and HPV-negative oral epithelial dysplasias and head and neck cancers. Mod Pathol 2021; 34:280-290. [PMID: 32632179 PMCID: PMC8261524 DOI: 10.1038/s41379-020-0617-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
The DNA cytosine deaminase APOBEC3B (A3B) is a newly recognized endogenous source of mutations in a range of human tumors, including head/neck cancer. A3B inflicts C-to-T and C-to-G base substitutions in 5'-TCA/T trinucleotide motifs, contributes to accelerated rates of tumor development, and affects clinical outcomes in a variety of cancer types. High-risk human papillomavirus (HPV) infection causes A3B overexpression, and HPV-positive cervical and head/neck cancers are among tumor types with the highest degree of APOBEC signature mutations. A3B overexpression in HPV-positive tumor types is caused by the viral E6/E7 oncoproteins and may be an early off-to-on switch in tumorigenesis. In comparison, less is known about the molecular mechanisms responsible for A3B overexpression in HPV-negative head/neck cancers. Here, we utilize an immunohistochemical approach to determine whether A3B is turned from off-to-on or if it undergoes a more gradual transition to overexpression in HPV-negative head/neck cancers. As positive controls, almost all HPV-positive oral epithelial dysplasias and oropharyngeal cancers showed high levels of nuclear A3B staining regardless of diagnosis. As negative controls, A3B levels were low in phenotypically normal epithelium adjacent to cancer and oral epithelial hyperplasias. Interestingly, HPV-negative and low-grade oral epithelial dysplasias showed intermediate A3B levels, while high-grade oral dysplasias showed high A3B levels similar to oral squamous cell carcinomas. A3B levels were highest in grade 2 and grade 3 oral squamous cell carcinomas. In addition, a strong positive association was found between nuclear A3B and Ki67 scores suggesting a linkage to the cell cycle. Overall, these results support a model in which gradual activation of A3B expression occurs during HPV-negative tumor development and suggest that A3B overexpression may provide a marker for advanced grade oral dysplasia and cancer.
Collapse
|
45
|
Riva G, Albano C, Gugliesi F, Pasquero S, Pacheco SFC, Pecorari G, Landolfo S, Biolatti M, Dell’Oste V. HPV Meets APOBEC: New Players in Head and Neck Cancer. Int J Mol Sci 2021; 22:1402. [PMID: 33573337 PMCID: PMC7866819 DOI: 10.3390/ijms22031402] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Besides smoking and alcohol, human papillomavirus (HPV) is a factor promoting head and neck squamous cell carcinoma (HNSCC). In some human tumors, including HNSCC, a number of mutations are caused by aberrantly activated DNA-modifying enzymes, such as the apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) family of cytidine deaminases. As the enzymatic activity of APOBEC proteins contributes to the innate immune response to viruses, including HPV, the role of APOBEC proteins in HPV-driven head and neck carcinogenesis has recently gained increasing attention. Ongoing research efforts take the cue from two key observations: (1) APOBEC expression depends on HPV infection status in HNSCC; and (2) APOBEC activity plays a major role in HPV-positive HNSCC mutagenesis. This review focuses on recent advances on the role of APOBEC proteins in HPV-positive vs. HPV-negative HNSCC.
Collapse
Affiliation(s)
- Giuseppe Riva
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (G.P.)
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Sergio Fernando Castillo Pacheco
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Giancarlo Pecorari
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (G.P.)
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| |
Collapse
|
46
|
Zhu L, He Y, Feng G, Yu Y, Wang R, Chen N, Yuan H. Genetic variants in long non-coding RNAs UCA1 and NEAT1 were associated with the prognosis of oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2020; 50:1131-1137. [PMID: 33384238 DOI: 10.1016/j.ijom.2020.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/18/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is known for its high incidence, death rate, and relatively low 5-year survival. Long non-coding RNAs (lncRNAs) have been shown to play a significant role in cancerization and cancer progression. However, research on the association of polymorphisms in these lncRNAs with the prognosis of OSCC is lacking. Fifteen functional single-nucleotide polymorphisms (SNPs) in seven lncRNAs were selected to explore the relationship between these lncRNA SNPs and the prognosis among 209 OSCC patients. Kaplan-Meier analysis and Cox proportional hazards regression models were used to examine the associations. Further functional exploration of significant SNPs was done by eQTL analysis. Using multivariate Cox hazards regression analysis, a predictive role of NEAT1 rs3741384 GG and UCA1 rs7255437 TC+TT in a worse prognosis of OSCC was identified. In addition, a marked increased risk of death was observed with an increasing number of unfavourable genotypes (NUG). The NUG was then incorporated with clinical variables in the receiver operating characteristic curve, and the results indicated a potential role of the NUG in predicting OSCC patient risk of death (area under the curve increase from 0.616 to 0.703). In conclusion, the study findings indicate that genetic variants rs3741384 in NEAT and rs7255437 in UCA1 may influence the survival of OSCC patients.
Collapse
Affiliation(s)
- L Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - Y He
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China; Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - G Feng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - Y Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - R Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - N Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - H Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China; Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China; Department of Epidemiology and Biostatistics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Centre, Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
47
|
Adhikari S, Nice EC, Deutsch EW, Lane L, Omenn GS, Pennington SR, Paik YK, Overall CM, Corrales FJ, Cristea IM, Van Eyk JE, Uhlén M, Lindskog C, Chan DW, Bairoch A, Waddington JC, Justice JL, LaBaer J, Rodriguez H, He F, Kostrzewa M, Ping P, Gundry RL, Stewart P, Srivastava S, Srivastava S, Nogueira FCS, Domont GB, Vandenbrouck Y, Lam MPY, Wennersten S, Vizcaino JA, Wilkins M, Schwenk JM, Lundberg E, Bandeira N, Marko-Varga G, Weintraub ST, Pineau C, Kusebauch U, Moritz RL, Ahn SB, Palmblad M, Snyder MP, Aebersold R, Baker MS. A high-stringency blueprint of the human proteome. Nat Commun 2020; 11:5301. [PMID: 33067450 PMCID: PMC7568584 DOI: 10.1038/s41467-020-19045-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP's tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.
Collapse
Affiliation(s)
- Subash Adhikari
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Edouard C Nice
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Faculty of Medicine, Nursing and Health Sciences, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Eric W Deutsch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Lydie Lane
- Faculty of Medicine, SIB-Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Michel-Servet 1, 1211, Geneva, Switzerland
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2218, USA
| | - Stephen R Pennington
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Young-Ki Paik
- Yonsei Proteome Research Center, 50 Yonsei-ro, Sudaemoon-ku, Seoul, 120-749, South Korea
| | | | - Fernando J Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, 28049, Madrid, Spain
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Jennifer E Van Eyk
- Cedars Sinai Medical Center, Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Los Angeles, CA, 90048, USA
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17121, Solna, Sweden
| | - Cecilia Lindskog
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Daniel W Chan
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Amos Bairoch
- Faculty of Medicine, SIB-Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Michel-Servet 1, 1211, Geneva, Switzerland
| | - James C Waddington
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Joshua L Justice
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Markus Kostrzewa
- Bruker Daltonik GmbH, Microbiology and Diagnostics, Fahrenheitstrasse, 428359, Bremen, Germany
| | - Peipei Ping
- Cardiac Proteomics and Signaling Laboratory, Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter Stewart
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | | | - Sudhir Srivastava
- Cancer Biomarkers Research Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Suite 5E136, Rockville, MD, 20852, USA
| | - Fabio C S Nogueira
- Proteomics Unit and Laboratory of Proteomics, Institute of Chemistry, Federal University of Rio de Janeiro, Av Athos da Silveria Ramos, 149, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Gilberto B Domont
- Proteomics Unit and Laboratory of Proteomics, Institute of Chemistry, Federal University of Rio de Janeiro, Av Athos da Silveria Ramos, 149, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Yves Vandenbrouck
- University of Grenoble Alpes, Inserm, CEA, IRIG-BGE, U1038, 38000, Grenoble, France
| | - Maggie P Y Lam
- Departments of Medicine-Cardiology and Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Fibrosis Research and Translation, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Sara Wennersten
- Division of Cardiology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Juan Antonio Vizcaino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Marc Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jochen M Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17121, Solna, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17121, Solna, Sweden
| | - Nuno Bandeira
- Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0404, La Jolla, CA, 92093-0404, USA
| | | | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center San Antonio, UT Health, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Charles Pineau
- University of Rennes, Inserm, EHESP, IREST, UMR_S 1085, F-35042, Rennes, France
| | - Ulrike Kusebauch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Seong Beom Ahn
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Magnus Palmblad
- Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Ruedi Aebersold
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Mark S Baker
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
- Department of Genetics, Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
48
|
Kim S, Lee JW, Park YS. The Application of Next-Generation Sequencing to Define Factors Related to Oral Cancer and Discover Novel Biomarkers. Life (Basel) 2020; 10:E228. [PMID: 33023080 PMCID: PMC7599837 DOI: 10.3390/life10100228] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the introduction of next-generation sequencing in the realm of DNA sequencing technology, it is not often used in the investigation of oral squamous cell carcinoma (OSCC). Oral cancer is one of the most frequently occurring malignancies in some parts of the world and has a high mortality rate. Patients with this malignancy are likely to have a poor prognosis and may suffer from severe facial deformity or mastication problems even after successful treatment. Therefore, a thorough understanding of this malignancy is essential to prevent and treat it. This review sought to highlight the contributions of next-generation sequencing (NGS) in unveiling the genetic alterations and differential expressions of miRNAs involved in OSCC progression. By applying an appropriate eligibility criterion, we selected relevant studies for review. Frequently identified mutations in genes such as TP53, NOTCH1, and PIK3CA are discussed. The findings of existing miRNAs (e.g., miR-21) as well as novel discoveries pertaining to OSCC are also covered. Lastly, we briefly mention the latest findings in targeted gene therapy and the potential use of miRNAs as biomarkers. Our goal is to encourage researchers to further adopt NGS in their studies and give an overview of the latest findings of OSCC treatment.
Collapse
Affiliation(s)
| | | | - Young-Seok Park
- Department of Oral Anatomy and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03968, Korea; (S.K.); (J.W.L.)
| |
Collapse
|
49
|
Wu CS, Chang IYF, Hung JL, Liao WC, Lai YR, Chang KP, Li HP, Chang YS. ASC modulates HIF-1α stability and induces cell mobility in OSCC. Cell Death Dis 2020; 11:721. [PMID: 32883954 PMCID: PMC7471912 DOI: 10.1038/s41419-020-02927-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/11/2020] [Indexed: 01/10/2023]
Abstract
High-level expression of ASC (Apoptosis-associated speck-like protein containing a CARD) leads to lymph node metastasis in OSCC, but the underlying mechanism remains unclear. Here, we show that HIF-1α participates in ASC-induced metastasis. We identified 195 cell-motion-associated genes that were highly activated in ASC-overexpressed SAS_ASC cells; of them, 14 representative genes were found to be overexpressed in OSCC tissues in our previously reported RNA-seq dataset, OSCC-Taiwan. Nine of the 14 genes were also upregulated in OSCC-TCGA samples. Among the nine genes, RRAS2, PDGFA, and VEGFA, were correlated with poor overall survival of patients in OSCC-TCGA dataset. We further demonstrated that the promoters of these 14 ASC-induced genes contained binding motifs for the transcription-regulating factor, HIF-1α. We observed that ASC interacted with and stabilized HIF-1α in both the cytoplasm and the nucleus under normoxia. Molecules involved in the HIF-1α pathway, such as VHL and PHD2, showed no difference in their gene and protein levels in the presence or absence of ASC, but the expression of HIF-1α-OH, and the ubiquitination of HIF-1α were both decreased in SAS_ASC cells versus SAS_con cells. The migration and invasion activities of SAS_ASC cells were reduced when cells were treated with the HIF-1α synthesis inhibitor, digoxin. Taken together, our results demonstrate that the novel ASC-HIF-1α regulatory pathway contributes to lymph node metastasis in OSCC, potentially suggesting a new treatment strategy for OSCC.
Collapse
Affiliation(s)
- Chi-Sheng Wu
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, 333, Taoyuan City, Taiwan, Republic of China.
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, 33305, Gueishan, Taoyuan, Taiwan.
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, 333, Taoyuan City, Taiwan, Republic of China
| | - Jui-Lung Hung
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, 333, Taoyuan City, Taiwan, Republic of China
| | - Wei-Chao Liao
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, 333, Taoyuan City, Taiwan, Republic of China
- Department of Nephrology, Chang Gung Memorial Hospital, Lin-kou Medical Center, Taoyuan, Taiwan
| | - Yi-Ru Lai
- Department of Microbiology and Immunology, Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Lin-Kou, 333, Taoyuan, Taiwan, Republic of China
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, 333, Taoyuan City, Taiwan, Republic of China
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, 33305, Gueishan, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Pai Li
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, 333, Taoyuan City, Taiwan, Republic of China
- Department of Microbiology and Immunology, Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Lin-Kou, 333, Taoyuan, Taiwan, Republic of China
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, 333, Taoyuan City, Lin-Kou, Taiwan, Republic of China
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, 333, Taoyuan City, Taiwan, Republic of China.
| |
Collapse
|
50
|
Hsueh PC, Wu KA, Yang CY, Hsu CW, Wang CL, Hung CM, Chen YT, Yu JS, Wu CC. Metabolomic profiling of parapneumonic effusion reveals a regulatory role of dipeptides in interleukin-8 production in neutrophil-like cells. Anal Chim Acta 2020; 1128:238-250. [PMID: 32825908 DOI: 10.1016/j.aca.2020.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/24/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
Abstract
Bacterial pneumonia is a lethal condition, and approximately 40% of bacterial pneumonia patients experience parapneumonic effusion (PPE). Based on the severity of inflammation, PPEs can be categorized as early-stage uncomplicated PPE (UPPE), advanced-stage complicated PPE (CPPE) and, most seriously, thoracic empyema. Appropriate antibiotic treatment at the early stage of PPE can prevent PPE progression and reduce mortality, indicating that understanding PPE generation and components can help researchers develop corresponding treatment strategies for PPE. To this end, metabolomes of 73 PPE (38 UPPE and 35 CPPE samples) and 30 malignant pleural effusion (MPE) samples were profiled with differential 12C2-/13C2-isotope dansylation labeling-based mass spectrometry. We found that PPE is characterized by elevated levels of dipeptides, especially for PPEs at advanced stages. Furthermore, with integrated proteomic and transcriptomic analyses of PPEs, the levels of dipeptides were strongly associated with the production of interleukin-8 (IL-8), an inflammation-associated cytokine. The production of IL-8 indeed increased upon the treatment of HL-60-derived neutrophilic cells with dipeptides, Gly-Val and Gly-Tyr. Our findings help to elucidate the metabolic perturbations present in PPE and indicate for the first time that dipeptides may be involved in the immune regulation observed during PPE progression.
Collapse
Affiliation(s)
- Pei-Chun Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-An Wu
- Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Yu Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Wei Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Liang Wang
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chu-Mi Hung
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ting Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ching Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|