1
|
Qin L, Tang G, Gui R, Yang Y, Wang L, Xu W, Tian H, Yu L, Yang X, Wang Z. ATRX loss inhibits DDR to strengthen radio-sensitization in p53-deficent HCT116 cells. Sci Rep 2025; 15:793. [PMID: 39755758 DOI: 10.1038/s41598-024-85085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025] Open
Abstract
Identifying novel targets for molecular radiosensitization is critical for improving the efficacy of colorectal cancer (CRC) radiotherapy. Alpha-thalassemia/mental retardation X-linked (ATRX), a member of the SWI/SNF-like chromatin remodeling protein family, functions in the maintenance of genomic integrity and the regulation of apoptosis and senescence. However, whether ATRX is directly involved in the radiosensitivity of CRC remains unclear. Our results showed that silencing ATRX increased the radiosensitivity of HCT116 CRC cells, which was further strengthened when p53 was depleted. To explore the potential mechanism, we focused on the impact of the ionizing radiation (IR)-induced DNA damage response (DDR), apoptosis, and senescence and the activation of the Daxx/MDM2/p53 pathway caused by ATRX loss. The results showed that IR induced DNA damage and G2/M arrest after depleting ATRX, especially in p53-depleted HCT116 cells, and inhibited ATM/Chk2 pathway activation, indicating that ATRX loss leads to failure of triggering the ATM/Chk2 pathway. Accordingly, ATRX loss promotes cell apoptosis and attenuates cell senescence. Interestingly, our results indicate that ATRX loss upregulates p53 function via the Daxx/MDM2 pathway to mediate radiosensitivity. Thus, ATRX may represent a novel radiosensitizing target for CRC, particularly p53-deficient CRC.
Collapse
Affiliation(s)
- Lijing Qin
- NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Geng Tang
- NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Ruirui Gui
- NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yanming Yang
- Department of Radiotherapy, Second hospital of Jilin University, Changchun, 130000, Jilin, People's Republic of China
| | - Li Wang
- NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Weiqiang Xu
- NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Hongyuan Tian
- NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Lei Yu
- Department of Radiotherapy, Second hospital of Jilin University, Changchun, 130000, Jilin, People's Republic of China
| | - Xiangshan Yang
- NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
2
|
Xu D, Shen Y, Zhang N, Deng G, Zheng D, Li P, Cai J, Tian G, Wei Q, Jiang H, Xu J, Wang B, Li K. Aging2Cancer: an integrated resource for linking aging to tumor multi-omics data. BMC Genomics 2024; 25:1205. [PMID: 39695922 DOI: 10.1186/s12864-024-11150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Aging and tumorigenesis share intricate regulatory processes, that alter the genome, epigenome, transcriptome and immune landscape of tissues. Discovering the link between aging and cancer in terms of multiomics characteristics remains a challenge for biomedical researchers. METHODS We collected high-throughput datasets for 57 human tumors and 20 normal tissues, including 23,125 samples with age information. On the basis of these sufficient omics data, we introduced six useful modules including genomic (somatic mutation and copy number variation), gene expression, DNA methylation, hallmarks (aging and cancer), immune landscape (immune infiltration, immune pathways, immune signatures, and antitumor immune activities) and survival analysis. Correlation and differential analyses were performed for the multiomic signatures associated with aging at the gene level. RESULTS We developed Aging2Cancer ( http://210.37.77.200:8080/Aging2Cancer/index.jsp ), which is a comprehensive database and analysis platform for revealing the associations between aging and cancer. Users can search for and visualize the results of genes of interest to explore the relationships between aging and cancer at the gene level for different omics levels. CONCLUSIONS We believe that Aging2Cancer is a valuable resource for identifying novel biomarkers and will serve as a bridge for linking aging to cancer.
Collapse
Affiliation(s)
- Dahua Xu
- College of Biomedical Information and Engineering, Hainan Affiliated Hospital, Hainan General Hospital, Hainan Medical University, Haikou, 571199, China
- Hainan Engineering Research Center for Health Big Data, Hainan Medical University, Haikou, 571199, China
| | - Yutong Shen
- College of Biomedical Information and Engineering, Hainan Affiliated Hospital, Hainan General Hospital, Hainan Medical University, Haikou, 571199, China
- Hainan Engineering Research Center for Health Big Data, Hainan Medical University, Haikou, 571199, China
| | - Nihui Zhang
- College of Biomedical Information and Engineering, Hainan Affiliated Hospital, Hainan General Hospital, Hainan Medical University, Haikou, 571199, China
- Hainan Engineering Research Center for Health Big Data, Hainan Medical University, Haikou, 571199, China
| | - Guoqing Deng
- College of Biomedical Information and Engineering, Hainan Affiliated Hospital, Hainan General Hospital, Hainan Medical University, Haikou, 571199, China
| | - Dehua Zheng
- College of Biomedical Information and Engineering, Hainan Affiliated Hospital, Hainan General Hospital, Hainan Medical University, Haikou, 571199, China
- Hainan Engineering Research Center for Health Big Data, Hainan Medical University, Haikou, 571199, China
| | - Peihu Li
- College of Biomedical Information and Engineering, Hainan Affiliated Hospital, Hainan General Hospital, Hainan Medical University, Haikou, 571199, China
- Hainan Engineering Research Center for Health Big Data, Hainan Medical University, Haikou, 571199, China
| | - Jiale Cai
- College of Biomedical Information and Engineering, Hainan Affiliated Hospital, Hainan General Hospital, Hainan Medical University, Haikou, 571199, China
- Hainan Engineering Research Center for Health Big Data, Hainan Medical University, Haikou, 571199, China
| | - Guanghui Tian
- College of Biomedical Information and Engineering, Hainan Affiliated Hospital, Hainan General Hospital, Hainan Medical University, Haikou, 571199, China
- Hainan Engineering Research Center for Health Big Data, Hainan Medical University, Haikou, 571199, China
| | - Qingchen Wei
- College of Biomedical Information and Engineering, Hainan Affiliated Hospital, Hainan General Hospital, Hainan Medical University, Haikou, 571199, China
| | - Hongyan Jiang
- College of Biomedical Information and Engineering, Hainan Affiliated Hospital, Hainan General Hospital, Hainan Medical University, Haikou, 571199, China
| | - Jiankai Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Bo Wang
- College of Biomedical Information and Engineering, Hainan Affiliated Hospital, Hainan General Hospital, Hainan Medical University, Haikou, 571199, China.
| | - Kongning Li
- College of Biomedical Information and Engineering, Hainan Affiliated Hospital, Hainan General Hospital, Hainan Medical University, Haikou, 571199, China.
- Hainan Engineering Research Center for Health Big Data, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
3
|
Kudo R, Safonov A, Jones C, Moiso E, Dry JR, Shao H, Nag S, da Silva EM, Yildirim SY, Li Q, O'Connell E, Patel P, Will M, Fushimi A, Benitez M, Bradic M, Fan L, Nakshatri H, Sudhan DR, Denz CR, Huerga Sanchez I, Reis-Filho JS, Goel S, Koff A, Weigelt B, Khan QJ, Razavi P, Chandarlapaty S. Long-term breast cancer response to CDK4/6 inhibition defined by TP53-mediated geroconversion. Cancer Cell 2024; 42:1919-1935.e9. [PMID: 39393354 DOI: 10.1016/j.ccell.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/02/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Inhibition of CDK4/6 kinases has led to improved outcomes in breast cancer. Nevertheless, only a minority of patients experience long-term disease control. Using a large, clinically annotated cohort of patients with metastatic hormone receptor-positive (HR+) breast cancer, we identify TP53 loss (27.6%) and MDM2 amplification (6.4%) to be associated with lack of long-term disease control. Human breast cancer models reveal that p53 loss does not alter CDK4/6 activity or G1 blockade but instead promotes drug-insensitive p130 phosphorylation by CDK2. The persistence of phospho-p130 prevents DREAM complex assembly, enabling cell-cycle re-entry and tumor progression. Inhibitors of CDK2 can overcome p53 loss, leading to geroconversion and manifestation of senescence phenotypes. Complete inhibition of both CDK4/6 and CDK2 kinases appears to be necessary to facilitate long-term response across genomically diverse HR+ breast cancers.
Collapse
Affiliation(s)
- Rei Kudo
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA; Department of Surgery, The Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Anton Safonov
- Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Catherine Jones
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Enrico Moiso
- Department of Medicine, MSK, New York, NY 10065, USA; Department of Epidemiology and Biostatistics, MSK, New York, NY 10065, USA
| | | | - Hong Shao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Sharanya Nag
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Selma Yeni Yildirim
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Qing Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Elizabeth O'Connell
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Payal Patel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Marie Will
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA; Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Clinical Genetics Service, Department of Medicine, MSK, New York, NY 10065, USA
| | - Atsushi Fushimi
- Department of Surgery, The Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Marimar Benitez
- Program in Molecular Biology, Sloan Kettering Institute, MSK, New York, NY 10065, USA
| | - Martina Bradic
- Program in Molecular Biology, Sloan Kettering Institute, MSK, New York, NY 10065, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Shom Goel
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Andrew Koff
- Program in Molecular Biology, Sloan Kettering Institute, MSK, New York, NY 10065, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Qamar J Khan
- Division of Medical Oncology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Pedram Razavi
- Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA; Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
4
|
Tauziède-Espariat A, Castel D, Ajlil Y, Auffret L, Appay R, Mariet C, Hasty L, Métais A, Chrétien F, Grill J, Varlet P. Atrx loss as a promising screening tool for the identification of diffuse midline glioma subtype, H3K27/MAPKinase co-altered. Acta Neuropathol Commun 2024; 12:105. [PMID: 38926805 PMCID: PMC11209953 DOI: 10.1186/s40478-024-01818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Arnault Tauziède-Espariat
- GHU Paris Psychiatrie Neurosciences, Department of Neuropathology, Sainte-Anne Hospital, 1, rue Cabanis, Paris, 75014, France.
- Paris University France, Paris, 75006, France.
| | - David Castel
- U981, Molecular Predictors and New Targets in Oncology, INSERM, Gustave Roussy, Université Paris- Saclay, Villejuif, 94805, France
- Univ. Evry, Université Paris-Saclay, Evry, 91000, France
| | - Yassine Ajlil
- U981, Molecular Predictors and New Targets in Oncology, INSERM, Gustave Roussy, Université Paris- Saclay, Villejuif, 94805, France
| | - Lucie Auffret
- U981, Molecular Predictors and New Targets in Oncology, INSERM, Gustave Roussy, Université Paris- Saclay, Villejuif, 94805, France
- Univ. Evry, Université Paris-Saclay, Evry, 91000, France
| | - Romain Appay
- Department of Pathology, APHM La Timone, Marseille, France
| | - Cassandra Mariet
- GHU Paris Psychiatrie Neurosciences, Department of Neuropathology, Sainte-Anne Hospital, 1, rue Cabanis, Paris, 75014, France
| | - Lauren Hasty
- GHU Paris Psychiatrie Neurosciences, Department of Neuropathology, Sainte-Anne Hospital, 1, rue Cabanis, Paris, 75014, France
| | - Alice Métais
- GHU Paris Psychiatrie Neurosciences, Department of Neuropathology, Sainte-Anne Hospital, 1, rue Cabanis, Paris, 75014, France
- Paris University France, Paris, 75006, France
| | - Fabrice Chrétien
- GHU Paris Psychiatrie Neurosciences, Department of Neuropathology, Sainte-Anne Hospital, 1, rue Cabanis, Paris, 75014, France
- Paris University France, Paris, 75006, France
| | - Jacques Grill
- Paris University France, Paris, 75006, France
- U981, Molecular Predictors and New Targets in Oncology, INSERM, Gustave Roussy, Université Paris- Saclay, Villejuif, 94805, France
- Department of Pediatric Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, 94805, France
| | - Pascale Varlet
- GHU Paris Psychiatrie Neurosciences, Department of Neuropathology, Sainte-Anne Hospital, 1, rue Cabanis, Paris, 75014, France
- Paris University France, Paris, 75006, France
| |
Collapse
|
5
|
Tao W, Yu Z, Han JDJ. Single-cell senescence identification reveals senescence heterogeneity, trajectory, and modulators. Cell Metab 2024; 36:1126-1143.e5. [PMID: 38604170 DOI: 10.1016/j.cmet.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/15/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Cellular senescence underlies many aging-related pathologies, but its heterogeneity poses challenges for studying and targeting senescent cells. We present here a machine learning program senescent cell identification (SenCID), which accurately identifies senescent cells in both bulk and single-cell transcriptome. Trained on 602 samples from 52 senescence transcriptome datasets spanning 30 cell types, SenCID identifies six major senescence identities (SIDs). Different SIDs exhibit different senescence baselines, stemness, gene functions, and responses to senolytics. SenCID enables the reconstruction of senescent trajectories under normal aging, chronic diseases, and COVID-19. Additionally, when applied to single-cell Perturb-seq data, SenCID helps reveal a hierarchy of senescence modulators. Overall, SenCID is an essential tool for precise single-cell analysis of cellular senescence, enabling targeted interventions against senescent cells.
Collapse
Affiliation(s)
- Wanyu Tao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Zhengqing Yu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China.
| |
Collapse
|
6
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Gleason CE, Dickson MA, Klein (Dooley) ME, Antonescu CR, Gularte-Mérida R, Benitez M, Delgado JI, Kataru RP, Tan MWY, Bradic M, Adamson TE, Seier K, Richards AL, Palafox M, Chan E, D'Angelo SP, Gounder MM, Keohan ML, Kelly CM, Chi P, Movva S, Landa J, Crago AM, Donoghue MT, Qin LX, Serra V, Turkekul M, Barlas A, Firester DM, Manova-Todorova K, Mehrara BJ, Kovatcheva M, Tan NS, Singer S, Tap WD, Koff A. Therapy-Induced Senescence Contributes to the Efficacy of Abemaciclib in Patients with Dedifferentiated Liposarcoma. Clin Cancer Res 2024; 30:703-718. [PMID: 37695642 PMCID: PMC10870201 DOI: 10.1158/1078-0432.ccr-23-2378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE We conducted research on CDK4/6 inhibitors (CDK4/6i) simultaneously in the preclinical and clinical spaces to gain a deeper understanding of how senescence influences tumor growth in humans. PATIENTS AND METHODS We coordinated a first-in-kind phase II clinical trial of the CDK4/6i abemaciclib for patients with progressive dedifferentiated liposarcoma (DDLS) with cellular studies interrogating the molecular basis of geroconversion. RESULTS Thirty patients with progressing DDLS enrolled and were treated with 200 mg of abemaciclib twice daily. The median progression-free survival was 33 weeks at the time of the data lock, with 23 of 30 progression-free at 12 weeks (76.7%, two-sided 95% CI, 57.7%-90.1%). No new safety signals were identified. Concurrent preclinical work in liposarcoma cell lines identified ANGPTL4 as a necessary late regulator of geroconversion, the pathway from reversible cell-cycle exit to a stably arrested inflammation-provoking senescent cell. Using this insight, we were able to identify patients in which abemaciclib induced tumor cell senescence. Senescence correlated with increased leukocyte infiltration, primarily CD4-positive cells, within a month of therapy. However, those individuals with both senescence and increased TILs were also more likely to acquire resistance later in therapy. These suggest that combining senolytics with abemaciclib in a subset of patients may improve the duration of response. CONCLUSIONS Abemaciclib was well tolerated and showed promising activity in DDLS. The discovery of ANGPTL4 as a late regulator of geroconversion helped to define how CDK4/6i-induced cellular senescence modulates the immune tumor microenvironment and contributes to both positive and negative clinical outcomes. See related commentary by Weiss et al., p. 649.
Collapse
Affiliation(s)
- Caroline E. Gleason
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mark A. Dickson
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mary E. Klein (Dooley)
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | | | - Rodrigo Gularte-Mérida
- Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Marimar Benitez
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Juliana I. Delgado
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Raghu P. Kataru
- Department of Plastic Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark Wei Yi Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Martina Bradic
- The Marie Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Travis E. Adamson
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Kenneth Seier
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Allison L. Richards
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Marta Palafox
- The Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Eric Chan
- The Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandra P. D'Angelo
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mrinal M. Gounder
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mary Louise Keohan
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Ciara M. Kelly
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Ping Chi
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
- Human Oncology and Pathogenesis, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sujana Movva
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Jonathan Landa
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aimee M. Crago
- Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mark T.A. Donoghue
- The Marie Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Li-Xuan Qin
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Violetta Serra
- The Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mesruh Turkekul
- The Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Afsar Barlas
- The Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel M. Firester
- Department of Sensory Neuroscience, The Rockefeller University, New York, New York
| | - Katia Manova-Todorova
- The Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Babak J. Mehrara
- Department of Plastic Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marta Kovatcheva
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - William D. Tap
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Andrew Koff
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| |
Collapse
|
8
|
Wekking D, Leoni VP, Lambertini M, Dessì M, Pretta A, Cadoni A, Atzori L, Scartozzi M, Solinas C. CDK4/6 inhibition in hormone receptor-positive/HER2-negative breast cancer: Biological and clinical aspects. Cytokine Growth Factor Rev 2024; 75:57-64. [PMID: 37838584 DOI: 10.1016/j.cytogfr.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
A dysregulated cell division, one of the key hallmarks of cancer, results in uncontrolled cellular proliferation. This aberrant process, mediated by a dysregulated cell-cycle machinery and overactivation of cyclin-dependent kinase (CDK) 4 and 6, can potentially promote tumorigenesis. The clinical application of CDK 4/6 inhibitors, developed to inhibit cell-cycle progression, in the treatment regimens of breast cancer (BC) patients is expanding. Currently, three agents, ribociclib, palbociclib, and abemaciclib, are approved for treating patients with hormone receptor-positive and human epidermal growth factor receptor 2 (HER2)-negative metastatic BC. In addition, abemaciclib is FDA and EMA-approved for patients with hormone receptor-positive HER2-negative, node-positive, early BC at high risk of recurrence. Emerging data suggest potential anti-tumor effects beyond cell cycle arrest, providing novel insights into the agent's mechanisms of action. As a result, a broader application of the CDK4/6 inhibitors in patients with cancer is achieved, contributing to enhanced optimized treatment in the adjuvant and neoadjuvant settings. Herein, the immunomodulatory activities of CDK4/6 inhibitors, their impact on the cell's metabolic state, and the effect on the decision of the cell to undergo quiescence or senescence are discussed. Moreover, this review provides an update on clinical trial outcomes and the differences in the underlying mechanisms between the distinct CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Demi Wekking
- Amsterdam UMC, Location Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.
| | - Vera Piera Leoni
- Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, Genova, Italy; Department of Medical Oncology, UOC Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Mariele Dessì
- Medical Oncology AOU Cagliari Policlinico Duilio Casula, Monserrato, Cagliari, Italy
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, Italy
| | - Andrea Cadoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Italy
| | - Luigi Atzori
- Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology AOU Cagliari Policlinico Duilio Casula, Monserrato, Cagliari, Italy; Medical Oncology Unit, University Hospital and University of Cagliari, Italy
| | - Cinzia Solinas
- Medical Oncology AOU Cagliari Policlinico Duilio Casula, Monserrato, Cagliari, Italy
| |
Collapse
|
9
|
Eames A, Chandrasekaran S. Leveraging metabolic modeling and machine learning to uncover modulators of quiescence depth. PNAS NEXUS 2024; 3:pgae013. [PMID: 38292544 PMCID: PMC10825626 DOI: 10.1093/pnasnexus/pgae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024]
Abstract
Quiescence, a temporary withdrawal from the cell cycle, plays a key role in tissue homeostasis and regeneration. Quiescence is increasingly viewed as a continuum between shallow and deep quiescence, reflecting different potentials to proliferate. The depth of quiescence is altered in a range of diseases and during aging. Here, we leveraged genome-scale metabolic modeling (GEM) to define the metabolic and epigenetic changes that take place with quiescence deepening. We discovered contrasting changes in lipid catabolism and anabolism and diverging trends in histone methylation and acetylation. We then built a multi-cell type machine learning model that accurately predicts quiescence depth in diverse biological contexts. Using both machine learning and genome-scale flux simulations, we performed high-throughput screening of chemical and genetic modulators of quiescence and identified novel small molecule and genetic modulators with relevance to cancer and aging.
Collapse
Affiliation(s)
- Alec Eames
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Bioinformatics and Computational Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Somaiah N, Tap W. MDM2-p53 in liposarcoma: The need for targeted therapies with novel mechanisms of action. Cancer Treat Rev 2024; 122:102668. [PMID: 38104352 DOI: 10.1016/j.ctrv.2023.102668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Well-differentiated and dedifferentiated liposarcomas (WDLPS and DDLPS) are rare tumors that arise from lipocytes in soft tissue. There is a high unmet need in patients with these liposarcomas given poor outcomes, particularly for DDLPS. WDLPS and DDLPS share important genetic and histological characteristics - most notably, the amplification of the 2 genes MDM2 and CDK4. Both genes are considered oncogenes because of their ability to shut down tumor suppressor pathways. There are multiple therapeutic approaches that aim to target MDM2 and CDK4 activity for the purpose of restoring intrinsic tumor suppressor cellular response and terminating oncogenesis. However, current understanding of the molecular mechanisms involved in WDLPS and DDLPS pathology is limited. In recent years, significant efforts have been made to refine and implement targeted therapy for this patient population. The use of patient-derived cell and tumor xenograft models has been an important tool for recapitulating WDLPS and DDLPS biology. These models also offer valuable insights for drug development and drug combination studies. Here we offer a review of the current understanding of WDLPS and DDLPS biology and its therapeutic implications.
Collapse
Affiliation(s)
- Neeta Somaiah
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States.
| | - William Tap
- Sarcoma Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
11
|
Ren X, Zhuang H, Zhang Y, Zhou P. Cerium oxide nanoparticles-carrying human umbilical cord mesenchymal stem cells counteract oxidative damage and facilitate tendon regeneration. J Nanobiotechnology 2023; 21:359. [PMID: 37789395 PMCID: PMC10546722 DOI: 10.1186/s12951-023-02125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Tendon injuries have a high incidence and limited treatment options. Stem cell transplantation is essential for several medical conditions like tendon injuries. However, high local concentrations of reactive oxygen species (ROS) inhibit the activity of transplanted stem cells and hinder tendon repair. Cerium oxide nanoparticles (CeONPs) have emerged as antioxidant agents with reproducible reducibility. RESULTS In this study, we synthesized polyethylene glycol-packed CeONPs (PEG-CeONPs), which were loaded into the human umbilical cord mesenchymal stem cells (hUCMSCs) to counteract oxidative damage. H2O2 treatment was performed to evaluate the ROS scavenging ability of PEG-CeONPs in hUCMSCs. A rat model of patellar tendon defect was established to assess the effect of PEG-CeONPs-carrying hUCMSCs in vivo. The results showed that PEG-CeONPs exhibited excellent antioxidant activity both inside and outside the hUCMSCs. PEG-CeONPs protect hUCMSCs from senescence and apoptosis under excessive oxidative stress. Transplantation of hUCMSCs loaded with PEG-CeONPs reduced ROS levels in the tendon injury area and facilitated tendon healing. Mechanistically, NFκB activator tumor necrosis factor α and MAPK activator dehydrocrenatine, reversed the therapeutic effect of PEG-CeONPs in hUCMSCs, indicating that PEG-CeONPs act by inhibiting the NFκB and MAPK signaling pathways. CONCLUSIONS The carriage of the metal antioxidant oxidase PEG-CeONPs maintained the ability of hUCMSCs in the injured area, reduced the ROS levels in the microenvironment, and facilitated tendon regeneration. The data presented herein provide a novel therapeutic strategy for tendon healing and new insights into the use of stem cells for disease treatment.
Collapse
Affiliation(s)
- Xunshan Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huangming Zhuang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuelong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Chen X, Deng R, Su D, Ma X, Han X, Wang S, Xia Y, Yang Z, Gong N, Jia Y, Gao X, Ren X. Visual genetic typing of glioma using proximity-anchored in situ spectral coding amplification. EXPLORATION (BEIJING, CHINA) 2023; 3:20220175. [PMID: 37933281 PMCID: PMC10582607 DOI: 10.1002/exp.20220175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/21/2023] [Indexed: 11/08/2023]
Abstract
Gliomas are histologically and genetically heterogeneous tumors. However, classical histopathological typing often ignores the high heterogeneity of tumors and thus cannot meet the requirements of precise pathological diagnosis. Here, proximity-anchored in situ spectral coding amplification (ProxISCA) is proposed for multiplexed imaging of RNA mutations, enabling visual typing of brain gliomas with different pathological grades at the single-cell and tissue levels. The ligation-based padlock probe can discriminate one-nucleotide variations, and the design of proximity primers enables the anchoring of amplicons on target RNA, thus improving localization accuracy. The DNA module-based spectral coding strategy can dramatically improve the multiplexing capacity for imaging RNA mutations through one-time labelling, with low cost and simple operation. One-target-one-amplicon amplification confers ProxISCA the ability to quantify RNA mutation copy number with single-molecule resolution. Based on this approach, it is found that gliomas with higher malignant grades express more genes with high correlation at the cellular and tissue levels and show greater cellular heterogeneity. ProxISCA provides a tool for glioma research and precise diagnosis, which can reveal the relationship between cellular heterogeneity and glioma occurrence or development and assist in pathological prognosis.
Collapse
Affiliation(s)
- Xiaolei Chen
- Department of Chemistry and BiologyFaculty of Environment and Life ScienceBeijing University of TechnologyBeijingChina
| | - Ruijie Deng
- College of Biomass Science and EngineeringHealthy Food Evaluation Research CenterSichuan UniversityChengduChina
| | - Dongdong Su
- Department of Chemistry and BiologyFaculty of Environment and Life ScienceBeijing University of TechnologyBeijingChina
| | - Xiaochen Ma
- Department of Chemistry and BiologyFaculty of Environment and Life ScienceBeijing University of TechnologyBeijingChina
| | - Xu Han
- Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
| | - Shizheng Wang
- Department of Chemistry and BiologyFaculty of Environment and Life ScienceBeijing University of TechnologyBeijingChina
| | - Yuqing Xia
- Department of Chemistry and BiologyFaculty of Environment and Life ScienceBeijing University of TechnologyBeijingChina
| | - Zifu Yang
- Department of Chemistry and BiologyFaculty of Environment and Life ScienceBeijing University of TechnologyBeijingChina
| | - Ningqiang Gong
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
| | - Yanwei Jia
- State‐Key Laboratory of Analog and Mixed‐Signal VLSIInstitute of MicroelectronicsUniversity of MacauMacauChina
| | - Xueyun Gao
- Department of Chemistry and BiologyFaculty of Environment and Life ScienceBeijing University of TechnologyBeijingChina
| | - Xiaojun Ren
- Department of Chemistry and BiologyFaculty of Environment and Life ScienceBeijing University of TechnologyBeijingChina
| |
Collapse
|
13
|
Chojak R, Fares J, Petrosyan E, Lesniak MS. Cellular senescence in glioma. J Neurooncol 2023; 164:11-29. [PMID: 37458855 DOI: 10.1007/s11060-023-04387-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/01/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Glioma is the most common primary brain tumor and is often associated with treatment resistance and poor prognosis. Standard treatment typically involves radiotherapy and temozolomide-based chemotherapy, both of which induce cellular senescence-a tumor suppression mechanism. DISCUSSION Gliomas employ various mechanisms to bypass or escape senescence and remain in a proliferative state. Importantly, senescent cells remain viable and secrete a large number of factors collectively known as the senescence-associated secretory phenotype (SASP) that, paradoxically, also have pro-tumorigenic effects. Furthermore, senescent cells may represent one form of tumor dormancy and play a role in glioma recurrence and progression. CONCLUSION In this article, we delineate an overview of senescence in the context of gliomas, including the mechanisms that lead to senescence induction, bypass, and escape. Furthermore, we examine the role of senescent cells in the tumor microenvironment and their role in tumor progression and recurrence. Additionally, we highlight potential therapeutic opportunities for targeting senescence in glioma.
Collapse
Affiliation(s)
- Rafał Chojak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA.
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
14
|
Zonari A, Brace LE, Al-Katib K, Porto WF, Foyt D, Guiang M, Cruz EAO, Marshall B, Gentz M, Guimarães GR, Franco OL, Oliveira CR, Boroni M, Carvalho JL. Senotherapeutic peptide treatment reduces biological age and senescence burden in human skin models. NPJ AGING 2023; 9:10. [PMID: 37217561 PMCID: PMC10203313 DOI: 10.1038/s41514-023-00109-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Cellular senescence is known to play a role in age-related skin function deterioration which potentially influences longevity. Here, a two-step phenotypic screening was performed to identify senotherapeutic peptides, leading to the identification of Peptide (Pep) 14. Pep 14 effectively decreased human dermal fibroblast senescence burden induced by Hutchinson-Gilford Progeria Syndrome (HGPS), chronological aging, ultraviolet-B radiation (UVB), and etoposide treatment, without inducing significant toxicity. Pep 14 functions via modulation of PP2A, an understudied holoenzyme that promotes genomic stability and is involved in DNA repair and senescence pathways. At the single-cell level, Pep 14 modulates genes that prevent senescence progression by arresting the cell cycle and enhancing DNA repair, which consequently reduce the number of cells progressing to late senescence. When applied on aged ex vivo skin, Pep 14 promoted a healthy skin phenotype with structural and molecular resemblance to young ex vivo skin, decreased the expression of senescence markers, including SASP, and reduced the DNA methylation age. In summary, this work shows the safe reduction of the biological age of ex vivo human skins by a senomorphic peptide.
Collapse
Affiliation(s)
| | | | | | - William F Porto
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, 70790-160, DF, Brazil
- Porto Reports, Brasília, 72236-011, DF, Brazil
| | | | | | | | | | | | - Gabriela Rapozo Guimarães
- Bioinformatics and Computational Biology Lab, Brazilian National Cancer Institute (INCA), Rio de Janeiro, 20231-050, RJ, Brazil
| | - Octavio L Franco
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, 70790-160, DF, Brazil
- Centre of Proteomic Analyses and Biochemistry, Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasilia, 70790-160, DF, Brazil
- S-Inova Biotech, Biotechnology Program, Catholic University Dom Bosco, Campo Grande, 79117-010, MS, Brazil
- Molecular Pathology Program, University of Brasilia, Brasilia, 70.910-900, DF, Brazil
| | | | - Mariana Boroni
- OneSkin, Inc., San Francisco, CA, USA
- Bioinformatics and Computational Biology Lab, Brazilian National Cancer Institute (INCA), Rio de Janeiro, 20231-050, RJ, Brazil
| | - Juliana L Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, 70790-160, DF, Brazil
- Interdisciplinary Biosciences Laboratory, Faculty of Medicine, University of Brasília, Brasília, 70.910-900, DF, Brazil
| |
Collapse
|
15
|
Aguilera P, López-Contreras AJ. ATRX, a guardian of chromatin. Trends Genet 2023; 39:505-519. [PMID: 36894374 DOI: 10.1016/j.tig.2023.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023]
Abstract
ATRX (alpha-thalassemia mental retardation X-linked) is one of the most frequently mutated tumor suppressor genes in human cancers, especially in glioma, and recent findings indicate roles for ATRX in key molecular pathways, such as the regulation of chromatin state, gene expression, and DNA damage repair, placing ATRX as a central player in the maintenance of genome stability and function. This has led to new perspectives about the functional role of ATRX and its relationship with cancer. Here, we provide an overview of ATRX interactions and molecular functions and discuss the consequences of its impairment, including alternative lengthening of telomeres and therapeutic vulnerabilities that may be exploited in cancer cells.
Collapse
Affiliation(s)
- Paula Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain.
| | - Andrés J López-Contreras
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
16
|
Brennan MF, Singer S. Five decades of sarcoma care at Memorial Sloan Kettering Cancer Center. J Surg Oncol 2022; 126:896-901. [PMID: 36087086 DOI: 10.1002/jso.27032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/07/2022]
Abstract
Early studies of the management of soft tissue sarcoma at Memorial Sloan Kettering Cancer Center were influenced by development of robust prospective long-term databases. Increasing capacity for molecular diagnostics has identified a myriad of subtypes with definable natural history. Accurate identification of tissue-specific risk of recurrence and disease-specific survival have increasingly allowed selective use of surgery, radiation therapy, and target-specific cytotoxic and immune therapies.
Collapse
Affiliation(s)
- Murray F Brennan
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
17
|
Kudlova N, De Sanctis JB, Hajduch M. Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. Int J Mol Sci 2022; 23:ijms23084168. [PMID: 35456986 PMCID: PMC9028163 DOI: 10.3390/ijms23084168] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is defined as irreversible cell cycle arrest caused by various processes that render viable cells non-functional, hampering normal tissue homeostasis. It has many endogenous and exogenous inducers, and is closely connected with age, age-related pathologies, DNA damage, degenerative disorders, tumor suppression and activation, wound healing, and tissue repair. However, the literature is replete with contradictory findings concerning its triggering mechanisms, specific biomarkers, and detection protocols. This may be partly due to the wide range of cellular and in vivo animal or human models of accelerated aging that have been used to study senescence and test senolytic drugs. This review summarizes recent findings concerning senescence, presents some widely used cellular and animal senescence models, and briefly describes the best-known senolytic agents.
Collapse
Affiliation(s)
- Natalie Kudlova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
- Correspondence: ; Tel.: +42-0-585632082
| |
Collapse
|
18
|
Pladevall-Morera D, Castejón-Griñán M, Aguilera P, Gaardahl K, Ingham A, Brosnan-Cashman JA, Meeker AK, Lopez-Contreras AJ. ATRX-Deficient High-Grade Glioma Cells Exhibit Increased Sensitivity to RTK and PDGFR Inhibitors. Cancers (Basel) 2022; 14:cancers14071790. [PMID: 35406561 PMCID: PMC8997088 DOI: 10.3390/cancers14071790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
High-grade glioma, including anaplastic astrocytoma and glioblastoma (GBM) patients, have a poor prognosis due to the lack of effective treatments. Therefore, the development of new therapeutic strategies to treat these gliomas is urgently required. Given that high-grade gliomas frequently harbor mutations in the SNF2 family chromatin remodeler ATRX, we performed a screen to identify FDA-approved drugs that are toxic to ATRX-deficient cells. Our findings reveal that multi-targeted receptor tyrosine kinase (RTK) and platelet-derived growth factor receptor (PDGFR) inhibitors cause higher cellular toxicity in high-grade glioma ATRX-deficient cells. Furthermore, we demonstrate that a combinatorial treatment of RTKi with temozolomide (TMZ)-the current standard of care treatment for GBM patients-causes pronounced toxicity in ATRX-deficient high-grade glioma cells. Our findings suggest that combinatorial treatments with TMZ and RTKi may increase the therapeutic window of opportunity in patients who suffer high-grade gliomas with ATRX mutations. Thus, we recommend incorporating the ATRX status into the analyses of clinical trials with RTKi and PDGFRi.
Collapse
Affiliation(s)
- David Pladevall-Morera
- Department of Cellular and Molecular Medicine, DNRF Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark; (D.P.-M.); (M.C.-G.); (P.A.); (K.G.); (A.I.)
| | - María Castejón-Griñán
- Department of Cellular and Molecular Medicine, DNRF Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark; (D.P.-M.); (M.C.-G.); (P.A.); (K.G.); (A.I.)
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Paula Aguilera
- Department of Cellular and Molecular Medicine, DNRF Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark; (D.P.-M.); (M.C.-G.); (P.A.); (K.G.); (A.I.)
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Karina Gaardahl
- Department of Cellular and Molecular Medicine, DNRF Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark; (D.P.-M.); (M.C.-G.); (P.A.); (K.G.); (A.I.)
| | - Andreas Ingham
- Department of Cellular and Molecular Medicine, DNRF Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark; (D.P.-M.); (M.C.-G.); (P.A.); (K.G.); (A.I.)
| | - Jacqueline A. Brosnan-Cashman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (J.A.B.-C.); (A.K.M.)
| | - Alan K. Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (J.A.B.-C.); (A.K.M.)
| | - Andres J. Lopez-Contreras
- Department of Cellular and Molecular Medicine, DNRF Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark; (D.P.-M.); (M.C.-G.); (P.A.); (K.G.); (A.I.)
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, 41013 Seville, Spain
- Correspondence:
| |
Collapse
|
19
|
Crozier L, Foy R, Mouery BL, Whitaker RH, Corno A, Spanos C, Ly T, Gowen Cook J, Saurin AT. CDK4/6 inhibitors induce replication stress to cause long-term cell cycle withdrawal. EMBO J 2022; 41:e108599. [PMID: 35037284 PMCID: PMC8922273 DOI: 10.15252/embj.2021108599] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/18/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
CDK4/6 inhibitors arrest the cell cycle in G1-phase. They are approved to treat breast cancer and are also undergoing clinical trials against a range of other tumour types. To facilitate these efforts, it is important to understand why a cytostatic arrest in G1 causes long-lasting effects on tumour growth. Here, we demonstrate that a prolonged G1 arrest following CDK4/6 inhibition downregulates replisome components and impairs origin licencing. Upon release from that arrest, many cells fail to complete DNA replication and exit the cell cycle in a p53-dependent manner. If cells fail to withdraw from the cell cycle following DNA replication problems, they enter mitosis and missegregate chromosomes causing excessive DNA damage, which further limits their proliferative potential. These effects are observed in a range of tumour types, including breast cancer, implying that genotoxic stress is a common outcome of CDK4/6 inhibition. This unanticipated ability of CDK4/6 inhibitors to induce DNA damage now provides a rationale to better predict responsive tumour types and effective combination therapies, as demonstrated by the fact that CDK4/6 inhibition induces sensitivity to chemotherapeutics that also cause replication stress.
Collapse
Affiliation(s)
- Lisa Crozier
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| | - Reece Foy
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| | - Brandon L Mouery
- Curriculum in Genetics and Molecular BiologyUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Robert H Whitaker
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Andrea Corno
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| | - Christos Spanos
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Tony Ly
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK
- Present address:
Centre for Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Jeanette Gowen Cook
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Adrian T Saurin
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| |
Collapse
|
20
|
Crouch J, Shvedova M, Thanapaul RJRS, Botchkarev V, Roh D. Epigenetic Regulation of Cellular Senescence. Cells 2022; 11:672. [PMID: 35203320 PMCID: PMC8870565 DOI: 10.3390/cells11040672] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Senescence is a complex cellular stress response that abolishes proliferative capacity and generates a unique secretory pattern that is implicated in organismal aging and age-related disease. How a cell transitions to a senescent state is multifactorial and often requires transcriptional regulation of multiple genes. Epigenetic alterations to DNA and chromatin are powerful regulators of genome architecture and gene expression, and they play a crucial role in mediating the induction and maintenance of senescence. This review will highlight the changes in chromatin, DNA methylation, and histone alterations that establish and maintain cellular senescence, alongside the specific epigenetic regulation of the senescence-associated secretory phenotype (SASP).
Collapse
Affiliation(s)
- Jack Crouch
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Maria Shvedova
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Rex Jeya Rajkumar Samdavid Thanapaul
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Vladimir Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Daniel Roh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| |
Collapse
|
21
|
Babikir H, Wang L, Shamardani K, Catalan F, Sudhir S, Aghi MK, Raleigh DR, Phillips JJ, Diaz AA. ATRX regulates glial identity and the tumor microenvironment in IDH-mutant glioma. Genome Biol 2021; 22:311. [PMID: 34763709 PMCID: PMC8588616 DOI: 10.1186/s13059-021-02535-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recent single-cell transcriptomic studies report that IDH-mutant gliomas share a common hierarchy of cellular phenotypes, independent of genetic subtype. However, the genetic differences between IDH-mutant glioma subtypes are prognostic, predictive of response to chemotherapy, and correlate with distinct tumor microenvironments. RESULTS To reconcile these findings, we profile 22 human IDH-mutant gliomas using scATAC-seq and scRNA-seq. We determine the cell-type-specific differences in transcription factor expression and associated regulatory grammars between IDH-mutant glioma subtypes. We find that while IDH-mutant gliomas do share a common distribution of cell types, there are significant differences in the expression and targeting of transcription factors that regulate glial identity and cytokine elaboration. We knock out the chromatin remodeler ATRX, which suffers loss-of-function alterations in most IDH-mutant astrocytomas, in an IDH-mutant immunocompetent intracranial murine model. We find that both human ATRX-mutant gliomas and murine ATRX-knockout gliomas are more heavily infiltrated by immunosuppressive monocytic-lineage cells derived from circulation than ATRX-intact gliomas, in an IDH-mutant background. ATRX knockout in murine glioma recapitulates gene expression and open chromatin signatures that are specific to human ATRX-mutant astrocytomas, including drivers of astrocytic lineage and immune-cell chemotaxis. Through single-cell cleavage under targets and tagmentation assays and meta-analysis of public data, we show that ATRX loss leads to a global depletion in CCCTC-binding factor association with DNA, gene dysregulation along associated chromatin loops, and protection from therapy-induced senescence. CONCLUSIONS These studies explain how IDH-mutant gliomas from different subtypes maintain distinct phenotypes and tumor microenvironments despite a common lineage hierarchy.
Collapse
Affiliation(s)
- Husam Babikir
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Lin Wang
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Karin Shamardani
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Francisca Catalan
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Sweta Sudhir
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - David R Raleigh
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Aaron A Diaz
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA.
| |
Collapse
|
22
|
Mechanisms of Ataxia Telangiectasia Mutated (ATM) Control in the DNA Damage Response to Oxidative Stress, Epigenetic Regulation, and Persistent Innate Immune Suppression Following Sepsis. Antioxidants (Basel) 2021; 10:antiox10071146. [PMID: 34356379 PMCID: PMC8301080 DOI: 10.3390/antiox10071146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cells have evolved extensive signaling mechanisms to maintain redox homeostasis. While basal levels of oxidants are critical for normal signaling, a tipping point is reached when the level of oxidant species exceed cellular antioxidant capabilities. Myriad pathological conditions are characterized by elevated oxidative stress, which can cause alterations in cellular operations and damage to cellular components including nucleic acids. Maintenance of nuclear chromatin are critically important for host survival and eukaryotic organisms possess an elaborately orchestrated response to initiate repair of such DNA damage. Recent evidence indicates links between the cellular antioxidant response, the DNA damage response (DDR), and the epigenetic status of the cell under conditions of elevated oxidative stress. In this emerging model, the cellular response to excessive oxidants may include redox sensors that regulate both the DDR and an orchestrated change to the epigenome in a tightly controlled program that both protects and regulates the nuclear genome. Herein we use sepsis as a model of an inflammatory pathophysiological condition that results in elevated oxidative stress, upregulation of the DDR, and epigenetic reprogramming of hematopoietic stem cells (HSCs) to discuss new evidence for interplay between the antioxidant response, the DNA damage response, and epigenetic status.
Collapse
|
23
|
Noroozi R, Ghafouri-Fard S, Pisarek A, Rudnicka J, Spólnicka M, Branicki W, Taheri M, Pośpiech E. DNA methylation-based age clocks: From age prediction to age reversion. Ageing Res Rev 2021; 68:101314. [PMID: 33684551 DOI: 10.1016/j.arr.2021.101314] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Aging as an irretrievable occurrence throughout the entire life is characterized by a progressive decline in physiological functionality and enhanced disease vulnerability. Numerous studies have demonstrated that epigenetic modifications, particularly DNA methylation (DNAm), correlate with aging and age-related diseases. Several investigations have attempted to predict chronological age using the age-related alterations in the DNAm of certain CpG sites. Here we categorize different studies that tracked the aging process in the DNAm landscape to show how epigenetic age clocks evolved from a chronological age estimator to an indicator of lifespan and healthspan. We also describe the health and disease predictive potential of estimated epigenetic age acceleration regarding different clinical conditions and lifestyle factors. Considering the revealed age-related epigenetic changes, the recent age-reprogramming strategies are discussed which are promising methods for resetting the aging clocks.
Collapse
Affiliation(s)
- Rezvan Noroozi
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aleksandra Pisarek
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joanna Rudnicka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ewelina Pośpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
24
|
Yuan P, Qi X, Song A, Ma M, Zhang X, Lu C, Bian M, Lian N, He J, Zheng S, Jin H. LncRNA MAYA promotes iron overload and hepatocyte senescence through inhibition of YAP in non-alcoholic fatty liver disease. J Cell Mol Med 2021; 25:7354-7366. [PMID: 34190396 PMCID: PMC8335668 DOI: 10.1111/jcmm.16764] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Although recent evidence has shown that hepatocyte senescence plays a crucial role in the pathogenesis and development of non‐alcoholic fatty liver disease (NAFLD), the mechanism is still not clear. The purpose of this study was to investigate the signal transduction pathways involved in the senescence of hepatocyte, in order to provide a potential strategy for blocking the process of NAFLD. The results confirmed that hepatocyte senescence occurred in HFD‐fed Golden hamsters and PA‐treated LO2 cells as manifested by increased levels of senescence marker SA‐β‐gal, p16 and p21, heterochromatin marker H3K9me3, DNA damage marker γ‐H2AX and decreased activity of telomerase. Further studies demonstrated that iron overload could promote the senescence of hepatocyte, whereas the overexpression of Yes‐associated protein (YAP) could blunt iron overload and alleviate the senescence of hepatocyte. Of importance, depression of lncRNA MAYA (MAYA) reduced iron overload and cellular senescence via promotion of YAP in PA‐treated hepatocytes. These effects were further supported by in vivo experiments. In conclusion, these data suggested that inhibition of MAYA could up‐regulate YAP, which might repress hepatocyte senescence through modulating iron overload. In addition, these findings provided a promising option for heading off the development of NAFLD by abrogating hepatocyte senescence.
Collapse
Affiliation(s)
- Ping Yuan
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Xiaoyu Qi
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Anping Song
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Mingyue Ma
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Xinbei Zhang
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, China
| | - Mianli Bian
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Naqi Lian
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianling He
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, China
| | - Shuguo Zheng
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| |
Collapse
|
25
|
Abstract
Tumour recurrence is a serious impediment to cancer treatment, but the mechanisms involved are poorly understood. The most frequently used anti-tumour therapies-chemotherapy and radiotherapy-target highly proliferative cancer cells. However non- or slow-proliferative dormant cancer cells can persist after treatment, eventually causing tumour relapse. Whereas the reversible growth arrest mechanism allows quiescent cells to re-enter the cell cycle, senescent cells are largely thought to be irreversibly arrested, and may instead contribute to tumour growth and relapse through paracrine signalling mechanisms. Thus, due to the differences in their growth arrest mechanism, metabolic features, plasticity and adaptation to their respective tumour microenvironment, dormant-senescent and -quiescent cancer cells could have different but complementary roles in fuelling tumour growth. In this review article, we discuss the implication of dormant cancer cells in tumour relapse and the need to understand how quiescent and senescent cells, respectively, may play a part in this process.
Collapse
|
26
|
Suski JM, Braun M, Strmiska V, Sicinski P. Targeting cell-cycle machinery in cancer. Cancer Cell 2021; 39:759-778. [PMID: 33891890 PMCID: PMC8206013 DOI: 10.1016/j.ccell.2021.03.010] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Abnormal activity of the core cell-cycle machinery is seen in essentially all tumor types and represents a driving force of tumorigenesis. Recent studies revealed that cell-cycle proteins regulate a wide range of cellular functions, in addition to promoting cell division. With the clinical success of CDK4/6 inhibitors, it is becoming increasingly clear that targeting individual cell-cycle components may represent an effective anti-cancer strategy. Here, we discuss the potential of inhibiting different cell-cycle proteins for cancer therapy.
Collapse
Affiliation(s)
- Jan M Suski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marcin Braun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Vladislav Strmiska
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Abstract
The introduction of cyclin-dependent kinase 4/6 inhibitors (CKIs) has marked a major development in the standard treatment of advanced breast cancer. Extensive preclinical, translational and clinical research efforts into CKI agents are ongoing, and clinical application of this class of systemic anti-cancer therapy is anticipated to expand beyond metastatic breast cancer treatment. Emerging evidence indicates that mechanisms by which CKI agents exert their therapeutic effect transcend their initially expected impacts on cell cycle control into the realms of cancer immunology and metabolism. The recent expansion in our understanding of the multifaceted impact of CKIs on tumour biology has the potential to improve clinical study design, therapeutic strategies and ultimately patient outcomes. This review contextualises the current status of CKI therapy by providing an overview of the original and emerging insights into mechanisms of action and the evidence behind their current routine use in breast cancer management. Recent preclinical and clinical studies into CKIs across tumour types are discussed, including a synthesis of the more than 300 clinical trials of CKI-combination treatments registered as of November 2020. Key challenges and opportunities anticipated in the 2020s are explored, including treatment resistance, combination therapy strategies and potential biomarker development.
Collapse
|
28
|
Wang R, Sun L, Xia S, Wu H, Ma Y, Zhan S, Zhang G, Zhang X, Shi T, Chen W. B7-H3 suppresses doxorubicin-induced senescence-like growth arrest in colorectal cancer through the AKT/TM4SF1/SIRT1 pathway. Cell Death Dis 2021; 12:453. [PMID: 33958586 PMCID: PMC8102521 DOI: 10.1038/s41419-021-03736-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022]
Abstract
Emerging evidence suggests that cellular senescence induced by chemotherapy has been recognized as a new weapon for cancer therapy. This study aimed to research novel functions of B7-H3 in cellular senescence induced by a low dose of doxorubicin (DOX) in colorectal cancer (CRC). Here, our results demonstrated that B7-H3 knockdown promoted, while B7-H3 overexpression inhibited, DOX-induced cellular senescence. B7-H3 knockdown dramatically enhanced the growth arrest of CRC cells after low-dose DOX treatment, but B7-H3 overexpression had the opposite effect. By RNA-seq analysis and western blot, we showed that B7-H3 prevented cellular senescence and growth arrest through the AKT/TM4SF1/SIRT1 pathway. Blocking the AKT/TM4SF1/SIRT1 pathway dramatically reversed B7-H3-induced resistance to cellular senescence. More importantly, B7-H3 inhibited DOX-induced cellular senescence of CRC cells in vivo. Therefore, targeting B7-H3 or the B7-H3/AKT/TM4SF1/SIRT1 pathway might be a new strategy for promoting cellular senescence-like growth arrest during drug treatment in CRC.
Collapse
Affiliation(s)
- Ruoqin Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
- Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Linqing Sun
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Suhua Xia
- Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Hongya Wu
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Yanchao Ma
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Shenghua Zhan
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China.
- Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
| | - Weichang Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China.
- Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
| |
Collapse
|
29
|
Talukdar S, Das SK, Emdad L, Fisher PB. Autophagy and senescence: Insights from normal and cancer stem cells. Adv Cancer Res 2021; 150:147-208. [PMID: 33858596 DOI: 10.1016/bs.acr.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is a fundamental cellular process, which allows cells to adapt to metabolic stress through the degradation and recycling of intracellular components to generate macromolecular precursors and produce energy. Autophagy is also critical in maintaining cellular/tissue homeostasis, as well preserving immunity and preventing human disease. Deregulation of autophagic processes is associated with cancer, neurodegeneration, muscle and heart disease, infectious diseases and aging. Research on a variety of stem cell types establish that autophagy plays critical roles in normal and cancer stem cell quiescence, activation, differentiation, and self-renewal. Considering its critical function in regulating the metabolic state of stem cells, autophagy plays a dual role in the regulation of normal and cancer stem cell senescence, and cellular responses to various therapeutic strategies. The relationships between autophagy, senescence, dormancy and apoptosis frequently focus on responses to various forms of stress. These are interrelated processes that profoundly affect normal and abnormal human physiology that require further elucidation in cancer stem cells. This review provides a current perspective on autophagy and senescence in both normal and cancer stem cells.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
30
|
Hendrychová D, Jorda R, Kryštof V. How selective are clinical CDK4/6 inhibitors? Med Res Rev 2020; 41:1578-1598. [PMID: 33300617 DOI: 10.1002/med.21769] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 11/29/2020] [Indexed: 12/29/2022]
Abstract
Pharmacological inhibition of cyclin-dependent kinase 4/6 (CDK4/6) has emerged as an efficient approach for treating breast cancer, and its clinical potential is expanding to other cancers. CDK4/6 inhibitors were originally believed to act by arresting proliferation in the G1 phase, but it is gradually becoming clear that the cellular response to these compounds is far more complex than this. Multiple context-dependent mechanisms of action are emerging, involving modulation of quiescence, senescence, autophagy, cellular metabolism, and enhanced tumor cell immunogenicity. These mechanisms may be driven by interactions with unexpected targets. We review cellular responses to the Food and Drug Administration-approved CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib, and summarize available knowledge of other drugs undergoing clinical trials, including data on their off-target landscapes. We emphasize the importance of comprehensively characterizing drugs' selectivity profiles to maximize their clinical efficacy and safety and to facilitate their repurposing to treat additional diseases based on their target spectrum.
Collapse
Affiliation(s)
- Denisa Hendrychová
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Radek Jorda
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
31
|
Ferrand J, Rondinelli B, Polo SE. Histone Variants: Guardians of Genome Integrity. Cells 2020; 9:E2424. [PMID: 33167489 PMCID: PMC7694513 DOI: 10.3390/cells9112424] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chromatin integrity is key for cell homeostasis and for preventing pathological development. Alterations in core chromatin components, histone proteins, recently came into the spotlight through the discovery of their driving role in cancer. Building on these findings, in this review, we discuss how histone variants and their associated chaperones safeguard genome stability and protect against tumorigenesis. Accumulating evidence supports the contribution of histone variants and their chaperones to the maintenance of chromosomal integrity and to various steps of the DNA damage response, including damaged chromatin dynamics, DNA damage repair, and damage-dependent transcription regulation. We present our current knowledge on these topics and review recent advances in deciphering how alterations in histone variant sequence, expression, and deposition into chromatin fuel oncogenic transformation by impacting cell proliferation and cell fate transitions. We also highlight open questions and upcoming challenges in this rapidly growing field.
Collapse
Affiliation(s)
| | | | - Sophie E. Polo
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, 75013 Paris, France; (J.F.); (B.R.)
| |
Collapse
|
32
|
George SL, Lorenzi F, King D, Hartlieb S, Campbell J, Pemberton H, Toprak UH, Barker K, Tall J, da Costa BM, van den Boogaard ML, Dolman MEM, Molenaar JJ, Bryant HE, Westermann F, Lord CJ, Chesler L. Therapeutic vulnerabilities in the DNA damage response for the treatment of ATRX mutant neuroblastoma. EBioMedicine 2020; 59:102971. [PMID: 32846370 PMCID: PMC7452577 DOI: 10.1016/j.ebiom.2020.102971] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In neuroblastoma, genetic alterations in ATRX, define a distinct poor outcome patient subgroup. Despite the need for new therapies, there is a lack of available models and a dearth of pre-clinical research. METHODS To evaluate the impact of ATRX loss of function (LoF) in neuroblastoma, we utilized CRISPR-Cas9 gene editing to generate neuroblastoma cell lines isogenic for ATRX. We used these and other models to identify therapeutically exploitable synthetic lethal vulnerabilities associated with ATRX LoF. FINDINGS In isogenic cell lines, we found that ATRX inactivation results in increased DNA damage, homologous recombination repair (HRR) defects and impaired replication fork processivity. In keeping with this, high-throughput compound screening showed selective sensitivity in ATRX mutant cells to multiple PARP inhibitors and the ATM inhibitor KU60019. ATRX mutant cells also showed selective sensitivity to the DNA damaging agents, sapacitabine and irinotecan. HRR deficiency was also seen in the ATRX deleted CHLA-90 cell line, and significant sensitivity demonstrated to olaparib/irinotecan combination therapy in all ATRX LoF models. In-vivo sensitivity to olaparib/irinotecan was seen in ATRX mutant but not wild-type xenografts. Finally, sustained responses to olaparib/irinotecan therapy were seen in an ATRX deleted neuroblastoma patient derived xenograft. INTERPRETATION ATRX LoF results in specific DNA damage repair defects that can be therapeutically exploited. In ATRX LoF models, preclinical sensitivity is demonstrated to olaparib and irinotecan, a combination that can be rapidly translated into the clinic. FUNDING This work was supported by Christopher's Smile, Neuroblastoma UK, Cancer Research UK, and the Royal Marsden Hospital NIHR BRC.
Collapse
Affiliation(s)
- Sally L George
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom; Children and Young People's Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT United Kingdom.
| | - Federica Lorenzi
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | - David King
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Sabine Hartlieb
- Neuroblastoma Genomics, Hopp Children`s Cancer Center Heidelberg (KiTZ) & German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - James Campbell
- Bioinformatics Core Facility, The Institute of Cancer Research, London, United Kingdom
| | - Helen Pemberton
- CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research London, SW3 6JB, United Kingdom
| | - Umut H Toprak
- Neuroblastoma Genomics, Hopp Children`s Cancer Center Heidelberg (KiTZ) & German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karen Barker
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | - Jennifer Tall
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | - Barbara Martins da Costa
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | | | - M Emmy M Dolman
- Princess Maxima Center for Pediatric Cancer, Utrecht, The Netherlands
| | - Jan J Molenaar
- Princess Maxima Center for Pediatric Cancer, Utrecht, The Netherlands
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Frank Westermann
- Neuroblastoma Genomics, Hopp Children`s Cancer Center Heidelberg (KiTZ) & German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher J Lord
- CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research London, SW3 6JB, United Kingdom
| | - Louis Chesler
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom; Children and Young People's Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT United Kingdom
| |
Collapse
|
33
|
Timpano S, Picketts DJ. Neurodevelopmental Disorders Caused by Defective Chromatin Remodeling: Phenotypic Complexity Is Highlighted by a Review of ATRX Function. Front Genet 2020; 11:885. [PMID: 32849845 PMCID: PMC7432156 DOI: 10.3389/fgene.2020.00885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
The ability to determine the genetic etiology of intellectual disability (ID) and neurodevelopmental disorders (NDD) has improved immensely over the last decade. One prevailing metric from these studies is the large percentage of genes encoding epigenetic regulators, including many members of the ATP-dependent chromatin remodeling enzyme family. Chromatin remodeling proteins can be subdivided into five classes that include SWI/SNF, ISWI, CHD, INO80, and ATRX. These proteins utilize the energy from ATP hydrolysis to alter nucleosome positioning and are implicated in many cellular processes. As such, defining their precise roles and contributions to brain development and disease pathogenesis has proven to be complex. In this review, we illustrate that complexity by reviewing the roles of ATRX on genome stability, replication, and transcriptional regulation and how these mechanisms provide key insight into the phenotype of ATR-X patients.
Collapse
Affiliation(s)
- Sara Timpano
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
34
|
Boroni M, Zonari A, Reis de Oliveira C, Alkatib K, Ochoa Cruz EA, Brace LE, Lott de Carvalho J. Highly accurate skin-specific methylome analysis algorithm as a platform to screen and validate therapeutics for healthy aging. Clin Epigenetics 2020; 12:105. [PMID: 32660606 PMCID: PMC7359467 DOI: 10.1186/s13148-020-00899-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND DNA methylation (DNAm) age constitutes a powerful tool to assess the molecular age and overall health status of biological samples. Recently, it has been shown that tissue-specific DNAm age predictors may present superior performance compared to the pan- or multi-tissue counterparts. The skin is the largest organ in the body and bears important roles, such as body temperature control, barrier function, and protection from external insults. As a consequence of the constant and intimate interaction between the skin and the environment, current DNAm estimators, routinely trained using internal tissues which are influenced by other stimuli, are mostly inadequate to accurately predict skin DNAm age. RESULTS In the present study, we developed a highly accurate skin-specific DNAm age predictor, using DNAm data obtained from 508 human skin samples. Based on the analysis of 2,266 CpG sites, we accurately calculated the DNAm age of cultured skin cells and human skin biopsies. Age estimation was sensitive to the biological age of the donor, cell passage, skin disease status, as well as treatment with senotherapeutic drugs. CONCLUSIONS This highly accurate skin-specific DNAm age predictor constitutes a holistic tool that will be of great use in the analysis of human skin health status/molecular aging, as well as in the analysis of the potential of established and novel compounds to alter DNAm age.
Collapse
Affiliation(s)
- Mariana Boroni
- Bioinformatics and Computational Biology Lab, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, RJ, 20231-050, Brazil.
- OneSkin Technologies, San Francisco, USA.
| | | | | | | | | | | | - Juliana Lott de Carvalho
- OneSkin Technologies, San Francisco, USA
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasilia, Brazil
- Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
35
|
Wagner V, Gil J. Senescence as a therapeutically relevant response to CDK4/6 inhibitors. Oncogene 2020; 39:5165-5176. [PMID: 32541838 PMCID: PMC7610384 DOI: 10.1038/s41388-020-1354-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) phosphorylate and inhibit retinoblastoma (RB) family proteins. Hyperphosphorylated RB releases E2F transcription factors, activating a transcriptional program that initiates S phase. Due to the critical role that this pathway has in regulating cell cycle progression, inhibiting CDK4/6 is an attractive therapeutic strategy. Indeed, CDK4/6 inhibitors in combination with antiestrogens produce a significant benefit in patients with ER+/HER2- breast cancer. Clinical trials are currently investigating if the use of CDK4/6 inhibitors alone or in combination can be extended to other cancer types. Inhibition of CDK4/6 can result in different cell fates such as quiescence, senescence, or apoptosis. Senescence is a stress response that can be induced by stimuli that include oncogenic activation, chemotherapy, irradiation, and targeted therapies such as CDK4/6 inhibitors. Senescent cells undergo a stable cell cycle arrest and produce a bioactive secretome that remodels their microenvironment and engages the immune system. In this review, we analyze the therapeutic relevance of senescence induction by CDK4/6 inhibitors. We also discuss how different therapies, including checkpoint inhibitors and drugs targeting MEK or PI3K, can be used in combination with CDK4/6 inhibitors to reinforce or exploit senescence. Recently, a lot of effort has been put into identifying compounds that selectively kill senescent cells (termed senolytics). Thus, sequential treatment with senolytics might be an additional strategy to potentiate the antitumor effects of CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Verena Wagner
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
36
|
Wang B, Kohli J, Demaria M. Senescent Cells in Cancer Therapy: Friends or Foes? Trends Cancer 2020; 6:838-857. [PMID: 32482536 DOI: 10.1016/j.trecan.2020.05.004] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/10/2023]
Abstract
Several cancer interventions induce DNA damage and promote senescence in cancer and nonmalignant cells. Senescent cells secrete a collection of proinflammatory factors collectively termed the senescence-associated secretory phenotype (SASP). SASP factors are able to potentiate various aspects of tumorigenesis, including proliferation, metastasis, and immunosuppression. Moreover, the accumulation and persistence of therapy-induced senescent cells can promote tissue dysfunction and the early onset of various age-related symptoms in treated cancer patients. Here, we review in detail the mechanisms by which cellular senescence contributes to cancer development and the side effects of cancer therapies. We also review how pharmacological interventions to eliminate senescent cells or inhibit SASP production can mitigate these negative effects and propose therapeutic strategies based on the age of the patient.
Collapse
Affiliation(s)
- Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Jaskaren Kohli
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, 9713AV Groningen, The Netherlands.
| |
Collapse
|
37
|
Knudsen ES, Shapiro GI, Keyomarsi K. Selective CDK4/6 Inhibitors: Biologic Outcomes, Determinants of Sensitivity, Mechanisms of Resistance, Combinatorial Approaches, and Pharmacodynamic Biomarkers. Am Soc Clin Oncol Educ Book 2020; 40:115-126. [PMID: 32421454 PMCID: PMC7306922 DOI: 10.1200/edbk_281085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CDK4/6 inhibitors are now part of the standard armamentarium for hormone receptor-positive breast cancer. In this article, we review the biologic outcomes imposed by these drugs on cancer cells, determinants of response, mechanisms of intrinsic and acquired resistance, as well as combinatorial approaches emanating from mechanistic studies that may allow use of these agents to extend beyond breast cancer. In addition, we will address tumor-, imaging-, and blood-based pharmacodynamic biomarkers that can inform rationally designed trials as clinical development continues.
Collapse
Affiliation(s)
- Erik S. Knudsen
- Center for Personalized Medicine and Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY
| | - Geoffrey I. Shapiro
- Early Drug Development Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
38
|
Petroni G, Formenti SC, Chen-Kiang S, Galluzzi L. Immunomodulation by anticancer cell cycle inhibitors. Nat Rev Immunol 2020; 20:669-679. [PMID: 32346095 DOI: 10.1038/s41577-020-0300-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Cell cycle proteins that are often dysregulated in malignant cells, such as cyclin-dependent kinase 4 (CDK4) and CDK6, have attracted considerable interest as potential targets for cancer therapy. In this context, multiple inhibitors of CDK4 and CDK6 have been developed, including three small molecules (palbociclib, abemaciclib and ribociclib) that are currently approved for the treatment of patients with breast cancer and are being extensively tested in individuals with other solid and haematological malignancies. Accumulating preclinical and clinical evidence indicates that the anticancer activity of CDK4/CDK6 inhibitors results not only from their ability to block the cell cycle in malignant cells but also from a range of immunostimulatory effects. In this Review, we discuss the ability of anticancer cell cycle inhibitors to modulate various immune functions in support of effective antitumour immunity.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Selina Chen-Kiang
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Department of Pathology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA. .,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA. .,Université de Paris, Paris, France.
| |
Collapse
|
39
|
Triana-Martínez F, Loza MI, Domínguez E. Beyond Tumor Suppression: Senescence in Cancer Stemness and Tumor Dormancy. Cells 2020; 9:cells9020346. [PMID: 32028565 PMCID: PMC7072600 DOI: 10.3390/cells9020346] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Here, we provide an overview of the importance of cellular fate in cancer as a group of diseases of abnormal cell growth. Tumor development and progression is a highly dynamic process, with several phases of evolution. The existing evidence about the origin and consequences of cancer cell fate specification (e.g., proliferation, senescence, stemness, dormancy, quiescence, and cell cycle re-entry) in the context of tumor formation and metastasis is discussed. The interplay between these dynamic tumor cell phenotypes, the microenvironment, and the immune system is also reviewed in relation to cancer. We focus on the role of senescence during cancer progression, with a special emphasis on its relationship with stemness and dormancy. Selective interventions on senescence and dormancy cell fates, including the specific targeting of cancer cell populations to prevent detrimental effects in aging and disease, are also reviewed. A new conceptual framework about the impact of synthetic lethal strategies by using senogenics and then senolytics is given, with the promise of future directions on innovative anticancer therapies.
Collapse
|
40
|
Cheng Q, Ouyang X, Zhang R, Zhu L, Song X. Senescence-associated genes and non-coding RNAs function in pancreatic cancer progression. RNA Biol 2020; 17:1693-1706. [PMID: 31997706 DOI: 10.1080/15476286.2020.1719752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Pancreatic cancer is a major cause of mortality with a poor diagnosis and prognosis that most often occurs in elderly patients. Few studies, however, focus on the interplay of age and pancreatic cancer at the transcriptional level. Here we evaluated the possible roles of age-dependent, differentially expressed genes (DEGs) in pancreatic cancer. These DEGs were used to construct a correlation network and clustered in six gene modules, among which two modules were highly correlated with patients' survival time. Integrating different datasets, including ATAC-Seq and ChIP-Seq, we performed multi-parallel analyses and identified eight age-dependent protein coding genes and two non-coding RNAs as potential candidates. These candidates, together with KLF5, a potent functional transcription factor in pancreatic cancer, are likely to be key elements linking cellular senescence and pancreatic cancer, providing insights on the balance between them, as well as on diagnosis and subsequent prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Qingyu Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Xuan Ouyang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Ran Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Lianbang Zhu
- The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| |
Collapse
|
41
|
Ferreira MSV, Sørensen MD, Pusch S, Beier D, Bouillon AS, Kristensen BW, Brümmendorf TH, Beier CP, Beier F. Alternative lengthening of telomeres is the major telomere maintenance mechanism in astrocytoma with isocitrate dehydrogenase 1 mutation. J Neurooncol 2020; 147:1-14. [PMID: 31960234 PMCID: PMC7076064 DOI: 10.1007/s11060-020-03394-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/07/2020] [Indexed: 01/21/2023]
Abstract
Purpose Isocitrate dehydrogenase 1 (IDH1) mutations are associated with improved survival in gliomas. Depending on the IDH1 status, TERT promoter mutations affect prognosis. IDH1 mutations are associated with alpha-thalassemia/mental retardation syndrome X-linked (ATRX) mutations and alternative lengthening of telomeres (ALT), suggesting an interaction between IDH1 and telomeres. However, little is known how IDH1 mutations affect telomere maintenance.
Methods We analyzed cell-specific telomere length (CS-TL) on a single cell level in 46 astrocytoma samples (WHO II-IV) by modified immune-quantitative fluorescence in situ hybridization, using endothelial cells as internal reference. In the same samples, we determined IDH1/TERT promoter mutation status and ATRX expression. The interaction of IDH1R132H mutation and CS-TL was studied in vitro using an IDH1R132H doxycycline-inducible glioma cell line system. Results Virtually all ALTpositive astrocytomas had normal TERT promoter and lacked ATRX expression. Further, all ALTpositive samples had IDH1R132H mutations, resulting in a significantly longer CS-TL of IDH1R132H gliomas, when compared to their wildtype counterparts. Conversely, TERT promotor mutations were associated with IDHwildtype, ATRX expression, lack of ALT and short CS-TL. ALT, TERT promoter mutations, and CS-TL remained without prognostic significance, when correcting for IDH1 status. In vitro, overexpression of IDHR132H in the glioma cell line LN319 resulted in downregulation of ATRX and rapid TERT-independent telomere lengthening consistent with ALT.
Conclusion ALT is the major telomere maintenance mechanism in IDHR132H mutated astrocytomas, while TERT promoter mutations were associated with IDHwildtype glioma. IDH1R132H downregulates ATRX expression in vitro resulting in ALT, which may contribute to the strong association of IDH1R132H mutations, ATRX loss, and ALT.
Electronic supplementary material The online version of this article (10.1007/s11060-020-03394-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Mia Dahl Sørensen
- Department of Pathology, University Hospital Odense, Sdr. Boulevard 29, 5000, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Stefan Pusch
- Department of Neuropathology, University of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Dagmar Beier
- Department of Clinical Research, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense, Denmark.,Department of Neurology, University Hospital Odense, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Anne-Sophie Bouillon
- Department of Haematology, Oncology, Medical Faculty, RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Bjarne Winther Kristensen
- Department of Pathology, University Hospital Odense, Sdr. Boulevard 29, 5000, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Tim Henrik Brümmendorf
- Department of Haematology, Oncology, Medical Faculty, RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Christoph Patrick Beier
- Department of Clinical Research, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense, Denmark.,Department of Neurology, University Hospital Odense, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Fabian Beier
- Department of Haematology, Oncology, Medical Faculty, RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
42
|
Lovejoy CA, Takai K, Huh MS, Picketts DJ, de Lange T. ATRX affects the repair of telomeric DSBs by promoting cohesion and a DAXX-dependent activity. PLoS Biol 2020; 18:e3000594. [PMID: 31895940 PMCID: PMC6959610 DOI: 10.1371/journal.pbio.3000594] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX), a DAXX (death domain-associated protein) interacting protein, is often lost in cells using the alternative lengthening of telomeres (ALT) pathway, but it is not known how ATRX loss leads to ALT. We report that ATRX deletion from mouse cells altered the repair of telomeric double-strand breaks (DSBs) and induced ALT-like phenotypes, including ALT-associated promyelocytic leukemia (PML) bodies (APBs), telomere sister chromatid exchanges (T-SCEs), and extrachromosomal telomeric signals (ECTSs). Mechanistically, we show that ATRX affects telomeric DSB repair by promoting cohesion of sister telomeres and that loss of ATRX in ALT cells results in diminished telomere cohesion. In addition, we document a role for DAXX in the repair of telomeric DSBs. Removal of telomeric cohesion in combination with DAXX deficiency recapitulates all telomeric DSB repair phenotypes associated with ATRX loss. The data reveal that ATRX has an effect on telomeric DSB repair and that this role involves both telomere cohesion and a DAXX-dependent pathway.
Collapse
Affiliation(s)
- Courtney A. Lovejoy
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York, United States of America
| | - Kaori Takai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York, United States of America
| | - Michael S. Huh
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Qadeer ZA, Valle-Garcia D, Hasson D, Sun Z, Cook A, Nguyen C, Soriano A, Ma A, Griffiths LM, Zeineldin M, Filipescu D, Jubierre L, Chowdhury A, Deevy O, Chen X, Finkelstein DB, Bahrami A, Stewart E, Federico S, Gallego S, Dekio F, Fowkes M, Meni D, Maris JM, Weiss WA, Roberts SS, Cheung NKV, Jin J, Segura MF, Dyer MA, Bernstein E. ATRX In-Frame Fusion Neuroblastoma Is Sensitive to EZH2 Inhibition via Modulation of Neuronal Gene Signatures. Cancer Cell 2019; 36:512-527.e9. [PMID: 31631027 PMCID: PMC6851493 DOI: 10.1016/j.ccell.2019.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 08/07/2019] [Accepted: 09/04/2019] [Indexed: 01/22/2023]
Abstract
ATRX alterations occur at high frequency in neuroblastoma of adolescents and young adults. Particularly intriguing are the large N-terminal deletions of ATRX (Alpha Thalassemia/Mental Retardation, X-linked) that generate in-frame fusion (IFF) proteins devoid of key chromatin interaction domains, while retaining the SWI/SNF-like helicase region. We demonstrate that ATRX IFF proteins are redistributed from H3K9me3-enriched chromatin to promoters of active genes and identify REST as an ATRX IFF target whose activation promotes silencing of neuronal differentiation genes. We further show that ATRX IFF cells display sensitivity to EZH2 inhibitors, due to derepression of neurogenesis genes, including a subset of REST targets. Taken together, we demonstrate that ATRX structural alterations are not loss-of-function and put forward EZH2 inhibitors as a potential therapy for ATRX IFF neuroblastoma.
Collapse
Affiliation(s)
- Zulekha A Qadeer
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Departments of Neurology, Neurosurgery, and Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Valle-Garcia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhen Sun
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - April Cook
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christie Nguyen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aroa Soriano
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain
| | - Anqi Ma
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lyra M Griffiths
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maged Zeineldin
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luz Jubierre
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain
| | - Asif Chowdhury
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Orla Deevy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David B Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sara Federico
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Soledad Gallego
- Pediatric Oncology and Hematology Department, University Hospital Vall d'Hebron, Barcelona 08035, Spain
| | - Fumiko Dekio
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Fowkes
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Meni
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John M Maris
- Center for Childhood Cancer Research at the Children's Hospital of Philadelphia, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William A Weiss
- Departments of Neurology, Neurosurgery, and Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jian Jin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel F Segura
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
44
|
Li F, Deng Z, Zhang L, Wu C, Jin Y, Hwang I, Vladimirova O, Xu L, Yang L, Lu B, Dheekollu J, Li J, Feng H, Hu J, Vakoc CR, Ying H, Paik J, Lieberman PM, Zheng H. ATRX loss induces telomere dysfunction and necessitates induction of alternative lengthening of telomeres during human cell immortalization. EMBO J 2019; 38:e96659. [PMID: 31454099 PMCID: PMC6769380 DOI: 10.15252/embj.201796659] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/10/2019] [Accepted: 07/03/2019] [Indexed: 01/19/2023] Open
Abstract
Loss of the histone H3.3-specific chaperone component ATRX or its partner DAXX frequently occurs in human cancers that employ alternative lengthening of telomeres (ALT) for chromosomal end protection, yet the underlying mechanism remains unclear. Here, we report that ATRX/DAXX does not serve as an immediate repressive switch for ALT. Instead, ATRX or DAXX depletion gradually induces telomere DNA replication dysfunction that activates not only homology-directed DNA repair responses but also cell cycle checkpoint control. Mechanistically, we demonstrate that this process is contingent on ATRX/DAXX histone chaperone function, independently of telomere length. Combined ATAC-seq and telomere chromatin immunoprecipitation studies reveal that ATRX loss provokes progressive telomere decondensation that culminates in the inception of persistent telomere replication dysfunction. We further show that endogenous telomerase activity cannot overcome telomere dysfunction induced by ATRX loss, leaving telomere repair-based ALT as the only viable mechanism for telomere maintenance during immortalization. Together, these findings implicate ALT activation as an adaptive response to ATRX/DAXX loss-induced telomere replication dysfunction.
Collapse
Affiliation(s)
- Fei Li
- Department of NeurosurgerySouthwest HospitalChongqingChina
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | | | - Ling Zhang
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- Department of PathophysiologyNorman Bethune Medical School at Jilin UniversityChangchunChina
| | - Caizhi Wu
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - Ying Jin
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - Inah Hwang
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
| | | | - Libo Xu
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- Department of PathophysiologyNorman Bethune Medical School at Jilin UniversityChangchunChina
| | - Lynnie Yang
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - Bin Lu
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | | | - Jian‐Yi Li
- Department of Pathology and Lab MedicineNorth Shore University Hospital and Long Island Jewish Medical CenterNorthwell Health, Lake SuccessDonald and Barbara Zucker School of Medicine at Hofstra/NorthwellHempsteadNYUSA
| | - Hua Feng
- Department of NeurosurgerySouthwest HospitalChongqingChina
| | - Jian Hu
- Department of Cancer BiologyThe University of Texas M. D. Anderson Cancer CenterHoustonTXUSA
| | | | - Haoqiang Ying
- Department of Molecular and Cellular OncologyThe University of Texas M. D. Anderson Cancer CenterHoustonTXUSA
| | - Jihye Paik
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
| | | | - Hongwu Zheng
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
45
|
Cavalcante SG, Silva CPN, Sola PR, Tanaka LY, Oba-Shinjo SM, Marie SKN. ATRX-DAXX Complex Expression Levels and Telomere Length in Normal Young and Elder Autopsy Human Brains. DNA Cell Biol 2019; 38:955-961. [PMID: 31361513 DOI: 10.1089/dna.2019.4752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The chromatin-remodeling complex ATRX/DAXX is one of the major epigenetic factors that controls heterochromatin maintenance due to its role in histone deposition. ATRX is involved in nucleosome configuration and maintenance of higher order chromatin structure, and DAXX is a specific histone chaperone for H3.3 deposition. Dysfunctions in this complex have been associated with telomere shortening, which influences cell senescence. However, data about this complex in brain tissue related to aging are still scarce. Therefore, in the present study, we analyzed ATRX and DAXX expressions in autopsied human brain specimens and the telomere length. A significant decrease in gene and protein expressions was observed in the brain tissues from the elderly compared with those from the young, which were related to short telomeres. These findings may motivate further functional analysis to confirm the ATRX-DAXX complex involvement in telomere maintenance and brain aging.
Collapse
Affiliation(s)
- Stella G Cavalcante
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Clarisse P N Silva
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Paula R Sola
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leonardo Y Tanaka
- Vascular Biology Laboratory, Faculdade de Medicina FMUSP, Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sueli M Oba-Shinjo
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Suely K N Marie
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
46
|
Combined treatment with emodin and a telomerase inhibitor induces significant telomere damage/dysfunction and cell death. Cell Death Dis 2019; 10:527. [PMID: 31296842 PMCID: PMC6624283 DOI: 10.1038/s41419-019-1768-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 01/06/2023]
Abstract
G-quadruplex telomeric secondary structures represent natural replication fork barriers and must be resolved to permit efficient replication. Stabilization of telomeric G4 leads to telomere dysfunctions demonstrated by telomere shortening or damage, resulting in genome instability and apoptosis. Chemical compounds targeting G4 structures have been reported to induce telomere disturbance and tumor suppression. Here, virtual screening was performed in a natural compound library using PyRx to identify novel G4 ligands. Emodin was identified as one of the best candidates, showing a great G4-binding potential. Subsequently, we confirmed that emodin could stabilize G4 structures in vitro and trigger telomere dysfunctions including fragile telomeres, telomere loss, and telomeric DNA damage. However, this telomere disturbance could be rescued by subsequent elevation of telomerase activity; in contrast, when we treated the cells with the telomerase inhibitor BIBR1532 upon emodin treatment, permanent telomere disturbance and obvious growth inhibition of 4T1-cell xenograft tumors were observed in mice. Taken together, our results show for the first time that emodin-induced telomeric DNA damage can upregulate telomerase activity, which may weaken its anticancer effect. The combined use of emodin and the telomerase inhibitor synergistically induced telomere dysfunction and inhibited tumor generation.
Collapse
|
47
|
Formisano L, Lu Y, Servetto A, Hanker AB, Jansen VM, Bauer JA, Sudhan DR, Guerrero-Zotano AL, Croessmann S, Guo Y, Ericsson PG, Lee KM, Nixon MJ, Schwarz LJ, Sanders ME, Dugger TC, Cruz MR, Behdad A, Cristofanilli M, Bardia A, O'Shaughnessy J, Nagy RJ, Lanman RB, Solovieff N, He W, Miller M, Su F, Shyr Y, Mayer IA, Balko JM, Arteaga CL. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nat Commun 2019; 10:1373. [PMID: 30914635 PMCID: PMC6435685 DOI: 10.1038/s41467-019-09068-2] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Using an ORF kinome screen in MCF-7 cells treated with the CDK4/6 inhibitor ribociclib plus fulvestrant, we identified FGFR1 as a mechanism of drug resistance. FGFR1-amplified/ER+ breast cancer cells and MCF-7 cells transduced with FGFR1 were resistant to fulvestrant ± ribociclib or palbociclib. This resistance was abrogated by treatment with the FGFR tyrosine kinase inhibitor (TKI) lucitanib. Addition of the FGFR TKI erdafitinib to palbociclib/fulvestrant induced complete responses of FGFR1-amplified/ER+ patient-derived-xenografts. Next generation sequencing of circulating tumor DNA (ctDNA) in 34 patients after progression on CDK4/6 inhibitors identified FGFR1/2 amplification or activating mutations in 14/34 (41%) post-progression specimens. Finally, ctDNA from patients enrolled in MONALEESA-2, the registration trial of ribociclib, showed that patients with FGFR1 amplification exhibited a shorter progression-free survival compared to patients with wild type FGFR1. Thus, we propose breast cancers with FGFR pathway alterations should be considered for trials using combinations of ER, CDK4/6 and FGFR antagonists. Era+ breast cancer patients often develop resistance to endocrine therapy. Here, the authors show that FGFR1 amplification is a resistance mechanism to CDK4/6 inhibitor and endocrine therapy and that combined treatment with FGFR, CDK4/6, and anti-estrogens is a potential therapeutic strategy in Era+ breast cancer tumors.
Collapse
Affiliation(s)
- Luigi Formisano
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Yao Lu
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | | | - Ariella B Hanker
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA.,UTSW Simmons Cancer Center, Dallas, TX, 75230, USA.,Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Valerie M Jansen
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Joshua A Bauer
- Departments of Biochemistry, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Dhivya R Sudhan
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA.,UTSW Simmons Cancer Center, Dallas, TX, 75230, USA
| | - Angel L Guerrero-Zotano
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Sarah Croessmann
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Yan Guo
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, 37232-6307, TN, USA
| | - Paula Gonzalez Ericsson
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Kyung-Min Lee
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Mellissa J Nixon
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Luis J Schwarz
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Melinda E Sanders
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA.,Departments of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Teresa C Dugger
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | | | - Amir Behdad
- Robert H Lurie Comprehensive Cancer Center, Chicago, 60611, IL, USA
| | | | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, 02114, MA, USA
| | - Joyce O'Shaughnessy
- Baylor University Medical Center, Texas Oncology, , US Oncology, Dallas, 75246, TX, USA
| | | | | | - Nadia Solovieff
- Novartis Institutes for Biomedical Research, Cambridge, 02139, MA, USA
| | - Wei He
- Novartis Institutes for Biomedical Research, Cambridge, 02139, MA, USA
| | - Michelle Miller
- Novartis Pharmaceuticals Corporation, East Hanover, 07936, NJ, USA
| | - Fei Su
- Novartis Pharmaceuticals Corporation, East Hanover, 07936, NJ, USA
| | - Yu Shyr
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, 37232-6307, TN, USA
| | - Ingrid A Mayer
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA.,Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Justin M Balko
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Carlos L Arteaga
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA. .,UTSW Simmons Cancer Center, Dallas, TX, 75230, USA. .,Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA.
| |
Collapse
|
48
|
Abstract
Purpose of Review The concept of cellular senescence has been evolving. Although originally proposed based on studies of serum-driven replication of cell lines in vitro, it is now clear that cellular senescence occurs in vivo. It has also become clear that cellular senescence can be triggered by a number of stimuli such as radiation, chemotherapy, activation of oncogenes, metabolic derangements, and chronic inflammation. Recent Findings As we learn more about the mechanisms of cellular aging, it has become important to ask whether accelerated cellular senescence occurs in lupus and other systemic rheumatologic diseases. Summary Accelerated cellular aging may be one explanation for some of the excess morbidity and mortality seen in lupus patients. If so, drugs targeting cellular senescence may provide new options for preventing long-term complications such as organ failure in systemic lupus erythematosus patients.
Collapse
Affiliation(s)
- Lin Gao
- Allergy Immunology Rheumatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Maria Slack
- Allergy Immunology Rheumatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Andrew McDavid
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jennifer Anolik
- Allergy Immunology Rheumatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R John Looney
- Allergy Immunology Rheumatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
49
|
Ameratunga M, Kipps E, Okines AF, Lopez JS. To Cycle or Fight—CDK4/6 Inhibitors at the Crossroads of Anticancer Immunity. Clin Cancer Res 2018; 25:21-28. [DOI: 10.1158/1078-0432.ccr-18-1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/21/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022]
|
50
|
Haines E, Chen T, Kommajosyula N, Chen Z, Herter-Sprie GS, Cornell L, Wong KK, Shapiro GI. Palbociclib resistance confers dependence on an FGFR-MAP kinase-mTOR-driven pathway in KRAS-mutant non-small cell lung cancer. Oncotarget 2018; 9:31572-31589. [PMID: 30167080 PMCID: PMC6114982 DOI: 10.18632/oncotarget.25803] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 07/08/2018] [Indexed: 12/24/2022] Open
Abstract
CDK4 is emerging as a target in KRAS-mutant non-small cell lung cancer (NSCLC). We demonstrate that KRAS-mutant NSCLC cell lines are initially sensitive to the CDK4/6 inhibitor palbociclib, but readily acquire resistance associated with increased expression of CDK6, D-type cyclins and cyclin E. Resistant cells also demonstrated increased ERK1/2 activity and sensitivity to MEK and ERK inhibitors. Moreover, MEK inhibition reduced the expression and activity of cell cycle proteins mediating palbociclib resistance. In resistant cells, ERK activated mTOR, driven in part by upstream FGFR1 signaling resulting from the extracellular secretion of FGF ligands. A genetically-engineered mouse model of KRAS-mutant NSCLC initially sensitive to palbociclib similarly developed acquired resistance with increased expression of cell cycle mediators, ERK1/2 and FGFR1. In this model, resistance was delayed with combined palbociclib and MEK inhibitor treatment. These findings implicate an FGFR1–MAP kinase–mTOR pathway resulting in increased expression of D-cyclins and CDK6 that confers palbociclib resistance and indicate that CDK4/6 inhibition acts to promote MAP kinase dependence.
Collapse
Affiliation(s)
- Eric Haines
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ting Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Perlmutter Cancer Center, New York University, Langone Medical Center, New York, New York, USA
| | - Naveen Kommajosyula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zhao Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Grit S Herter-Sprie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,University Hospital of Cologne, Weyertal, Cologne, Germany
| | - Liam Cornell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Perlmutter Cancer Center, New York University, Langone Medical Center, New York, New York, USA
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|