1
|
Aslan B, Manyam G, Iles LR, Tantawy SI, Desikan SP, Wierda WG, Gandhi V. Transcriptomic and proteomic differences in BTK-WT and BTK-mutated CLL and their changes during therapy with pirtobrutinib. Blood Adv 2024; 8:4487-4501. [PMID: 38968154 PMCID: PMC11395759 DOI: 10.1182/bloodadvances.2023012360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024] Open
Abstract
ABSTRACT Covalent Bruton tyrosine kinase inhibitors (cBTKis), which bind to the BTK C481 residue, are now primary therapeutics for chronic lymphocytic leukemia (CLL). Alterations at C481, primarily C481S, prevent cBTKi binding and lead to the emergence of resistant clones. Pirtobrutinib is a noncovalent BTKi that binds to both wild-type (WT) and C481S-mutated BTK and has shown efficacy in BTK-WT and -mutated CLL patient groups. To compare baseline clinical, transcriptomic, and proteomic characteristics and their changes during treatment in these 2 groups, we used 67 longitudinal peripheral blood samples obtained during the first 3 cycles of treatment with pirtobrutinib from 18 patients with CLL (11 BTK-mutated, 7 BTK-WT) enrolled in the BRUIN (pirtobrutinib in relapsed or refractory B-cell malignancies) trial. Eastern Cooperative Oncology Group performance status, age, and Rai stage were similar in both groups. At baseline, lymph nodes were larger in the BTK-mutated cohort. All patients achieved partial remission within 4 cycles of pirtobrutinib. Lactate dehydrogenase and β2-microglobulin levels decreased in both cohorts after 1 treatment cycle. Expression analysis demonstrated upregulation of 35 genes and downregulation of 6 in the BTK-mutated group. Gene set enrichment analysis revealed that the primary pathways enriched in BTK-mutated cells were involved in cell proliferation, metabolism, and stress response. Pathways associated with metabolism and proliferation were downregulated in both groups during pirtobrutinib treatment. Proteomic data corroborated transcriptomic findings. Our data identified inherent differences between BTK-mutated and -WT CLL and demonstrated molecular normalization of plasma and omics parameters with pirtobrutinib treatment in both groups.
Collapse
MESH Headings
- Humans
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Agammaglobulinaemia Tyrosine Kinase/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Mutation
- Middle Aged
- Transcriptome
- Pyrimidines/therapeutic use
- Pyrimidines/pharmacology
- Proteomics/methods
- Female
- Male
- Aged
- Piperidines/therapeutic use
- Piperidines/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Proteome
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Pyrazoles/therapeutic use
- Pyrazoles/pharmacology
- Aged, 80 and over
Collapse
Affiliation(s)
- Burcu Aslan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ganiraju Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lakesla R. Iles
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shady I. Tantawy
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sai Prasad Desikan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William G. Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
2
|
Harr MW, Lavik A, McColl K, Zhong F, Haberer B, Aldabbagh K, Yee V, Distelhorst CW. A Novel Peptide that Disrupts the Lck-IP 3R Protein-Protein Interaction Induces Widespread Cell Death in Leukemia and Lymphoma. ARCHIVES OF MICROBIOLOGY & IMMUNOLOGY 2023; 7:165-177. [PMID: 37829571 PMCID: PMC10569261 DOI: 10.26502/ami.936500114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
There is increasing evidence that the T-cell protein, Lck, is involved in the pathogenesis of chronic lymphocytic leukemia (CLL) as well as other leukemias and lymphomas. We previously discovered that Lck binds to domain 5 of inositol 1,4,5-trisphosphate receptors (IP3R) to regulate Ca2+ homeostasis. Using bioinformatics, we targeted a region within domain 5 of IP3R-1 predicted to facilitate protein-protein interactions (PPIs). We generated a synthetic 21 amino acid peptide, KKRMDLVLELKNNASKLLLAI, which constitutes a domain 5 sub-domain (D5SD) of IP3R-1 that specifically binds Lck via its SH2 domain. With the addition of an HIV-TAT sequence to enable cell permeability of D5SD peptide, we observed wide-spread, Ca2+-dependent, cell killing of hematological cancer cells when the Lck-IP3R PPI was disrupted by TAT-D5SD. All cell lines and primary cells were sensitive to D5SD peptide, but malignant T-cells were less sensitive compared with B-cell or myeloid malignancies. Mining of RNA-seq data showed that LCK was expressed in primary diffuse large B-cell lymphoma (DLBCL) as well as acute myeloid leukemia (AML). In fact, LCK shows a similar pattern of expression as many well-characterized AML oncogenes and is part of a protein interactome that includes FLT3-ITD, Notch-1, and Kit. Consistent with these findings, our data suggest that the Lck-IP3R PPI may protect malignant hematopoietic cells from death. Importantly, TAT-D5SD showed no cytotoxicity in three different non-hematopoietic cell lines; thus its ability to induce cell death appears specific to hematopoietic cells. Together, these data show that a peptide designed to disrupt the Lck-IP3R PPI has a wide range of pre-clinical activity in leukemia and lymphoma.
Collapse
|
3
|
Koutras N, Morfos V, Konnaris K, Kouvela A, Shaukat AN, Stathopoulos C, Stamatopoulou V, Nika K. Integrated signaling and transcriptome analysis reveals Src family kinase individualities and novel pathways controlled by their constitutive activity. Front Immunol 2023; 14:1224520. [PMID: 37680627 PMCID: PMC10482094 DOI: 10.3389/fimmu.2023.1224520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
The Src family kinases (SFKs) Lck and Lyn are crucial for lymphocyte development and function. Albeit tissue-restricted expression patterns the two kinases share common functions; the most pronounced one being the phosphorylation of ITAM motifs in the cytoplasmic tails of antigenic receptors. Lck is predominantly expressed in T lymphocytes; however, it can be ectopically found in B-1 cell subsets and numerous pathologies including acute and chronic B-cell leukemias. The exact impact of Lck on the B-cell signaling apparatus remains enigmatic and is followed by the long-lasting question of mechanisms granting selectivity among SFK members. In this work we sought to investigate the mechanistic basis of ectopic Lck function in B-cells and compare it to events elicited by the predominant B-cell SFK, Lyn. Our results reveal substrate promiscuity displayed by the two SFKs, which however, is buffered by their differential susceptibility toward regulatory mechanisms, revealing a so far unappreciated aspect of SFK member-specific fine-tuning. Furthermore, we show that Lck- and Lyn-generated signals suffice to induce transcriptome alterations, reminiscent of B-cell activation, in the absence of receptor/co-receptor engagement. Finally, our analyses revealed a yet unrecognized role of SFKs in tipping the balance of cellular stress responses, by promoting the onset of ER-phagy, an as yet completely uncharacterized process in B lymphocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Konstantina Nika
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
4
|
Seth A, Yokokura Y, Choi JY, Shyer JA, Vidyarthi A, Craft J. AP-1-independent NFAT signaling maintains follicular T cell function in infection and autoimmunity. J Exp Med 2023; 220:e20211110. [PMID: 36820828 PMCID: PMC9998660 DOI: 10.1084/jem.20211110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/05/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Coordinated gene expression programs enable development and function of T cell subsets. Follicular helper T (Tfh) cells coordinate humoral immune responses by providing selective and instructive cues to germinal center B cells. Here, we show that AP-1-independent NFAT gene expression, a program associated with hyporesponsive T cell states like anergy or exhaustion, is also a distinguishing feature of Tfh cells. NFAT signaling in Tfh cells, maintained by NFAT2 autoamplification, is required for their survival. ICOS signaling upregulates Bcl6 and induces an AP-1-independent NFAT program in primary T cells. Using lupus-prone mice, we demonstrate that genetic disruption or pharmacologic inhibition of NFAT signaling specifically impacts Tfh cell maintenance and leads to amelioration of autoantibody production and renal injury. Our data provide important conceptual and therapeutic insights into the signaling mechanisms that regulate Tfh cell development and function.
Collapse
Affiliation(s)
- Abhinav Seth
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Yoshiyuki Yokokura
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Jin-Young Choi
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Justin A. Shyer
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Aurobind Vidyarthi
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Joe Craft
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Mékinian A, Quinquenel A, Belkacem KA, Kanoun F, Dondi E, Franck E, Boubaya M, Mhibik M, Baran-Marszak F, Letestu R, Ajchenbaum-Cymbalista F, Lévy V, Varin-Blank N, Le Roy C. Immuno-regulatory malignant B cells contribute to Chronic Lymphocytic Leukemia progression. Cancer Gene Ther 2023:10.1038/s41417-023-00602-5. [PMID: 36973425 DOI: 10.1038/s41417-023-00602-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/29/2023] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
Abstract
Chronic Lymphocytic Leukemia (CLL) is a heterogeneous B cell neoplasm ranging from indolent to rapidly progressive disease. Leukemic cell subsets with regulatory properties evade immune clearance; however, the contribution of such subsets during CLL progression is not completely elucidated. Here, we report that CLL B cells crosstalk with their immune counterparts, notably by promoting the regulatory T (Treg) cell compartment and shaping several helper T (Th) subsets. Among various constitutively- and BCR/CD40-mediated factors secreted, tumour subsets co-express two important immunoregulatory cytokines, IL10 and TGFβ1, both associated with a memory B cell phenotype. Neutralizing secreted IL10 or inhibiting the TGFβ signalling pathway demonstrated that these cytokines are mainly involved in Th- and Treg differentiation/maintenance. In line with the regulatory subsets, we also demonstrated that a CLL B cell population expresses FOXP3, a marker of regulatory T cells. Analysis of IL10, TGFβ1 and FOXP3 positive subpopulations frequencies in CLL samples discriminated 2 clusters of untreated CLL patients that were significantly different in Tregs frequency and time-to-treatment. Since this distinction was pertinent to disease progression, the regulatory profiling provides a new rationale for patient stratification and sheds light on immune dysfunction in CLL.
Collapse
Affiliation(s)
- Arsène Mékinian
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Anne Quinquenel
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Koceïla Ait Belkacem
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Feriel Kanoun
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Elisabetta Dondi
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Emilie Franck
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | | | - Maïssa Mhibik
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Fanny Baran-Marszak
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
- Service d'Hématologie Biologique, APHP, Hôpital Avicenne, Bobigny, France
| | - Rémi Letestu
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
- Service d'Hématologie Biologique, APHP, Hôpital Avicenne, Bobigny, France
| | - Florence Ajchenbaum-Cymbalista
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
- Service d'Hématologie Biologique, APHP, Hôpital Avicenne, Bobigny, France
| | - Vincent Lévy
- URC, APHP, Hôpital Avicenne, Bobigny, France
- CRC, APHP, Hôpital Avicenne, Bobigny, France
| | - Nadine Varin-Blank
- INSERM, U978, Bobigny, France.
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France.
| | - Christine Le Roy
- INSERM, U978, Bobigny, France.
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France.
| |
Collapse
|
6
|
Harr M, Lavik A, McColl K, Zhong F, Haberer B, Aldabbagh K, Yee V, Distelhorst CW. A novel peptide that disrupts the Lck-IP3R protein-protein interaction induces widespread cell death in leukemia and lymphoma. RESEARCH SQUARE 2023:rs.3.rs-2436910. [PMID: 36711753 PMCID: PMC9882657 DOI: 10.21203/rs.3.rs-2436910/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There is increasing evidence that the T-cell protein, Lck, is involved in the pathogenesis of chronic lymphocytic leukemia (CLL) as well as other leukemias and lymphomas. We previously discovered that Lck binds to domain 5 of inositol 1,4,5-trisphosphate receptors (IP3R) to regulate Ca2+ homeostasis. Using bioinformatics, we targeted a region within domain 5 of IP3R-1 predicted to facilitate protein-protein interactions (PPIs). We generated a synthetic 21 amino acid peptide, KKRMDLVLELKNNASKLLLAI, which constitutes a domain 5 sub-domain (D5SD) of IP3R-1 that specifically binds Lck via its SH2 domain. With the addition of an HIV-TAT sequence to enable cell permeability of D5SD peptide, we observed wide-spread, Ca2+-dependent, cell killing of hematological cancer cells when the Lck-IP3R PPI was disrupted by TAT-D5SD. All cell lines and primary cells were sensitive to D5SD peptide, but malignant T-cells were less sensitive compared with B-cell or myeloid malignancies. Mining of RNA-seq data showed that LCK was expressed in primary diffuse large B-cell lymphoma (DLBCL) as well as acute myeloid leukemia (AML). In fact, LCK shows a similar pattern of expression as many well-characterized AML oncogenes and is part of a protein interactome that includes FLT3-ITD, Notch-1, and Kit. Consistent with these findings, our data suggest that the Lck-IP3R PPI may protect malignant hematopoietic cells from death. Importantly, TAT-D5SD showed no cytotoxicity in three different non-hematopoietic cell lines; thus its ability to induce cell death appears specific to hematopoietic cells. Together, these data show that a peptide designed to disrupt the Lck-IP3R PPI has a wide range of pre-clinical activity in leukemia and lymphoma.
Collapse
|
7
|
Henning AN, Budeebazar M, Boldbaatar D, Yagaanbuyant D, Duger D, Batsukh K, Zhou H, Baumann R, Allison RD, Alter HJ, Dashdorj N, De Giorgi V. Peripheral B cells from patients with hepatitis C virus-associated lymphoma exhibit clonal expansion and an anergic-like transcriptional profile. iScience 2022; 26:105801. [PMID: 36619973 PMCID: PMC9813790 DOI: 10.1016/j.isci.2022.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/27/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic HCV infection remains a global health concern due to its involvement in hepatic and extrahepatic diseases, including B cell non-Hodgkin lymphoma (BNHL). Clinical and epidemiological evidence support a causal role for HCV in BNHL development, although mechanistic insight is lacking. We performed RNA-sequencing on peripheral B cells from patients with HCV alone, BNHL alone, and HCV-associated BNHL to identify unique and shared transcriptional profiles associated with transformation. In patients with HCV-associated BNHL, we observed the enrichment of an anergic-like gene signature and evidence of clonal expansion that was correlated with the expression of epigenetic regulatory genes. Our data support a role for viral-mediated clonal expansion of anergic-like B cells in HCV-associated BNHL development and suggest epigenetic dysregulation as a potential mechanism driving expansion. We propose epigenetic mechanisms may be involved in both HCV-associated lymphoma and regulation of B cell anergy, representing an attractive target for clinical interventions.
Collapse
Affiliation(s)
- Amanda N. Henning
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding author
| | - Myagmarjav Budeebazar
- Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia,Liver Center, Ulaanbaatar 14230, Mongolia
| | | | | | - Davaadorj Duger
- Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Khishigjargal Batsukh
- Center of Hematology and Bone Marrow Transplantation, First Central Hospital of Mongolia, Ulaanbaatar 14210, Mongolia
| | - Huizhi Zhou
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan Baumann
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert D. Allison
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Harvey J. Alter
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naranjargal Dashdorj
- Liver Center, Ulaanbaatar 14230, Mongolia,Onom Foundation, Ulaanbaatar 17011, Mongolia
| | - Valeria De Giorgi
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding author
| |
Collapse
|
8
|
Leveille E, Chan LN, Mirza AS, Kume K, Müschen M. SYK and ZAP70 kinases in autoimmunity and lymphoid malignancies. Cell Signal 2022; 94:110331. [PMID: 35398488 DOI: 10.1016/j.cellsig.2022.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022]
Abstract
SYK and ZAP70 nonreceptor tyrosine kinases serve essential roles in initiating B-cell receptor (BCR) and T-cell receptor (TCR) signaling in B- and T-lymphocytes, respectively. Despite their structural and functional similarity, expression of SYK and ZAP70 is strictly separated during B- and T-lymphocyte development, the reason for which was not known. Aberrant co-expression of ZAP70 with SYK was first identified in B-cell chronic lymphocytic leukemia (CLL) and is considered a biomarker of aggressive disease and poor clinical outcomes. We recently found that aberrant ZAP70 co-expression not only functions as an oncogenic driver in CLL but also in various other B-cell malignancies, including acute lymphoblastic leukemia (B-ALL) and mantle cell lymphoma. Thereby, aberrantly expressed ZAP70 redirects SYK and BCR-downstream signaling from NFAT towards activation of the PI3K-pathway. In the sole presence of SYK, pathological BCR-signaling in autoreactive or premalignant cells induces NFAT-activation and NFAT-dependent anergy and negative selection. In contrast, negative selection of pathological B-cells is subverted when ZAP70 diverts SYK from activation of NFAT towards tonic PI3K-signaling, which promotes survival instead of cell death. We discuss here how both B-cell malignancies and autoimmune diseases frequently evolve to harness this mechanism, highlighting the importance of developmental separation of the two kinases as an essential safeguard.
Collapse
Affiliation(s)
- Etienne Leveille
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Lai N Chan
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Abu-Sayeef Mirza
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kohei Kume
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Immunobiology, Yale University, CT 06520, USA.
| |
Collapse
|
9
|
Michée-Cospolite M, Boudigou M, Grasseau A, Simon Q, Mignen O, Pers JO, Cornec D, Le Pottier L, Hillion S. Molecular Mechanisms Driving IL-10- Producing B Cells Functions: STAT3 and c-MAF as Underestimated Central Key Regulators? Front Immunol 2022; 13:818814. [PMID: 35359922 PMCID: PMC8961445 DOI: 10.3389/fimmu.2022.818814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/11/2022] [Indexed: 12/25/2022] Open
Abstract
Regulatory B cells (Bregs) have been highlighted in very different pathology settings including autoimmune diseases, allergy, graft rejection, and cancer. Improving tools for the characterization of Bregs has become the main objective especially in humans. Transitional, mature B cells and plasma cells can differentiate into IL-10 producing Bregs in both mice and humans, suggesting that Bregs are not derived from unique precursors but may arise from different competent progenitors at unrestricted development stages. Moreover, in addition to IL-10 production, regulatory B cells used a broad range of suppressing mechanisms to modulate the immune response. Although Bregs have been consistently described in the literature, only a few reports described the molecular aspects that control the acquisition of the regulatory function. In this manuscript, we detailed the latest reports describing the control of IL-10, TGFβ, and GZMB production in different Breg subsets at the molecular level. We focused on the understanding of the role of the transcription factors STAT3 and c-MAF in controlling IL-10 production in murine and human B cells and how these factors may represent an important crossroad of several key drivers of the Breg response. Finally, we provided original data supporting the evidence that MAF is expressed in human IL-10- producing plasmablast and could be induced in vitro following different stimulation cocktails. At steady state, we reported that MAF is expressed in specific human B-cell tonsillar subsets including the IgD+ CD27+ unswitched population, germinal center cells and plasmablast.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Divi Cornec
- U1227, LBAI, Univ Brest, Inserm, and CHU Brest, Brest, France
| | | | - Sophie Hillion
- U1227, LBAI, Univ Brest, Inserm, and CHU Brest, Brest, France
| |
Collapse
|
10
|
Gao R, Zhang Y, Zeng C, Li Y. The role of NFAT in the pathogenesis and targeted therapy of hematological malignancies. Eur J Pharmacol 2022; 921:174889. [DOI: 10.1016/j.ejphar.2022.174889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023]
|
11
|
Masle-Farquhar E, Peters TJ, Miosge LA, Parish IA, Weigel C, Oakes CC, Reed JH, Goodnow CC. Uncontrolled CD21low age-associated and B1 B cell accumulation caused by failure of an EGR2/3 tolerance checkpoint. Cell Rep 2022; 38:110259. [DOI: 10.1016/j.celrep.2021.110259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/03/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022] Open
|
12
|
Tanaka S, Ise W, Baba Y, Kurosaki T. Silencing and activating anergic B cells. Immunol Rev 2021; 307:43-52. [PMID: 34908172 DOI: 10.1111/imr.13053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Despite the existence of central tolerance mechanisms, including clonal deletion and receptor editing to eliminate self-reactive B cells, moderately self-reactive cells still survive in the periphery (about 20% of peripheral B cells). These cells normally exist in a functionally silenced state called anergy; thus, anergy has been thought to contribute to tolerance by active-silencing of potentially dangerous B cells. However, a positive rationale for the existence of these anergic B cells has recently been suggested by discoveries that broadly neutralizing antibodies for HIV and influenza virus possess poly- and/or auto-reactivity. Given the conundrum of generating inherent holes in the immune repertoire, retaining weakly self-reactive BCRs on anergic B cells could allow these antibodies to serve as an effective defense against pathogens, particularly in the case of pathogens that mimic forbidden self-epitopes to evade the host immune system. Thus, anergic B cells should be brought into a silenced or activated state, depending on their contexts. Here, we review recent progress in our understanding of how the anergic B cell state is controlled in B cell-intrinsic and B cell-extrinsic ways.
Collapse
Affiliation(s)
- Shinya Tanaka
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Wataru Ise
- Team of Host Defense, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.,Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.,Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
13
|
Hess B, Kalmuk J, Znoyko I, Schandl CA, Wagner-Johnston N, Mazzoni S, Hendrickson L, Chiad Z, Greenwell IB, Wolff DJ. Clinical utility of chromosomal microarray in establishing clonality and high risk features in patients with Richter transformation. Cancer Genet 2021; 260-261:18-22. [PMID: 34808593 PMCID: PMC10084781 DOI: 10.1016/j.cancergen.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022]
Abstract
Richter transformation (RT) refers to the development of an aggressive lymphoma in patients with pre-existing chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). It carries a poor prognosis secondary to poor response to therapy or rapid disease relapse. Currently there are no randomized trials to guide treatment. Therapeutic decisions are often influenced by the presence or absence of a clonal relationship between the underlying CLL/SLL and the new lymphoma given the poor prognosis of patients with clonally related RT. Chromosomal microarray analysis (CMA) can help to establish clonality while also detecting genomic complexity and clinically relevant genetic variants such as loss of CDKN2A and/or TP53. As a result, CMA has potential prognostic and therapeutic implications. For this study, CMA results from patients with Richter transformation were evaluated in paired CLL/SLL and transformed lymphoma samples. CMA revealed that 86% of patients had common aberrations in the two samples indicating evidence of common clonality. CMA was also useful in detecting aberrations associated with a poor prognosis in 71% of patients with RT. This study highlights the potential clinical utility of CMA to investigate the clonal relationship between CLL/SLL and RT, provide prognostic information, and possibly guide therapeutic decision making for patients with Richter transformation.
Collapse
Affiliation(s)
- Brian Hess
- Department of Hematology/Oncology, Walton Research Building, Medical University of South Carolina, 39 Sabin Street, Charleston SC, 29425, USA
| | - James Kalmuk
- Department of Hematology/Oncology, Walton Research Building, Medical University of South Carolina, 39 Sabin Street, Charleston SC, 29425, USA.
| | - Iya Znoyko
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston SC, 29425, USA
| | - Cynthia A Schandl
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston SC, 29425, USA
| | - Nina Wagner-Johnston
- Department of Hematology/Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore MD, 21287, USA
| | - Sandra Mazzoni
- Department of Hematology/Oncology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH, 44195, USA
| | - Lindsey Hendrickson
- Department of Hematology/Oncology, Walton Research Building, Medical University of South Carolina, 39 Sabin Street, Charleston SC, 29425, USA
| | - Zane Chiad
- Department of Hematology/Oncology, Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, Charlotte NC, 28204, USA
| | - Irl Brian Greenwell
- Department of Hematology/Oncology, Walton Research Building, Medical University of South Carolina, 39 Sabin Street, Charleston SC, 29425, USA
| | - Daynna J Wolff
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston SC, 29425, USA
| |
Collapse
|
14
|
Cell cycle control in Richter transformation. Blood 2021; 138:1005-1007. [PMID: 34554222 DOI: 10.1182/blood.2021011648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
|
15
|
Morande PE, Yan XJ, Sepulveda J, Seija N, Marquez ME, Sotelo N, Abreu C, Crispo M, Fernández-Graña G, Rego N, Bois T, Methot SP, Palacios F, Remedi V, Rai KR, Buschiazzo A, Di Noia JM, Navarrete MA, Chiorazzi N, Oppezzo P. AID overexpression leads to aggressive murine CLL and nonimmunoglobulin mutations that mirror human neoplasms. Blood 2021; 138:246-258. [PMID: 34292322 DOI: 10.1182/blood.2020008654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/12/2021] [Indexed: 11/20/2022] Open
Abstract
Most cancers become more dangerous by the outgrowth of malignant subclones with additional DNA mutations that favor proliferation or survival. Using chronic lymphocytic leukemia (CLL), a disease that exemplifies this process and is a model for neoplasms in general, we created transgenic mice overexpressing the enzyme activation-induced deaminase (AID), which has a normal function of inducing DNA mutations in B lymphocytes. AID not only allows normal B lymphocytes to develop more effective immunoglobulin-mediated immunity, but is also able to mutate nonimmunoglobulin genes, predisposing to cancer. In CLL, AID expression correlates with poor prognosis, suggesting a role for this enzyme in disease progression. Nevertheless, direct experimental evidence identifying the specific genes that are mutated by AID and indicating that those genes are associated with disease progression is not available. To address this point, we overexpressed Aicda in a murine model of CLL (Eμ-TCL1). Analyses of TCL1/AID mice demonstrate a role for AID in disease kinetics, CLL cell proliferation, and the development of cancer-related target mutations with canonical AID signatures in nonimmunoglobulin genes. Notably, our mouse models can accumulate mutations in the same genes that are mutated in human cancers. Moreover, some of these mutations occur at homologous positions, leading to identical or chemically similar amino acid substitutions as in human CLL and lymphoma. Together, these findings support a direct link between aberrant AID activity and CLL driver mutations that are then selected for their oncogenic effects, whereby AID promotes aggressiveness in CLL and other B-cell neoplasms.
Collapse
MESH Headings
- Animals
- Cytidine Deaminase/genetics
- Disease Models, Animal
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Up-Regulation
Collapse
Affiliation(s)
- Pablo Elías Morande
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Xiao-Jie Yan
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Julieta Sepulveda
- Laboratory of Molecular Medicine, Centro Asistencial Docente e Investigación de la Universidad de Magallanes (CADI-UMAG), School of Medicine, University of Magallanes, Punta Arenas, Chile
| | - Noé Seija
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Elena Marquez
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Sotelo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Cecilia Abreu
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | | | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Therence Bois
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
| | - Stephen P Methot
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Florencia Palacios
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Victoria Remedi
- Hospital Maciel, Administración de los Servicios de Salud del Estado (ASSE), Ministerio de Salud, Montevideo, Uruguay
| | - Kanti R Rai
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; and
- Integrative Microbiology of Zoonotic Agents-International Joint Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Marcelo A Navarrete
- Laboratory of Molecular Medicine, Centro Asistencial Docente e Investigación de la Universidad de Magallanes (CADI-UMAG), School of Medicine, University of Magallanes, Punta Arenas, Chile
| | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
16
|
Crickx E, Chappert P, Sokal A, Weller S, Azzaoui I, Vandenberghe A, Bonnard G, Rossi G, Fadeev T, Storck S, Fadlallah J, Meignin V, Rivière E, Audia S, Godeau B, Michel M, Weill JC, Reynaud CA, Mahévas M. Rituximab-resistant splenic memory B cells and newly engaged naive B cells fuel relapses in patients with immune thrombocytopenia. Sci Transl Med 2021; 13:13/589/eabc3961. [PMID: 33853929 DOI: 10.1126/scitranslmed.abc3961] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/29/2020] [Accepted: 03/22/2021] [Indexed: 01/19/2023]
Abstract
Rituximab (RTX), an antibody targeting CD20, is widely used as a first-line therapeutic strategy in B cell-mediated autoimmune diseases. However, a large proportion of patients either do not respond to the treatment or relapse during B cell reconstitution. Here, we characterize the cellular basis responsible for disease relapse in secondary lymphoid organs in humans, taking advantage of the opportunity offered by therapeutic splenectomy in patients with relapsing immune thrombocytopenia. By analyzing the B and plasma cell immunoglobulin gene repertoire at bulk and antigen-specific single-cell level, we demonstrate that relapses are associated with two responses coexisting in germinal centers and involving preexisting mutated memory B cells that survived RTX treatment and naive B cells generated upon reconstitution of the B cell compartment. To identify distinctive characteristics of the memory B cells that escaped RTX-mediated depletion, we analyzed RTX refractory patients who did not respond to treatment at the time of B cell depletion. We identified, by single-cell RNA sequencing (scRNA-seq) analysis, a population of quiescent splenic memory B cells that present a unique, yet reversible, RTX-shaped phenotype characterized by down-modulation of B cell-specific factors and expression of prosurvival genes. Our results clearly demonstrate that these RTX-resistant autoreactive memory B cells reactivate as RTX is cleared and give rise to plasma cells and further germinal center reactions. Their continued surface expression of CD19 makes them efficient targets for current anti-CD19 therapies. This study thus identifies a pathogenic contributor to autoimmune diseases that can be targeted by available therapeutic agents.
Collapse
Affiliation(s)
- Etienne Crickx
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France.,Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France
| | - Pascal Chappert
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France.,Inovarion, 75005 Paris, France
| | - Aurélien Sokal
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Sandra Weller
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Imane Azzaoui
- Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France.,INSERM U955, Université Paris Est Créteil (UPEC), 94000 Créteil, France
| | - Alexis Vandenberghe
- Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France.,INSERM U955, Université Paris Est Créteil (UPEC), 94000 Créteil, France
| | - Guillaume Bonnard
- INSERM U955, Université Paris Est Créteil (UPEC), 94000 Créteil, France
| | - Geoffrey Rossi
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Tatiana Fadeev
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Sébastien Storck
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Jehane Fadlallah
- Service d'immunologie clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Sorbonne Paris Cité, 75010 Paris, France
| | - Véronique Meignin
- Service d'anatomopathologie, Hôpital Saint-Louis (AP-HP), 75010 Paris, France
| | - Etienne Rivière
- Service de médecine interne, Hôpital Haut-Lévêque, 33604 Pessac, France
| | - Sylvain Audia
- Service de médecine interne, Hôpital du Bocage, 21000 Dijon, France
| | - Bertrand Godeau
- Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France
| | - Marc Michel
- Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France
| | - Jean-Claude Weill
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Claude-Agnès Reynaud
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Matthieu Mahévas
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France. .,Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France.,INSERM U955, Université Paris Est Créteil (UPEC), 94000 Créteil, France
| |
Collapse
|
17
|
Active Akt signaling triggers CLL toward Richter transformation via overactivation of Notch1. Blood 2021; 137:646-660. [PMID: 33538798 DOI: 10.1182/blood.2020005734] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Richter's transformation (RT) is an aggressive lymphoma that occurs upon progression from chronic lymphocytic leukemia (CLL). Transformation has been associated with genetic aberrations in the CLL phase involving TP53, CDKN2A, MYC, and NOTCH1; however, a significant proportion of RT cases lack CLL phase-associated events. Here, we report that high levels of AKT phosphorylation occur both in high-risk CLL patients harboring TP53 and NOTCH1 mutations as well as in patients with RT. Genetic overactivation of Akt in the murine Eµ-TCL1 CLL mouse model resulted in CLL transformation to RT with significantly reduced survival and an aggressive lymphoma phenotype. In the absence of recurrent mutations, we identified a profile of genomic aberrations intermediate between CLL and diffuse large B-cell lymphoma. Multiomics assessment by phosphoproteomic/proteomic and single-cell transcriptomic profiles of this Akt-induced murine RT revealed an S100 protein-defined subcluster of highly aggressive lymphoma cells that developed from CLL cells, through activation of Notch via Notch ligand expressed by T cells. Constitutively active Notch1 similarly induced RT of murine CLL. We identify Akt activation as an initiator of CLL transformation toward aggressive lymphoma by inducing Notch signaling between RT cells and microenvironmental T cells.
Collapse
|
18
|
B Cell Receptor signaling and genetic lesions in TP53 and CDKN2A/CDKN2B cooperate in Richter Transformation. Blood 2021; 138:1053-1066. [PMID: 33900379 DOI: 10.1182/blood.2020008276] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/06/2021] [Indexed: 11/20/2022] Open
Abstract
B cell receptor (BCR) signals play a critical role in the pathogenesis of chronic lymphocytic leukemia (CLL), but their role in regulating CLL cell proliferation has still not been firmly established. Unlike normal B cells, CLL cells do not proliferate in vitro upon engagement of the BCR, suggesting that CLL cell proliferation is regulated by other signals from the microenvironment, such as those provided by Toll-like receptors or T cells. Here, we report that BCR engagement of human and murine CLL cells induces several positive regulators of the cell cycle, but simultaneously induces the negative regulators CDKN1A, CDKN2A and CDKN2B, which block cell cycle progression. We further show that introduction of genetic lesions that downregulate these cell cycle inhibitors, such as inactivating lesions in CDKN2A, CDKN2B and the CDKN1A regulator TP53, leads to more aggressive disease in a murine in vivo CLL model and spontaneous proliferation in vitro that is BCR-dependent but independent of costimulatory signals. Importantly, inactivating lesions in CDKN2A, CDKN2B and TP53 frequently co-occur in Richter syndrome, and BCR stimulation of human Richter syndrome cells with such lesions is sufficient to induce proliferation. We also show that tumor cells with combined TP53 and CDKN2A/2B abnormalities remain sensitive to BCR inhibitor treatment and are synergistically sensitive to the combination of a BCR and CDK4/6 inhibitor both in vitro and in vivo. These data provide evidence that BCR signals are directly involved in driving CLL cell proliferation and reveal a novel mechanism of Richter transformation.
Collapse
|
19
|
Sadras T, Martin M, Kume K, Robinson ME, Saravanakumar S, Lenz G, Chen Z, Song JY, Siddiqi T, Oksa L, Knapp AM, Cutler J, Cosgun KN, Klemm L, Ecker V, Winchester J, Ghergus D, Soulas-Sprauel P, Kiefer F, Heisterkamp N, Pandey A, Ngo V, Wang L, Jumaa H, Buchner M, Ruland J, Chan WC, Meffre E, Martin T, Müschen M. Developmental partitioning of SYK and ZAP70 prevents autoimmunity and cancer. Mol Cell 2021; 81:2094-2111.e9. [PMID: 33878293 DOI: 10.1016/j.molcel.2021.03.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/01/2020] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Even though SYK and ZAP70 kinases share high sequence homology and serve analogous functions, their expression in B and T cells is strictly segregated throughout evolution. Here, we identified aberrant ZAP70 expression as a common feature in a broad range of B cell malignancies. We validated SYK as the kinase that sets the thresholds for negative selection of autoreactive and premalignant clones. When aberrantly expressed in B cells, ZAP70 competes with SYK at the BCR signalosome and redirects SYK from negative selection to tonic PI3K signaling, thereby promoting B cell survival. In genetic mouse models for B-ALL and B-CLL, conditional expression of Zap70 accelerated disease onset, while genetic deletion impaired malignant transformation. Inducible activation of Zap70 during B cell development compromised negative selection of autoreactive B cells, resulting in pervasive autoantibody production. Strict segregation of the two kinases is critical for normal B cell selection and represents a central safeguard against the development of autoimmune disease and B cell malignancies.
Collapse
Affiliation(s)
- Teresa Sadras
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mickaël Martin
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; Department of Clinical Immunology, Strasbourg University Hospital, Strasbourg, France
| | - Kohei Kume
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Mark E Robinson
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Supraja Saravanakumar
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Gal Lenz
- Department of Cancer Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zhengshan Chen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Joo Y Song
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Tanya Siddiqi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Laura Oksa
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anne Marie Knapp
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Jevon Cutler
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kadriye Nehir Cosgun
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Lars Klemm
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Veronika Ecker
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Janet Winchester
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Dana Ghergus
- Department of Clinical Hematology, Hospices Civils de Lyon, Lyon, France
| | - Pauline Soulas-Sprauel
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; Department of Clinical Immunology, Strasbourg University Hospital, Strasbourg, France
| | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Nora Heisterkamp
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vu Ngo
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Lili Wang
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Hassan Jumaa
- Department of Immunology, University of Ulm, Ulm, Germany
| | - Maike Buchner
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Wing-Chung Chan
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Thierry Martin
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; Department of Clinical Immunology, Strasbourg University Hospital, Strasbourg, France.
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Sana I, Mantione ME, Angelillo P, Muzio M. Role of NFAT in Chronic Lymphocytic Leukemia and Other B-Cell Malignancies. Front Oncol 2021; 11:651057. [PMID: 33869054 PMCID: PMC8047411 DOI: 10.3389/fonc.2021.651057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years significant progress has been made in the clinical management of chronic lymphocytic leukemia (CLL) as well as other B-cell malignancies; targeting proximal B-cell receptor signaling molecules such as Bruton Tyrosine Kinase (BTK) and Phosphoinositide 3-kinase (PI3Kδ) has emerged as a successful treatment strategy. Unfortunately, a proportion of patients are still not cured with available therapeutic options, thus efforts devoted to studying and identifying new potential druggable targets are warranted. B-cell receptor stimulation triggers a complex cascade of signaling events that eventually drives the activation of downstream transcription factors including Nuclear Factor of Activated T cells (NFAT). In this review, we summarize the literature on the expression and function of NFAT family members in CLL where NFAT is not only overexpressed but also constitutively activated; NFAT controls B-cell anergy and targeting this molecule using specific inhibitors impacts on CLL cell viability. Next, we extend our analysis on other mature B-cell lymphomas where a distinct pattern of expression and activation of NFAT is reported. We discuss the therapeutic potential of strategies aimed at targeting NFAT in B-cell malignancies not overlooking the fact that NFAT may play additional roles regulating the inflammatory microenvironment.
Collapse
Affiliation(s)
- Ilenia Sana
- Division of Experimental Oncology, San Raffaele Hospital IRCCS, Milano, Italy
| | | | - Piera Angelillo
- Division of Experimental Oncology, San Raffaele Hospital IRCCS, Milano, Italy.,Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Muzio
- Division of Experimental Oncology, San Raffaele Hospital IRCCS, Milano, Italy
| |
Collapse
|
21
|
Liddiard K, Grimstead JW, Cleal K, Evans A, Baird DM. Tracking telomere fusions through crisis reveals conflict between DNA transcription and the DNA damage response. NAR Cancer 2021; 3:zcaa044. [PMID: 33447828 PMCID: PMC7787266 DOI: 10.1093/narcan/zcaa044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Identifying attributes that distinguish pre-malignant from senescent cells provides opportunities for targeted disease eradication and revival of anti-tumour immunity. We modelled a telomere-driven crisis in four human fibroblast lines, sampling at multiple time points to delineate genomic rearrangements and transcriptome developments that characterize the transition from dynamic proliferation into replicative crisis. Progression through crisis was associated with abundant intra-chromosomal telomere fusions with increasing asymmetry and reduced microhomology usage, suggesting shifts in DNA repair capacity. Eroded telomeres also fused with genomic loci actively engaged in transcription, with particular enrichment in long genes. Both gross copy number alterations and transcriptional responses to crisis likely underpin the elevated frequencies of telomere fusion with chromosomes 9, 16, 17, 19 and most exceptionally, chromosome 12. Juxtaposition of crisis-regulated genes with loci undergoing de novo recombination exposes the collusive contributions of cellular stress responses to the evolving cancer genome.
Collapse
Affiliation(s)
- Kate Liddiard
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Julia W Grimstead
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Kez Cleal
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Anna Evans
- Wales Gene Park, Institute of Medical Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Duncan M Baird
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
22
|
Wang J, Zhang Y, Liu L, Cui Z, Shi R, Hou J, Liu Z, Yang L, Wang L, Li Y. NFAT2 overexpression suppresses the malignancy of hepatocellular carcinoma through inducing Egr2 expression. BMC Cancer 2020; 20:966. [PMID: 33023539 PMCID: PMC7542386 DOI: 10.1186/s12885-020-07474-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nuclear factor of activated T cells 2 (NFAT2) has been reported to regulate the development and malignancy of few tumors. In this study, we aimed to explore the effect of NFAT2 expression on cell fate of HepG2 cell and its potential mechanisms. METHODS Firstly, the pcDNA3.1-NFAT2 plasmid was transfected into HepG2 cells to construct NFAT2 overexpressed HepG2 cells. Then, the chemical count kit-8 cell viability assay, Annexin V-FITC apoptosis detection, EdU labeling proliferation detection, transwell and wound healing experiments were performed. The expression of Egr2 and FasL, and the phosphorylation of AKT and ERK, after ionomycin and PMA co-stimulation, was detected, while the Ca2+ mobilization stimulated by K+ solution was determined. At last, the mRNA and protein expression of NFAT2, Egr2, FasL, COX-2 and c-myc in carcinoma and adjacent tissues was investigated. RESULTS The NFAT2 overexpression suppressed the cell viability, invasion and migration capabilities, and promoted apoptosis of HepG2 cells. NFAT2 overexpression induced the expression of Egr2 and FasL and suppressed the phosphorylation of AKT and ERK. The sensitivity and Ca2+ mobilization of HepG2 cells was also inhibited by NFAT2 overexpression. Compared with adjacent tissues, the carcinoma tissues expressed less NFAT2, Egr2, FasL and more COX-2 and c-myc. CONCLUSION The current study firstly suggested that NFAT2 suppressed the aggression and malignancy of HepG2 cells through inducing the expression of Egr2. The absence of NFAT2 and Egr2 in carcinoma tissues reminded us that NFAT2 may be a promising therapeutic target for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Jian Wang
- Hepatobiliary Surgery Department, Tianjin First Center Hospital, Tianjin Clinical Research Center for Organ Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, No. 24 Fukang Road, Nankai District, Tianjin, 300192, PR China
| | - Yamin Zhang
- Hepatobiliary Surgery Department, Tianjin First Center Hospital, Tianjin Clinical Research Center for Organ Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, No. 24 Fukang Road, Nankai District, Tianjin, 300192, PR China.
| | - Lei Liu
- Department of Transplantation Center, Tianjin First Center Hospital, Tianjin Clinical Research Center for Organ Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin, 300192, PR China
| | - Zilin Cui
- Hepatobiliary Surgery Department, Tianjin First Center Hospital, Tianjin Clinical Research Center for Organ Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, No. 24 Fukang Road, Nankai District, Tianjin, 300192, PR China
| | - Rui Shi
- Hepatobiliary Surgery Department, Tianjin First Center Hospital, Tianjin Clinical Research Center for Organ Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, No. 24 Fukang Road, Nankai District, Tianjin, 300192, PR China
| | - Jiancun Hou
- Hepatobiliary Surgery Department, Tianjin First Center Hospital, Tianjin Clinical Research Center for Organ Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, No. 24 Fukang Road, Nankai District, Tianjin, 300192, PR China
| | - Zirong Liu
- Hepatobiliary Surgery Department, Tianjin First Center Hospital, Tianjin Clinical Research Center for Organ Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, No. 24 Fukang Road, Nankai District, Tianjin, 300192, PR China
| | - Long Yang
- Hepatobiliary Surgery Department, Tianjin First Center Hospital, Tianjin Clinical Research Center for Organ Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, No. 24 Fukang Road, Nankai District, Tianjin, 300192, PR China
| | - Lianjiang Wang
- Hepatobiliary Surgery Department, Tianjin First Center Hospital, Tianjin Clinical Research Center for Organ Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, No. 24 Fukang Road, Nankai District, Tianjin, 300192, PR China
| | - Yang Li
- Hepatobiliary Surgery Department, Tianjin First Center Hospital, Tianjin Clinical Research Center for Organ Transplantation, Key Laboratory for Critical Care Medicine of the Ministry of Health, No. 24 Fukang Road, Nankai District, Tianjin, 300192, PR China
| |
Collapse
|
23
|
Märklin M, Fuchs AR, Tandler C, Heitmann JS, Salih HR, Kauer J, Quintanilla-Martinez L, Wirths S, Kopp HG, Müller MR. Genetic Loss of LCK Kinase Leads to Acceleration of Chronic Lymphocytic Leukemia. Front Immunol 2020; 11:1995. [PMID: 32983140 PMCID: PMC7492521 DOI: 10.3389/fimmu.2020.01995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022] Open
Abstract
Most patients with chronic lymphocytic leukemia (CLL) exhibit an indolent disease course and unresponsive B cell receptors (BCRs) exemplified by an anergic phenotype of their leukemic cells. In up to 5% of patients, CLL transforms from an indolent subtype to an aggressive form of B cell lymphoma (Richter's syndrome), which is associated with worse disease outcome and severe downregulation of NFAT2. Here we show that ablation of the tyrosine kinase LCK, which has previously been characterized as a main NFAT2 target gene in CLL, leads to loss of the anergic phenotype, thereby restoring BCR signaling, which results in an acceleration of CLL. Our study identifies LCK as a main player in mediating BCR unresponsiveness and its role as a crucial regulator of anergy in CLL.
Collapse
Affiliation(s)
- Melanie Märklin
- Department of Hematology, Oncology and Clinical Immunology and Rheumatology, University of Tübingen, Tübingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Alexander R Fuchs
- Department of Hematology, Oncology and Clinical Immunology and Rheumatology, University of Tübingen, Tübingen, Germany
| | - Claudia Tandler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Department of Hematology, Oncology and Clinical Immunology and Rheumatology, University of Tübingen, Tübingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Joseph Kauer
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | | | - Stefan Wirths
- Department of Hematology, Oncology and Clinical Immunology and Rheumatology, University of Tübingen, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Hematology, Oncology and Clinical Immunology and Rheumatology, University of Tübingen, Tübingen, Germany.,Department of Molecular Oncology and Thoracic Oncology, Robert-Bosch-Hospital Stuttgart, Stuttgart, Germany
| | - Martin R Müller
- Department of Hematology, Oncology and Clinical Immunology and Rheumatology, University of Tübingen, Tübingen, Germany.,Department of Hematology, Oncology and Immunology, Klinikum Region Hannover, KRH Klinikum Siloah, Hanover, Germany
| |
Collapse
|
24
|
De Dominici M, Porazzi P, Xiao Y, Chao A, Tang HY, Kumar G, Fortina P, Spinelli O, Rambaldi A, Peterson LF, Petruk S, Barletta C, Mazo A, Cingolani G, Salvino JM, Calabretta B. Selective inhibition of Ph-positive ALL cell growth through kinase-dependent and -independent effects by CDK6-specific PROTACs. Blood 2020; 135:1560-1573. [PMID: 32040545 PMCID: PMC7193186 DOI: 10.1182/blood.2019003604] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Expression of the cell cycle regulatory gene CDK6 is required for Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL) cell growth, whereas expression of the closely related CDK4 protein is dispensable. Moreover, CDK6 silencing is more effective than treatment with the dual CDK4/6 inhibitor palbociclib in suppressing Ph+ ALL in mice, suggesting that the growth-promoting effects of CDK6 are, in part, kinase-independent in Ph+ ALL. Accordingly, we developed CDK4/6-targeted proteolysis-targeting chimeras (PROTACs) that inhibit CDK6 enzymatic activity in vitro, promote the rapid and preferential degradation of CDK6 over CDK4 in Ph+ ALL cells, and markedly suppress S-phase cells concomitant with inhibition of CDK6-regulated phospho-RB and FOXM1 expression. No such effects were observed in CD34+ normal hematopoietic progenitors, although CDK6 was efficiently degraded. Treatment with the CDK6-degrading PROTAC YX-2-107 markedly suppressed leukemia burden in mice injected with de novo or tyrosine kinase inhibitor-resistant primary Ph+ ALL cells, and this effect was comparable or superior to that of the CDK4/6 enzymatic inhibitor palbociclib. These studies provide "proof of principle" that targeting CDK6 with PROTACs that inhibit its enzymatic activity and promote its degradation represents an effective strategy to exploit the "CDK6 dependence" of Ph+ ALL and, perhaps, of other hematologic malignancies. Moreover, they suggest that treatment of Ph+ ALL with CDK6-selective PROTACs would spare a high proportion of normal hematopoietic progenitors, preventing the neutropenia induced by treatment with dual CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Marco De Dominici
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Patrizia Porazzi
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | | | | | - Gaurav Kumar
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Orietta Spinelli
- Hematology and Bone Marrow Transplant Unit, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, Ospedale Papa Giovanni XXIII, Bergamo, Italy
- Department of Oncology and Hematology-Oncology, Università Statale Milano, Milan, Italy
| | - Luke F Peterson
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI; and
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Camilla Barletta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Bruno Calabretta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
25
|
Heitmann JS, Märklin M, Truckenmüller FM, Hinterleitner C, Dörfel D, Haap M, Kopp HG, Wirths S, Müller MR. A novel flow cytometry-based assay to measure compromised B cell receptor signaling as a prognostic factor in chronic lymphocytic leukemia. J Leukoc Biol 2020; 108:1851-1857. [PMID: 32303123 DOI: 10.1002/jlb.5ta0320-411rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/06/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. In the past years, new therapeutic approaches (e.g., ibrutinib or venetoclax) have been established and greatly improved treatment of CLL. However, complete control or cure of the disease have not been reached so far. Thus, reliable prognostic markers are an imperative for treatment decisions. Recent studies have revealed an essential role for B cell receptor (BCR) signaling in the pathogenesis, prognosis, and therapy of CLL. A heterogeneous response to receptor stimulation with anti-IgM treatment culminating in different calcium flux capabilities has been demonstrated by several authors. However, the methods employed have not reached clinical application. Here, we report on a flow cytometry-based assay to evaluate calcium flux capabilities in CLL and demonstrate that compromised BCR signaling with diminished calcium flux is associated with a significantly better clinical outcome and progression free survival. In summary, our data strongly support the role of compromised BCR signaling as an important prognostic marker in CLL and establish a novel diagnostic tool for its assessment in clinical settings.
Collapse
Affiliation(s)
- Jonas S Heitmann
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - Felicia M Truckenmüller
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Clemens Hinterleitner
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Daniela Dörfel
- Department of Hematology, Oncology and Immunology, KRH Klinikum Siloah, Hannover, Germany
| | - Michael Haap
- Medical Intensive Care Unit, University of Tübingen, Tübingen, Germany
| | - Hans-Georg Kopp
- Klinik Schillerhöhe, Robert Bosch Centrum für Tumorerkrankungen, Stuttgart, Germany
| | - Stefan Wirths
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Martin R Müller
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany.,Department of Hematology, Oncology and Immunology, KRH Klinikum Siloah, Hannover, Germany
| |
Collapse
|
26
|
Märklin M, Heitmann JS, Kauer J, Wirths S, Müller MR. Genetic loss of NFAT2 (NFATc1) impairs B cell development of B1 and B2 B cells. Cell Immunol 2020; 349:104048. [PMID: 32014271 DOI: 10.1016/j.cellimm.2020.104048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 12/20/2022]
Abstract
NFAT2 activity was shown to be of critical importance in B cell receptor signaling, development and proliferation; however its role in B cell development in the periphery is still not completely understood. We confirmed that NFAT2 deletion leads to impaired B1 B cell development, supported by our finding of limited B1 progenitors in the bone marrow and spleen of NFAT2 deficient mice. Moreover, we show for the first time that loss of NFAT2 increases immature B cells in particular transitional T2 and T3 as well as mature follicular B cells while marginal zone B cells are decreased. We further demonstrate that NFAT2 regulates the expression of B220, CD23, CD38, IgM/IgD and ZAP70 in murine B cells. In vivo analyses revealed decreased proliferation and increased apoptosis of NFAT2 deficient B cells. In summary, this study provides an extensive analysis of the role of NFAT2 in peripheral B lymphocyte development.
Collapse
Affiliation(s)
- Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany.
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Joseph Kauer
- University of Tübingen, Interfaculty Institute for Cell Biology, Dept. of Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Stefan Wirths
- Dept. of Hematology, Oncology and Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Martin R Müller
- Dept. of Hematology, Oncology and Immunology, University Hospital Tübingen, Tübingen, Germany; Dept. of Hematology, Oncology and Immunology, Klinikum Region Hannover, KRH Klinikum Siloah, Hannover, Germany.
| |
Collapse
|
27
|
Mosquera Orgueira A, Antelo Rodríguez B, Díaz Arias JÁ, González Pérez MS, Bello López JL. New Recurrent Structural Aberrations in the Genome of Chronic Lymphocytic Leukemia Based on Exome-Sequencing Data. Front Genet 2019; 10:854. [PMID: 31616467 PMCID: PMC6764480 DOI: 10.3389/fgene.2019.00854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most frequent lymphoproliferative syndrome in Western countries, and it is characterized by recurrent large genomic rearrangements. During the last decades, array techniques have expanded our knowledge about CLL's karyotypic aberrations. The advent of large sequencing databases expanded our knowledge cancer genomics to an unprecedented resolution and enabled the detection of small-scale structural aberrations in the cancer genome. In this study, we have performed exome-sequencing-based copy number aberration (CNA) and loss of heterozygosity (LOH) analysis in order to detect new recurrent structural aberrations. We describe 54 recurrent focal CNAs enriched in cancer-related pathways, and their association with gene expression and clinical evolution. Furthermore, we discovered recurrent large copy number neutral LOH events affecting key driver genes, and we recapitulate most of the large CNAs that characterize the CLL genome. These results provide "proof-of-concept" evidence supporting the existence of new genes involved in the pathogenesis of CLL.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Research Group on Lymphoproliferative Diseases, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Division of Hematology, SERGAS, Santiago de Compostela, Spain.,Department of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Beatriz Antelo Rodríguez
- Research Group on Lymphoproliferative Diseases, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Division of Hematology, SERGAS, Santiago de Compostela, Spain.,Department of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Ángel Díaz Arias
- Research Group on Lymphoproliferative Diseases, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Division of Hematology, SERGAS, Santiago de Compostela, Spain
| | - Marta Sonia González Pérez
- Research Group on Lymphoproliferative Diseases, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Division of Hematology, SERGAS, Santiago de Compostela, Spain
| | - José Luis Bello López
- Research Group on Lymphoproliferative Diseases, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Division of Hematology, SERGAS, Santiago de Compostela, Spain.,Department of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
28
|
Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy. Int J Mol Sci 2019; 20:ijms20143500. [PMID: 31315298 PMCID: PMC6679228 DOI: 10.3390/ijms20143500] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
In recent years, the lymphocyte-specific protein tyrosine kinase (Lck) has emerged as one of the key molecules regulating T-cell functions. Studies using Lck knock-out mice or Lck-deficient T-cell lines have shown that Lck regulates the initiation of TCR signaling, T-cell development, and T-cell homeostasis. Because of the crucial role of Lck in T-cell responses, strategies have been employed to redirect Lck activity to improve the efficacy of chimeric antigen receptors (CARs) and to potentiate T-cell responses in cancer immunotherapy. In addition to the well-studied role of Lck in T cells, evidence has been accumulated suggesting that Lck is also expressed in the brain and in tumor cells, where it actively takes part in signaling processes regulating cellular functions like proliferation, survival and memory. Therefore, Lck has emerged as a novel druggable target molecule for the treatment of cancer and neuronal diseases. In this review, we will focus on these new functions of Lck.
Collapse
|
29
|
Ectopic Lck expression in CLL demarcates intratumoral subpopulations with aberrant B-cell receptor signaling. Blood Adv 2019; 2:877-882. [PMID: 29669754 DOI: 10.1182/bloodadvances.2017015321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
Key Points
Ectopic Lck expression signifies interpatient and intratumoral heterogeneity in CLL. Lck expression identifies CLL subpopulations with aberrant BCR signaling.
Collapse
|
30
|
Yin S, Gambe RG, Sun J, Martinez AZ, Cartun ZJ, Regis FFD, Wan Y, Fan J, Brooks AN, Herman SEM, Ten Hacken E, Taylor-Weiner A, Rassenti LZ, Ghia EM, Kipps TJ, Obeng EA, Cibulskis CL, Neuberg D, Campagna DR, Fleming MD, Ebert BL, Wiestner A, Leshchiner I, DeCaprio JA, Getz G, Reed R, Carrasco RD, Wu CJ, Wang L. A Murine Model of Chronic Lymphocytic Leukemia Based on B Cell-Restricted Expression of Sf3b1 Mutation and Atm Deletion. Cancer Cell 2019; 35:283-296.e5. [PMID: 30712845 PMCID: PMC6372356 DOI: 10.1016/j.ccell.2018.12.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/24/2018] [Accepted: 12/28/2018] [Indexed: 12/26/2022]
Abstract
SF3B1 is recurrently mutated in chronic lymphocytic leukemia (CLL), but its role in the pathogenesis of CLL remains elusive. Here, we show that conditional expression of Sf3b1-K700E mutation in mouse B cells disrupts pre-mRNA splicing, alters cell development, and induces a state of cellular senescence. Combination with Atm deletion leads to the overcoming of cellular senescence and the development of CLL-like disease in elderly mice. These CLL-like cells show genome instability and dysregulation of multiple CLL-associated cellular processes, including deregulated B cell receptor signaling, which we also identified in human CLL cases. Notably, human CLLs harboring SF3B1 mutations exhibit altered response to BTK inhibition. Our murine model of CLL thus provides insights into human CLL disease mechanisms and treatment.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Alternative Splicing
- Animals
- Antineoplastic Agents/pharmacology
- Ataxia Telangiectasia Mutated Proteins/deficiency
- Ataxia Telangiectasia Mutated Proteins/genetics
- Ataxia Telangiectasia Mutated Proteins/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cellular Senescence/drug effects
- DNA Damage
- Gene Deletion
- Genetic Predisposition to Disease
- Genomic Instability
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mutation
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/metabolism
- Phenotype
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Piperidines
- Protein Kinase Inhibitors/pharmacology
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- RNA Splicing Factors/genetics
- RNA Splicing Factors/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Shanye Yin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Rutendo G Gambe
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jing Sun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Zachary J Cartun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fara Faye D Regis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Youzhong Wan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jean Fan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Sarah E M Herman
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elisa Ten Hacken
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Laura Z Rassenti
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emanuela M Ghia
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thomas J Kipps
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | - Donna Neuberg
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dean R Campagna
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robin Reed
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ruben D Carrasco
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Lili Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, USA.
| |
Collapse
|
31
|
Müller DJ, Wirths S, Fuchs AR, Märklin M, Heitmann JS, Sturm M, Haap M, Kirschniak A, Sasaki Y, Kanz L, Kopp HG, Müller MR. Loss of NFAT2 expression results in the acceleration of clonal evolution in chronic lymphocytic leukemia. J Leukoc Biol 2018; 105:531-538. [PMID: 30556925 DOI: 10.1002/jlb.2ab0218-076rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) can be defined as a clonal expansion of B cells with stereotypic BCRs. Somatic hypermutation of the BCR heavy chains (IGVH) defines a subgroup of patients with a better prognosis. In up to 10% of CLL cases, a transformation to an aggressive B cell lymphoma (Richter's syndrome) with a dismal prognosis can be observed over time. NFAT proteins are transcription factors originally identified in T cells, which also play an important role in B cells. The TCL1 transgenic mouse is a well-accepted model of CLL. Upon B cell-specific deletion of NFAT2, TCL1 transgenic mice develop a disease resembling human Richter's syndrome. Whereas TCL1 B cells exhibit tonic anergic BCR signaling characteristic of human CLL, loss of NFAT2 expression leads to readily activated BCRs indicating different BCR usage with altered downstream signaling. Here, we analyzed BCR usage in wild-type and TCL1 transgenic mice with and without NFAT2 deletion employing conventional molecular biology techniques and next-generation sequencing (NGS). We demonstrate that the loss of NFAT2 in CLL precipitates the selection of unmutated BCRs and the preferential usage of certain VDJ recombinations, which subsequently results in the accelerated development of oligoclonal disease.
Collapse
Affiliation(s)
- David J Müller
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Stefan Wirths
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Alexander R Fuchs
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Melanie Märklin
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Michael Haap
- Department of Endocrinology, Diabetology, Clinical Pathology and Metabolism, University of Tübingen, Tübingen, Germany
| | | | - Yoshiteru Sasaki
- Department of Hematology and Oncology, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Lothar Kanz
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Martin R Müller
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
The ORF5 protein of porcine circovirus type 2 enhances viral replication by dampening type I interferon expression in porcine epithelial cells. Vet Microbiol 2018; 226:50-58. [PMID: 30389043 DOI: 10.1016/j.vetmic.2018.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/22/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
Abstract
Identifying the functional role of each porcine circovirus type 2 (PCV2) ORF associated with host cell modulation might provide better knowledge about the pathogenesis of postweaning multisystemic wasting syndrome (PMWS). PCV2 ORF5 was recently identified and the functional role of ORF5 during pathogenesis after PCV2 infection is largely unknown. In this study, we used RNA-seq to investigate the functional role of PCV2 ORF5 in PCV2-infected porcine epithelial cells. Our data demonstrates that PCV2 ORF5 could inhibit type I interferon (IFN) expression via transcriptional repression of genes involved in type I IFN production, thus enhancing replication of PCV2 in porcine epithelial cells. Therefore, PCV2 ORF5 might have an inhibitory role against host immune surveillance.
Collapse
|
33
|
Abruzzo LV, Herling CD, Calin GA, Oakes C, Barron LL, Banks HE, Katju V, Keating MJ, Coombes KR. Trisomy 12 chronic lymphocytic leukemia expresses a unique set of activated and targetable pathways. Haematologica 2018; 103:2069-2078. [PMID: 29976738 PMCID: PMC6269288 DOI: 10.3324/haematol.2018.190132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/29/2018] [Indexed: 12/29/2022] Open
Abstract
Although trisomy 12 (+12) chronic lymphocytic leukemia (CLL) comprises about 20% of cases, relatively little is known about its pathophysiology. These cases often demonstrate atypical morphological and immunophenotypic features, high proliferative rates, unmutated immunoglobulin heavy chain variable region genes, and a high frequency of NOTCH1 mutation. Patients with +12 CLL have an intermediate prognosis, and show higher incidences of thrombocytopenia, Richter transformation, and other secondary cancers. Despite these important differences, relatively few transcriptional profiling studies have focused on identifying dysregulated pathways that characterize +12 CLL, and most have used a hierarchical cytogenetic classification in which cases with more than one recurrent abnormality are categorized according to the abnormality with the poorest prognosis. In this study, we sought to identify protein-coding genes whose expression contributes to the unique pathophysiology of +12 CLL. To exclude the likely confounding effects of multiple cytogenetic abnormalities on gene expression, our +12 patient cohort had +12 as the sole abnormality. We profiled samples obtained from 147 treatment-naïve patients. We compared cases with +12 as the only cytogenetic abnormality to cases with only del(13q), del(11q), or diploid cytogenetics using independent discovery (n=97) and validation (n=50) sets. We demonstrate that CLL cases with +12 as the sole abnormality express a unique set of activated pathways compared to other cytogenetic subtypes. Among these pathways, we identify the NFAT signaling pathway and the immune checkpoint molecule, NT5E (CD73), which may represent new therapeutic targets.
Collapse
Affiliation(s)
- Lynne V Abruzzo
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Carmen D Herling
- Department I for Internal Medicine and Center of Integrated Oncology, University of Cologne, Germany
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Oakes
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Lynn L Barron
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haley E Banks
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vikram Katju
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin R Coombes
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
34
|
Till KJ, Allen JC, Talab F, Lin K, Allsup D, Cawkwell L, Bentley A, Ringshausen I, Duckworth AD, Pettitt AR, Kalakonda N, Slupsky JR. Lck is a relevant target in chronic lymphocytic leukaemia cells whose expression variance is unrelated to disease outcome. Sci Rep 2017; 7:16784. [PMID: 29196709 PMCID: PMC5711840 DOI: 10.1038/s41598-017-17021-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022] Open
Abstract
Pathogenesis of chronic lymphocytic leukaemia (CLL) is contingent upon antigen receptor (BCR) expressed by malignant cells of this disease. Studies on somatic hypermutation of the antigen binding region, receptor expression levels and signal capacity have all linked BCR on CLL cells to disease prognosis. Our previous work showed that the src-family kinase Lck is a targetable mediator of BCR signalling in CLL cells, and that variance in Lck expression associated with ability of BCR to induce signal upon engagement. This latter finding makes Lck similar to ZAP70, another T-cell kinase whose aberrant expression in CLL cells also associates with BCR signalling capacity, but also different because ZAP70 is not easily pharmacologically targetable. Here we describe a robust method of measuring Lck expression in CLL cells using flow cytometry. However, unlike ZAP70 whose expression in CLL cells predicts prognosis, we find Lck expression and disease outcome in CLL are unrelated despite observations that its inhibition produces effects that biologically resemble the egress phenotype taken on by CLL cells treated with idelalisib. Taken together, our findings provide insight into the pathobiology of CLL to suggest a more complex relationship between expression of molecules within the BCR signalling pathway and disease outcome.
Collapse
Affiliation(s)
- Kathleen J Till
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - John C Allen
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Fatima Talab
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Ke Lin
- Department of Haematology, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - David Allsup
- Department of Haematology, Queens Centre for Oncology and Haematology, Hull and East Yorkshire Hospitals NHS Trust, Yorkshire, UK
| | - Lynn Cawkwell
- School of Life Sciences, University of Hull, Hull, UK
- Hull York Medical School, University of Hull, Hull, UK
| | | | - Ingo Ringshausen
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Andrew D Duckworth
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Nagesh Kalakonda
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|