1
|
Wang X, Jones MR, Pan Z, Lu X, Deng Y, Zhu M, Wang Z. Trivalent manganese in dissolved forms: Occurrence, speciation, reactivity and environmental geochemical impact. WATER RESEARCH 2024; 263:122198. [PMID: 39098158 DOI: 10.1016/j.watres.2024.122198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The cycling processes of elemental manganese (Mn), including the redox reactions of dissolved Mn(III) (dMn(III)), directly and indirectly influences the biogeochemical processes of many elements. Though increasing evidence indicates the widespread presence of dMn(III) mediates the fate of many elements, its role may be currently underestimated. There is both a lack of clear understanding of the historical research framework of dMn(III) and a systematic overview of its geochemical properties and detection methods. Therefore, the primary aim of this review is to outline the understanding of dMn(III) in multiple fields, including soil science, analytical chemistry, biochemistry, geochemistry, and water treatment, and summarize the formation pathways, species forms, and detection methods of dMn(III) in aquatic systems. This review considers how the characteristics of dMn(III), the intermediate formed in the single-electron reaction processes of Mn(II) oxidation and Mn(IV) reduction, determines its participation in environmental geochemical processes. Its widespread presence in diverse water systems and active redox properties coupling with various elements confirm its significant role in natural elemental geochemistry cycle and artificial water treatment processes. Therefore, further investigation into the role of dissolved Mn(III) in aquatic systems is warranted to unravel unexplored coupled elemental redox reaction processes mediated by dissolved Mn(III), filling in the gaps in our understanding of manganese environmental geochemistry, and providing a theoretical basis for recognizing the role of dMn(III) role in water treatment technologies.
Collapse
Affiliation(s)
- Xingxing Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Matthew R Jones
- Wolfson Atmospheric Chemistry Laboratory, University of York, York YO10 5DD, United Kingdom
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 200438, China
| | - Xiaohan Lu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of, Geosciences, Wuhan 430078, China
| | - Mengqiang Zhu
- Department of Geology, University of Maryland, College Park, MD, 20740, USA
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 200438, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Keffer JL, Zhou N, Rushworth DD, Yu Y, Chan CS. Microbial magnetite oxidation via MtoAB porin-multiheme cytochrome complex in Sideroxydans lithotrophicus ES-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614158. [PMID: 39345469 PMCID: PMC11429942 DOI: 10.1101/2024.09.20.614158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Most of Earth's iron is mineral-bound, but it is unclear how and to what extent iron-oxidizing microbes can use solid minerals as electron donors. A prime candidate for studying mineral-oxidizing growth and pathways is Sideroxydans lithotrophicus ES-1, a robust, facultative iron oxidizer with multiple possible iron oxidation mechanisms. These include Cyc2 and Mto pathways plus other multiheme cytochromes and cupredoxins, and so we posit that the mechanisms may correspond to different Fe(II) sources. Here, S. lithotrophicus ES-1 was grown on dissolved Fe(II)-citrate and magnetite. S. lithotrophicus ES-1 oxidized all dissolved Fe2+ released from magnetite, and continued to build biomass when only solid Fe(II) remained, suggesting it can utilize magnetite as a solid electron donor. Quantitative proteomic analyses of S. lithotrophicus ES-1 grown on these substrates revealed global proteome remodeling in response to electron donor and growth state and uncovered potential proteins and metabolic pathways involved in the oxidation of solid magnetite. While the Cyc2 iron oxidases were highly expressed on both dissolved and solid substrates, MtoA was only detected during growth on solid magnetite, suggesting this protein helps catalyze oxidation of solid minerals in S. lithotrophicus ES-1. A set of cupredoxin domain-containing proteins were also specifically expressed during solid iron oxidation. This work demonstrated the iron oxidizer S. lithotrophicus ES-1 utilized additional extracellular electron transfer pathways when growing on solid mineral electron donors compared to dissolved Fe(II).
Collapse
Affiliation(s)
| | - Nanqing Zhou
- School of Marine Science and Policy, University of Delaware, Newark, DE
| | | | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE
| | - Clara S. Chan
- Department of Earth Sciences, University of Delaware, Newark, DE
- School of Marine Science and Policy, University of Delaware, Newark, DE
| |
Collapse
|
3
|
Qi J, Wang X, Lin Z, Zhao J, Hu C, Qu J. Algae promotes the biogenic oxidation of Mn(II) by accelerated extracellular superoxide production. WATER RESEARCH 2024; 261:122063. [PMID: 39003876 DOI: 10.1016/j.watres.2024.122063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Microbial manganese (Mn) oxidation, predominantly occurs within the anaerobic-aerobic interfaces, plays an important role in environmental pollution remediation. The anaerobic-aerobic transition zones, notably riparian and lakeside zones, are hotspots for algae-bacteria interactions. Here, we adopted a Mn(II)-oxidizing bacterium Pseudomonas sp. QJX-1 to investigate the impact of algae on microbial Mn(II) oxidation and verify the underlying mechanisms. Interestingly, we achieved a remarkable enhancement in bacterial Mn(II)-oxidizing activity within the algae-bacteria co-culture, despite the inability to oxidize Mn(II) for the algae used in this study. In addition, the bacterial density almost remains constant in the presence of algal cells. Therefore, the increased Mn(II) oxidation by QJX-1 in the presence of algae cannot be due to the increased biomass. Within this co-culture system, the Mn(II) oxidation rate surged to an impressive 0.23 mg/L/h, in stark contrast to 0.02 mg/L/h recorded within pure QJX-1 system. The presence of algae could inhibit the Fe-S cluster activity of QJX-1 by the produced active substance in co-culture, and result in the acceleration of extracellular superoxide production due to the impairment of electron transfer functions located in QJX-1 cell membranes. Moreover, elevated peroxidase gene expression and heightened extracellular catalase activity not only expedited Mn(II) ions oxidation but also facilitated conversion of intermediate Mn(III) ions into microbial Mn oxides, achieved through the degradation of hydrogen peroxide. Therefore, the acceleration of extracellular superoxide production and the decomposition of hydrogen peroxide are identified as the principal mechanisms behind the observed enhancement in Mn(II) oxidation within algae-bacteria co-cultures. Our findings highlight the need to consider the effect of algae on microbial Mn(II) oxidation, which plays an important role in the environmental pollution remediation.
Collapse
Affiliation(s)
- Jing Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zemiao Lin
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jijin Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Novikova IV, Soldatova AV, Moser TH, Thibert SM, Romano CA, Zhou M, Tebo BM, Evans JE, Spiro TG. Cryo-EM Structure of the Mnx Protein Complex Reveals a Tunnel Framework for the Mechanism of Manganese Biomineralization. J Am Chem Soc 2024; 146:22950-22958. [PMID: 39056168 DOI: 10.1021/jacs.3c06537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The global manganese cycle relies on microbes to oxidize soluble Mn(II) to insoluble Mn(IV) oxides. Some microbes require peroxide or superoxide as oxidants, but others can use O2 directly, via multicopper oxidase (MCO) enzymes. One of these, MnxG from Bacillus sp. strain PL-12, was isolated in tight association with small accessory proteins, MnxE and MnxF. The protein complex, called Mnx, has eluded crystallization efforts, but we now report the 3D structure of a point mutant using cryo-EM single particle analysis, cross-linking mass spectrometry, and AlphaFold Multimer prediction. The β-sheet-rich complex features MnxG enzyme, capped by a heterohexameric ring of alternating MnxE and MnxF subunits, and a tunnel that runs through MnxG and its MnxE3F3 cap. The tunnel dimensions and charges can accommodate the mechanistically inferred binuclear manganese intermediates. Comparison with the Fe(II)-oxidizing MCO, ceruloplasmin, identifies likely coordinating groups for the Mn(II) substrate, at the entrance to the tunnel. Thus, the 3D structure provides a rationale for the established manganese oxidase mechanism, and a platform for further experiments to elucidate mechanistic details of manganese biomineralization.
Collapse
Affiliation(s)
- Irina V Novikova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, Washington 99354, United States
| | - Alexandra V Soldatova
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Trevor H Moser
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, Washington 99354, United States
| | - Stephanie M Thibert
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, Washington 99354, United States
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, Washington 99354, United States
| | - Bradley M Tebo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - James E Evans
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, Washington 99354, United States
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Morales E, Shaner SE, Stone KL. Characterizing Biogenic MnOx Produced by Pseudomonas putida MnB1 and Its Catalytic Activity towards Water Oxidation. Life (Basel) 2024; 14:171. [PMID: 38398680 PMCID: PMC10890277 DOI: 10.3390/life14020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Mn-oxidizing microorganisms oxidize environmental Mn(II), producing Mn(IV) oxides. Pseudomonas putida MnB1 is a widely studied organism for the oxidation of manganese(II) to manganese(IV) by a multi-copper oxidase. The biogenic manganese oxides (BMOs) produced by MnB1 and similar organisms have unique properties compared to non-biological manganese oxides. Along with an amorphous, poorly crystalline structure, previous studies have indicated that BMOs have high surface areas and high reactivities. It is also known that abiotic Mn oxides promote oxidation of organics and have been studied for their water oxidation catalytic function. MnB1 was grown and maintained and subsequently transferred to culturing media containing manganese(II) salts to observe the oxidation of manganese(II) to manganese(IV). The structures and compositions of these manganese(IV) oxides were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, inductively coupled plasma optical emission spectroscopy, and powder X-ray diffraction, and their properties were assessed regarding catalytic functionality towards water oxidation in comparison to abiotic acid birnessite. Water oxidation was accomplished through the whole-cell catalysis of MnB1, the results for which compare favorably to the water-oxidizing ability of abiotic Mn(IV) oxides.
Collapse
Affiliation(s)
- Elisa Morales
- Department of Chemistry, Lewis University, Romeoville, IL 60446, USA;
| | - Sarah E. Shaner
- Department of Chemistry and Physics, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
| | - Kari L. Stone
- Department of Chemistry, Lewis University, Romeoville, IL 60446, USA;
| |
Collapse
|
6
|
Liu FC, Cropley TC, Bleiholder C. Elucidating Structures of Protein Complexes by Collision-Induced Dissociation at Elevated Gas Pressures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2247-2258. [PMID: 37729591 PMCID: PMC11162217 DOI: 10.1021/jasms.3c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Ion activation methods carried out at gas pressures compatible with ion mobility separations are not yet widely established. This limits the analytical utility of emerging tandem-ion mobility spectrometers that conduct multiple ion mobility separations in series. The present work investigates the applicability of collision-induced dissociation (CID) at 1 to 3 mbar in a tandem-trapped ion mobility spectrometer (tandem-TIMS) to study the architecture of protein complexes. We show that CID of the homotetrameric protein complexes streptavidin (53 kDa), neutravidin (60 kDa), and concanavalin A (110 kDa) provides access to all subunits of the investigated protein complexes, including structurally informative dimers. We report on an "atypical" dissociation pathway, which for concanavalin A proceeds via symmetric partitioning of the precursor charges and produces dimers with the same charge states that were previously reported from surface induced dissociation. Our data suggest a correlation between the formation of subunits by CID in tandem-TIMS/MS, their binding strengths in the native tetramer structures, and the applied activation voltage. Ion mobility spectra of in situ-generated subunits reveal a marked structural heterogeneity inconsistent with annealing into their most stable gas phase structures. Structural transitions are observed for in situ-generated subunits that resemble the transitions reported from collision-induced unfolding of natively folded proteins. These observations indicate that some aspects of the native precursor structure is preserved in the subunits generated from disassembly of the precursor complex. We rationalize our observations by an approximately 100-fold shorter activation time scale in comparison to traditional CID in a collision cell. Finally, the approach discussed here to conduct CID at elevated pressures appears generally applicable also for other types of tandem-ion mobility spectrometers.
Collapse
Affiliation(s)
- Fanny C. Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Tyler C. Cropley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
7
|
Huang Y, Huangfu X, Ma C, Liu Z. Sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms in the aquatic environment. CHEMOSPHERE 2023; 329:138594. [PMID: 37030347 DOI: 10.1016/j.chemosphere.2023.138594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms can oxidize Mn(II) to biogenic Mn oxides (BioMnOx), through enzyme-mediated processes and non-enzyme-mediated processes, which are generally considered as the source and sink of heavy metals due to highly reactive to sequestrate and oxidize heavy metals. Hence, the summary of interactions between Mn(II) oxidizing microorganisms (MnOM) and heavy metals is benefit for further work on microbial-mediated self-purification of water bodies. This review comprehensively summarizes the interactions between MnOM and heavy metals. The processes of BioMnOx production by MnOM has been firstly discussed. Moreover, the interactions between BioMnOx and various heavy metals are critically discussed. On the one hand, modes for heavy metals adsorbed on BioMnOx are summarized, such as electrostatic attraction, oxidative precipitation, ion exchange, surface complexation, and autocatalytic oxidation. On the other hand, adsorption and oxidation of representative heavy metals based on BioMnOx/Mn(II) are also discussed. Thirdly, the interactions between MnOM and heavy metals are also focused on. Finally, several perspectives which will contribute to future research are proposed. This review provides insight into the sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms. It might be helpful to understand the geochemical fate of heavy metals in the aquatic environment and the process of microbial-mediated water self-purification.
Collapse
Affiliation(s)
- Yuheng Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resource, and Environment, School of Municipal, and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Ziqiang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
8
|
Jia L, Zhou Q, Li Y, Wu W. Application of manganese oxides in wastewater treatment: Biogeochemical Mn cycling driven by bacteria. CHEMOSPHERE 2023:139219. [PMID: 37327824 DOI: 10.1016/j.chemosphere.2023.139219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Manganese oxides (MnOx) are recognized as a strongest oxidant and adsorbent, of which composites have been proved to be effective in the removal of contaminants from wastewater. This review provides a comprehensive analysis of Mn biochemistry in water environment including Mn oxidation and Mn reduction. The recent research on the application of MnOx in the wastewater treatment was summarized, including the involvement of organic micropollutant degradation, the transformation of nitrogen and phosphorus, the fate of sulfur and the methane mitigation. In addition to the adsorption capacity, the Mn cycling mediated by Mn(II) oxidizing bacteria and Mn(IV) reducing bacteria is the driving force for the MnOx utilization. The common category, characteristics and functions of Mn microorganisms in recent studies were also reviewed. Finally, the discussion on the influence factors, microbial response, reaction mechanism and potential risk of MnOx application in pollutants' transformation were proposed, which might be the promising opportunities for the future investigation of MnOx application in wastewater treatment.
Collapse
Affiliation(s)
- Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Yuanwei Li
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China; The Key Laboratory of Water and Sediment Sciences (Peking University), Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
9
|
Hausladen DM, Peña J. Organic buffers act as reductants of abiotic and biogenic manganese oxides. Sci Rep 2023; 13:6498. [PMID: 37081009 PMCID: PMC10119380 DOI: 10.1038/s41598-023-32691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Proton activity is the master variable in many biogeochemical reactions. To control pH, laboratory studies involving redox-sensitive minerals like manganese (Mn) oxides frequently use organic buffers (typically Good's buffers); however, two Good's buffers, HEPES and MES, have been shown to reduce Mn(IV) to Mn(III). Because Mn(III) strongly controls mineral reactivity, avoiding experimental artefacts that increase Mn(III) content is critical to avoid confounding results. Here, we quantified the extent of Mn reduction upon reaction between Mn oxides and several Good's buffers (MES, pKa = 6.10; PIPES, pKa = 6.76; MOPS, pKa = 7.28; HEPES, pKa = 7.48) and TRIS (pKa = 8.1) buffer. For δ-MnO2, Mn reduction was rapid, with up to 35% solid-phase Mn(III) generated within 1 h of reaction with Good's buffers; aqueous Mn was minimal in all Good's buffers experiments except those where pH was one unit below the buffer pKa and the reaction proceeded for 24 h. Additionally, the extent of Mn reduction after 24 h increased in the order MES < MOPS < PIPES < HEPES << TRIS. Of the variables tested, the initial Mn(II,III) content had the greatest effect on susceptibility to reduction, such that Mn reduction scaled inversely with the initial average oxidation number (AMON) of the oxide. For biogenic Mn oxides, which consist of a mixture of Mn oxides, bacterial cells and extracelluar polymeric substances, the extent of Mn reduction was lower than predicted from experiments using abiotic analogs and may result from biotic re-oxidation of reduced Mn or a difference in the reducibility of abiotic versus biogenic oxides. The results from this study show that organic buffers, including morpholinic and piperazinic Good's buffers and TRIS, should be avoided for pH control in Mn oxide systems due to their ability to transfer electrons to Mn, which modifies the composition and reactivity of these redox-active minerals.
Collapse
Affiliation(s)
- Debra M Hausladen
- Institute of Earth Surface Dynamics, University of Lausanne, 1015, Lausanne, Switzerland
- Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jasquelin Peña
- Institute of Earth Surface Dynamics, University of Lausanne, 1015, Lausanne, Switzerland.
- Department of Civil and Environmental Engineering, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Corbera-Rubio F, Laureni M, Koudijs N, Müller S, van Alen T, Schoonenberg F, Lücker S, Pabst M, van Loosdrecht MCM, van Halem D. Meta-omics profiling of full-scale groundwater rapid sand filters explains stratification of iron, ammonium and manganese removals. WATER RESEARCH 2023; 233:119805. [PMID: 36868119 DOI: 10.1016/j.watres.2023.119805] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Rapid sand filters (RSF) are an established and widely applied technology for groundwater treatment. Yet, the underlying interwoven biological and physical-chemical reactions controlling the sequential removal of iron, ammonia and manganese remain poorly understood. To resolve the contribution and interactions between the individual reactions, we studied two full-scale drinking water treatment plant configurations, namely (i) one dual-media (anthracite and quartz sand) filter and (ii) two single-media (quartz sand) filters in series. In situ and ex situ activity tests were combined with mineral coating characterization and metagenome-guided metaproteomics along the depth of each filter. Both plants exhibited comparable performances and process compartmentalization, with most of ammonium and manganese removal occurring only after complete iron depletion. The homogeneity of the media coating and genome-based microbial composition within each compartment highlighted the effect of backwashing, namely the complete vertical mixing of the filter media. In stark contrast to this homogeneity, the removal of the contaminants was strongly stratified within each compartment, and decreased along the filter height. This apparent and longstanding conflict was resolved by quantifying the expressed proteome at different filter heights, revealing a consistent stratification of proteins catalysing ammonia oxidation and protein-based relative abundances of nitrifying genera (up to 2 orders of magnitude difference between top and bottom samples). This implies that microorganisms adapt their protein pool to the available nutrient load at a faster rate than the backwash mixing frequency. Ultimately, these results show the unique and complementary potential of metaproteomics to understand metabolic adaptations and interactions in highly dynamic ecosystems.
Collapse
Affiliation(s)
| | - Michele Laureni
- Delft University of Technology, van der Maasweg 9, HZ Delft 2629, The Netherlands.
| | - Nienke Koudijs
- Delft University of Technology, van der Maasweg 9, HZ Delft 2629, The Netherlands
| | - Simon Müller
- Delft University of Technology, van der Maasweg 9, HZ Delft 2629, The Netherlands
| | - Theo van Alen
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, AJ Nijmegen 6525, The Netherlands
| | | | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, AJ Nijmegen 6525, The Netherlands
| | - Martin Pabst
- Delft University of Technology, van der Maasweg 9, HZ Delft 2629, The Netherlands
| | | | - Doris van Halem
- Delft University of Technology, van der Maasweg 9, HZ Delft 2629, The Netherlands
| |
Collapse
|
11
|
Reid DJ, Thibert S, Zhou M. Dissecting the structural heterogeneity of proteins by native mass spectrometry. Protein Sci 2023; 32:e4612. [PMID: 36851867 PMCID: PMC10031758 DOI: 10.1002/pro.4612] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
A single gene yields many forms of proteins via combinations of posttranscriptional/posttranslational modifications. Proteins also fold into higher-order structures and interact with other molecules. The combined molecular diversity leads to the heterogeneity of proteins that manifests as distinct phenotypes. Structural biology has generated vast amounts of data, effectively enabling accurate structural prediction by computational methods. However, structures are often obtained heterologously under homogeneous states in vitro. The lack of native heterogeneity under cellular context creates challenges in precisely connecting the structural data to phenotypes. Mass spectrometry (MS) based proteomics methods can profile proteome composition of complex biological samples. Most MS methods follow the "bottom-up" approach, which denatures and digests proteins into short peptide fragments for ease of detection. Coupled with chemical biology approaches, higher-order structures can be probed via incorporation of covalent labels on native proteins that are maintained at the peptide level. Alternatively, native MS follows the "top-down" approach and directly analyzes intact proteins under nondenaturing conditions. Various tandem MS activation methods can dissect the intact proteins for in-depth structural elucidation. Herein, we review recent native MS applications for characterizing heterogeneous samples, including proteins binding to mixtures of ligands, homo/hetero-complexes with varying stoichiometry, intrinsically disordered proteins with dynamic conformations, glycoprotein complexes with mixed modification states, and active membrane protein complexes in near-native membrane environments. We summarize the benefits, challenges, and ongoing developments in native MS, with the hope to demonstrate an emerging technology that complements other tools by filling the knowledge gaps in understanding the molecular heterogeneity of proteins.
Collapse
Affiliation(s)
- Deseree J. Reid
- Chemical and Biological Signature SciencesPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Stephanie Thibert
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Mowei Zhou
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashingtonUSA
| |
Collapse
|
12
|
Takeda A, Oki T, Yokoo H, Kawamoto K, Nakano Y, Ochiai A, Winarni ID, Kitahara M, Miyoshi K, Fukuyama K, Ohara Y, Yamaji K, Ohnuki T, Hochella MF, Utsunomiya S. Direct observation of Mn distribution/speciation within and surrounding a basidiomycete fungus in the production of Mn-oxides important in toxic element containment. CHEMOSPHERE 2023; 313:137526. [PMID: 36513194 DOI: 10.1016/j.chemosphere.2022.137526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Biogenic manganese (Mn) oxides occur ubiquitously in the environment including the uranium (U) mill tailings at the Ningyo-toge U mine in Okayama, Japan, being important in the sequestration of radioactive radium. To understand the nanoscale processes in Mn oxides formation at the U mill tailings site, Mn2+ absorption by a basidiomycete fungus, Coprinopsis urticicola, isolated from Ningyo-toge mine water samples, was investigated in the laboratory under controlled conditions utilizing electron microscopy, synchrotron-based X-ray analysis, and fluorescence microscopy with a molecular pH probe. The fungus' growth was first investigated in an agar-solidified medium supplemented with 1.0 mmol/L Mn2+, and Cu2+ (0-200 μM), Zn2+ (0-200 μM), or diphenyleneiodonium (DPI) chloride (0-100 μM) at 25 °C. The results revealed that Zn2+ has no significant effects on Mn oxide formation, whereas Cu2+ and DPI significantly inhibit both fungal growth and Mn oxidation, indicating superoxide-mediated Mn oxidation. Indeed, nitroblue tetrazolium and diaminobenzidine assays on the growing fungus revealed the production of superoxide and peroxide. During the interaction of Mn2+ with the fungus in solution medium at the initial pH of 5.67, a small fraction of Mn2+ infiltrated the fungal hyphae within 8 h, forming a few tens of nm-sized concentrates of soluble Mn2+ in the intracellular pH of ∼6.5. After 1 day of incubation, Mn oxides began to precipitate on the hyphae, which were characterized as fibrous nanocrystals with a hexagonal birnessite-structure, these forming spherical aggregates with a diameter of ∼1.5 μm. These nanoscale processes associated with the fungal species derived from the Ningyo-toge mine area provide additional insights into the existing mechanisms of Mn oxidation by filamentous fungi at other U mill tailings sites under circumneutral pH conditions. Such processes add to the class of reactions important to the sequestration of toxic elements.
Collapse
Affiliation(s)
- Ayaka Takeda
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takumi Oki
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroki Yokoo
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Keisuke Kawamoto
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuriko Nakano
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Asumi Ochiai
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ilma Dwi Winarni
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Mitsuki Kitahara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenta Miyoshi
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenjin Fukuyama
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama-ken, 708-0601, Japan
| | - Yoshiyuki Ohara
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama-ken, 708-0601, Japan
| | - Keiko Yamaji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, 305-8572, Japan
| | - Toshihiko Ohnuki
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Michael F Hochella
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA; Earth Systems Science Division, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
13
|
Whitty-Léveillé L, VanAernum ZL, Pavon JA, Murphy C, Neal K, Forest W, Gao X, Zhong W, Richardson DD, Schuessler HA. Determination of ultra-trace metal-protein interactions in co-formulated monoclonal antibody drug product by SEC-ICP-MS. MAbs 2023; 15:2199466. [PMID: 37032437 PMCID: PMC10085571 DOI: 10.1080/19420862.2023.2199466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
Transition metals can be introduced in therapeutic protein drugs at various steps of the manufacturing process (e.g. manufacturing raw materials, formulation, storage), and can cause a variety of modifications on the protein. These modifications can potentially influence the efficacy, safety, and stability of the therapeutic protein, especially if critical quality attributes (CQAs) are affected. Therefore, it is meaningful to understand the interactions between proteins and metals that can occur during the manufacturing process, formulation, and storage of biotherapeutics. Here, we describe a novel strategy to differentiate between ultra-trace levels of transition metals (cobalt, chromium, copper, iron, and nickel) interacting with therapeutic proteins and free metal in solution in the drug formulation using size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (SEC-ICP-MS). Two monoclonal antibodies (mAbs) were coformulated and stored up to nine days in a scaled down model to mimic metal exposure from manufacturing tanks. The samples containing the mAbs were first analyzed by ICP-MS for bulk metal analysis, then studied using SEC-ICP-MS to measure the extent of metal-protein interactions. The SEC separation was used to differentiate metal associated with the mAbs from free metal in solution. Relative quantitation of metal-protein interaction was then calculated using the relative peak areas of protein-associated metal to free metal in solution and weighting it to the total metal concentration in the mixture as measured by bulk metal analysis by ICP-MS. The SEC-ICP-MS method offers an informative means of measuring metal-protein interactions during drug development.
Collapse
Affiliation(s)
| | | | | | - Christa Murphy
- Analytical Research and Development, Merck & Co, Inc, Rahway, New Jersey
| | - Katie Neal
- Analytical Research and Development, Merck & Co, Inc, Rahway, New Jersey
| | - William Forest
- Analytical Research and Development, Merck & Co, Inc, Rahway, New Jersey
| | - Xinliu Gao
- Analytical Research and Development, Merck & Co, Inc, Rahway, New Jersey
| | - Wendy Zhong
- Analytical Research and Development, Merck & Co, Inc, Rahway, New Jersey
| | | | | |
Collapse
|
14
|
Farda B, Vaccarelli I, Ercole C, Djebaili R, Del Gallo M, Pellegrini M. Exploring structure, microbiota, and metagenome functions of epigean and hypogean black deposits by microscopic, molecular and bioinformatic approaches. Sci Rep 2022; 12:19405. [PMID: 36371463 PMCID: PMC9653421 DOI: 10.1038/s41598-022-24159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
This study revealed how Bacteria and Archaea communities and their metabolic functions differed between two groups of black deposits identified in gorge and cave environments. Scanning electron microscopy coupled with energy dispersive spectroscopy was used to analyse the presence of microbial biosignatures and the elemental composition of samples. Metabarcoding of the V3-V4 regions of 16S rRNA was used to investigate Bacteria and Archaea communities. Based on 16S rRNA sequencing results, PICRUSt software was used to predict metagenome functions. Micrographs showed that samples presented microbial biosignatures and microanalyses highlighted Mn concretions and layers on Al-Si surfaces. The 16S rRNA metabarcoding alpha-diversity metrics showed similar Simpson's and Shannon indices and different values of the Chao-1 index. The amplicon sequence variants (ASVs) analysis at the different taxonomic levels showed a diverse genera composition. However, the communities of all samples shared the presence of uncultured ASVs belonging to the Gemmatales family (Phylogenesis: Gemmataceae; Planctomycetes; Planctomycetota; Bacteria). The predicted metagenome functions analysis revealed diverse metabolic profiles of the Cave and Gorge groups. Genes coding for essential Mn metabolism were present in all samples. Overall, the findings on structure, microbiota, and predicted metagenome functions showed a similar microbial contribution to epigean and hypogean black deposits Mn metabolism.
Collapse
Affiliation(s)
- Beatrice Farda
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Ilaria Vaccarelli
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Claudia Ercole
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Rihab Djebaili
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Maddalena Del Gallo
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Marika Pellegrini
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
15
|
Zhao G, Wang W, Zheng L, Chen L, Duan G, Chang R, Chen Z, Zhang S, Dai M, Yang G. Catalase-peroxidase StKatG is a bacterial manganese oxidase from endophytic Salinicola tamaricis. Int J Biol Macromol 2022; 224:281-291. [DOI: 10.1016/j.ijbiomac.2022.10.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
16
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Manganese removal and product characteristics of a marine manganese-oxidizing bacterium Bacillus sp. FF-1. Int Microbiol 2022; 25:701-708. [PMID: 35687202 DOI: 10.1007/s10123-022-00254-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Biogenic manganese oxides (BioMnOx) have been found all over the world, and most of them were formed by Mn(II)-oxidizing bacteria (MnOB). In this study, a MnOB designated as FF-1 was isolated from marine surface sediments in the Bohai Sea, China. This strain was identified as Bacillus sp. and can tolerate more than 5% salinity. It can grow in the presence of 0-7 mM Mn(II) and pH range from 5.0 to 7.0. When the initial Mn(II) was 5 mM, the percentage of Mn(II) oxidation reached the highest value of 16% after 10 days of incubation. The initial pH (5.0 to 7.0) affected the percentage of Mn(II) oxidation, but the ability of the strain FF-1 to self-regulate pH resulted in the final pH being almost 7.6. The removal of Mn(II) by the strain FF-1 involves extracellular and intracellular adsorption as well as Mn(II) oxidation. Intracellular Mn adsorption contributed a small part to the total Mn removal, and extracellular adsorption was dominant in the initial stage of Mn removal. The solid products after Mn removal were a mixture of MnOx and MnCO3. The layered MnOx formed in the extracellular space could be easily collected and used for adsorption and oxidation of pollutants.
Collapse
|
18
|
Mineralogical and Genomic Constraints on the Origin of Microbial Mn Oxide Formation in Complexed Microbial Community at the Terrestrial Hot Spring. Life (Basel) 2022; 12:life12060816. [PMID: 35743847 PMCID: PMC9224936 DOI: 10.3390/life12060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Manganese (Mn) oxides are widespread on the surface environments of the modern Earth. The role of microbial activities in the formation of Mn oxides has been discussed for several decades. However, the mechanisms of microbial Mn oxidation, and its role in complex microbial communities in natural environments, remain uncertain. Here, we report the geochemical, mineralogical, and metagenomic evidence for biogenic Mn oxides, found in Japanese hot spring sinters. The low crystallinity of Mn oxides, and their spatial associations with organic matter, support the biogenic origin of Mn oxides. Specific multicopper oxidases (MCOs), which are considered Mn-oxidizing enzymes, were identified using metagenomic analyses. Nanoscale nuggets of copper sulfides were, also, discovered in the organic matter in Mn-rich sinters. A part of these copper sulfides most likely represents traces of MCOs, and this is the first report of traces of Mn-oxidizing enzyme in geological samples. Metagenomic analyses, surprisingly, indicated a close association of Mn oxides, not only in aerobic but also in anaerobic microbial communities. These new findings offer the unique and unified positions of Mn oxides, with roles that have not been ignored, to sustain anaerobic microbial communities in hot spring environments.
Collapse
|
19
|
Snyder DT, Harvey SR, Wysocki VH. Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool. Chem Rev 2022; 122:7442-7487. [PMID: 34726898 PMCID: PMC9282826 DOI: 10.1021/acs.chemrev.1c00309] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) is evolving into a workhorse for structural biology. The plethora of online and offline preparation, separation, and purification methods as well as numerous ionization techniques combined with powerful new hybrid ion mobility and mass spectrometry systems has illustrated the great potential of nMS for structural biology. Fundamental to the progression of nMS has been the development of novel activation methods for dissociating proteins and protein complexes to deduce primary, secondary, tertiary, and quaternary structure through the combined use of multiple MS/MS technologies. This review highlights the key features and advantages of surface collisions (surface-induced dissociation, SID) for probing the connectivity of subunits within protein and nucleoprotein complexes and, in particular, for solving protein structure in conjunction with complementary techniques such as cryo-EM and computational modeling. Several case studies highlight the significant role SID, and more generally nMS, will play in structural elucidation of biological assemblies in the future as the technology becomes more widely adopted. Cases are presented where SID agrees with solved crystal or cryoEM structures or provides connectivity maps that are otherwise inaccessible by "gold standard" structural biology techniques.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
20
|
Kim B, Lingappa UF, Magyar J, Monteverde D, Valentine JS, Cho J, Fischer W. Challenges of Measuring Soluble Mn(III) Species in Natural Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051661. [PMID: 35268761 PMCID: PMC8911613 DOI: 10.3390/molecules27051661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/31/2022] [Accepted: 02/19/2022] [Indexed: 11/16/2022]
Abstract
Soluble Mn(III)-L complexes appear to constitute a substantial portion of manganese (Mn) in many environments and serve as critical high-potential species for biogeochemical processes. However, the inherent reactivity and lability of these complexes-the same chemical characteristics that make them uniquely important in biogeochemistry-also make them incredibly difficult to measure. Here we present experimental results demonstrating the limits of common analytical methods used to quantify these complexes. The leucoberbelin-blue method is extremely useful for detecting many high-valent Mn species, but it is incompatible with the subset of Mn(III) complexes that rapidly decompose under low-pH conditions-a methodological requirement for the assay. The Cd-porphyrin method works well for measuring Mn(II) species, but it does not work for measuring Mn(III) species, because additional chemistry occurs that is inconsistent with the proposed reaction mechanism. In both cases, the behavior of Mn(III) species in these methods ultimately stems from inter- and intramolecular redox chemistry that curtails the use of these approaches as a reflection of ligand-binding strength. With growing appreciation for the importance of high-valent Mn species and their cycling in the environment, these results underscore the need for additional method development to enable quantifying such species rapidly and accurately in nature.
Collapse
Affiliation(s)
- Bohee Kim
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| | - Usha Farey Lingappa
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; (U.F.L.); (J.M.); (D.M.); (J.S.V.)
| | - John Magyar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; (U.F.L.); (J.M.); (D.M.); (J.S.V.)
| | - Danielle Monteverde
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; (U.F.L.); (J.M.); (D.M.); (J.S.V.)
| | - Joan Selverstone Valentine
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; (U.F.L.); (J.M.); (D.M.); (J.S.V.)
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jaeheung Cho
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
- Correspondence: (J.C.); (W.F.)
| | - Woodward Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; (U.F.L.); (J.M.); (D.M.); (J.S.V.)
- Correspondence: (J.C.); (W.F.)
| |
Collapse
|
21
|
Gonçalves JPZ, Seraglio J, Macuvele DLP, Padoin N, Soares C, Riella HG. Green synthesis of manganese based nanoparticles mediated by Eucalyptus robusta and Corymbia citriodora for agricultural applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Jones MR, Tebo BM. Novel manganese cycling at very low ionic strengths in the Columbia River Estuary. WATER RESEARCH 2021; 207:117801. [PMID: 34741899 DOI: 10.1016/j.watres.2021.117801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Mixing of waters of different ionic strengths induces the geochemical cycling of reactive elements. The most reactive zone is where the gradient in ionic strength is steepest. In oxygenated systems, the redox-active metal manganese cycles between soluble and particulate fractions through three oxidation states, manganese(II), manganese(III) and manganese(IV). This cycling strongly affects the mobility of inorganic and organic chemicals. The most accessible environmental system where waters with different ionic strengths mix are estuaries. During six Eulerian studies in the Columbia River Estuary, each up to 26 h, we measured manganese speciation and concentration across a salinity (SP) gradient centred around SP = 0.06-6, equivalent to a seawater ionic strength (ISp) of 1.2-120 mM. This zone, representing the region between freshwater and the more intensively studied estuarine turbidity maximum, presents a highly dynamic geochemical environment in which the manganese cycle propagates through four steps as ISp increases due to mixing: 1. Before a measurable change in ISp, manganese, as particulate manganese(III/IV) oxides (MnOx), undergoes reduction, independent of photochemical processes, to soluble manganese(III) stabilized in organic complexes (Mn(III)-L) and manganese(II); 2. As ISp increases between 5 and 80 mM, Mn(III)-L reduction continues and manganese(II) adsorbs onto particle surfaces; 3. As ISp increases further, though remaining below 80 mM (SP ≈ 4), adsorbed manganese(II) desorbs and/or is oxidized and is released as Mn(III)-L or oxidises further to MnOx; 4. The breakdown of Mn(III)-L complexes leads to higher manganese(II) and MnOx, which at Mid-Estuary-Salinities (ISp = 320-480 mM) precipitates. This manganese cycling in low ISp waters directly affects a system's redox chemistry and provides a window into understanding the extensive, yet hidden, freshwater/saline water interface in aquifers, soils, sediments and estuaries.
Collapse
Affiliation(s)
- Matthew Ross Jones
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
23
|
Abstract
Knowledge of protein structure is crucial to our understanding of biological function and is routinely used in drug discovery. High-resolution techniques to determine the three-dimensional atomic coordinates of proteins are available. However, such methods are frequently limited by experimental challenges such as sample quantity, target size, and efficiency. Structural mass spectrometry (MS) is a technique in which structural features of proteins are elucidated quickly and relatively easily. Computational techniques that convert sparse MS data into protein models that demonstrate agreement with the data are needed. This review features cutting-edge computational methods that predict protein structure from MS data such as chemical cross-linking, hydrogen-deuterium exchange, hydroxyl radical protein footprinting, limited proteolysis, ion mobility, and surface-induced dissociation. Additionally, we address future directions for protein structure prediction with sparse MS data. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sarah E Biehn
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA;
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
24
|
Tang W, Liu H, Zeng X. Structural and functional study on cysteine 495, coordinating ligand to T1Cu site in multicopper oxidase CopA. CHEMOSPHERE 2021; 281:130807. [PMID: 34022605 DOI: 10.1016/j.chemosphere.2021.130807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Excessive intake of manganese seriously affects human health. Manganese oxidizing bacteria can efficiently remove manganese, among which manganese oxidase plays a decisive role. Multicopper oxidase, one of the manganese oxidases, has 4 copper binding sites, among them, T1Cu coordinates with two histidine, one cysteine and one axial residue, mainly transferring electrons from the substrate to T2Cu and T3Cu. Here, we conducted site-directed mutagenesis on T1Cu coordinating 495 amino acid site from cysteine to aspartic acid, histidine and methionine in multicopper oxidase CopA from Brevibacillus panacihumi MK-8, through the enzyme kinetics and structure models, finding that the enzyme catalytic efficiency (kcat/Km) of the mutated C495H with Mn2+ and ABTS reached 9.03 min-1 mM-1 and 8863 s-1 mM-1, 1.47 times and 1.67 times that of CopA. And it was found strain Rosetta-pET-copAC495H could remove 91.67% manganese after 7-day culture, which was 11.65% higher than the original strain. To sum up, these results provide a vision for the future application of protein engineering in biological manganese removal.
Collapse
Affiliation(s)
- Wenwei Tang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China.
| | - Haoxiang Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xinping Zeng
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
25
|
Newsome L, Falagán C. The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. GEOHEALTH 2021; 5:e2020GH000380. [PMID: 34632243 PMCID: PMC8490943 DOI: 10.1029/2020gh000380] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 05/13/2023]
Abstract
Mine wastes pollute the environment with metals and metalloids in toxic concentrations, causing problems for humans and wildlife. Microorganisms colonize and inhabit mine wastes, and can influence the environmental mobility of metals through metabolic activity, biogeochemical cycling and detoxification mechanisms. In this article we review the microbiology of the metals and metalloids most commonly associated with mine wastes: arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. We discuss the molecular mechanisms by which bacteria, archaea, and fungi interact with contaminant metals and the consequences for metal fate in the environment, focusing on long-term field studies of metal-impacted mine wastes where possible. Metal contamination can decrease the efficiency of soil functioning and essential element cycling due to the need for microbes to expend energy to maintain and repair cells. However, microbial communities are able to tolerate and adapt to metal contamination, particularly when the contaminant metals are essential elements that are subject to homeostasis or have a close biochemical analog. Stimulating the development of microbially reducing conditions, for example in constructed wetlands, is beneficial for remediating many metals associated with mine wastes. It has been shown to be effective at low pH, circumneutral and high pH conditions in the laboratory and at pilot field-scale. Further demonstration of this technology at full field-scale is required, as is more research to optimize bioremediation and to investigate combined remediation strategies. Microbial activity has the potential to mitigate the impacts of metal mine wastes, and therefore lessen the impact of this pollution on planetary health.
Collapse
Affiliation(s)
- Laura Newsome
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| | - Carmen Falagán
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| |
Collapse
|
26
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
27
|
Soldatova AV, Fu W, Romano CA, Tao L, Casey WH, Britt RD, Tebo BM, Spiro TG. Metallo-inhibition of Mnx, a bacterial manganese multicopper oxidase complex. J Inorg Biochem 2021; 224:111547. [PMID: 34403930 DOI: 10.1016/j.jinorgbio.2021.111547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
The manganese oxidase complex, Mnx, from Bacillus sp. PL-12 contains a multicopper oxidase (MCO) and oxidizes dissolved Mn(II) to form insoluble manganese oxide (MnO2) mineral. Previous kinetic and spectroscopic analyses have shown that the enzyme's mechanism proceeds through an activation step that facilitates formation of a series of binuclear Mn complexes in the oxidation states II, III, and IV on the path to MnO2 formation. We now demonstrate that the enzyme is inhibited by first-row transition metals in the order of the Irving-Williams series. Zn(II) strongly (Ki ~ 1.5 μM) inhibits both activation and turnover steps, as well as the rate of Mn(II) binding. The combined Zn(II) and Mn(II) concentration dependence establishes that the inhibition is non-competitive. This result is supported by electron paramagnetic resonance (EPR) spectroscopy, which reveals unaltered Mnx-bound Mn(II) EPR signals, both mono- and binuclear, in the presence of Zn(II). We infer that inhibitory metals bind at a site separate from the substrate sites and block the conformation change required to activate the enzyme, a case of allosteric inhibition. The likely biological role of this inhibitory site is discussed in the context of Bacillus spore physiology. While Cu(II) inhibits Mnx strongly, in accord with the Irving-Williams series, it increases Mnx activation at low concentrations, suggesting that weakly bound Cu, in addition to the four canonical MCO-Cu, may support enzyme activity, perhaps as an electron transfer agent.
Collapse
Affiliation(s)
- Alexandra V Soldatova
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Wen Fu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - William H Casey
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States; Earth and Planetary Sciences Department, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States.
| |
Collapse
|
28
|
Ishida K, Tsukamoto Y, Horitani M, Ogawa T, Tanaka Y. Biochemical properties of CumA multicopper oxidase from plant pathogen, Pseudomonas syringae. Biosci Biotechnol Biochem 2021; 85:1995-2002. [PMID: 34244699 DOI: 10.1093/bbb/zbab123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/15/2021] [Indexed: 11/12/2022]
Abstract
Multicopper oxidases have a wide range of substrate specificity to be involved in various physiological reactions. Pseudomonas syringae, a plant pathogenic bacterium, has a multicopper oxidase, CumA. Multicopper oxidases have ability to degrade plant cell wall component, lignin. Once P. syringae enter apoplast and colonize, they start to disrupt plant immunity. Therefore, deeper understanding of multicopper oxidases from plant pathogens, help to invent measures to prevent invasion into plant cell, which bring agricultural benefits. Several biochemical studies have reported lower activity of CumA compared with other multicopper oxidase called CotA. However, the mechanisms underlying the difference in activity have not yet been revealed. In order to acquire insight into them, we conducted a biophysical characterization of PsCumA. Our results show that PsCumA has weak type I copper EPR signal, which is essential for oxidation activity. We propose that difference in the coordination of copper ions may decrease reaction frequency.
Collapse
Affiliation(s)
- Konan Ishida
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.,Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QE, UK
| | - Yuya Tsukamoto
- Department of Earth Science, Graduate school of Science, Tohoku University, Sendai, 980-8578, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Masaki Horitani
- Department of Applied Biochemistry and Food Science, Saga University, Honjo-machi, 840-8502, Japan
| | - Tomohisa Ogawa
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
29
|
Liu J, Feng L, Wu Y. Enzymatically synthesised MnO 2 nanoparticles for efficient near-infrared photothermal therapy and dual-responsive magnetic resonance imaging. NANOSCALE 2021; 13:11093-11103. [PMID: 34113941 DOI: 10.1039/d1nr02400k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Manganese dioxide (MnO2) nanoparticles (NPs) are highly attractive for biomedical applications due to their biocompatibility, stimuli-responsive magnetic resonance imaging (MRI) properties and capability to modulate the hypoxic tumour microenvironment (TME). However, conventional MnO2 NPs do not possess photothermal therapy (PTT) functions except for hybrids with other photothermal materials. Herein, we first reveal the extraordinary photothermal conversion efficiency (44%) of enzymatically synthesised MnO2 NPs (Bio-MnO2 NPs), which are distinct from chemically synthesised MnO2 NPs. In addition, the Bio-MnO2 NPs revealed high thermal recycling stability and solubility as well as dual pH- and reduction-responsive MRI enhancement for tumour theragnosis. These NPs were prepared through a facile MnxEFG enzyme-mediated biomineralization process. The MnxEFG complex from Bacillus sp. PL-12 is the only manganese mineralization enzyme that could be heterologously overexpressed in its active form to achieve Bio-MnO2 NPs without a bacterial host. The hexagonal layer symmetry of the Bio-MnO2 NPs is the key feature facilitating the high photothermal conversion efficiency and TME-responsive T1-weighted MRI. Evaluations both in vitro at the cellular level and in vivo in a systematic tumour-bearing mouse xenograft model demonstrated the high photothermal ablation efficacy of the Bio-MnO2 NPs, which achieved complete tumour eradication with high therapeutic biosafety without obvious reoccurrence. Moreover, stimuli-responsive MR enhancement potentially allows imaging-guided precision PTT. With their excellent biocompatibility, mild synthesis conditions and relatively simple composition, Bio-MnO2 NPs hold great translational promise.
Collapse
Affiliation(s)
- Jin Liu
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Liandong Feng
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yuzhou Wu
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
30
|
Yu L, Li Y, Ruan Y. Fe-Mn Oxides Based Multifunctional Adsorptive/Electrosensing Nanoplatforms: Dynamic Site Rearrangement for Metal Ion Selectivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3967-3975. [PMID: 33635053 DOI: 10.1021/acs.est.0c07733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Achieving structural requirements for the exclusive selectivity of adsorbent to a specific metal remains challenging, as certain metal ions show similar adsorptive behaviors and preference toward a given site. We reported the morphology and oxidation state-dependent selectivity manipulating of layered oxides by controlling the dynamic evolution of different adsorptive sites. The computational investigation predicted the site-specific partitioning trends of metal ions at two sites of manganese oxide (MnO2) layers: the lateral edge sites (LESs) and octahedral vacancy sites (OVSs). In contrast to the predominant occupation of the OVSs for other metal ions, the binding of lead (Pb) ions was energetically favored at both the sites. We assembled ultrathin MnO2 nanosheets on the magnetic iron oxides to first enhance the accessibility of the LESs. A sequential ligand-promoted partial reduction of the atomic MnO2 layers induced the edge-to-interlayer migration of Mn atoms to block the nonspecific OVSs and activate the LESs, enabling a superior selectivity to Pb. In addition, the iron oxides helped construct a multifunctional adsorptive/electrosensing platform for Pb regarding their facile magnetic separation and electrochemical activity. Simultaneous selective adsorption and on-site monitoring of Pb(II) were achieved on this nanoplatform, owing to its satisfactory stability and sensitivity without an obvious matrix effect.
Collapse
Affiliation(s)
- Li Yu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, People's Republic of China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yuchan Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| |
Collapse
|
31
|
Snyder DT, Lin YF, Somogyi A, Wysocki V. Tandem surface-induced dissociation of protein complexes on an ultrahigh resolution platform. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 461:116503. [PMID: 33889055 PMCID: PMC8057730 DOI: 10.1016/j.ijms.2020.116503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We describe instrumentation for conducting tandem surface-induced dissociation (tSID) of native protein complexes on an ultrahigh resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The two stages of SID are accomplished with split lenses replacing the entrance lenses of the quadrupole mass filter (stage 1, referred to herein as SID-Q) and the collision cell (stage 2, Q-SID). After SID-Q, the scattered projectile ions and subcomplexes formed in transit traverse the 20 mm pre-filter prior to the mass-selecting quadrupole, providing preliminary insights into the SID fragmentation kinetics of noncovalent protein complexes. The isolated SID fragments (subcomplexes) are then fragmented by SID in the collision cell entrance lens (Q-SID), generating subcomplexes of subcomplexes. We show that the ultrahigh resolution of the FT-ICR can be used for deconvolving species overlapping in m/z, which are particularly prominent in tandem SID spectra due to the combination of symmetric charge partitioning and narrow product ion charge state distributions. Various protein complex topologies are explored, including homotetramers, homopentamers, a homohexamer, and a heterohexamer.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
| | - Yu-Fu Lin
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, USA 43210
| | - Arpad Somogyi
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
| | - Vicki Wysocki
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, USA 43210
| |
Collapse
|
32
|
Newsome L, Bacon CGD, Song H, Luo Y, Sherman DM, Lloyd JR. Natural attenuation of lead by microbial manganese oxides in a karst aquifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142312. [PMID: 33254903 DOI: 10.1016/j.scitotenv.2020.142312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 05/27/2023]
Abstract
Lead is a toxic environmental contaminant associated with current and historic mine sites. Here we studied the natural attenuation of Pb in a limestone cave system that receives drainage from the ancient Priddy Mineries, UK. Extensive deposits of manganese oxides were observed to be forming on the cave walls and as coatings in the stream beds. Analysis of these deposits identified them as birnessite (δ-MnO2), with some extremely high concentrations of sorbed Pb (up to 56 wt%) also present. We hypothesised that these cave crusts were actively being formed by microbial Mn(II)-oxidation, and to investigate this the microbial communities were characterised by DNA sequencing, enrichment and isolation experiments. The birnessite deposits contained abundant and diverse prokaryotes and fungi, with ~5% of prokaryotes and ~ 10% of fungi closely related to known heterotrophic Mn(II)-oxidisers. A substantial proportion (up to 17%) of prokaryote sequences were assigned to groups known as autotrophic ammonia and nitrite oxidisers, suggesting that nitrogen cycling may play an important role in contributing energy and carbon to the cave crust microbial communities and consequently the formation of Mn(IV) oxides and Pb attenuation. Enrichment and isolation experiments showed that the birnessite deposits contained Mn(II)-oxidising microorganisms, and two isolates (Streptomyces sp. and Phyllobacterium sp.) could oxidise Mn(II) in the presence of 0.1 mM Pb. Supplying the enrichment cultures with acetate as a source of energy and carbon stimulated Mn(II)-oxidation, but excess organics in the form of glucose generated aqueous Mn(II), likely via microbial Mn(IV)-reduction. In this karst cave, microbial Mn(II)-oxidation contributes to the active sequestration and natural attenuation of Pb from contaminated waters, and therefore may be considered a natural analogue for the design of wastewater remediation systems and for understanding the geochemical controls on karst groundwater quality, a resource relied upon by billions of people across the globe.
Collapse
Affiliation(s)
- Laura Newsome
- Williamson Research Centre, Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Charles G D Bacon
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom
| | - Hokyung Song
- Williamson Research Centre, Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Yunyao Luo
- Williamson Research Centre, Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - David M Sherman
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom
| | - Jonathan R Lloyd
- Williamson Research Centre, Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
33
|
Liu J, Gu T, Li L, Li L. Synthesis of MnO/C/NiO-Doped Porous Multiphasic Composites for Lithium-Ion Batteries by Biomineralized Mn Oxides from Engineered Pseudomonas putida Cells. NANOMATERIALS 2021; 11:nano11020361. [PMID: 33535572 PMCID: PMC7912735 DOI: 10.3390/nano11020361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
A biotemplated cation-incoporating method based on bacterial cell-surface display technology and biogenic Mn oxide mineralization process was developed to fabricate Mn-based multiphasic composites as anodes for Li-ion batteries. The engineered Pseudomonas putida MB285 cells with surface-immobilized multicopper oxidase serve as nucleation centers in the Mn oxide biomineralization process, and the Mn oxides act as a settler for incorporating Ni ions to form aggregates in this process. The assays using X-ray photoelectron spectroscopy, phase compositions, and fine structures verified that the resulting material MnO/C/NiO (CMB-Ni) was porous multiphasic composites with spherical and porous nanostructures. The electrochemical properties of materials were improved in the presence of NiO. The reversible discharge capacity of CMB-Ni remained at 352.92 mAh g-1 after 200 cycles at 0.1 A g-1 current density. In particular, the coulombic efficiency was approximately 100% after the second cycle for CMB-Ni.
Collapse
Affiliation(s)
| | | | | | - Lin Li
- Correspondence: ; Tel.: +86-27-87286952; Fax: +86-27-87280670
| |
Collapse
|
34
|
Zhou M, Lantz C, Brown KA, Ge Y, Paša-Tolić L, Loo JA, Lermyte F. Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. Chem Sci 2020; 11:12918-12936. [PMID: 34094482 PMCID: PMC8163214 DOI: 10.1039/d0sc04392c] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
In biology, it can be argued that if the genome contains the script for a cell's life cycle, then the proteome constitutes an ensemble cast of actors that brings these instructions to life. Their interactions with each other, co-factors, ligands, substrates, and so on, are key to understanding nearly any biological process. Mass spectrometry is well established as the method of choice to determine protein primary structure and location of post-translational modifications. In recent years, top-down fragmentation of intact proteins has been increasingly combined with ionisation of noncovalent assemblies under non-denaturing conditions, i.e., native mass spectrometry. Sequence, post-translational modifications, ligand/metal binding, protein folding, and complex stoichiometry can thus all be probed directly. Here, we review recent developments in this new and exciting field of research. While this work is written primarily from a mass spectrometry perspective, it is targeted to all bioanalytical scientists who are interested in applying these methods to their own biochemistry and chemical biology research.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California-Los Angeles Los Angeles CA 90095 USA
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Madison WI 53706 USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California-Los Angeles Los Angeles CA 90095 USA
| | - Frederik Lermyte
- Department of Chemistry, Institute of Chemistry and Biochemistry, Technical University of Darmstadt 64287 Darmstadt Germany
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège 4000 Liège Belgium
- School of Engineering, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
35
|
Molecular Cloning and Heterologous Expression of Manganese(II)-Oxidizing Enzyme from Acremonium strictum Strain KR21-2. Catalysts 2020. [DOI: 10.3390/catal10060686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Diverse ascomycete fungi oxidize manganese(II) [Mn(II)] and produce Mn(III, IV) oxides in terrestrial and freshwater environments. Although multicopper oxidase (MCO) is considered to be a key catalyst in mediating Mn(II) oxidation in ascomycetes, the responsible gene and its product have not been identified. In this study, a gene, named mco1, encoding Mn(II)-oxidizing MCO from Acremonium strictum strain KR21-2 was cloned and heterologously expressed in the methylotrophic yeast Pichia pastoris. Based on the phylogenetic relationship, similarity of putative copper-binding motifs, and homology modeling, the gene product Mco1 was assigned to a bilirubin oxidase. Mature Mco1 was predicted to be composed of 565 amino acids with a molecular mass of 64.0 kDa. The recombinant enzyme oxidized Mn(II) to yield spherical Mn oxides, several micrometers in diameter. Zinc(II) ions added to the reaction mixture were incorporated by the Mn oxides at a Zn/Mn molar ratio of 0.36. The results suggested that Mco1 facilitates the growth of the micrometer-sized Mn oxides and affects metal sequestration through Mn(II) oxidation. This is the first report on heterologous expression and identification of the Mn(II) oxidase enzyme in Mn(II)-oxidizing ascomycetes. The cell-free, homogenous catalytic system with recombinant Mco1 could be useful for understanding Mn biomineralization by ascomycetes and the sequestration of metal ions in the environment
Collapse
|
36
|
Abstract
Novel bimetallic Pd-Mn/Al2O3 catalysts are designed by the decomposition of cyclopentadienylmanganese tricarbonyl (cymantrene) on reduced Pd/Al2O3 in an H2 atmosphere. The peculiarities of cymantrene decomposition on palladium and, thus, the formation of bimetallic Pd-Mn catalysts are studied. The catalysts are characterized by N2 adsorption, H2 pulse chemisorption, temperature-programmed desorption of hydrogen (TPD-H2), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The modified catalysts show the changed hydrogen chemisorption properties and the absence of weakly bonded hydrogen. Using an organomanganese precursor provides an uniform Mn distribution on the catalyst surface. Tested in hydrogenation of acetylene, the catalysts show both higher activity and selectivity to ethylene (20% higher) compared to the non-modified Pd/Al2O3 catalyst. The influence of the addition of Mn and temperature treatment on catalyst performance is studied. The optimal Mn content and treatment temperature are found. It is established that modification with Mn changes the route of acetylene hydrogenation from a consecutive scheme for Pd/Al2O3 to parallel one for the Pd-Mn samples. The reaction rate shows zero overall order by reagents for all tested catalysts.
Collapse
|
37
|
Jung H, Taillefert M, Sun J, Wang Q, Borkiewicz OJ, Liu P, Yang L, Chen S, Chen H, Tang Y. Redox Cycling Driven Transformation of Layered Manganese Oxides to Tunnel Structures. J Am Chem Soc 2020; 142:2506-2513. [PMID: 31913621 DOI: 10.1021/jacs.9b12266] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mn oxides are among the most ubiquitous minerals on Earth and play critical roles in numerous elemental cycles in biotic/abiotic loops as the key redox center. Yet, it has long puzzled geochemists why the laboratory synthesis of todorokite, a tunnel-structured Mn oxide, is extremely difficult while it is the dominant form over other tunneled phases in low-temperature natural environments. This study employs a novel electrochemical method to mimic the cyclic redox reactions occurring over long geological time scales in an accelerated manner. The results revealed that the kinetics and electron flux of the cyclic redox reaction are key to the layer-to-tunnel structure transformation of Mn oxides, provided new insights for natural biotic and abiotic redox reactions, and explained the dominance of todorokite in nature.
Collapse
Affiliation(s)
| | | | - Jingying Sun
- Department of Physics and Texas Center for Superconductivity , University of Houston , Houston , Texas 77204 , United States
| | | | - Olaf J Borkiewicz
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | | | | | - Shuo Chen
- Department of Physics and Texas Center for Superconductivity , University of Houston , Houston , Texas 77204 , United States
| | | | | |
Collapse
|
38
|
He Z, Zhang Q, Wei Z, Zhu Y, Pan X. Simultaneous removal of As(III) and Cu(II) from real bottom ash leachates by manganese-oxidizing aerobic granular sludge: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134510. [PMID: 31629267 DOI: 10.1016/j.scitotenv.2019.134510] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/20/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Manganese-oxidizing aerobic granular sludge (Mn-AGS) is a novel extension of AGS technology to treat arsenic (As) in organic wastewater. In this study, Mn-AGS was first applied to treat real wastewater (bottom ash leachates) containing high levels of As(III) and Cu(II) in a sequencing batch reactor (SBR) for 91 days. Influent and effluent As(III), As(V), Cu(II), as well as pH and chemical oxygen demand (COD) were monitored daily, and sludge was collected regularly for morphological observation, chemical characterization, and microbial analysis. The results indicated that As(III) and Cu(II) could be efficiently removed from wastewater (∼83% and ∼100%, respectively), but the performance was sensitive to pH variation, especially for As(III). The removed As and Cu were mostly bound to carbonates (60.2 ± 2.0% and 70.0 ± 0.6%, respectively) and Fe/Mn oxides (28.2 ± 1.6% and 14.6 ± 0.5%, respectively) in the final sludge. Influent As(III) was partially oxidized into As(V), and high fractions of As(V) were obtained in the Fe/Mn oxide-bound phase. Unexpectedly, microbial analysis revealed that community richness was only slightly changed when the influent was acidized (pH 4.0) but greatly reduced after the influent pH back to 6.0. It could be explained by that acid-fast bacteria rapidly grew after pH recovery and eliminated non-acid-fast bacteria. This work further supported the practical application of Mn-AGS to treat As(III)-containing organic wastewaters.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qingying Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhen Wei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yinghong Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| |
Collapse
|
39
|
He Z, Wei Z, Zhang Q, Zou J, Pan X. Metal oxyanion removal from wastewater using manganese-oxidizing aerobic granular sludge. CHEMOSPHERE 2019; 236:124353. [PMID: 31319307 DOI: 10.1016/j.chemosphere.2019.124353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
As, Sb, and Cr are redox-sensitive and toxic heavy metal(loid)s, and redox reactions are usually involved in the treatment of substrates containing these elements. In this study, manganese-oxidizing aerobic granular sludge (Mn-AGS) was obtained by continuously adding Mn(II) to the sludge in a sequencing batch reactor (SBR). Morphological observations, and analyses of extracellular polymeric substances (EPS), Mn valence-states, and microbial communities were performed on the resulting sludge. After 50 days of cultivation, biogenic Mn(III,IV) oxides (bio-MnOx) accumulated up to approximately 25 mg Mn/g suspended solids (SS). X-ray photoelectron spectroscopy (XPS) revealed that the percentage of Mn(III,IV) was 87.6%. The protein (PN) component in EPS increased from 80.3 to 87.8 mg/g volatile suspended solids (VSS) during cultivation, which might be favorable for sludge granulation and heavy metal(loid) removal. Batch experiments showed that Mn-AGS was better at oxidizing As(III)/Sb(III) into less toxic As(V)/Sb(V) than traditional AGS. Remarkably, the results indicated that Mn-AGS did not oxidize Cr(III) but was able to reduce Cr(VI) into relatively harmless Cr(III). This work provided a new promising method with which to treat As(III), Sb(III), and Cr(VI) in wastewaters.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhen Wei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qingying Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jinte Zou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| |
Collapse
|
40
|
Xiong L, Zhao M, Fan Y, Wang S, Yang Y, Li X, Zhao D, Zhang F. Manganese Oxide Nanoclusters for Skin Photoprotection. ACS APPLIED BIO MATERIALS 2019; 2:3974-3982. [PMID: 35021330 DOI: 10.1021/acsabm.9b00528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An ultraviolet (UV) filter is the core component of sunscreen and protects skin from various photo damages. Current UV filters are hampered by skin penetration, poor photostability, photocatalytic generation of harmful reactive oxygen species (ROS), and potential environmental risks. In this work, manganese dioxide nanoclusters were developed as an eco-friendly UV filter by a facile two-step synthesis, using colloid silica as support under ambient conditions. These nanoclusters show a better UV-shielding profile than commercial titanium dioxide nanoparticles and capability to scavenge various ROS. They can be easily incorporated by a sunscreen formula and demonstrate an excellent skin photoprotection performance both in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Xiong
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Yong Fan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Yanling Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Xiaomin Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Dongyuan Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
41
|
He Z, Zhang Q, Wei Z, Wang S, Pan X. Multiple-pathway arsenic oxidation and removal from wastewater by a novel manganese-oxidizing aerobic granular sludge. WATER RESEARCH 2019; 157:83-93. [PMID: 30953858 DOI: 10.1016/j.watres.2019.03.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Aerobic granular sludge (AGS) is a powerful biotechnology to remove various heavy metal(loid)s from wastewater, but not including arsenic (As). In this study, a novel manganese-oxidizing aerobic granular sludge (Mn-AGS) was developed to remove As from organic wastewater. Eight sequencing batch reactors (SBRs) were operated in duplicate to investigate the feasibility of As removal by Mn-AGS. The immobilized As in the granular sludge was characterized by sequencing extraction, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and Raman spectroscopy. Oxidation pathways for As and their contributions in Mn-AGS were evaluated by seven batch experiments under different conditions. The results indicated that As removal efficiency was much higher by Mn-AGS than by AGS. In Mn-AGS, As(III) was efficiently oxidized into As(V) (74.6%-82.6%) and then mostly bound on amorphous ferrihydrite and biogenic Mn oxides (bio-MnOx) (56.2%-65.0%), while metal arsenates, such as ferric arsenate, were not detected. Importantly, As removal was greatly improved by a small addition of Fe(II) in Mn-AGS. This might be primarily caused by Fenton reactions, because this improvement was removed when H2O2, self-generated in Mn-AGS, was scavenged by exogenous catalase (CAT). This study provided a novel extension of the traditional AGS technology to treat As in organic wastewater with an acceptable degree of efficiency.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qingying Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhen Wei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Shuo Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| |
Collapse
|
42
|
Soldatova AV, Balakrishnan G, Oyerinde OF, Romano CA, Tebo BM, Spiro TG. Biogenic and Synthetic MnO 2 Nanoparticles: Size and Growth Probed with Absorption and Raman Spectroscopies and Dynamic Light Scattering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4185-4197. [PMID: 30905145 DOI: 10.1021/acs.est.8b05806] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
MnO2 nanoparticles, similar to those found in soils and sediments, have been characterized via their UV-visible and Raman spectra, combined with dynamic light scattering and reactivity measurements. Synthetic colloids were prepared by thiosulfate reduction of permanganate, their sizes controlled with adsorbates acting as capping agents: bicarbonate, phosphate, and pyrophosphate. Biogenic colloids, products of the manganese oxidase, Mnx, were similarly characterized. The band-gap energies of the colloids were found to increase with decreasing hydrodynamic diameter, Dh, and were proportional to 1/ Dh2, as predicted from quantum confinement theory. The intensity ratio of the two prominent Mn-O stretching Raman bands also varied with particle size, consistent with the ratio of edge to bulk Mn atoms. Reactivity of the synthetic colloids toward reduction by Mn2+, in the presence of pyrophosphate to trap the Mn3+ product, was proportional to the surface to volume ratio, but showed surprising complexity. There was also a remnant unreactive fraction, likely attributable to Mn(III)-induced surface passivation. The band gap was similar for biogenic and synthetic colloids of similar size, but decreased when the enzyme solution contained pyrophosphate, which traps the intermediate Mn(III) and slows MnO2 growth. The band gap/size correlation was used to analyze the growth of the enzymatically produced MnO2 oxides.
Collapse
Affiliation(s)
- Alexandra V Soldatova
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Gurusamy Balakrishnan
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Oyeyemi F Oyerinde
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems , Oregon Health & Science University , Portland , Oregon 97239 , United States
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems , Oregon Health & Science University , Portland , Oregon 97239 , United States
| | - Thomas G Spiro
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| |
Collapse
|
43
|
Relative interfacial cleavage energetics of protein complexes revealed by surface collisions. Proc Natl Acad Sci U S A 2019; 116:8143-8148. [PMID: 30944216 DOI: 10.1073/pnas.1817632116] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To fulfill their biological functions, proteins must interact with their specific binding partners and often function as large assemblies composed of multiple proteins or proteins plus other biomolecules. Structural characterization of these complexes, including identification of all binding partners, their relative binding affinities, and complex topology, is integral for understanding function. Understanding how proteins assemble and how subunits in a complex interact is a cornerstone of structural biology. Here we report a native mass spectrometry (MS)-based method to characterize subunit interactions in globular protein complexes. We demonstrate that dissociation of protein complexes by surface collisions, at the lower end of the typical surface-induced dissociation (SID) collision energy range, consistently cleaves the weakest protein:protein interfaces, producing products that are reflective of the known structure. We present here combined results for multiple complexes as a training set, two validation cases, and four computational models. We show that SID appearance energies can be predicted from structures via a computationally derived expression containing three terms (number of residues in a given interface, unsatisfied hydrogen bonds, and a rigidity factor).
Collapse
|
44
|
Jones MR, Luther GW, Mucci A, Tebo BM. Concentrations of reactive Mn(III)-L and MnO 2 in estuarine and marine waters determined using spectrophotometry and the leuco base, leucoberbelin blue. Talanta 2019; 200:91-99. [PMID: 31036231 DOI: 10.1016/j.talanta.2019.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 01/07/2023]
Abstract
In terms of its oxidative strength, the MnO2/Mn2+ couple is one of the strongest in the aquatic environment. The intermediate oxidation state, manganese(III), is stabilized by a range of organic ligands (Mn(III)-L) and some of these complexes are also strong oxidants or reductants. Here, we present improved methods for quantifying soluble reactive oxidized manganese(III) and particulate reactive oxidized manganese at ultra-low concentrations; the respective detection limits are 6.7 nM and 7 pM (100-cm spectrophotometric path length) and 260 nM and 2.6 nM (1-cm path length). The methods involve a simple, specific, spectrophotometric technique using a water-soluble leuco base (leucoberbelin blue; LBB). LBB is oxidized by manganese through a hydrogen atom transfer reaction forming a colored complex that is stoichiometrically related to the oxidation state of the manganese, either Mn(III)-L or manganese(III,IV) oxides (MnOx). At the concentration of LBB used in this study, nitrite may be a minor interference, so we provide concentration ranges over which it interferes and suggest potential strategies to mitigate the interference. Unlike previous methods devised to quantify Mn(III)-L, which use ligand exchange reactions, the LBB oxidation requires an electron and therefore needs to physically contact manganese(III) for inner-sphere electron transfer to occur. The method for measuring soluble Mn(III)-L was evaluated in the laboratory, and LBB was found to be oxidized by an extensive suite of weak Mn(III)-L complexes, as it is by MnOx, but could not react with or reacted very slowly with strong Mn(III)-L complexes. According to the molecular structures of the Mn(III)-L complexes tested, LBB can also be used to qualitatively assess the binding strength of Mn(III)-L complexes based on metal-chelate structural considerations. The assays for soluble Mn(III)-L (membrane filtered) and particulate manganese oxides (trapped by membrane filters) were applied to the well-oxygenated estuarine waters of the Saguenay Fjord, a major tributary of the Lower St. Lawrence Estuary, and to Western North Atlantic oceanic waters, off the continental shelf, where there is an oxygen minimum zone (< 67% O2 saturation). The methods applied can be used in the field or onboard ships and provide important new insights into oxidized manganese speciation.
Collapse
Affiliation(s)
- Matthew R Jones
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Portland, OR 97239, USA.
| | - George W Luther
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA
| | - Alfonso Mucci
- GEOTOP and Department of Earth and Planetary Sciences, McGill University, Montreal, QC H3A 0E8, Canada
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
45
|
VanAernum ZL, Gilbert JD, Belov ME, Makarov AA, Horning SR, Wysocki VH. Surface-Induced Dissociation of Noncovalent Protein Complexes in an Extended Mass Range Orbitrap Mass Spectrometer. Anal Chem 2019; 91:3611-3618. [PMID: 30688442 PMCID: PMC6516482 DOI: 10.1021/acs.analchem.8b05605] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Native mass spectrometry continues to develop as a significant complement to traditional structural biology techniques. Within native mass spectrometry (MS), surface-induced dissociation (SID) has been shown to be a powerful activation method for the study of noncovalent complexes of biological significance. High-resolution mass spectrometers have become increasingly adapted to the analysis of high-mass ions and have demonstrated their importance in understanding how small mass changes can affect the overall structure of large biomolecular complexes. Herein we demonstrate the first adaptation of surface-induced dissociation in a modified high-mass-range, high-resolution Orbitrap mass spectrometer. The SID device was designed to be installed in the Q Exactive series of Orbitrap mass spectrometers with minimal disruption of standard functions. The performance of the SID-Orbitrap instrument has been demonstrated with several protein complex and ligand-bound protein complex systems ranging from 53 to 336 kDa. We also address the effect of ion source temperature on native protein-ligand complex ions as assessed by SID. Results are consistent with previous findings on quadrupole time-of-flight instruments and suggest that SID coupled to high-resolution MS is well-suited to provide information on the interface interactions within protein complexes and ligand-bound protein complexes.
Collapse
|
46
|
Ji R, Ge W, Wang H, Zhao Y, Feng H. BrSKS13, a multiple-allele-inherited male sterility-related gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis), affects pollen development and pollination/fertilization process. Gene 2019; 696:113-121. [PMID: 30776462 DOI: 10.1016/j.gene.2019.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/04/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
Multiple-allele-inherited male sterility (MAMS) is important in Chinese cabbage (Brassica rapa L. ssp. pekinensis) breeding, but the molecular mechanisms leading to male sterility are poorly understood. In this study, we cloned a novel gene, BrSKS13, that is differentially expressed in fertile and sterile flower buds of Chinese cabbage. BrSKS13 is most similar to Arabidopsis thaliana AT3G13400 (SKS13) and encodes a predicted 61.87 kDa protein with three cupredoxin superfamily conserved domains in the multicopper oxidase family. Semi-quantitative reverse-transcription PCR (sqRT-PCR) showed that expression of BrSKS13 is higher in fertile buds than in sterile buds. Quantitative RT-PCR (qRT-PCR) and in situ hybridization showed that BrSKS13 is highly expressed in fertile anthers, peaking at pollen-maturation stage VI, but is weakly expressed in other tissues and floral organs. Expression patterns of BrSKS13 promoter::GUS reporter fusions in Arabidopsis showed that the BrSKS13 promoter drives expression of the GUS gene only in anthers. The relative expression of Brsks13 in fertile buds was higher than in sterile buds for all other MAMS lines of Chinese cabbage examined. These results suggest that BrSKS13 affects pollen development. In situ hybridization analysis of flower stigmas at different times after pollination showed that BrSKS13 expression was first observed in stigmas and immature seeds at 1 h after pollination, and the signal intensity in seeds increased with increasing maturity. Compared to Col-0, A. thaliana sks13 mutant plants have shorter and fewer siliques, shriveled pollen grains, pollen tube abnormalities, and reduced seed number. The phenotype of sks13 mutant was recovered by over-expressing BrSKS13. Our results suggest that BrSKS13 affects pollen development and the pollination/fertilization process, and will enable further study of the genetic mechanisms underlying MAMS in Chinese cabbage.
Collapse
Affiliation(s)
- Ruiqin Ji
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenjie Ge
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Huiman Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Ying Zhao
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
47
|
Stiving AQ, VanAernum ZL, Busch F, Harvey SR, Sarni SH, Wysocki VH. Surface-Induced Dissociation: An Effective Method for Characterization of Protein Quaternary Structure. Anal Chem 2019; 91:190-209. [PMID: 30412666 PMCID: PMC6571034 DOI: 10.1021/acs.analchem.8b05071] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alyssa Q. Stiving
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Florian Busch
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Samantha H. Sarni
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
48
|
Tao L, Stich TA, Soldatova AV, Tebo BM, Spiro TG, Casey WH, Britt RD. Mn(III) species formed by the multi-copper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy. J Biol Inorg Chem 2018; 23:1093-1104. [PMID: 29968177 DOI: 10.1007/s00775-018-1587-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/22/2018] [Indexed: 01/24/2023]
Abstract
The multi-copper oxidase (MCO) MnxG from marine Bacillus bacteria plays an essential role in geochemical cycling of manganese by oxidizing Mn2+(aq) to form manganese oxide minerals at rates that are three to five orders of magnitude faster than abiotic rates. The MCO MnxG protein is isolated as part of a multi-protein complex, denoted as Mnx, which includes one MnxG unit and a hexamer of MnxE3F3 subunit. During the oxidation of Mn2+(aq) catalyzed by the Mnx protein complex, an enzyme-bound Mn(III) species was trapped recently in the presence of pyrophosphate (PP) and analyzed using parallel-mode electron paramagnetic resonance (EPR) spectroscopy. Herein, we provide a full analysis of this enzyme-bound Mn(III) intermediate via temperature dependence studies and spectral simulations. This Mnx-bound Mn(III) species is characterized by a hyperfine-coupling value of A(55Mn) = 4.2 mT (corresponding to 120 MHz) and a negative zero-field splitting (ZFS) value of D = - 2.0 cm-1. These magnetic properties suggest that the Mnx-bound Mn(III) species could be either six-coordinate with a 5B1g ground state or square-pyramidal five-coordinate with a 5B1 ground state. In addition, as a control, Mn(III)PP is also analyzed by parallel-mode EPR spectroscopy. It exhibits distinctly different magnetic properties with a hyperfine-coupling value of A(55Mn) = 4.8 mT (corresponding to 140 MHz) and a negative ZFS value of D = - 2.5 cm-1. The different ZFS values suggest differences in ligand environment of Mnx-bound Mn(III) and aqueous Mn(III)PP species. These studies provide further insights into the mechanism of biological Mn2+(aq) oxidation.
Collapse
Affiliation(s)
- Lizhi Tao
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Troy A Stich
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Alexandra V Soldatova
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA
| | - William H Casey
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Department of Geology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - R David Britt
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
49
|
Zhou M, Yan J, Romano CA, Tebo BM, Wysocki VH, Paša-Tolić L. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:723-733. [PMID: 29388167 PMCID: PMC7305857 DOI: 10.1007/s13361-017-1882-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 05/11/2023]
Abstract
Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase, Mnx, from Bacillus sp. PL-12 has been successfully overexpressed in active form as a protein complex with a molecular mass of 211 kDa. We have recently used surface induced dissociation (SID) and ion mobility-mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data from the native mass spectrometry experiments led to a plausible structural model of this multicopper oxidase, which has been difficult to study by conventional structural biology methods. It was also revealed that each Mnx subunit binds a variable number of copper ions. Becasue of the heterogeneity of the protein and limited mass resolution, ambiguities in assigning some of the observed peaks remained as a barrier to fully understanding the role of metals and potential unknown ligands in Mnx. In this study, we performed SID in a modified Fourier transform-ion cyclotron resonance (FTICR) mass spectrometer. The high mass accuracy and resolution offered by FTICR unveiled unexpected artificial modifications on the protein that had been previously thought to be iron bound species based on lower resolution spectra. Additionally, isotopically resolved spectra of the released subcomplexes revealed the metal binding stoichiometry at different structural levels. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA, 99354, USA
| | - Jing Yan
- Department of Chemistry and Biochemistry, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA, 99354, USA.
| |
Collapse
|
50
|
Confirmation of intersubunit connectivity and topology of designed protein complexes by native MS. Proc Natl Acad Sci U S A 2018; 115:1268-1273. [PMID: 29351988 DOI: 10.1073/pnas.1713646115] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Computational protein design provides the tools to expand the diversity of protein complexes beyond those found in nature. Understanding the rules that drive proteins to interact with each other enables the design of protein-protein interactions to generate specific protein assemblies. In this work, we designed protein-protein interfaces between dimers and trimers to generate dodecameric protein assemblies with dihedral point group symmetry. We subsequently analyzed the designed protein complexes by native MS. We show that the use of ion mobility MS in combination with surface-induced dissociation (SID) allows for the rapid determination of the stoichiometry and topology of designed complexes. The information collected along with the speed of data acquisition and processing make SID ion mobility MS well-suited to determine key structural features of designed protein complexes, thereby circumventing the requirement for more time- and sample-consuming structural biology approaches.
Collapse
|