1
|
Sato Y, De Feyter S, Tahara K. Formation of Supramolecular Heterostacks at the Liquid-Solid Interface: Impact of Symmetry Mismatching on Structural Growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16825-16832. [PMID: 37967133 DOI: 10.1021/acs.langmuir.3c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The construction of intricate three-dimensional (3D) nanoarchitectures on surfaces through molecular self-assembly attracts attention not only from a crystal engineering viewpoint but also because of its potential in a range of applications, given the current interest in van der Waals heterostructures. We herein report the formation of porous structures on alkane buffer layers on graphite. A dehydrobenzo[12]annulene (DBA) derivative having six decyloxy chains forms hexagonal structures on n-pentacontane and n-hexacontane buffer layers through van der Waals interactions at the 1-octanoic acid/graphite interface. The structural features are very similar to those on the graphite surface, except for the slight structural distortion, which is attributed to the p2 symmetry of the buffer layer underneath. Moreover, based on the observation of small clusters of the DBA molecules, we discussed the nucleation and structural growth of the DBA network on a buffer layer. Finally, a hierarchical multicomponent structure was formed through the coadsorption of a heteromolecular cluster formed by a hydrogen-bonded isophthalic acid cyclic hexamer hosting a coronene molecule on the buffer layer. This study on supramolecular heterostacks provides insights into the construction of intricate 3D nanoarchitectures using self-assembly at interfaces.
Collapse
Affiliation(s)
- Yuta Sato
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
2
|
Asgari S, Mohammadi Ziarani G, Badiei A, Varma RS, Iravani S, Mohajer F. Enhanced photocatalytic activity of modified black phosphorus-incorporated PANi/PAN nanofibers. RSC Adv 2023; 13:17324-17339. [PMID: 37304786 PMCID: PMC10251399 DOI: 10.1039/d3ra01744c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023] Open
Abstract
Enhancement of the photocatalytic activity of black phosphorus (BP) is a highly challenging proposition. The fabrication of electrospun composite nanofibers (NFs) through the incorporation of modified BP nanosheets (BPNs) into conductive polymeric NFs has been recently introduced as a newer strategy not only to enhance the photocatalytic activity of BPNs but also to overcome their drawbacks including ambient instability, aggregation, and hard recycling, which exist in their nanoscale powdered forms. The proposed composite NFs were prepared through the incorporation of silver (Ag)-modified BPNs, gold (Au)-modified BPNs, and graphene oxide (GO)-modified BPNs into polyaniline/polyacrylonitrile (PANi/PAN) NFs by an electrospinning process. The successful preparation of the modified BPNs and electrospun NFs was confirmed by the characterization techniques of Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-vis), powder X-ray diffraction (PXRD), and Raman spectroscopy. The pure PANi/PAN NFs exhibited high thermal stability with a main weight loss of ∼23% for the temperature range of 390-500 °C, and the thermal stability of NFs was enhanced after their incorporation with the modified BPNs. The BPNs@GO-incorporated PANi/PAN NFs indicated improved mechanical properties compared to the pure PANi/PAN NFs with tensile strength (TS) of 1.83 MPa and elongation at break (EAB) of 24.91%. The wettability of the composite NFs was measured in the range of 35-36°, which exhibited their good hydrophilicity. The photodegradation performance was found in the sequence of BPNs@GO > BPNs@Au > BPNs@Ag > bulk BP ∼BPNs > red phosphorus (RP) for methyl orange (MO) and in the sequence of BPNs@GO > BPNs@Ag > BPNs@Au > bulk BP > BPNs > RP for methylene blue (MB), accordingly. The composite NFs degraded the MO and MB dyes more efficiently relative to the modified BPNs and pure PANi/PAN NFs.
Collapse
Affiliation(s)
- Shadi Asgari
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University P.O. Box 1993893973 Tehran Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University P.O. Box 1993893973 Tehran Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan Iran
| | - Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University P.O. Box 1993893973 Tehran Iran
| |
Collapse
|
3
|
Chen X, Li Q, Yuan T, Ma M, Ye Z, Wei X, Fang X, Mao S. Highly Specific Antibiotic Detection on Water-Stable Black Phosphorus Field-Effect Transistors. ACS Sens 2023; 8:858-866. [PMID: 36701186 DOI: 10.1021/acssensors.2c02562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two-dimensional (2D) black phosphorus (BP) has been reported to have appealing semiconducting properties as the sensing channel in field-effect transistor (FET) sensors. However, the intrinsic instability of BP in water greatly hinders its application, and little is known about its sensing performance and mechanism in aqueous medium. Herein, a water-stable BP FET sensor for antibiotic detection is reported. A novel surface engineering strategy with Ag+ coordination and melamine cyanurate (MC) supramolecular passivation is utilized to enhance the stability and transistor performance of BP. With molecularly imprinted polymers (MIPs) as the detection probe for tetracycline, the BPAg(+)/MC/MIPs sensor shows high sensitivity to tetracycline with a detection limit of 7.94 nM and a quick response within 6 s as well as high selectivity against other antibiotics with similar molecular structures. A new sensing mechanism relying on the conjugation effect of the probe structure is proposed, and new knowledge about alkalinity-enhanced and ionic strength-related response from the electrostatic gating effect is given based on the solution chemistry impact study. This work offers an efficient surface engineering strategy to enable the application of 2D BP for antibiotic detection in aqueous medium and presents a new sensing mechanism in chemical analysis by FET sensors.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu210037, China
| | - Qiuju Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai200092, China
| | - Taoyue Yuan
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu210037, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu210037, China
| | - Ziwei Ye
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai200092, China
| | - Xiaojie Wei
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai200092, China
| | - Xian Fang
- School of Exercise and Health, Shanghai University of Sport, Shanghai200438, China
| | - Shun Mao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai200092, China
| |
Collapse
|
4
|
Liirò-Peluso L, Wrigley J, Amabilino DB, Beton PH. Submolecular Resolution Imaging of P3HT:PCBM Nanostructured Films by Atomic Force Microscopy: Implications for Organic Solar Cells. ACS APPLIED NANO MATERIALS 2022; 5:13794-13804. [PMID: 36338328 PMCID: PMC9623582 DOI: 10.1021/acsanm.2c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The efficiency of organic bulk-heterojunction (BHJ) solar cells depends greatly on both the bulk and surface structure of the nanostructured bicontinuous interpenetrating network of materials, known as the active layer. The morphology of the top layer of a coated film is often resolved at the scale of a few nanometers, but fine details of the domains and the order within them are more difficult to identify. Here, we report a high-resolution atomic force microscopy (AFM) investigation of various stoichiometries of the well-studied poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) active layer mixture. Images of the surface were obtained using AC-mode AFM exciting higher-order resonance frequencies of a standard silicon probe, a promising technique for acquiring real-space images of organic-based thin films with nanoscale and even submolecular resolution. We provide firm evidence of the nanoscale organization of the P3HT polymer and of the P3HT:PCBM stoichiometric mixtures at the surface-air interface of the BHJ architecture. Our study shows the characteristic periodicity of the regioregular P3HT identified in the nanoscale domain areas with submolecular resolution. Such areas are then distorted in place when adding different quantities of PCBM forming stoichiometric mixtures. When the samples were exposed to ambient light, the morphologies were very different, and submolecular resolution was not achieved. This approach is shown to provide a precise view of the active layer's nanostructure and will be useful for studies of other materials as a function of various parameters, with particular attention to the role of the acceptor in tuning morphology for understanding optimum performance in organic photovoltaic devices.
Collapse
Affiliation(s)
- Letizia Liirò-Peluso
- The
GSK Carbon Neutral Laboratories for Sustainable Chemistry, School
of Chemistry, University of Nottingham, Triumph Road, Nottingham NG7 2TU, U.K.
- School
of Physics and Astronomy, University of
Nottingham, University
Park, Nottingham NG7 2RD, U.K.
| | - James Wrigley
- School
of Physics and Astronomy, University of
Nottingham, University
Park, Nottingham NG7 2RD, U.K.
| | - David B. Amabilino
- The
GSK Carbon Neutral Laboratories for Sustainable Chemistry, School
of Chemistry, University of Nottingham, Triumph Road, Nottingham NG7 2TU, U.K.
- Institut
de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones
Científicas, Carrer dels Til.lers, Campus Universitari de Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Peter H. Beton
- School
of Physics and Astronomy, University of
Nottingham, University
Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
5
|
Bartus CP, Hegedűs T, Kozma G, Szenti I, Vajtai R, Kónya Z, Kukovecz Á. Exfoliation of black phosphorus in isopropanol-water cosolvents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Cai ZF, Käser T, Kumar N, Zenobi R. Visualizing On-Surface Decomposition Chemistry at the Nanoscale Using Tip-Enhanced Raman Spectroscopy. J Phys Chem Lett 2022; 13:4864-4870. [PMID: 35617121 DOI: 10.1021/acs.jpclett.2c01112] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chemical imaging of molecular decomposition processes at solid-liquid interfaces is a long-standing problem in achieving mechanistic understanding. Conventional analytical tools fail to meet this challenge due to the lack of required chemical sensitivity and specificity at the nanometer scale. In this work, we demonstrate that high-resolution hyperspectral tip-enhanced Raman spectroscopy (TERS) imaging can be a powerful analytical tool for studying on-surface decomposition chemistry at the nanoscale. Specifically, we present a TERS-based hyperspectral approach to visualize the on-surface decomposition process of a pyridine-4-thiol self-assembled monolayer on atomically flat Au(111) surfaces under ambient conditions. Reactive intermediates involved in the degradation process are spectroscopically detected with 5 nm spatial resolution. With supporting density functional theory simulations, a key species could be assigned to the disulfide reaction intermediate. This work opens a new application area for studying on-surface decomposition chemistry and related dynamics quantitatively at solid-liquid interfaces with nanometer spatial resolution.
Collapse
Affiliation(s)
- Zhen-Feng Cai
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| | - Timon Käser
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| |
Collapse
|
7
|
Eichhorn AL, Dietz C. Torsional and lateral eigenmode oscillations for atomic resolution imaging of HOPG in air under ambient conditions. Sci Rep 2022; 12:8981. [PMID: 35643777 PMCID: PMC9148301 DOI: 10.1038/s41598-022-13065-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Combined in-plane and out-of-plane multifrequency atomic force microscopy techniques have been demonstrated to be important tools to decipher spatial differences of sample surfaces at the atomic scale. The analysis of physical properties perpendicular to the sample surface is routinely achieved from flexural cantilever oscillations, whereas the interpretation of in-plane sample properties via force microscopy is still challenging. Besides the torsional oscillation, there is the additional option to exploit the lateral oscillation of the cantilever for in-plane surface analysis. In this study, we used different multifrequency force microscopy approaches to attain better understanding of the interactions between a super-sharp tip and an HOPG surface focusing on the discrimination between friction and shear forces. We found that the lateral eigenmode is suitable for the determination of the shear modulus whereas the torsional eigenmode provides information on local friction forces between tip and sample. Based on the results, we propose that the full set of elastic constants of graphite can be determined from combined in-plane and out-of-plane multifrequency atomic force microscopy if ultrasmall amplitudes and high force constants are used.
Collapse
Affiliation(s)
- Anna L Eichhorn
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287, Darmstadt, Germany
| | - Christian Dietz
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287, Darmstadt, Germany.
| |
Collapse
|
8
|
Indirect Measurement of Electron Energy Relaxation Time at Room Temperature in Two-Dimensional Heterostructured Semiconductors. MATERIALS 2022; 15:ma15093224. [PMID: 35591557 PMCID: PMC9102733 DOI: 10.3390/ma15093224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Hot carriers are a critical issue in modern photovoltaics and miniaturized electronics. We present a study of hot electron energy relaxation in different two-dimensional electron gas (2DEG) structures and compare the measured values with regard to the dimensionality of the semiconductor formations. Asymmetrically necked structures containing different types of AlGaAs/GaAs single quantum wells, GaAs/InGaAs layers, or bulk highly and lowly doped GaAs formations were investigated. The research was performed in the dark and under white light illumination at room temperature. Electron energy relaxation time was estimated using two models of I-V characteristics analysis applied to a structure with n-n+ junction and a model of voltage sensitivity dependence on microwave frequency. The best results were obtained using the latter model, showing that the electron energy relaxation time in a single quantum well structure (2DEG structure) is twice as long as that in the bulk semiconductor.
Collapse
|
9
|
|
10
|
Zhao Y, Sun Z, Zhang B, Yan Q. Unveiling the Degradation Chemistry of Fibrous Red Phosphorus under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9925-9932. [PMID: 35138816 DOI: 10.1021/acsami.1c24883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The practical applications of fibrous red phosphorus (FRP), an emerging quasi-one-dimensional material, might be hindered by its environmental instability. Although other phosphorus allotropes such as white phosphorus, violet phosphorus, and black phosphorus are reported unstable under ambient conditions, the chemical stability of FRP remains unexplored. Herein, we investigate the degradation chemistry of FRP by combining experimental study and density functional theory calculations. The results reveal that both oxygen and water can react with FRP, while light illumination may accelerate these reactions. Furthermore, the degradation behavior of FRP shows a pseudo-first-order reaction in oxygenated water, while it follows a pseudo-zero-order reaction in deoxygenated water. Such different reaction kinetics originates from the preferable dissociative adsorption behaviors of O2 molecular and H2O molecular on a FRP surface or at a FRP edge. A covalent modification approach using an aryl diazonium salt was adopted to passivate the surface of FRP flakes and significantly enhance their stability in air.
Collapse
Affiliation(s)
- Yunke Zhao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhaojian Sun
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bowen Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qingfeng Yan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Pham PV, Bodepudi SC, Shehzad K, Liu Y, Xu Y, Yu B, Duan X. 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chem Rev 2022; 122:6514-6613. [PMID: 35133801 DOI: 10.1021/acs.chemrev.1c00735] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A grand family of two-dimensional (2D) materials and their heterostructures have been discovered through the extensive experimental and theoretical efforts of chemists, material scientists, physicists, and technologists. These pioneering works contribute to realizing the fundamental platforms to explore and analyze new physical/chemical properties and technological phenomena at the micro-nano-pico scales. Engineering 2D van der Waals (vdW) materials and their heterostructures via chemical and physical methods with a suitable choice of stacking order, thickness, and interlayer interactions enable exotic carrier dynamics, showing potential in high-frequency electronics, broadband optoelectronics, low-power neuromorphic computing, and ubiquitous electronics. This comprehensive review addresses recent advances in terms of representative 2D materials, the general fabrication methods, and characterization techniques and the vital role of the physical parameters affecting the quality of 2D heterostructures. The main emphasis is on 2D heterostructures and 3D-bulk (3D) hybrid systems exhibiting intrinsic quantum mechanical responses in the optical, valley, and topological states. Finally, we discuss the universality of 2D heterostructures with representative applications and trends for future electronics and optoelectronics (FEO) under the challenges and opportunities from physical, nanotechnological, and material synthesis perspectives.
Collapse
Affiliation(s)
- Phuong V Pham
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Srikrishna Chanakya Bodepudi
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Khurram Shehzad
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Hunan 410082, China
| | - Yang Xu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Bin Yu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095-1569, United States
| |
Collapse
|
12
|
Boosting the electronic and catalytic properties of 2D semiconductors with supramolecular 2D hydrogen-bonded superlattices. Nat Commun 2022; 13:510. [PMID: 35082288 PMCID: PMC8791956 DOI: 10.1038/s41467-022-28116-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
The electronic properties of two-dimensional semiconductors can be strongly modulated by interfacing them with atomically precise self-assembled molecular lattices, yielding hybrid van der Waals heterostructures (vdWHs). While proof-of-concepts exploited molecular assemblies held together by lateral unspecific van der Waals interactions, the use of 2D supramolecular networks relying on specific non-covalent forces is still unexplored. Herein, prototypical hydrogen-bonded 2D networks of cyanuric acid (CA) and melamine (M) are self-assembled onto MoS2 and WSe2 forming hybrid organic/inorganic vdWHs. The charge carrier density of monolayer MoS2 exhibits an exponential increase with the decreasing area occupied by the CA·M unit cell, in a cooperatively amplified process, reaching 2.7 × 1013 cm−2 and thereby demonstrating strong n-doping. When the 2D CA·M network is used as buffer layer, a stark enhancement in the catalytic activity of monolayer MoS2 for hydrogen evolution reactions is observed, outperforming the platinum (Pt) catalyst via gate modulation. Here, the authors report the functionalization of monolayer transition metal dichalcogenides with hydrogen-bonded 2D supramolecular networks of cyanuric acid and melamine, leading to a pronounced n-doping effect and enhancement of MoS2 catalytic activity for hydrogen evolution reactions.
Collapse
|
13
|
Liu X, Chen K, Li X, Xu Q, Weng J, Xu J. Electron Matters: Recent Advances in Passivation and Applications of Black Phosphorus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005924. [PMID: 34050548 DOI: 10.1002/adma.202005924] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/14/2021] [Indexed: 06/12/2023]
Abstract
2D materials have experienced rapid and explosive development in the past decades. Among them, black phosphorus (BP) is one of the most promising materials on account of its thickness-dependent bandgap, high charge-carrier mobility, in-plane anisotropic structure, and excellent biocompatibility, as well as the broad applications brought by the properties. In view of the electron configuration, the most unique feature of BP is the lone-pair electrons on each P atom. The lone-pair electrons inevitably cause high reactivity of BP, particularly toward water/oxygen, which greatly limits the practical application of BP under ambient conditions. The other side of the coin is that BP can serve as an electron donor to promote the construction of BP-based hybrid materials and/or to boost the performance of BP or BP-based hybrid materials in applications. Here, recent advances in passivation and application of BP by addressing the interaction between the lone-pair electrons of BP and the other materials are discussed, and prospects for future research on BP are also proposed.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
| | - Kai Chen
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
| | - Xingyun Li
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qingchi Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
| | - Jian Weng
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jun Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| |
Collapse
|
14
|
Zhang Y, Ma C, Xie J, Ågren H, Zhang H. Black Phosphorus/Polymers: Status and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100113. [PMID: 34323318 DOI: 10.1002/adma.202100113] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Indexed: 06/13/2023]
Abstract
As a newly emerged mono-elemental nanomaterial, black phosphorus (BP) has been widely investigated for its fascinating physical properties, including layer-dependent tunable band gap (0.3-1.5 eV), high ON/OFF ratio (104 ), high carrier mobility (103 cm2 V-1 s-1 ), excellent mechanical resistance, as well as special in-plane anisotropic optical, thermal, and vibrational characteristics. However, the instability caused by chemical degradation of its surface has posed a severe challenge for its further applications. A focused BP/polymer strategy has more recently been developed and implemented to hurdle this issue, so at present BP/polymers have been developed that exhibit enhanced stability, as well as outstanding optical, thermal, mechanical, and electrical properties. This has promoted researchers to further explore the potential applications of black phosphorous. In this review, the preparation processes and the key properties of BP/polymers are reviewed, followed by a detailed account of their diversified applications, including areas like optoelectronics, bio-medicine, and energy storage. Finally, in accordance with the current progress, the prospective challenges and future directions are highlighted and discussed.
Collapse
Affiliation(s)
- Ye Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Chunyang Ma
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Jianlei Xie
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
15
|
Imoro N, Shilovskikh VV, Nesterov PV, Timralieva AA, Gets D, Nebalueva A, Lavrentev FV, Novikov AS, Kondratyuk ND, Orekhov ND, Skorb EV. Biocompatible pH-Degradable Functional Capsules Based on Melamine Cyanurate Self-Assembly. ACS OMEGA 2021; 6:17267-17275. [PMID: 34278113 PMCID: PMC8280711 DOI: 10.1021/acsomega.1c01124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Development of adaptive self-regulating materials and chemical-biological systems-self-healing, self-regulating, etc.-is an advanced modern trend. The very sensitive pH-controlled functionality of supramolecular assemblies is a very useful tool for chemical and biochemical implementations. However, the assembly process can be tuned by various factors that can be used for both better functionality control and further functionalization such as active species, e.g., drugs and dyes, and encapsulation. Here, the effect of a dye, sodium fluorescein (uranine) (FL), on the formation of a self-assembled melamine cyanurate (M-CA) structure is investigated and calculated with density functional theory (DFT) and molecular dynamics. Interestingly, the dye greatly affects the self-assembly process at early stages from the formation of dimers, trimers, and tetramer to nucleation control. The supramolecular structure disassembly and subsequent release of trapped dye occurred under both high- and low-pH conditions. This system can be used for time-prolonged bacterial staining and development of supramolecular capsules for the system chemistry approach.
Collapse
Affiliation(s)
- Nfayem Imoro
- ITMO
University, Lomonosova str. 9, St. Petersburg 191002, Russian Federation
| | | | - Pavel V. Nesterov
- ITMO
University, Lomonosova str. 9, St. Petersburg 191002, Russian Federation
| | | | - Dmitry Gets
- ITMO
University, Lomonosova str. 9, St. Petersburg 191002, Russian Federation
| | - Anna Nebalueva
- ITMO
University, Lomonosova str. 9, St. Petersburg 191002, Russian Federation
| | - Filipp V. Lavrentev
- ITMO
University, Lomonosova str. 9, St. Petersburg 191002, Russian Federation
| | | | - Nikolay D. Kondratyuk
- Moscow
Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
- Joint
Institute for High Temperatures of the Russian Academy of Sciences, 13 Izhorskaya Bd 2, Moscow 125412, Russian Federation
| | - Nikita D. Orekhov
- Moscow
Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
- Joint
Institute for High Temperatures of the Russian Academy of Sciences, 13 Izhorskaya Bd 2, Moscow 125412, Russian Federation
- Bauman
Moscow State Technical University, 2nd Baumanskaya Str., 5, Moscow 105005, Russia
| | - Ekaterina V. Skorb
- ITMO
University, Lomonosova str. 9, St. Petersburg 191002, Russian Federation
| |
Collapse
|
16
|
Mitrović A, Wild S, Lloret V, Fickert M, Assebban M, Márkus BG, Simon F, Hauke F, Abellán G, Hirsch A. Interface Amorphization of Two-Dimensional Black Phosphorus upon Treatment with Diazonium Salts. Chemistry 2021; 27:3361-3366. [PMID: 33047818 PMCID: PMC7898634 DOI: 10.1002/chem.202003584] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Indexed: 11/16/2022]
Abstract
Two-dimensional (2D) black phosphorus (BP) represents one of the most appealing 2D materials due to its electronic, optical, and chemical properties. Many strategies have been pursued to face its environmental instability, covalent functionalization being one of the most promising. However, the extremely low functionalization degrees and the limitations in proving the nature of the covalent functionalization still represent challenges in many of these sheet architectures reported to date. Here we shine light on the structural evolution of 2D-BP upon the addition of electrophilic diazonium salts. We demonstrated the absence of covalent functionalization in both the neutral and the reductive routes, observing in the latter case an unexpected interface conversion of BP to red phosphorus (RP), as characterized by Raman, 31 P-MAS NMR, and X-ray photoelectron spectroscopies (XPS). Furthermore, thermogravimetric analysis coupled to gas chromatography and mass spectrometry (TG-GC-MS), as well as electron paramagnetic resonance (EPR) gave insights into the potential underlying radical mechanism, suggesting a Sandmeyer-like reaction.
Collapse
Affiliation(s)
- Aleksandra Mitrović
- Chair of Organic Chemistry II and Joint Institute of Advanced Materials, and Processes (ZMP)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus Fiebiger-Strasse 1091058Dr.-Mack Strasse 8190762Erlangen and FürthGermany
- Faculty of ChemistryUniversity of BelgradeStudentski trg 12–1611000BelgradeSerbia
| | - Stefan Wild
- Chair of Organic Chemistry II and Joint Institute of Advanced Materials, and Processes (ZMP)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus Fiebiger-Strasse 1091058Dr.-Mack Strasse 8190762Erlangen and FürthGermany
| | - Vicent Lloret
- Chair of Organic Chemistry II and Joint Institute of Advanced Materials, and Processes (ZMP)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus Fiebiger-Strasse 1091058Dr.-Mack Strasse 8190762Erlangen and FürthGermany
| | - Michael Fickert
- Chair of Organic Chemistry II and Joint Institute of Advanced Materials, and Processes (ZMP)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus Fiebiger-Strasse 1091058Dr.-Mack Strasse 8190762Erlangen and FürthGermany
| | - Mhamed Assebban
- Chair of Organic Chemistry II and Joint Institute of Advanced Materials, and Processes (ZMP)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus Fiebiger-Strasse 1091058Dr.-Mack Strasse 8190762Erlangen and FürthGermany
- Instituto de Ciencia Molecular (ICMol)Universidad de ValenciaCatedrático José Beltrán 246890PaternaSpain
| | - Bence G. Márkus
- Department of PhysicsBudapest University of Technology, and Economics and MTA-BMELendület Spintronics Research Group, (PROSPIN), PO Box 911521BudapestHungary
- Wigner Research Centre for PhysicsInstitute for Solid State Physics and Optics1121BudapestHungary
| | - Ferenc Simon
- Department of PhysicsBudapest University of Technology, and Economics and MTA-BMELendület Spintronics Research Group, (PROSPIN), PO Box 911521BudapestHungary
| | - Frank Hauke
- Chair of Organic Chemistry II and Joint Institute of Advanced Materials, and Processes (ZMP)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus Fiebiger-Strasse 1091058Dr.-Mack Strasse 8190762Erlangen and FürthGermany
| | - Gonzalo Abellán
- Chair of Organic Chemistry II and Joint Institute of Advanced Materials, and Processes (ZMP)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus Fiebiger-Strasse 1091058Dr.-Mack Strasse 8190762Erlangen and FürthGermany
- Instituto de Ciencia Molecular (ICMol)Universidad de ValenciaCatedrático José Beltrán 246890PaternaSpain
| | - Andreas Hirsch
- Chair of Organic Chemistry II and Joint Institute of Advanced Materials, and Processes (ZMP)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus Fiebiger-Strasse 1091058Dr.-Mack Strasse 8190762Erlangen and FürthGermany
| |
Collapse
|
17
|
Zhu X, Lin L, Wu R, Zhu Y, Sheng Y, Nie P, Liu P, Xu L, Wen Y. Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti 3C 2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosens Bioelectron 2021; 179:113062. [PMID: 33571937 DOI: 10.1016/j.bios.2021.113062] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 11/24/2022]
Abstract
The harm of pesticide residues to human health via environmental pollution in agriculture has recently become a significant livelihood issue. Herein, a new strategy for smart ultra-trace analysis of phytoregulator α-naphthalene acetic acid (NAA) residues in farmland environments and agro-products via machine learning (ML) using a nanozyme flexible electrode fabricated by two-dimensional phosphorene (BP) nanohybrid with graphene-like titanium carbide MXene (Ti3C2-MXene) on the flexible substrate surface of laser-induced porous graphene (LIPG) is proposed. Highly ambient-stable BP nanohybrid with Ti3C2-MXene is prepared by ultrasonic-assisted liquid-phase exfoliation in organic solvent containing grinding black phosphorus, cuprous chloride and, Ti3C2-MXene that is obtained by selectively etching Al layers of Ti3AlC2. Nanozyme flexible electrode is fabricated by drop-coating Ti3C2-MXene/BP that is formed through electrostatic self-assembly between positively charged BP and negatively charged Ti3C2-MXene onto LIPG that is obtained by direct laser writing on commercial polyimide and patterned via a computer-aided design system as a flexible substrate. The ML model via artificial neural network algorithm for smart output of NAA is discussed. NAA is electrochemically detected in a wide linear range of 0.02-40 μM with a low limit of detection (LOD) of 1.6 nM using a portable mini-workstation. Large and rough surfaces, excellent electrochemical response, and satisfactory practicability demonstrated the feasibility and detectability of the proposed method. This will provide a portable wireless intelligent nanozyme flexible sensing platform for cost-effective, simple, fast and, ultra-trace detection of hazardous substances in the safety of environments, products, and food in agriculture.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Lei Lin
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ruimei Wu
- College of Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Yifu Zhu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Yingying Sheng
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Pengcheng Nie
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Peng Liu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China; College of Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Lulu Xu
- College of Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Yangping Wen
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
18
|
Lu F, Li Z, Kang Y, Su Z, Yu R, Zhang S. Black phosphorus quantum dots encapsulated in anionic waterborne polyurethane nanoparticles for enhancing stability and reactive oxygen species generation for cancer PDT/PTT therapy. J Mater Chem B 2020; 8:10650-10661. [PMID: 33150923 DOI: 10.1039/d0tb02101f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Black phosphorus quantum dots (BPQDs) with excellent biocompatibility, outstanding photothermal and photodynamic efficacies have attracted significant attention in cancer therapy. However, the low environmental stability and poor dispersity of BPQDs limit their practical applications. In the present work, biocompatible anionic waterborne polyurethane (WPU) nanoparticles were synthesized from castor oil to encapsulate the BPQDs. The WPU-BPQDs with a BPQDs loading capacity of about 13.8% (w/w) exhibited significantly improved dispersion and environmental stability without affecting the photothermal efficiency of BPQDs. Intriguingly, it was found that WPU encapsulation led to significant enhancement in the reactive oxygen species (ROS) generation of BPQDs, which indicated the enhanced photodynamic efficacy of the encapsulated BPQDs as compared to the bare BPQDs. The effect of solution pH on the ROS generation efficiency of BPQDs and the pH variation caused by BPQDs degradation was then investigated to explore the possible mechanism. In acidic solution, ROS generation was suppressed, while BPQDs degradation led to the acidification of the solution. Fortunately, after being encapsulated inside the WPU nanoparticles, the degradation rate of BPQDs became slower, while the acidic environment around BPQDs was favorably regulated by WPU nanoparticles having a special electrochemical double layer consisting of interior COO- and exterior NH(Et3)+, thus endowing the WPU-BPQDs-boosted production of ROS as compared to the bare BPQDs. Considering the undesired acidic tumor environment, this unique pH regulation effect of WPU-BPQDs would be beneficial for in vivo photodynamic efficacy. Both in vitro and in vivo experiments showed that WPU-BPQDs could effectively improve photodynamic therapy (PDT) and maintain outstanding photothermal therapy (PTT) effects. Together with the excellent dispersity, biocompatibility, and easy biodegradability, WPU-BPQDs can be a promising agent for PDT/PTT cancer treatments.
Collapse
Affiliation(s)
- Fengying Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | | | | | | | | | | |
Collapse
|
19
|
Rathi K, Pal K. Wireless Hand-Held Device Based on Polylactic Acid-Protected, Highly Stable, CTAB-Functionalized Phosphorene for CO 2 Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38365-38375. [PMID: 32846474 DOI: 10.1021/acsami.0c10285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phosphorene is a novel two-dimensional (2D) material with exceptional properties and is connecting the gaps between graphene and transition-metal chalcogenides but having environmental instability. In this study, we present effective liquid exfoliation of few-layer phosphorene (FLP) from bulk black phosphorous (BP) in the presence of cetyltrimethylammonium bromide (CTAB), a cationic surfactant that is highly stable. It successfully stabilizes FLP in deionized water, which is consistent with obtained characterization and gas-sensing studies. Our investigation shows that the dynamic sensing response of the CTAB-grafted phosphorene (P-CTAB) sensor increases by ∼1.5 times as the relative humidity (RH) varies from 33 to 75%, which is the first published result for CO2 gas detection. The sensitivity values of the P-CTAB and P-CTAB/polylactic acid (PLA) are found to be 0.0356 and 0.0329 ppm-1, respectively, toward CO2 gas. It is notable that when a polylactic acid (PLA) membrane is introduced as a barrier layer in our fabricated Arduino-based Bluetooth-enabled hand-held device, it obstructs the environmental effect with a trace-level detection capability and negligible change over time (up to 30 days). Herein, for the first time, we discover the gas-sensing characteristics of CTAB-grafted phosphorene and witness an ultrasensitive and selective response toward CO2 gas detection.
Collapse
Affiliation(s)
- Keerti Rathi
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kaushik Pal
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
20
|
Gold nanoparticle-modified black phosphorus nanosheets with improved stability for detection of circulating tumor cells. Mikrochim Acta 2020; 187:397. [PMID: 32564257 DOI: 10.1007/s00604-020-04367-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
Gold nanoparticle (AuNP)-anchored BP nanosheets were synthesized through in situ growth of AuNPs onto BP. Due to the strong chelating ability of P or phosphorus oxides with AuNPs, the stability of BP is improved. As proof-of-concept demonstration of the functionalized BP, electrochemical detection of circulating tumor cells (CTCs) based on BP@AuNPs@aptamer as a probe combined with immunomagnetic separation is reported. The aptamer can specifically bind with CTCs, while the phosphorus oxides including phosphite ion and phosphate ion (PxOy species) on BP and aptamer can react with molybdate to generate an electrochemical current, leading to dual signal amplification. The biosensor is applied to MCF-7 cell detection and displays good analytical performance with a detection limit of 2 cell mL-1. Furthermore, the practicality of this biosensor was validated through sensitive determination of MCF-7 cells in human blood. Therefore, the reported biosensor could be applied to detect other biomarkers, offering an ultrasensitive strategy for clinical diagnostics. Graphical abstract Electrochemical detection of circulating tumor cells based on gold nanoparticle-modified black phosphorus nanosheets is reported.
Collapse
|
21
|
Wang Y, He M, Ma S, Yang C, Yu M, Yin G, Zuo P. Low-Temperature Solution Synthesis of Black Phosphorus from Red Phosphorus: Crystallization Mechanism and Lithium Ion Battery Applications. J Phys Chem Lett 2020; 11:2708-2716. [PMID: 32191477 DOI: 10.1021/acs.jpclett.0c00746] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a thermodynamically stable semiconductor material, black phosphorus (BP) has potential application in the field of energy storage and conversion. The preparation of black phosphorus is still limited to the laboratory, which is far from adequate to meet the requirements of future industrial applications. Here, the gram-scale black phosphorus is synthesized in the ethylenediamine medium using a 120-200 °C low-temperature recyclable liquid phase method directly from red phosphorus. A crystallization mechanism from red to black phosphorus based on FTIR, XPS, and DFT calculations is proposed. Black phosphorus as the anode material for lithium ion batteries is superior in discharge specific capacity, rate capability, and cycling stability in comparison with red phosphorus. The facile low-temperature synthesis of BP by the ethylenediamine-assisted liquid phase process will facilitate the extended application of BP in the field of energy storage and conversion.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Advanced Chemical Power Source, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Mengxue He
- Institute of Advanced Chemical Power Source, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Shaobo Ma
- Institute of Advanced Chemical Power Source, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Chenhui Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Geping Yin
- Institute of Advanced Chemical Power Source, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Pengjian Zuo
- Institute of Advanced Chemical Power Source, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
22
|
Lorenzoni A, Baldoni M, Besley E, Mercuri F. Noncovalent passivation of supported phosphorene for device applications: from morphology to electronic properties. Phys Chem Chem Phys 2020; 22:12482-12488. [DOI: 10.1039/d0cp00939c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simulations suggest efficient routes for the non-covalent passivation of supported phosphorene with alkanes, highlighting strategies to prevent surface degradation phenomena.
Collapse
Affiliation(s)
- Andrea Lorenzoni
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR)
- 40129 Bologna
- Italy
| | - Matteo Baldoni
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR)
- 40129 Bologna
- Italy
- Department of Physical and Theoretical Chemistry, School of Chemistry, University of Nottingham, University Park
- Nottingham NG7 2RD
| | - Elena Besley
- Department of Physical and Theoretical Chemistry, School of Chemistry, University of Nottingham, University Park
- Nottingham NG7 2RD
- UK
| | - Francesco Mercuri
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR)
- 40129 Bologna
- Italy
| |
Collapse
|
23
|
Wang Y, Slassi A, Cornil J, Beljonne D, Samorì P. Tuning the Optical and Electrical Properties of Few-Layer Black Phosphorus via Physisorption of Small Solvent Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903432. [PMID: 31518053 DOI: 10.1002/smll.201903432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Black phosphorus (BP) is recently becoming more and more popular among semiconducting 2D materials for (opto)electronic applications. The controlled physisorption of molecules on the BP surface is a viable approach to modulate its optical and electronic properties. Solvents consisting of small molecules are often used for washing 2D materials or as liquid media for their chemical functionalization with larger molecules, disregarding their ability to change the opto-electronic properties of BP. Herein, it is shown that the opto-electronic properties of mechanically exfoliated few-layer BP are altered when physically interacting with common solvents. Significantly, charge transport analysis in field-effect transistors reveals that physisorbed solvent molecules induce a modulation of the charge carrier density which can be as high as 1012 cm-2 in BP, i.e., comparable to common dopants such as F4 -TCNQ and MoO3 . By combining experimental evidences with density functional theory calculations, it is confirmed that BP doping by solvent molecules not only depends on charge transfer, but is also influenced by molecular dipole. The results clearly demonstrate how an exquisite tuning of the opto-electronic properties of few-layer BP can be achieved through physisorption of small solvent molecules. Such findings are of interest both for fundamental studies and more technological applications in opto-electronics.
Collapse
Affiliation(s)
- Ye Wang
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, F-67000, Strasbourg, France
| | - Amine Slassi
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000, Mons, Belgium
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|
24
|
Bolognesi M, Brucale M, Lorenzoni A, Prescimone F, Moschetto S, Korolkov VV, Baldoni M, Serrano-Ruiz M, Caporali M, Mercuri F, Besley E, Muccini M, Peruzzini M, Beton PH, Toffanin S. Epitaxial multilayers of alkanes on two-dimensional black phosphorus as passivating and electrically insulating nanostructures. NANOSCALE 2019; 11:17252-17261. [PMID: 31317153 DOI: 10.1039/c9nr01155b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanically exfoliated two-dimensional (2D) black phosphorus (bP) is epitaxially terminated by monolayers and multilayers of tetracosane, a linear alkane, to form a weakly interacting van der Waals heterostructure. Atomic force microscopy (AFM) and computational modelling show that epitaxial domains of alkane chains are ordered in parallel lamellae along the principal crystalline axis of bP, and this order is extended over a few layers above the interface. Epitaxial alkane multilayers delay the oxidation of 2D bP in air by 18 hours, in comparison to 1 hour for bare 2D bP, and act as an electrical insulator, as demonstrated using electrostatic force microscopy. The presented heterostructure is a technologically relevant insulator-semiconductor model system that can open the way to the use of 2D bP in micro- and nanoelectronic, optoelectronic and photonic applications.
Collapse
Affiliation(s)
- Margherita Bolognesi
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) - Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Marco Brucale
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) - Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Andrea Lorenzoni
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) - Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Federico Prescimone
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) - Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Salvatore Moschetto
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) - Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Vladimir V Korolkov
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matteo Baldoni
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) - Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Manuel Serrano-Ruiz
- Istituto di Chimica dei Composti Organometallici (ICCOM) - Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Maria Caporali
- Istituto di Chimica dei Composti Organometallici (ICCOM) - Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesco Mercuri
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) - Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Elena Besley
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Michele Muccini
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) - Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Maurizio Peruzzini
- Istituto di Chimica dei Composti Organometallici (ICCOM) - Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Peter H Beton
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stefano Toffanin
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) - Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
25
|
Tristant D, Cupo A, Ling X, Meunier V. Phonon Anharmonicity in Few-Layer Black Phosphorus. ACS NANO 2019; 13:10456-10468. [PMID: 31436958 DOI: 10.1021/acsnano.9b04257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a temperature-dependent Raman spectroscopy study of few-layer black phosphorus (BP) with varied incident polarization and sample thickness. The Raman-active modes Ag1, B2g, and Ag2 exhibit a frequency downshift, while their line width tends to increase with increasing temperature. To understand the details of these phenomena, we perform first-principles density functional theory calculations on freestanding monolayer BP. The effect of thermal expansion is included by constraining the temperature-dependent lattice constant. The study of the temperature-induced shift of the phonon frequencies is carried out using ab initio molecular dynamics simulations. The normal-mode frequencies are calculated by identifying the peak positions from the magnitude of the Fourier transform of the total velocity autocorrelation. Anharmonicity induces a frequency shift for each individual mode, and the three- and four-phonon process coefficients are extracted. These results are compared with those obtained from many-body perturbation theory, giving access to phonon lifetimes and lattice thermal conductivity. We establish that the frequency downshift is primarily due to phonon-phonon scattering while thermal expansion only contributes indirectly by renormalizing the phonon-phonon scattering. Overall, the theoretical results are in excellent agreement with experiment, thus showing that controlling phonon scattering in BP could result in better thermoelectric devices or transistors that dissipate heat more effectively when confined to the nanoscale.
Collapse
Affiliation(s)
- Damien Tristant
- Department of Physics, Applied Physics, and Astronomy , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Andrew Cupo
- Department of Physics, Applied Physics, and Astronomy , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Xi Ling
- Department of Chemistry, Division of Materials Science and Engineering, and The Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Vincent Meunier
- Department of Physics, Applied Physics, and Astronomy , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| |
Collapse
|
26
|
Vanni M, Serrano-Ruiz M, Telesio F, Heun S, Banchelli M, Matteini P, Mio AM, Nicotra G, Spinella C, Caporali S, Giaccherini A, D’Acapito F, Caporali M, Peruzzini M. Black Phosphorus/Palladium Nanohybrid: Unraveling the Nature of P-Pd Interaction and Application in Selective Hydrogenation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:5075-5080. [PMID: 31656368 PMCID: PMC6804426 DOI: 10.1021/acs.chemmater.9b00851] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/21/2019] [Indexed: 05/31/2023]
Abstract
The burgeoning interest in two-dimensional (2D) black phosphorus (bP) contributes to the expansion of its applications in numerous fields. In the present study, 2D bP is used as a support for homogeneously dispersed palladium nanoparticles directly grown on it by a wet chemical process. Electron energy loss spectroscopy-scanning transmission electron microscopy analysis evidences a strong interaction between palladium and P atoms of the bP nanosheets. A quantitative evaluation of this interaction comes from the X-ray absorption spectroscopy measurements that show a very short Pd-P distance of 2.26 Å, proving for the first time the existence of an unprecedented Pd-P coordination bond of a covalent nature. Additionally, the average Pd-P coordination number of about 1.7 reveals that bP acts as a polydentate phosphine ligand toward the surface of the Pd atoms of the nanoparticles, thus preventing their agglomeration and inferring with structural stability. These unique properties result in a superior performance in the catalytic hydrogenation of chloronitroarenes to chloroanilines, where a higher chemoselectivity in comparison to other heterogeneous catalyst based on palladium has been observed.
Collapse
Affiliation(s)
- Matteo Vanni
- CNR-ICCOM, Via Madonna del Piano10, 50019 Sesto Fiorentino, Italy
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | | - Francesca Telesio
- NEST
Istituto Nanoscienze—CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy
| | - Stefan Heun
- NEST
Istituto Nanoscienze—CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy
| | | | - Paolo Matteini
- CNR-IFAC, Via Madonna del Piano10, 50019 Sesto Fiorentino, Italy
| | | | - Giuseppe Nicotra
- CNR-IMM
Istituto per la Microelettronica e Microsistemi, VIII strada 5, I-95121 Catania, Italy
| | - Corrado Spinella
- CNR-IMM
Istituto per la Microelettronica e Microsistemi, VIII strada 5, I-95121 Catania, Italy
| | - Stefano Caporali
- Department
of Industrial Engineering, University of
Florence, Via di S. Marta
3, 50139 Florence, 50139, Italy
| | - Andrea Giaccherini
- Department
of Earth Sciences, University of Florence, Via La Pira 4, 50121 Firenze, Italy
| | - Francesco D’Acapito
- CNR-IOM-OGG,
c/o European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, Cedex 9 France
| | - Maria Caporali
- CNR-ICCOM, Via Madonna del Piano10, 50019 Sesto Fiorentino, Italy
| | | |
Collapse
|
27
|
Wild S, Fickert M, Mitrovic A, Lloret V, Neiss C, Vidal‐Moya JA, Rivero‐Crespo MÁ, Leyva‐Pérez A, Werbach K, Peterlik H, Grabau M, Wittkämper H, Papp C, Steinrück H, Pichler T, Görling A, Hauke F, Abellán G, Hirsch A. Lattice Opening upon Bulk Reductive Covalent Functionalization of Black Phosphorus. Angew Chem Int Ed Engl 2019; 58:5763-5768. [PMID: 30675972 PMCID: PMC7318246 DOI: 10.1002/anie.201811181] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/18/2019] [Indexed: 11/11/2022]
Abstract
The chemical bulk reductive covalent functionalization of thin-layer black phosphorus (BP) using BP intercalation compounds has been developed. Through effective reductive activation, covalent functionalization of the charged BP by reaction with organic alkyl halides is achieved. Functionalization was extensively demonstrated by means of several spectroscopic techniques and DFT calculations; the products showed higher functionalization degrees than those obtained by neutral routes.
Collapse
Affiliation(s)
- Stefan Wild
- Chair of Organic Chemistry II and Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus-Fiebiger Strasse 1091058Erlangen and Dr.-Mack Strasse 81, 90762 FürthGermany
| | - Michael Fickert
- Chair of Organic Chemistry II and Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus-Fiebiger Strasse 1091058Erlangen and Dr.-Mack Strasse 81, 90762 FürthGermany
| | - Aleksandra Mitrovic
- Chair of Organic Chemistry II and Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus-Fiebiger Strasse 1091058Erlangen and Dr.-Mack Strasse 81, 90762 FürthGermany
| | - Vicent Lloret
- Chair of Organic Chemistry II and Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus-Fiebiger Strasse 1091058Erlangen and Dr.-Mack Strasse 81, 90762 FürthGermany
| | - Christian Neiss
- Lehrstuhl für Theoretische Chemie and Interdisciplinary Center of Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstrasse 391058ErlangenGermany
| | - José Alejandro Vidal‐Moya
- Instituto de Tecnología QuímicaUniversidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasAvda. de los Naranjos s/n46022ValenciaSpain
| | - Miguel Ángel Rivero‐Crespo
- Instituto de Tecnología QuímicaUniversidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasAvda. de los Naranjos s/n46022ValenciaSpain
| | - Antonio Leyva‐Pérez
- Instituto de Tecnología QuímicaUniversidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasAvda. de los Naranjos s/n46022ValenciaSpain
| | - Katharina Werbach
- Faculty of PhysicsUniversity of ViennaStrudlhofgasse 41090ViennaAustria
| | - Herwig Peterlik
- Faculty of PhysicsUniversity of ViennaStrudlhofgasse 41090ViennaAustria
| | - Mathias Grabau
- Lehrstuhl für Physikalische Chemie II, FAUEgerlandstraße 391058ErlangenGermany
| | - Haiko Wittkämper
- Lehrstuhl für Physikalische Chemie II, FAUEgerlandstraße 391058ErlangenGermany
| | - Christian Papp
- Lehrstuhl für Physikalische Chemie II, FAUEgerlandstraße 391058ErlangenGermany
| | | | - Thomas Pichler
- Faculty of PhysicsUniversity of ViennaStrudlhofgasse 41090ViennaAustria
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie and Interdisciplinary Center of Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstrasse 391058ErlangenGermany
| | - Frank Hauke
- Chair of Organic Chemistry II and Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus-Fiebiger Strasse 1091058Erlangen and Dr.-Mack Strasse 81, 90762 FürthGermany
| | - Gonzalo Abellán
- Chair of Organic Chemistry II and Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus-Fiebiger Strasse 1091058Erlangen and Dr.-Mack Strasse 81, 90762 FürthGermany
- Instituto de Ciencia Molecular (ICMol)Universidad de ValenciaCatedrático José Beltrán 246980, PaternaValenciaSpain
| | - Andreas Hirsch
- Chair of Organic Chemistry II and Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus-Fiebiger Strasse 1091058Erlangen and Dr.-Mack Strasse 81, 90762 FürthGermany
| |
Collapse
|
28
|
Korolkov VV, Summerfield A, Murphy A, Amabilino DB, Watanabe K, Taniguchi T, Beton PH. Ultra-high resolution imaging of thin films and single strands of polythiophene using atomic force microscopy. Nat Commun 2019; 10:1537. [PMID: 30948725 PMCID: PMC6449331 DOI: 10.1038/s41467-019-09571-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/19/2019] [Indexed: 11/09/2022] Open
Abstract
Real-space images of polymers with sub-molecular resolution could provide valuable insights into the relationship between morphology and functionality of polymer optoelectronic devices, but their acquisition is problematic due to perceived limitations in atomic force microscopy (AFM). We show that individual thiophene units and the lattice of semicrystalline spin-coated films of polythiophenes (PTs) may be resolved using AFM under ambient conditions through the low-amplitude (≤ 1 nm) excitation of higher eigenmodes of a cantilever. PT strands are adsorbed on hexagonal boron nitride near-parallel to the surface in islands with lateral dimensions ~10 nm. On the surface of a spin-coated PT thin film, in which the thiophene groups are perpendicular to the interface, we resolve terminal CH3-groups in a square arrangement with a lattice constant 0.55 nm from which we can identify abrupt boundaries and also regions with more slowly varying disorder, which allow comparison with proposed models of PT domains.
Collapse
Affiliation(s)
- Vladimir V Korolkov
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Alex Summerfield
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alanna Murphy
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - David B Amabilino
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Peter H Beton
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
29
|
Gitteröffnung durch reduktive kovalente Volumen‐Funktionalisierung von schwarzem Phosphor. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Upconversion fluorescent aptasensor for bisphenol A and 17β-estradiol based on a nanohybrid composed of black phosphorus and gold, and making use of signal amplification via DNA tetrahedrons. Mikrochim Acta 2019; 186:151. [PMID: 30712105 DOI: 10.1007/s00604-019-3266-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 01/09/2023]
Abstract
This study describes an upconversion fluorescent aptasensor based on black phosphorus nanohybrids and self-assembled DNA tetrahedrons dual-amplification strategy for rapid detection of the environmental estrogens bisphenol A (BPA) and 17β-estradiol (E2). Tetrahedron complementary DNAs (T-cDNAs) were self-assembled in an oriented fashion on a 2D nanohybrid composed of black phosphorus (BP) and gold to give a materials of architecture BP-Au@T-cDNAs. In parallel, core-shell upconversion nanoparticles were modified with aptamers (UCNPs@apts) and used as capture probes. On complementary pairing, the BP-Au@T-cDNA quench the fluorescence of UCNPs@apts (measured at an excitation wavelength 808 nm and at main emission peaks at 545 nm and 805 nm.) Compared with single-stranded probes based on black phosphorus and gold, the dual-amplification strategy increases quenching efficiency by nearly 25%-30% and reduces capture time to 10 min. This is due to the higher optical absorption of 2D nanohybrid and the reduction of steric hindrance by T-cDNAs. Exposure to BPA or E2 cause the release of UCNPs@apts from the BP-Au@T-cDNAs due to stronger binding between aptamer and analyte. Hence, fluorescence recovers at 545 nm for BPA and 805 nm for E2. Based on these findings, a dually amplified aptamer assay was constructed that covers the 0.01 to 100 ng mL-1 BPA concentration range, and the 0.1 to 100 ng mL-1 E2 concentration range. The detection limits are 7.8 pg mL-1 and 92 pg mL-1, respectively. This method was applied to the simultaneous determination of BPA and E2 in spiked samples of water, food, serum and urine. Graphical abstract Schematic presentation of novel quenching probes designed by tetrahedron complementary DNAs oriented self-assembled on the surface of black phosphorus/gold nanohybrids. Combined with aptamer-modified upconversion nanoparticles, a dual-amplification self-assembled fluorescence nanoprobe was constructed for simultaneous detection of BPA and E2.
Collapse
|
31
|
Li J, Qian Y, Duan W, Zeng Q. Advances in the study of the host-guest interaction by using coronene as the guest molecule. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.05.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Wild S, Lloret V, Vega-Mayoral V, Vella D, Nuin E, Siebert M, Koleśnik-Gray M, Löffler M, Mayrhofer KJJ, Gadermaier C, Krstić V, Hauke F, Abellán G, Hirsch A. Monolayer black phosphorus by sequential wet-chemical surface oxidation. RSC Adv 2019; 9:3570-3576. [PMID: 30854196 PMCID: PMC6369675 DOI: 10.1039/c8ra09069f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
We report a straightforward chemical methodology for controlling the thickness of black phosphorus flakes down to the monolayer limit by layer-by-layer oxidation and thinning, using water as solubilizing agent. Moreover, the oxidation process can be stopped at will by two different passivation procedures, namely the non-covalent functionalization with perylene diimide chromophores, which prevents the photooxidation, or by using a protective ionic liquid layer. The obtained flakes preserve their electronic properties as demonstrated by fabricating a BP field-effect transistor (FET). This work paves the way for the preparation of BP devices with controlled thickness.
Collapse
Affiliation(s)
- Stefan Wild
- Department of Chemistry and Pharmacy, Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus Fiebiger-Strasse 10, 91058 Erlangen, Germany. ;
| | - Vicent Lloret
- Department of Chemistry and Pharmacy, Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus Fiebiger-Strasse 10, 91058 Erlangen, Germany. ;
| | - Victor Vega-Mayoral
- CRANN & AMBER Research Centers, School of Physics, Trinity College Dublin, Dublin 2, Ireland
- Department of Complex Matter, Jozef Stefan Institute, Jozef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Daniele Vella
- Department of Complex Matter, Jozef Stefan Institute, Jozef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Edurne Nuin
- Department of Chemistry and Pharmacy, Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus Fiebiger-Strasse 10, 91058 Erlangen, Germany. ;
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | - Martin Siebert
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen, Germany
| | - Maria Koleśnik-Gray
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen, Germany
| | - Mario Löffler
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Immerwahrstraße 2a, 91058 Erlangen, Germany
| | - Karl J J Mayrhofer
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Immerwahrstraße 2a, 91058 Erlangen, Germany
| | - Christoph Gadermaier
- Department of Complex Matter, Jozef Stefan Institute, Jozef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Vojislav Krstić
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen, Germany
| | - Frank Hauke
- Department of Chemistry and Pharmacy, Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus Fiebiger-Strasse 10, 91058 Erlangen, Germany. ;
| | - Gonzalo Abellán
- Department of Chemistry and Pharmacy, Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus Fiebiger-Strasse 10, 91058 Erlangen, Germany. ;
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy, Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus Fiebiger-Strasse 10, 91058 Erlangen, Germany. ;
| |
Collapse
|
33
|
Deng L, Zhou N, Tang S, Li Y. Improved Dreiding force field for single layer black phosphorus. Phys Chem Chem Phys 2019; 21:16804-16817. [DOI: 10.1039/c9cp02790d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We present an improved Dreiding force field for single layer black phosphorus (SLBP) obtained by first-principle calculations in conjunction with the particle swarm optimization algorithm and molecular dynamics (MD) simulations.
Collapse
Affiliation(s)
- Lijun Deng
- College of Aerospace Engineering
- Chongqing University
- Chongqing
- P. R. China
| | - Nian Zhou
- College of Materials Science and Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Shan Tang
- State Key Laboratory of Structural Analysis for Industrial Equipment
- International Research Center for Computational Mechanics
- Department of Engineering Mechanics
- Dalian University of Technology
- Dalian
| | - Ying Li
- Department of Mechanical Engineering and Institute of Materials Science
- University of Connecticut
- Storrs
- USA
| |
Collapse
|
34
|
Dong W, Zhang Y, Hu P, Xu H, Fan J, Su J, Li F, Chen Y, Li P, Wang S, Coe FL, Wu Q. Rate-controlled nano-layered assembly mechanism of melamine-induced melamine–uric acid stones and its inhibition and elimination methods. J Mater Chem B 2019. [DOI: 10.1039/c9tb00688e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The formation of kidney stones induced by melamine is a rate-controlled nano-scale supramolecular layered assembly process.
Collapse
|
35
|
Gaberle J, Shluger AL. Structure and properties of intrinsic and extrinsic defects in black phosphorus. NANOSCALE 2018; 10:19536-19546. [PMID: 30320323 DOI: 10.1039/c8nr06640j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The electronic and geometric structures of a range of intrinsic and extrinsic defects in black phosphorus (BP) are calculated using Density Functional Theory (DFT) and a hybrid density functional. The results demonstrate that energy barriers to form intrinsic defects, such as Frenkel pairs and Stone-Wales type defects, exceed 3.0 eV and their equilibrium concentrations are likely to be low. Therefore, growth conditions and sample preparation play a crucial role in defect chemistry of black phosphorus. Mono-vacancies (MV) are shown to introduce a shallow acceptor state in the bandgap of BP, but exhibit fast hopping rates at room temperature. Coalescence of MVs into di-vacancies (DV) is energetically favourable and eliminates the band gap states. Thus MVs are not likely to be the main contributor to p-doping in BP. Extrinsic defects are a plausible alternative, with SnP found to be the most promising candidate. Other defects considered include I, O, Fe, Cu, Zn and Ni in surface adsorbed, intercalated and substitutional geometries, respectively. Furthermore, BP was found to be magnetic for isolated MVs and Fe doping, motivating further research in the area of magnetic functionalisation.
Collapse
Affiliation(s)
- Julian Gaberle
- Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, UK.
| | | |
Collapse
|
36
|
Ou W, Byeon JH, Thapa RK, Ku SK, Yong CS, Kim JO. Plug-and-Play Nanorization of Coarse Black Phosphorus for Targeted Chemo-photoimmunotherapy of Colorectal Cancer. ACS NANO 2018; 12:10061-10074. [PMID: 30222314 DOI: 10.1021/acsnano.8b04658] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Because of their extraordinary physical properties and biocompatibility, black phosphorus (BP) nanosheets (NSs) have been intensively employed in chemo-phototherapies, such as plasmonic inorganic nanoparticles or graphene NSs, over the past few years. However, most biomedical studies using BP NSs are only concerned with the optical property of BP NSs to repeatedly demonstrate chemo-phototherapeutic efficacies, although BP NSs have different properties from inorganic nanoparticles or graphene NSs, such as corrugated crystal structure, hydrophilicity, and biodegradability. Moreover, it is still a challenging issue to efficiently fabricate uniform BP NSs for clinical translation because of the top-down nature of fabrication, despite the easy preparation of coarse BP flakes. It is thus essential to explore their most suitable bioapplications as well as suggest an easy-to-access strategy to produce uniform BP NSs for realization as advanced therapeutic materials. To rationalize these issues, this report introduces a plug-and-play nanorization, ultrasonic bubble bursting, of coarse BP flakes for continuous BP NS production, and the resulting uniform NSs (∼40 nm lateral dimension, ∼0.15 polydispersity index) were used as base materials to load drug (doxorubicin), targeting agent (chitosan-polyethylene glycol), and cancer growth inhibitor (programmed death ligand 1 and small interfering RNA) for achieving efficacious chemo-photoimmunotherapy of colorectal cancer.
Collapse
Affiliation(s)
| | | | | | - Sae Kwang Ku
- College of Korean Medicine , Daegu Haany University , Gyeongsan 38610 , Republic of Korea
| | | | | |
Collapse
|
37
|
Liu X, Hersam MC. Interface Characterization and Control of 2D Materials and Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801586. [PMID: 30039558 DOI: 10.1002/adma.201801586] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/09/2018] [Indexed: 05/28/2023]
Abstract
2D materials and heterostructures have attracted significant attention for a variety of nanoelectronic and optoelectronic applications. At the atomically thin limit, the material characteristics and functionalities are dominated by surface chemistry and interface coupling. Therefore, methods for comprehensively characterizing and precisely controlling surfaces and interfaces are required to realize the full technological potential of 2D materials. Here, the surface and interface properties that govern the performance of 2D materials are introduced. Then the experimental approaches that resolve surface and interface phenomena down to the atomic scale, as well as strategies that allow tuning and optimization of interfacial interactions in van der Waals heterostructures, are systematically reviewed. Finally, a future outlook that delineates the remaining challenges and opportunities for 2D material interface characterization and control is presented.
Collapse
Affiliation(s)
- Xiaolong Liu
- Applied Physics Graduate Program, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208-3108, USA
| | - Mark C Hersam
- Applied Physics Graduate Program, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208-3108, USA
- Department of Materials Science and Engineering, Department of Chemistry, Department of Medicine, Department of Electrical Engineering and Computer Science, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208-3108, USA
| |
Collapse
|
38
|
Matthews PD, Hirunpinyopas W, Lewis EA, Brent JR, McNaughter PD, Zeng N, Thomas AG, O'Brien P, Derby B, Bissett MA, Haigh SJ, Dryfe RAW, Lewis DJ. Black phosphorus with near-superhydrophobic properties and long-term stability in aqueous media. Chem Commun (Camb) 2018; 54:3831-3834. [DOI: 10.1039/c8cc01789a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the use of a polymeric stabilizer which stymies the degradation of black phosphorus nanosheets in aqueous media as well as imparting superhydrophobic properties to immobilised nanosheets.
Collapse
Affiliation(s)
- Peter D. Matthews
- School of Chemical & Physical Sciences
- Keele University
- Staffordshire
- UK
- School of Chemistry
| | - Wisit Hirunpinyopas
- School of Chemistry
- University of Manchester
- Manchester
- UK
- National Graphene Institute
| | | | - Jack R. Brent
- School of Materials
- University of Manchester
- Manchester
- UK
| | | | - Niting Zeng
- School of Materials
- University of Manchester
- Manchester
- UK
| | | | - Paul O'Brien
- School of Chemistry
- University of Manchester
- Manchester
- UK
- School of Materials
| | - Brian Derby
- School of Materials
- University of Manchester
- Manchester
- UK
| | - Mark A. Bissett
- National Graphene Institute
- University of Manchester
- UK
- School of Materials
- University of Manchester
| | - Sarah J. Haigh
- National Graphene Institute
- University of Manchester
- UK
- School of Materials
- University of Manchester
| | | | | |
Collapse
|
39
|
Wang F, Wang Z, Yin L, Cheng R, Wang J, Wen Y, Shifa TA, Wang F, Zhang Y, Zhan X, He J. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chem Soc Rev 2018; 47:6296-6341. [DOI: 10.1039/c8cs00255j] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two-dimensional materials beyond graphene and TMDs can be promising candidates for wide-spectra photodetection.
Collapse
|