1
|
Li J, Xiong N, West K, Leung M, Ching Y, Huang J, Yuan J, Yu CH, Leung J, Huen M. Nuclear F-actin assembly on damaged chromatin is regulated by DYRK1A and Spir1 phosphorylation. Nucleic Acids Res 2024; 52:8897-8912. [PMID: 38966995 PMCID: PMC11347173 DOI: 10.1093/nar/gkae574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Nuclear actin-based movements support DNA double-strand break (DSB) repair. However, molecular determinants that promote filamentous actin (F-actin) formation on the damaged chromatin remain undefined. Here we describe the DYRK1A kinase as a nuclear activity that promotes local F-actin assembly to support DSB mobility and repair, accomplished in part by its targeting of actin nucleator spire homolog 1 (Spir1). Indeed, perturbing DYRK1A-dependent phosphorylation of S482 mis-regulated Spir1 accumulation at damaged-modified chromatin, and led to compromised DSB-associated actin polymerization and attenuated DNA repair. Our findings uncover a role of the DYRK1A-Spir1 axis in nuclear actin dynamics during early DSB responses, and highlight the intricate details of nuclear cytoskeletal network in DSB repair and genome stability maintenance.
Collapse
Affiliation(s)
- Junshi Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, S.A.R
| | - Nan Xiong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, S.A.R
| | - Kirk L West
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Manton Leung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
| | - Yick Pang Ching
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jian Yuan
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Cheng-Han Yu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
| | - Justin Leung
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, S.A.R
| |
Collapse
|
2
|
Samardak K, Bâcle J, Moriel-Carretero M. Behind the stoNE wall: A fervent activity for nuclear lipids. Biochimie 2024:S0300-9084(24)00179-2. [PMID: 39111564 DOI: 10.1016/j.biochi.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/27/2024]
Abstract
The four main types of biomolecules are nucleic acids, proteins, carbohydrates and lipids. The knowledge about their respective interactions is as important as the individual understanding of each of them. However, while, for example, the interaction of proteins with the other three groups is extensively studied, that of nucleic acids and lipids is, in comparison, very poorly explored. An iconic paradigm of physical (and likely functional) proximity between DNA and lipids is the case of the genomic DNA in eukaryotes: enclosed within the nucleus by two concentric lipid bilayers, the wealth of implications of this interaction, for example in genome stability, remains underassessed. Nuclear lipid-related phenotypes have been observed for 50 years, yet in most cases kept as mere anecdotical descriptions. In this review, we will bring together the evidence connecting lipids with both the nuclear envelope and the nucleoplasm, and will make critical analyses of these descriptions. Our exploration establishes a scenario in which lipids irrefutably play a role in nuclear homeostasis.
Collapse
Affiliation(s)
- Kseniya Samardak
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - Janélie Bâcle
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
3
|
Portier L, Daira P, Fourmaux B, Heinrich S, Becerra M, Fouillade C, Berthault N, Dutreix M, Londoño-Vallejo A, Verrelle P, Bernoud-Hubac N, Favaudon V. Differential Remodeling of the Oxylipin Pool After FLASH Versus Conventional Dose-Rate Irradiation In Vitro and In Vivo. Int J Radiat Oncol Biol Phys 2024; 119:1481-1492. [PMID: 38340776 DOI: 10.1016/j.ijrobp.2024.01.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE The products of lipid peroxidation have been implicated in human diseases and aging. This prompted us to investigate the response to conventional (CONV) versus FLASH irradiation of oxylipins, a family of bioactive lipid metabolites derived from omega-3 or omega-6 polyunsaturated fatty acids through oxygen-dependent non-enzymatic as well as dioxygenase-mediated free radical reactions. METHODS AND MATERIALS Ultrahigh performance liquid chromatography coupled to tandem mass spectrometry was used to quantify the expression of 37 oxylipins derived from eicosatetraenoic, eicosapentaenoic and docosahexaenoic acid in mouse lung and in normal or cancer cells exposed to either radiation modality under precise monitoring of the temperature and oxygenation. Among the 37 isomers assayed, 14-16 were present in high enough amount to enable quantitative analysis. The endpoints were the expression of oxylipins as a function of the dose of radiation, normoxia versus hypoxia, temperature and post-irradiation time. RESULTS In normal, normoxic cells at 37°C radiation elicited destruction and neosynthesis of oxylipins acting antagonistically on a background subject to rapid remodeling by oxygenases. Neosynthesis was observed in the CONV mode only, in such a way that the level of oxylipins at 5 minutes after FLASH irradiation was 20-50% lower than in non-irradiated and CONV-irradiated cells. Hypoxia mitigated the differential CONV versus FLASH response in some oxylipins. These patterns were not reproduced in tumor cells. Depression of specific oxylipins following FLASH irradiation was observed in mouse lung at 5 min following irradiation, with near complete recovery in 24 hours and further remodeling at one week and two months post-irradiation. CONCLUSIONS Down-regulation of oxylipins was a hallmark of FLASH irradiation specific of normal cells. Temperature effects suggest that this process occurs via diffusion-controlled, bimolecular recombination of a primary radical species upstream from peroxyl radical formation and evoke a major role of the membrane composition and fluidity in response to the FLASH modality.
Collapse
Affiliation(s)
- Lucie Portier
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | - Patricia Daira
- Univ Lyon, INSA Lyon, CNRS, LaMCoS, UMR 5259, Villeurbanne, France
| | | | - Sophie Heinrich
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | - Margaux Becerra
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | - Charles Fouillade
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | - Nathalie Berthault
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | - Marie Dutreix
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | - Arturo Londoño-Vallejo
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | - Pierre Verrelle
- Institut Curie, Hospital Section, Department of Radiotherapy-Oncology, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, Research Division, Inserm U 1196-CNRS UMR 9187, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | | | - Vincent Favaudon
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France.
| |
Collapse
|
4
|
Zhou Y, Chapagain P, Desmarini D, Uredi D, Rameh LE, Djordjevic JT, Blind RD, Wang X. Design, synthesis and cellular characterization of a new class of IPMK kinase inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593371. [PMID: 38798512 PMCID: PMC11118372 DOI: 10.1101/2024.05.09.593371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Many genetic studies have established the kinase activity of inositol phosphate multikinase (IPMK) is required for the synthesis of higher-order inositol phosphate signaling molecules, the regulation of gene expression and control of the cell cycle. These genetic studies await orthogonal validation by specific IPMK inhibitors, but no such inhibitors have been synthesized. Here, we report complete chemical synthesis, cellular characterization, structure-activity relationships and rodent pharmacokinetics of a novel series of highly potent IPMK inhibitors. The first-generation compound 1 (UNC7437) decreased cellular proliferation and tritiated inositol phosphate levels in metabolically labeled human U251-MG glioblastoma cells. Compound 1 also regulated the transcriptome of these cells, selectively regulating genes that are enriched in cancer, inflammatory and viral infection pathways. Further optimization of compound 1 eventually led to compound 15 (UNC9750), which showed improved potency and pharmacokinetics in rodents. Compound 15 specifically inhibited cellular accumulation of InsP 5 , a direct product of IPMK kinase activity, while having no effect on InsP 6 levels, revealing a novel metabolic signature detected for the first time by rapid chemical attenuation of cellular IPMK activity. These studies designed, optimized and synthesized a new series of IPMK inhibitors, which reduces glioblastoma cell growth, induces a novel InsP 5 metabolic signature, and reveals novel aspects inositol phosphate cellular metabolism and signaling.
Collapse
|
5
|
Wang H, Blind RD, Shears SB. X-ray crystallographic analyses of 14 IPMK inhibitor complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593385. [PMID: 38766172 PMCID: PMC11100778 DOI: 10.1101/2024.05.09.593385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Inositol polyphosphate multikinase (IPMK) is a ubiquitously expressed kinase that has been linked to several cancers. Here, we report 14 new co-crystal structures (1.7Å - 2.0Å resolution) of human IPMK complexed with various IPMK inhibitors developed by another group. The new structures reveal two ordered water molecules that participate in hydrogen-bonding networks, and an unoccupied pocket in the ATP-binding site of human IPMK. New Protein Data Bank (PDB) codes of these IPMK crystal structures are: 8V6W (1.95Å), 8V6X (1.75Å), 8V6Y (1.70Å), 8V6Z (1.85Å), 8V70 (1.85Å), 8V71 (1.70Å), 8V72 (2.0Å), 8V73 (1.90Å), 8V74 (1.85Å), 8V75 (1.85Å), 8V76 (1.95Å), 8V77 (1.95Å), 8V78 (1.95Å), 8V79 (1.95Å).
Collapse
|
6
|
Li YY, Murai K, Lyu J, Honda M. Roles Played by DOCK11, a Guanine Nucleotide Exchange Factor, in HBV Entry and Persistence in Hepatocytes. Viruses 2024; 16:745. [PMID: 38793626 PMCID: PMC11125634 DOI: 10.3390/v16050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
HBV infection is challenging to cure due to the persistence of viral covalently closed circular viral DNA (cccDNA). The dedicator of cytokinesis 11 (DOCK11) is recognized as a guanine nucleotide exchange factor (GEF) for CDC42 that has been reported to be required for HBV persistence. DOCK11 is expressed in both the cytoplasm and nucleus of human hepatocytes and is functionally associated with retrograde trafficking proteins Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with the HBV capsid, in the trans-Golgi network (TGN). This opens an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. DOCK11 also facilitates the association of cccDNA with H3K4me3 and RNA Pol II for activating cccDNA transcription. In addition, DOCK11 plays a crucial role in the host DNA repair system, being essential for cccDNA synthesis. This function can be inhibited by 10M-D42AN, a novel DOCK11-binding peptide, leading to the suppression of HBV replication both in vitro and in vivo. Treatment with a combination of 10M-D42AN and entecavir may represent a promising therapeutic strategy for patients with chronic hepatitis B (CHB). Consequently, DOCK11 may be seen as a potential candidate molecule in the development of molecularly targeted drugs against CHB.
Collapse
Affiliation(s)
- Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, 13-1, Takaramachi, Kanazawa 920-8640, Japan
| | - Kazuhisa Murai
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, 13-1, Takaramachi, Kanazawa 920-8640, Japan
| | - Junyan Lyu
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, 13-1, Takaramachi, Kanazawa 920-8640, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, 13-1, Takaramachi, Kanazawa 920-8640, Japan
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, 13-1, Takaramachi, Kanazawa 920-8640, Japan
| |
Collapse
|
7
|
Jung O, Baek MJ, Wooldrik C, Johnson KR, Fisher KW, Lou J, Ricks TJ, Wen T, Best MD, Cryns VL, Anderson RA, Choi S. Nuclear phosphoinositide signaling promotes YAP/TAZ-TEAD transcriptional activity in breast cancer. EMBO J 2024; 43:1740-1769. [PMID: 38565949 PMCID: PMC11066040 DOI: 10.1038/s44318-024-00085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The Hippo pathway effectors Yes-associated protein 1 (YAP) and its homolog TAZ are transcriptional coactivators that control gene expression by binding to TEA domain (TEAD) family transcription factors. The YAP/TAZ-TEAD complex is a key regulator of cancer-specific transcriptional programs, which promote tumor progression in diverse types of cancer, including breast cancer. Despite intensive efforts, the YAP/TAZ-TEAD complex in cancer has remained largely undruggable due to an incomplete mechanistic understanding. Here, we report that nuclear phosphoinositides function as cofactors that mediate the binding of YAP/TAZ to TEADs. The enzymatic products of phosphoinositide kinases PIPKIα and IPMK, including phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (P(I3,4,5)P3), bridge the binding of YAP/TAZ to TEAD. Inhibiting these kinases or the association of YAP/TAZ with PI(4,5)P2 and PI(3,4,5)P3 attenuates YAP/TAZ interaction with the TEADs, the expression of YAP/TAZ target genes, and breast cancer cell motility. Although we could not conclusively exclude the possibility that other enzymatic products of IPMK such as inositol phosphates play a role in the mechanism, our results point to a previously unrecognized role of nuclear phosphoinositide signaling in control of YAP/TAZ activity and implicate this pathway as a potential therapeutic target in YAP/TAZ-driven breast cancer.
Collapse
Affiliation(s)
- Oisun Jung
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Min-Jeong Baek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Colin Wooldrik
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Keith R Johnson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Oral Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kurt W Fisher
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Tanei J Ricks
- Department of Chemistry, University of Memphis, 3744 Walker Avenue, Memphis, TN, 38152, USA
| | - Tianmu Wen
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Vincent L Cryns
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Suyong Choi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
8
|
Carrillo ND, Chen M, Wen T, Awasthi P, Wolfe TJ, Cryns VL, Anderson RA. Lipid transfer proteins and a PI 4-kinase initiate nuclear phosphoinositide signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.08.539894. [PMID: 37214930 PMCID: PMC10197520 DOI: 10.1101/2023.05.08.539894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phosphoinositide (PIP n ) messengers are present in non-membranous regions of nuclei, where they are assembled into a phosphatidylinositol (PI) 3-kinase (PI3K)/Akt pathway that is distinct from the cytosolic membrane-localized pathway. In the nuclear pathway, PI kinases/phosphatases bind the p53 tumor suppressor protein (wild-type and mutant) to generate p53-PIP n complexes that regulate Akt activation. However, this pathway is dependent on poorly characterized nuclear PIP n pools. Here we report that PI transfer proteins (PITPs), which transport PI between membranes to enable membrane-localized PIP n synthesis, accumulate in the nucleoplasm in response to stress and supply nuclear PIP n pools. PITPα/β and the PI 4-kinase PI4KIIα bind p53 and are required to generate p53-PI4P, which is further phosphorylated to synthesize p53-PIP n complexes that regulate nuclear Akt activation and stress-resistance. Remarkably, PITPα/β and PI4KIIα initiate PIP n -linkage to multiple proteins that are detectable by immunoblotting and [ 3 H] myo -inositol metabolic labeling and are resistant to denaturation, suggesting a posttranslational modification. In brief Phosphatidylinositol transfer proteins initiate the nuclear PIP n -linked protein network in membrane-free regions.
Collapse
|
9
|
Zhang D, Chen Y, Hao M, Xia Y. Putting Hybrid Nanomaterials to Work for Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202319567. [PMID: 38429227 PMCID: PMC11478030 DOI: 10.1002/anie.202319567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Hybrid nanomaterials have found use in many biomedical applications. This article provides a comprehensive review of the principles, techniques, and recent advancements in the design and fabrication of hybrid nanomaterials for biomedicine. We begin with an introduction to the general concept of material hybridization, followed by a discussion of how this approach leads to materials with additional functionality and enhanced performance. We then highlight hybrid nanomaterials in the forms of nanostructures, nanocomposites, metal-organic frameworks, and biohybrids, including their fabrication methods. We also showcase the use of hybrid nanomaterials to advance biomedical engineering in the context of nanomedicine, regenerative medicine, diagnostics, theranostics, and biomanufacturing. Finally, we offer perspectives on challenges and opportunities.
Collapse
Affiliation(s)
- Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Yidan Chen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| | - Min Hao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| |
Collapse
|
10
|
Ren C, Carrillo ND, Cryns VL, Anderson RA, Chen M. Environmental pollutants and phosphoinositide signaling in autoimmunity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133080. [PMID: 38091799 PMCID: PMC10923067 DOI: 10.1016/j.jhazmat.2023.133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 02/08/2024]
Abstract
Environmental pollution stands as one of the most critical challenges affecting human health, with an estimated mortality rate linked to pollution-induced non-communicable diseases projected to range from 20% to 25%. These pollutants not only disrupt immune responses but can also trigger immunotoxicity. Phosphoinositide signaling, a pivotal regulator of immune responses, plays a central role in the development of autoimmune diseases and exhibits high sensitivity to environmental stressors. Among these stressors, environmental pollutants have become increasingly prevalent in our society, contributing to the initiation and exacerbation of autoimmune conditions. In this review, we summarize the intricate interplay between phosphoinositide signaling and autoimmune diseases within the context of environmental pollutants and contaminants. We provide an up-to-date overview of stress-induced phosphoinositide signaling, discuss 14 selected examples categorized into three groups of environmental pollutants and their connections to immune diseases, and shed light on the associated phosphoinositide signaling pathways. Through these discussions, this review advances our understanding of how phosphoinositide signaling influences the coordinated immune response to environmental stressors at a biological level. Furthermore, it offers valuable insights into potential research directions and therapeutic targets aimed at mitigating the impact of environmental pollutants on the pathogenesis of autoimmune diseases. SYNOPSIS: Phosphoinositide signaling at the intersection of environmental pollutants and autoimmunity provides novel insights for managing autoimmune diseases aggravated by pollutants.
Collapse
Affiliation(s)
- Chang Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
11
|
Escudeiro-Lopes S, Filimonenko VV, Jarolimová L, Hozák P. Lamin A/C and PI(4,5)P2-A Novel Complex in the Cell Nucleus. Cells 2024; 13:399. [PMID: 38474363 DOI: 10.3390/cells13050399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/14/2024] Open
Abstract
Lamins, the nuclear intermediate filaments, are important regulators of nuclear structural integrity as well as nuclear functional processes such as DNA transcription, replication and repair, and epigenetic regulations. A portion of phosphorylated lamin A/C localizes to the nuclear interior in interphase, forming a lamin A/C pool with specific properties and distinct functions. Nucleoplasmic lamin A/C molecular functions are mainly dependent on its binding partners; therefore, revealing new interactions could give us new clues on the lamin A/C mechanism of action. In the present study, we show that lamin A/C interacts with nuclear phosphoinositides (PIPs), and with nuclear myosin I (NM1). Both NM1 and nuclear PIPs have been previously reported as important regulators of gene expression and DNA damage/repair. Furthermore, phosphorylated lamin A/C forms a complex with NM1 in a phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent manner in the nuclear interior. Taken together, our study reveals a previously unidentified interaction between phosphorylated lamin A/C, NM1, and PI(4,5)P2 and suggests new possible ways of nucleoplasmic lamin A/C regulation, function, and importance for the formation of functional nuclear microdomains.
Collapse
Affiliation(s)
- Sara Escudeiro-Lopes
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Vlada V Filimonenko
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Electron Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Lenka Jarolimová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
12
|
Wernlé K, Thiel CS, Ullrich O. Increased H3K9me3 and F-Actin Reorganization in the Rapid Adaptive Response to Hypergravity in Human T Lymphocytes. Int J Mol Sci 2023; 24:17232. [PMID: 38139061 PMCID: PMC10743231 DOI: 10.3390/ijms242417232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Our study explored the impact of hypergravity on human T cells, which experience additional acceleration forces beyond Earth's gravity due to various factors, such as pulsatile blood flow, and technology, such as high-performance aircraft flights or spaceflights. We investigated the histone modifications Histone 3 lysine 4 and 9 trimethylation (H3K4me3 and H3K9me3, respectively), as well as the structural and cytoskeletal organization of Jurkat T cells in response to hypergravity. Histone modifications play a crucial role in gene regulation, chromatin organization and DNA repair. In response to hypergravity, we found only minimal changes of H3K4me3 and a rapid increase in H3K9me3, which was sustained for up to 15 min and then returned to control levels after 1 h. Furthermore, rapid changes in F-actin fluorescence were observed within seconds of hypergravity exposure, indicating filament depolymerization and cytoskeletal restructuring, which subsequently recovered after 1 h of hypergravity. Our study demonstrated the rapid, dynamic and adaptive cellular response to hypergravity, particularly in terms of histone modifications and cytoskeletal changes. These responses are likely necessary for maintaining genome stability and structural integrity under hypergravity conditions as they are constantly occurring in the human body during blood cell circulation.
Collapse
Affiliation(s)
- Kendra Wernlé
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Faculty of Medical Sciences, Private University of the Principality of Liechtenstein (UFL), Dorfstrasse 24, 9495 Triesen, Liechtenstein
| | - Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Institute of Machine Design, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dubendorf, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Institute of Machine Design, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dubendorf, Switzerland
- Department of Industrial Engineering, Ernst-Abbe-Hochschule (EAH) Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
13
|
Palumbieri MD, Merigliano C, González-Acosta D, Kuster D, Krietsch J, Stoy H, von Känel T, Ulferts S, Welter B, Frey J, Doerdelmann C, Sanchi A, Grosse R, Chiolo I, Lopes M. Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity. Nat Commun 2023; 14:7819. [PMID: 38016948 PMCID: PMC10684888 DOI: 10.1038/s41467-023-43183-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filaments in unperturbed S phase and observed their rapid extension in number and length upon genotoxic treatments, frequently taking contact with replication factories. Chemically or genetically impairing nuclear actin polymerization shortly before these treatments prevents active fork slowing and abolishes fork reversal. Defective fork remodeling is linked to deregulated chromatin loading of PrimPol, which promotes unrestrained and discontinuous DNA synthesis and limits the recruitment of RAD51 and SMARCAL1 to nascent DNA. Moreover, defective nuclear actin polymerization upon mild replication interference induces chromosomal instability in a PRIMPOL-dependent manner. Hence, by limiting PrimPol activity, nuclear F-actin orchestrates replication fork plasticity and is a key molecular determinant in the rapid cellular response to genotoxic treatments.
Collapse
Affiliation(s)
| | - Chiara Merigliano
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, USA
| | | | - Danina Kuster
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Henriette Stoy
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Department of Cellular and Molecular Medicine, Copenhagen University, Copenhagen, Denmark
| | - Thomas von Känel
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Svenja Ulferts
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bettina Welter
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Joël Frey
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Cyril Doerdelmann
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Andrea Sanchi
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
- CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Irene Chiolo
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, USA.
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Wollscheid HP, Ulrich HD. Chromatin meets the cytoskeleton: the importance of nuclear actin dynamics and associated motors for genome stability. DNA Repair (Amst) 2023; 131:103571. [PMID: 37738698 DOI: 10.1016/j.dnarep.2023.103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
The actin cytoskeleton is of fundamental importance for numerous cellular processes, including intracellular transport, cell plasticity, and cell migration. However, functions of filamentous actin (F-actin) in the nucleus remain understudied due to the comparatively low abundance of nuclear actin and the resulting experimental limitations to its visualization. Owing to recent technological advances such as super-resolution microscopy and the development of nuclear-specific actin probes, essential roles of the actin cytoskeleton in the context of genome maintenance are now emerging. In addition to the contributions of monomeric actin as a component of multiple important nuclear protein complexes, nuclear actin has been found to undergo polymerization in response to DNA damage and DNA replication stress. Consequently, nuclear F-actin plays important roles in the regulation of intra-nuclear mobility of repair and replication foci as well as the maintenance of nuclear shape, two important aspects of efficient stress tolerance. Beyond actin itself, there is accumulating evidence for the participation of multiple actin-binding proteins (ABPs) in the surveillance of genome integrity, including nucleation factors and motor proteins of the myosin family. Here we summarize recent findings highlighting the importance of actin cytoskeletal factors within the nucleus in key genome maintenance pathways.
Collapse
Affiliation(s)
- Hans-Peter Wollscheid
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, Mainz D - 55128, Germany.
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, Mainz D - 55128, Germany.
| |
Collapse
|
15
|
Chi ES, Stivison EA, Blind RD. SF-1 Induces Nuclear PIP2. Biomolecules 2023; 13:1509. [PMID: 37892191 PMCID: PMC10604688 DOI: 10.3390/biom13101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Metazoan cell nuclei contain non-membrane pools of the phosphoinositide lipid PI(4,5)P2 (PIP2), but how this hydrophobic lipid exists within the aqueous nucleoplasm remains unclear. Steroidogenic Factor-1 (NR5A1, SF-1) is a nuclear receptor that binds PIP2 in vitro, and a co-crystal structure of the complex suggests the acyl chains of PIP2 are hidden in the hydrophobic core of the SF-1 protein while the PIP2 headgroup is solvent-exposed. This binding mode explains how SF-1 can solubilize nuclear PIP2; however, cellular evidence that SF-1 expression associates with nuclear PIP2 has been lacking. Here, we examined if tetracycline induction of SF-1 expression would associate with nuclear accumulation of PIP2, using antibodies directed against the PIP2 headgroup. Indeed, tetracycline induction of wild-type SF-1 induced a signal in the nucleus of HEK cells that cross-reacts with PIP2 antibodies, but did not cross-react with antibodies against the lower abundance phosphoinositide PI(3,4,5)P3 (PIP3). The nuclear PIP2 signal co-localized with FLAG-tagged SF-1 in the nuclear compartment. To determine if the nuclear PIP2 signal was dependent on the ability of SF-1 to bind PIP2, we examined a "pocket mutant" of SF-1 (A270W, L345F) shown to be deficient in phospholipid binding by mass spectrometry. Tetracycline induction of this pocket mutant SF-1 in HEK cells failed to induce a detectable PIP2 antibody cross-reactive signal, despite similar Tet-induced expression levels of the wild-type and pocket mutant SF-1 proteins in these cells. Together, these data are the first to suggest that expression of SF-1 induces a PIP2 antibody cross-reactive signal in the nucleus, consistent with X-ray crystallographic and biochemical evidence suggesting SF-1 binds PIP2 in human cells.
Collapse
Affiliation(s)
| | | | - Raymond D. Blind
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
16
|
Sharma R, Diwan B. Lipids and the hallmarks of ageing: From pathology to interventions. Mech Ageing Dev 2023; 215:111858. [PMID: 37652278 DOI: 10.1016/j.mad.2023.111858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipids are critical structural and functional architects of cellular homeostasis. Change in systemic lipid profile is a clinical indicator of underlying metabolic pathologies, and emerging evidence is now defining novel roles of lipids in modulating organismal ageing. Characteristic alterations in lipid metabolism correlate with age, and impaired systemic lipid profile can also accelerate the development of ageing phenotype. The present work provides a comprehensive review of the extent of lipids as regulators of the modern hallmarks of ageing viz., cellular senescence, chronic inflammation, gut dysbiosis, telomere attrition, genome instability, proteostasis and autophagy, epigenetic alterations, and stem cells dysfunctions. Current evidence on the modulation of each of these hallmarks has been discussed with emphasis on inherent age-dependent deficiencies in lipid metabolism as well as exogenous lipid changes. There appears to be sufficient evidence to consider impaired lipid metabolism as key driver of the ageing process although much of knowledge is yet fragmented. Considering dietary lipids, the type and quantity of lipids in the diet is a significant, but often overlooked determinant that governs the effects of lipids on ageing. Further research using integrative approaches amidst the known aging hallmarks is highly desirable for understanding the therapeutics of lipids associated with ageing.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India.
| | - Bhawna Diwan
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India
| |
Collapse
|
17
|
Panessa GM, Tassoni-Tsuchida E, Pires MR, Felix RR, Jekabson R, de Souza-Pinto NC, da Cunha FM, Brandman O, Cussiol JRR. Opi1-mediated transcriptional modulation orchestrates genotoxic stress response in budding yeast. Genetics 2023; 225:iyad130. [PMID: 37440469 PMCID: PMC10691878 DOI: 10.1093/genetics/iyad130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
In budding yeast, the transcriptional repressor Opi1 regulates phospholipid biosynthesis by repressing expression of genes containing inositol-sensitive upstream activation sequences. Upon genotoxic stress, cells activate the DNA damage response to coordinate a complex network of signaling pathways aimed at preserving genomic integrity. Here, we reveal that Opi1 is important to modulate transcription in response to genotoxic stress. We find that cells lacking Opi1 exhibit hypersensitivity to genotoxins, along with a delayed G1-to-S-phase transition and decreased gamma-H2A levels. Transcriptome analysis using RNA sequencing reveals that Opi1 plays a central role in modulating essential biological processes during methyl methanesulfonate (MMS)-associated stress, including repression of phospholipid biosynthesis and transduction of mating signaling. Moreover, Opi1 induces sulfate assimilation and amino acid metabolic processes, such as arginine and histidine biosynthesis and glycine catabolism. Furthermore, we observe increased mitochondrial DNA instability in opi1Δ cells upon MMS treatment. Notably, we show that constitutive activation of the transcription factor Ino2-Ino4 is responsible for genotoxin sensitivity in Opi1-deficient cells, and the production of inositol pyrophosphates by Kcs1 counteracts Opi1 function specifically during MMS-induced stress. Overall, our findings highlight Opi1 as a critical sensor of genotoxic stress in budding yeast, orchestrating gene expression to facilitate appropriate stress responses.
Collapse
Affiliation(s)
- Giovanna Marques Panessa
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Eduardo Tassoni-Tsuchida
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Marina Rodrigues Pires
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Rodrigo Rodrigues Felix
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Rafaella Jekabson
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | | | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - José Renato Rosa Cussiol
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| |
Collapse
|
18
|
Vidalle MC, Sheth B, Fazio A, Marvi MV, Leto S, Koufi FD, Neri I, Casalin I, Ramazzotti G, Follo MY, Ratti S, Manzoli L, Gehlot S, Divecha N, Fiume R. Nuclear Phosphoinositides as Key Determinants of Nuclear Functions. Biomolecules 2023; 13:1049. [PMID: 37509085 PMCID: PMC10377365 DOI: 10.3390/biom13071049] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Polyphosphoinositides (PPIns) are signalling messengers representing less than five per cent of the total phospholipid concentration within the cell. Despite their low concentration, these lipids are critical regulators of various cellular processes, including cell cycle, differentiation, gene transcription, apoptosis and motility. PPIns are generated by the phosphorylation of the inositol head group of phosphatidylinositol (PtdIns). Different pools of PPIns are found at distinct subcellular compartments, which are regulated by an array of kinases, phosphatases and phospholipases. Six of the seven PPIns species have been found in the nucleus, including the nuclear envelope, the nucleoplasm and the nucleolus. The identification and characterisation of PPIns interactor and effector proteins in the nucleus have led to increasing interest in the role of PPIns in nuclear signalling. However, the regulation and functions of PPIns in the nucleus are complex and are still being elucidated. This review summarises our current understanding of the localisation, biogenesis and physiological functions of the different PPIns species in the nucleus.
Collapse
Affiliation(s)
- Magdalena C Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Antonietta Fazio
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Vittoria Marvi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Leto
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Foteini-Dionysia Koufi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Neri
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Casalin
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sonakshi Gehlot
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Roberta Fiume
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
19
|
Palumbieri MD, Merigliano C, Acosta DG, von Känel T, Welter B, Stoy H, Krietsch J, Ulferts S, Sanchi A, Grosse R, Chiolo I, Lopes M. Replication fork plasticity upon replication stress requires rapid nuclear actin polymerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534097. [PMID: 36993227 PMCID: PMC10055433 DOI: 10.1101/2023.03.24.534097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filaments in unperturbed S phase, rapidly extending in number and thickness upon genotoxic treatments, and taking frequent contact with replication factories. Chemically or genetically impairing nuclear actin polymerization shortly before these treatments prevents active fork slowing and abolishes fork reversal. Defective fork plasticity is linked to reduced recruitment of RAD51 and SMARCAL1 to nascent DNA. Conversely, PRIMPOL gains access to replicating chromatin, promoting unrestrained and discontinuous DNA synthesis, which is associated with increased chromosomal instability and decreased cellular resistance to replication stress. Hence, nuclear F-actin orchestrates replication fork plasticity and is a key molecular determinant in the rapid cellular response to genotoxic treatments.
Collapse
|
20
|
Li L, Shen X, Mo X, Chen Z, Yu F, Mo X, Song J, Huang G, Liang K, Luo Z, Mao N, Yang J. CEMIP-mediated hyaluronan metabolism facilitates SCLC metastasis by activating TLR2/c-Src/ERK1/2 axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119451. [PMID: 36931608 DOI: 10.1016/j.bbamcr.2023.119451] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023]
Abstract
Small-cell lung cancer (SCLC) is a highly metastatic and recalcitrant malignancy. Metastasis is the major cause of death in patients with SCLC but its mechanism remains poorly understood. An imbalance of hyaluronan catabolism in the extracellular matrix accelerates malignant progression in solid cancers due to the accumulation of low-molecular-weight HA. We previously found that CEMIP, a novel hyaluronidase, may act as a metastatic trigger in SCLC. In the present study, we found that both CEMIP and HA levels were higher in SCLC tissues than in paracancerous tissues from patient specimens and in vivo orthotopic models. Additionally, high expression of CEMIP was associated with lymphatic metastasis in patients with SCLC, and in vitro results showed that CEMIP expression was elevated in SCLC cells relative to human bronchial epithelial cells. Mechanistically, CEMIP facilitates the breakdown of HA and accumulation of LMW-HA. LMW-HA activates its receptor TLR2, and subsequently recruits c-Src to activate ERK1/2 signalling, thereby promoting F-actin rearrangement as well as migration and invasion of SCLC cells. In addition, the in vivo results verified that depletion of CEMIP attenuated HA levels and the expressions of TLR2, c-Src, and phosphorylation of ERK1/2, as well as liver and brain metastasis in SCLC xenografts. Furthermore, the application of the actin filament inhibitor latrunculin A significantly inhibited the liver and brain metastasis of SCLC in vivo. Collectively, our findings reveal the critical role of CEMIP-mediated HA degradation in SCLC metastasis and suggest its translational potential as an attractive target and a novel strategy for SCLC therapy.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China; Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530001, Guangxi, PR China; Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530001, Guangxi, PR China
| | - Xiaoju Shen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Xiaoxiang Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China; Department of Pharmacology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, PR China
| | - Zhiquan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| | - Fei Yu
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Xiaocheng Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Jinjing Song
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China; Department of Pharmacy, The First People's Hospital of Nanning, Nanning 530022, Guangxi, PR China
| | - Guolin Huang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China; Department of Pharmacy, The First People's Hospital of Nanning, Nanning 530022, Guangxi, PR China
| | - Kai Liang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China; Department of Thoracic Tumor Surgery, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning 530021, Guangxi, PR China
| | - Zhuo Luo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Naiquan Mao
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China; Department of Thoracic Tumor Surgery, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning 530021, Guangxi, PR China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| |
Collapse
|
21
|
Wang YH, Sheetz MP. Transcription-independent functions of p53 in DNA repair pathway selection. Bioessays 2023; 45:e2200122. [PMID: 36404121 DOI: 10.1002/bies.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
Abstract
Recently discovered transcription-independent features of p53 involve the choice of DNA damage repair pathway after PARylation, and p53's complex formation with phosphoinositide lipids, PI(4,5)P2 . PARylation-mediated rapid accumulation of p53 at DNA damage sites is linked to the recruitment of downstream repair factors and tumor suppression. This links p53's capability to sense damaged DNA in vitro and its relevant functions in cells. Further, PI(4,5)P2 rapidly accumulates at damage sites like p53 and complexes with p53, while it is required for ATR recruitment. These findings help explain how p53 and PI(4,5)P2 maintain genome stability by directing DNA repair pathway choice. Additionally, there is a strong correlation between p53 sequence homology, genome mutation rates as well as lifespans across various mammalian species. Further investigation is required to better understand the connections between genome stability, tumor suppression, longevity and the transcriptional-independent function of p53.
Collapse
Affiliation(s)
- Yu-Hsiu Wang
- Biochemistry and Molecular Biology Department University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Michael P Sheetz
- Biochemistry and Molecular Biology Department University of Texas Medical Branch, Galveston, TX, 77555, United States
| |
Collapse
|
22
|
Chen M, Choi S, Wen T, Chen C, Thapa N, Lee JH, Cryns VL, Anderson RA. A p53-phosphoinositide signalosome regulates nuclear AKT activation. Nat Cell Biol 2022; 24:1099-1113. [PMID: 35798843 PMCID: PMC9833102 DOI: 10.1038/s41556-022-00949-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/26/2022] [Indexed: 01/13/2023]
Abstract
The tumour suppressor p53 and PI3K-AKT pathways have fundamental roles in the regulation of cell growth and apoptosis, and are frequently mutated in cancer. Here, we show that genotoxic stress induces nuclear AKT activation through a p53-dependent mechanism that is distinct from the canonical membrane-localized PI3K-AKT pathway. Following genotoxic stress, a nuclear PI3K binds p53 in the non-membranous nucleoplasm to generate a complex of p53 and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), which recruits AKT, PDK1 and mTORC2 to activate AKT and phosphorylate FOXO proteins, thereby inhibiting DNA damage-induced apoptosis. Wild-type p53 activates nuclear AKT in an on/off fashion following stress, whereas mutant p53 dose-dependently stimulates high basal AKT activity. The p53-PtdIns(3,4,5)P3 complex is dephosphorylated to p53-phosphatidylinositol 4,5-bisphosphate by PTEN to inhibit AKT activation. The nuclear p53-phosphoinositide signalosome is distinct from the canonical membrane-localized pathway and insensitive to PI3K inhibitors currently in the clinic, which underscores its therapeutic relevance.
Collapse
Affiliation(s)
- Mo Chen
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Suyong Choi
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Tianmu Wen
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Changliang Chen
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Narendra Thapa
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Jeong Hyo Lee
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
| | - Richard A Anderson
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
23
|
Ide M, Tabata N, Yonemura Y, Shirasaki T, Murai K, Wang Y, Ishida A, Okada H, Honda M, Kaneko S, Doi N, Ito S, Yanagawa H. Guanine nucleotide exchange factor DOCK11-binding peptide fused with a single chain antibody inhibits Hepatitis B Virus infection and replication. J Biol Chem 2022; 298:102097. [PMID: 35660020 PMCID: PMC9241042 DOI: 10.1016/j.jbc.2022.102097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health problem with no established cure. Dedicator of cytokinesis 11 (DOCK11), known as a guanine nucleotide exchange factor (GEF) for Cdc42, is reported to be essential for the maintenance of HBV. However, potential therapeutic strategies targeting DOCK11 have not yet been explored. We have previously developed an in vitro virus method as a more efficient tool for the analysis of proteomics and evolutionary protein engineering. In this study, using the in vitro virus method, we screened and identified a novel antiasialoglycoprotein receptor (ASGR) antibody, ASGR3-10M, and a DOCK11-binding peptide, DCS8-42A, for potential use in HBV infection. We further constructed a fusion protein (10M-D42AN) consisting of ASGR3-10M, DCS8-42A, a fusogenic peptide, and a nuclear localization signal to deliver the peptide inside hepatocytes. We show using immunofluorescence staining that 10M-D42AN was endocytosed into early endosomes and released into the cytoplasm and nucleus. Since DCS8-42A shares homology with activated cdc42-associated kinase 1 (Ack1), which promotes EGFR endocytosis required for HBV infection, we also found that 10M-D42AN inhibited endocytosis of EGFR and Ack1. Furthermore, we show 10M-D42AN suppressed the function of DOCK11 in the host DNA repair system required for covalently closed circular DNA synthesis and suppressed HBV proliferation in mice. In conclusion, this study realizes a novel hepatocyte-specific drug delivery system using an anti-ASGR antibody, a fusogenic peptide, and DOCK11-binding peptide to provide a novel treatment for HBV.
Collapse
Affiliation(s)
- Mayuko Ide
- Research Department, Purotech Bio Inc, Yokohama, Kanagawa, 230-0045, Japan
| | - Noriko Tabata
- Research Department, Purotech Bio Inc, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuko Yonemura
- Research Department, Purotech Bio Inc, Yokohama, Kanagawa, 230-0045, Japan
| | - Takayoshi Shirasaki
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Ishikawa, 920-0942, Japan
| | - Kazuhisa Murai
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Ishikawa, 920-0942, Japan
| | - Ying Wang
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Ishikawa, 920-0942, Japan
| | - Atsuya Ishida
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Ishikawa, 920-0942, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Ishikawa, 920-8641, Japan
| | - Masao Honda
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Ishikawa, 920-0942, Japan; Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Ishikawa, 920-8641, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Satoru Ito
- Research Department, Purotech Bio Inc, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Yanagawa
- Research Department, Purotech Bio Inc, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
24
|
Wang YH, Sheetz MP. When PIP 2 Meets p53: Nuclear Phosphoinositide Signaling in the DNA Damage Response. Front Cell Dev Biol 2022; 10:903994. [PMID: 35646908 PMCID: PMC9136457 DOI: 10.3389/fcell.2022.903994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanisms that maintain genome stability are critical for preventing tumor progression. In the past decades, many strategies were developed for cancer treatment to disrupt the DNA repair machinery or alter repair pathway selection. Evidence indicates that alterations in nuclear phosphoinositide lipids occur rapidly in response to genotoxic stresses. This implies that nuclear phosphoinositides are an upstream element involved in DNA damage signaling. Phosphoinositides constitute a new signaling interface for DNA repair pathway selection and hence a new opportunity for developing cancer treatment strategies. However, our understanding of the underlying mechanisms by which nuclear phosphoinositides regulate DNA damage repair, and particularly the dynamics of those processes, is rather limited. This is partly because there are a limited number of techniques that can monitor changes in the location and/or abundance of nuclear phosphoinositide lipids in real time and in live cells. This review summarizes our current knowledge regarding the roles of nuclear phosphoinositides in DNA damage response with an emphasis on the dynamics of these processes. Based upon recent findings, there is a novel model for p53's role with nuclear phosphoinositides in DNA damage response that provides new targets for synthetic lethality of tumors.
Collapse
Affiliation(s)
| | - Michael P. Sheetz
- Biochemistry and Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
25
|
Rapid recruitment of p53 to DNA damage sites directs DNA repair choice and integrity. Proc Natl Acad Sci U S A 2022; 119:e2113233119. [PMID: 35235448 PMCID: PMC8915893 DOI: 10.1073/pnas.2113233119] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our work focuses on the critical longstanding question of the nontranscriptional role of p53 in tumor suppression. We demonstrate here that poly(ADP-ribose) polymerase (PARP)–dependent modification of p53 enables rapid recruitment of p53 to damage sites, where it in turn directs early repair pathway selection. Specifically, p53-mediated recruitment of 53BP1 at early time points promotes nonhomologous end joining over the more error-prone microhomology end-joining. Similarly, p53 directs nucleotide excision repair by mediating DDB1 recruitment. This property of p53 also correlates with tumor suppression in vivo. Our study provides mechanistic insight into how certain transcriptionally deficient p53 mutants may retain tumor-suppressive functions through regulating the DNA damage response. p53 is primarily known as a downstream transcriptional effector in the DNA damage-response cascade. We report that endogenous p53 rapidly accumulates at DNA damage sites within 2 s of UVA microirradiation. The kinetics of p53 recruitment mimics those of known DNA damage-response proteins, such as Ku70 and poly(ADP-ribose) polymerase (PARP), and precedes recruitment of Nbs1, 53BP1, and DDB1. Mutations in the DNA-binding and C-terminal domains significantly suppress this rapid recruitment. The C-terminal domain of p53 contains key residues for PARP interaction that are required for rapid recruitment of p53 to DNA damage sites, as is PARP-dependent modification. The presence of p53 at damage sites influences the recruitment kinetics of 53BP1 and DDB1 and directs the choice of nonhomologous end joining repair (NHEJ) and nucleotide excision repair. Mutations that suppressed rapid recruitment of p53 promoted error-prone alternative end-joining (alt-NHEJ) and inhibited nucleotide excision repair. Our finding that p53 is a critical early responder to DNA damage stands in contrast with its extensively studied role as a downstream transcriptional regulator in DNA damage repair. We highlight an unrecognized role of p53 in directing DNA repair dynamics and integrity and suggest a parallel mode of p53 tumor suppression apart from its function as a transcription factor.
Collapse
|
26
|
Unconventional metabolites in chromatin regulation. Biosci Rep 2022; 42:230604. [PMID: 34988581 PMCID: PMC8777195 DOI: 10.1042/bsr20211558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Chromatin, the complex of DNA and histone proteins, serves as a main integrator of cellular signals. Increasing evidence links cellular functional to chromatin state. Indeed, different metabolites are emerging as modulators of chromatin function and structure. Alterations in chromatin state are decisive for regulating all aspects of genome function and ultimately have the potential to produce phenotypic changes. Several metabolites such as acetyl-CoA, S-adenosylmethionine (SAM) or adenosine triphosphate (ATP) have now been well characterized as main substrates or cofactors of chromatin-modifying enzymes. However, there are other metabolites that can directly interact with chromatin influencing its state or that modulate the properties of chromatin regulatory factors. Also, there is a growing list of atypical enzymatic and nonenzymatic chromatin modifications that originate from different cellular pathways that have not been in the limelight of chromatin research. Here, we summarize different properties and functions of uncommon regulatory molecules originating from intermediate metabolism of lipids, carbohydrates and amino acids. Based on the various modes of action on chromatin and the plethora of putative, so far not described chromatin-regulating metabolites, we propose that there are more links between cellular functional state and chromatin regulation to be discovered. We hypothesize that these connections could provide interesting starting points for interfering with cellular epigenetic states at a molecular level.
Collapse
|
27
|
Moriel-Carretero M. The Many Faces of Lipids in Genome Stability (and How to Unmask Them). Int J Mol Sci 2021; 22:12930. [PMID: 34884734 PMCID: PMC8657548 DOI: 10.3390/ijms222312930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Deep efforts have been devoted to studying the fundamental mechanisms ruling genome integrity preservation. A strong focus relies on our comprehension of nucleic acid and protein interactions. Comparatively, our exploration of whether lipids contribute to genome homeostasis and, if they do, how, is severely underdeveloped. This disequilibrium may be understood in historical terms, but also relates to the difficulty of applying classical lipid-related techniques to a territory such as a nucleus. The limited research in this domain translates into scarce and rarely gathered information, which with time further discourages new initiatives. In this review, the ways lipids have been demonstrated to, or very likely do, impact nuclear transactions, in general, and genome homeostasis, in particular, are explored. Moreover, a succinct yet exhaustive battery of available techniques is proposed to tackle the study of this topic while keeping in mind the feasibility and habits of "nucleus-centered" researchers.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, CEDEX 5, 34293 Montpellier, France
| |
Collapse
|
28
|
VE-822, a novel DNA Holliday junction stabilizer, inhibits homologous recombination repair and triggers DNA damage response in osteogenic sarcomas. Biochem Pharmacol 2021; 193:114767. [PMID: 34537248 DOI: 10.1016/j.bcp.2021.114767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022]
Abstract
Homologous recombination repair (HRR) is crucial for genomic stability of cancer cells and is an attractive target in cancer therapy. Holliday junction (HJ) is a four-way DNA intermediate that performs an essential role in homology-directed repair. However, few studies about regulatory mechanisms of HJs have been reported. In this study, to better understand the biological effects of HJs, VE-822 was identified as an effective DNA HJ stabilizer to promote the assembly of HJs both in vitro and in cells. This compound could inhibit the HRR level, activate DNA-PKCS to trigger DNA damage response (DDR) and induce telomeric DNA damage via stabilizing DNA HJs. Furthermore, VE-822 was demonstrated to sensitize the osteosarcoma cells to doxorubicin (Dox) by enhancing DNA damage and cellular apoptosis. This work thus reports one novel HJ stabilizer, and provide a potential anticancer strategy through the modulation of DNA HJs.
Collapse
|
29
|
Lee EJ, Zheng M, Craft CM, Jeong S. Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) are localized in the nucleus of retinal Müller glial cells and modulated by cytokines and oxidative stress. PLoS One 2021; 16:e0253915. [PMID: 34270579 PMCID: PMC8284794 DOI: 10.1371/journal.pone.0253915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in the pathology of numerous inflammatory retinal degenerations, including retinitis pigmentosa (RP). Our previous work revealed that intravitreal injections with tissue inhibitor of metalloproteinases 1 (TIMP-1) reduce the progression of rod cell death and inhibit cone cell remodeling that involves reactive gliosis in retinal Müller glial cells (MGCs) in rodent models. The underlying cellular and molecular mechanisms of how TIMP-1 functions in the retina remain to be resolved; however, MGCs are involved in structural homeostasis, neuronal cell survival and death. In the present study, MMP-9 and TIMP-1 expression patterns were investigated in a human MGC line (MIO-M1) under inflammatory cytokine (IL-1β and TNF-α) and oxidative stress (H2O2) conditions. First, both IL-1β and TNF-α, but not H2O2, have a mild in vitro pro-survival effect on MIO-M1 cells. Treatment with either cytokine results in the imbalanced secretion of MMP-9 and TIMP-1. H2O2 treatment has little effect on their secretion. The investigation of their intracellular expression led to interesting observations. MMP-9 and TIMP-1 are both expressed, not only in the cytoplasm, but also inside the nucleus. None of the treatments alters the MMP-9 intracellular distribution pattern. In contrast to MMP-9, TIMP-1 is detected as speckles. Intracellular TIMP-1 aggregation forms in the cytoplasmic area with IL-1β treatment. With H2O2 treatments, the cell morphology changes from cobbles to spindle shapes and the nuclei become larger with increases in TIMP-1 speckles in an H2O2 dose-dependent manner. Two TIMP-1 cell surface receptors, low density lipoprotein receptor-related protein-1 (LRP-1) and cluster of differentiation 82 (CD82), are expressed within the nucleus of MIO-M1 cells. Overall, these observations suggest that intracellular TIMP-1 is a target of proinflammatory and oxidative insults in the MGCs. Given the importance of the roles for MGCs in the retina, the functional implication of nuclear TIMP-1 and MMP-9 in MGCs is discussed.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Ophthalmology, Stanford University, Palo Alto, CA, United States of America
| | - Mengmei Zheng
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Cheryl Mae Craft
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Shinwu Jeong
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
30
|
Nuclear Phosphatidylinositol 3,4,5-Trisphosphate Interactome Uncovers an Enrichment in Nucleolar Proteins. Mol Cell Proteomics 2021; 20:100102. [PMID: 34048982 PMCID: PMC8255942 DOI: 10.1016/j.mcpro.2021.100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Polyphosphoinositides (PPIns) play essential roles as lipid signaling molecules, and many of their functions have been elucidated in the cytoplasm. However, PPIns are also intranuclear where they contribute to chromatin remodeling, transcription, and mRNA splicing. The PPIn, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), has been mapped to the nucleus and nucleoli, but its role remains unclear in this subcellular compartment. To gain further insights into the nuclear functions of PtdIns(3,4,5)P3, we applied a previously developed quantitative MS-based approach to identify the targets of PtdIns(3,4,5)P3 from isolated nuclei. We identified 179 potential PtdIns(3,4,5)P3-interacting partners, and gene ontology analysis for the biological functions of this dataset revealed an enrichment in RNA processing/splicing, cytokinesis, protein folding, and DNA repair. Interestingly, about half of these interactors were common to nucleolar protein datasets, some of which had dual functions in rRNA processes and DNA repair, including poly(ADP-ribose) polymerase 1 (PARP1, now referred as ADP-ribosyltransferase 1). PARP1 was found to interact directly with PPIn via three polybasic regions in the DNA-binding domain and the linker located N-terminal of the catalytic region. PARP1 was shown to bind to PtdIns(3,4,5)P3 as well as phosphatidylinositol 3,4-bisphosphate in vitro and to colocalize with PtdIns(3,4,5)P3 in the nucleolus and with phosphatidylinositol 3,4-bisphosphate in nucleoplasmic foci. In conclusion, the PtdIns(3,4,5)P3 interactome reported here will serve as a resource to further investigate the molecular mechanisms underlying PtdIns(3,4,5)P3-mediated interactions in the nucleus and nucleolus. Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) localizes to nucleoli. PtdIns(3,4,5)P3 interactomics from isolated nuclei identifies nucleolar proteins. PARP1 interacts directly with polyphosphoinositides via several polybasic regions. PARP1 colocalizes with PtdIns(3,4,5)P3 in the nucleolus.
Collapse
|
31
|
Lee B, Park SJ, Hong S, Kim K, Kim S. Inositol Polyphosphate Multikinase Signaling: Multifaceted Functions in Health and Disease. Mol Cells 2021; 44:187-194. [PMID: 33935040 PMCID: PMC8112168 DOI: 10.14348/molcells.2021.0045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Inositol phosphates are water-soluble intracellular signaling molecules found in eukaryotes from yeasts to mammals, which are synthesized by a complex network of enzymes including inositol phosphate kinases. Among these, inositol polyphosphate multikinase (IPMK) is a promiscuous enzyme with broad substrate specificity, which phosphorylates multiple inositol phosphates, as well as phosphatidylinositol 4,5-bisphosphate. In addition to its catalytic actions, IPMK is known to non-catalytically control major signaling events via direct protein-protein interactions. In this review, we describe the general characteristics of IPMK, highlight its pleiotropic roles in various physiological and pathological conditions, and discuss future challenges in the field of IPMK signaling pathways.
Collapse
Affiliation(s)
- Boah Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seung Ju Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sehoon Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kyunghan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Korea
| |
Collapse
|
32
|
Okuno T, Li WY, Hatano Y, Takasu A, Sakamoto Y, Yamamoto M, Ikeda Z, Shindo T, Plessner M, Morita K, Matsumoto K, Yamagata K, Grosse R, Miyamoto K. Zygotic Nuclear F-Actin Safeguards Embryonic Development. Cell Rep 2021; 31:107824. [PMID: 32610125 DOI: 10.1016/j.celrep.2020.107824] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/27/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
After fertilization, sperm and oocyte nuclei are rapidly remodeled to form swollen pronuclei (PN) in mammalian zygotes, and the proper formation and function of PN are key to producing totipotent zygotes. However, how mature PN are formed has been unclear. We find that filamentous actin (F-actin) assembles in the PN of mouse zygotes and is required for fully functional PN. The perturbation of nuclear actin dynamics in zygotes results in the misregulation of genes related to genome integrity and abnormal development of mouse embryos. We show that nuclear F-actin ensures DNA damage repair, thus preventing the activation of a zygotic checkpoint. Furthermore, optogenetic control of cofilin nuclear localization reveals the dynamically regulated F-actin nucleoskeleton in zygotes, and its timely disassembly is needed for developmental progression. Nuclear F-actin is a hallmark of totipotent zygotic PN, and the temporal regulation of its polymerized state is necessary for normal embryonic development.
Collapse
Affiliation(s)
- Tomomi Okuno
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Wayne Yang Li
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Yu Hatano
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Atsushi Takasu
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Yuko Sakamoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Mari Yamamoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Zenki Ikeda
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Taiki Shindo
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Matthias Plessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Kohtaro Morita
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Kazuya Matsumoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Kazuo Yamagata
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Kei Miyamoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan.
| |
Collapse
|
33
|
Hammerquist AM, Escorcia W, Curran SP. Maf1 regulates intracellular lipid homeostasis in response to DNA damage response activation. Mol Biol Cell 2021; 32:1086-1093. [PMID: 33788576 PMCID: PMC8351542 DOI: 10.1091/mbc.e20-06-0378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Surveillance of DNA damage and maintenance of lipid metabolism are critical factors for general cellular homeostasis. We discovered that in response to DNA damage–inducing UV light exposure, intact Caenorhabditis elegans accumulate intracellular lipids in a dose-dependent manner. The increase in intracellular lipids in response to exposure to UV light utilizes mafr-1, a negative regulator of RNA polymerase III and the apical kinases atm-1 and atl-1 of the DNA damage response (DDR) pathway. In the absence of exposure to UV light, the genetic ablation of mafr-1 results in the activation of the DDR, including increased intracellular lipid accumulation, phosphorylation of ATM/ATR target proteins, and expression of the Bcl-2 homology region genes, egl-1 and ced-13. Taken together, our results reveal mafr-1 as a component the DDR pathway response to regulating lipid homeostasis following exposure to UV genotoxic stress.
Collapse
Affiliation(s)
- Amy M Hammerquist
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089.,Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089
| | - Wilber Escorcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089.,Department of Biology, Xavier University, Cincinnati, OH 45207
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089.,Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
34
|
Nuclear F-actin counteracts nuclear deformation and promotes fork repair during replication stress. Nat Cell Biol 2020; 22:1460-1470. [PMID: 33257806 DOI: 10.1038/s41556-020-00605-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
Filamentous actin (F-actin) provides cells with mechanical support and promotes the mobility of intracellular structures. Although F-actin is traditionally considered to be cytoplasmic, here we reveal that nuclear F-actin participates in the replication stress response. Using live and super-resolution imaging, we find that nuclear F-actin is polymerized in response to replication stress through a pathway regulated by ATR-dependent activation of mTORC1, and nucleation through IQGAP1, WASP and ARP2/3. During replication stress, nuclear F-actin increases the nuclear volume and sphericity to counteract nuclear deformation. Furthermore, F-actin and myosin II promote the mobility of stressed-replication foci to the nuclear periphery through increasingly diffusive motion and directed movements along the nuclear actin filaments. These actin functions promote replication stress repair and suppress chromosome and mitotic abnormalities. Moreover, we find that nuclear F-actin is polymerized in vivo in xenograft tumours after treatment with replication-stress-inducing chemotherapeutic agents, indicating that this pathway has a role in human disease.
Collapse
|
35
|
Barrabés S, Ng-Choi I, Martínez MÁ, Manzano BR, Jalón FA, Espino G, Feliu L, Planas M, de Llorens R, Massaguer A. A nucleus-directed bombesin derivative for targeted delivery of metallodrugs to cancer cells. J Inorg Biochem 2020; 212:111214. [PMID: 32919249 DOI: 10.1016/j.jinorgbio.2020.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/19/2022]
Abstract
We have synthesized a set of bombesin derivatives with the aim of exploring their tumor targeting properties to deliver metal-based chemotherapeutics into cancer cells. Peptide QRLGNQWAVGHLL-NH2 (BN3) was selected based on its high internalization in gastrin-releasing peptide receptor (GRPR)-overexpressing PC-3 cells. Three metallopeptides were prepared by incorporating the terpyridine Pt(II) complex [PtCl(cptpy)]Cl (1) (cptpy = 4'-(4-carboxyphenyl)-2,2':6,2″-terpyridine) at the N-terminus of BN3 or at the NƐ- or Nα-amino group of an additional Lys residue (1-BN3, Lys-1-BN3 and 1-Lys-BN3, respectively). 1-Lys-BN3 displayed the best cytotoxic activity (IC50: 19.2 ± 1.7 μM) and similar ability to intercalate into DNA than complex 1. Moreover, the polypyridine Ru(II) complex [Ru(bpy)2)(cmbpy)](PF6)2 (2) (bpy = 2,2'-bipyridine; cmbpy = 4-methyl-2,2'-bipyridine-4'-carboxylic acid), with proven activity as photosensitizer, was coupled to BN3 leading to metallopeptide 2-Lys-BN3. Upon photoactivation, 2-Lys-BN3 displayed 2.5-fold higher cytotoxicity against PC-3 cells (IC50: 7.6 ± 1.0 μM) than complex 2. To enhance the accumulation of the drugs into the cell nucleus, the nuclear localization signal (NLS) PKKKRKV was incorporated at the N-terminus of BN3. NLS-BN3 displayed higher cellular internalization along with nuclear biodistribution. Accordingly, metallopeptides 1-NLS-BN3 and 2-NLS-BN3 showed increased cytotoxicity (IC50: 12.0 ± 1.1 μM and 2.3 ± 1.1 μM). Interestingly, the phototoxic index of 2-NLS-BN3 was 8-fold higher than that of complex 2. Next, the selectivity towards cancer cells was explored using 1BR3.G fibroblasts. Higher selectivity indexes were obtained for 1-NLS-BN3 and 2-NLS-BN3 than for the unconjugated complexes. These results prove NLS-BN3 effective for targeted delivery of metallodrugs to GRPR-overexpressing cells and for enhancing the cytotoxic efficacy of metal-based photosensitizers.
Collapse
Affiliation(s)
- Sílvia Barrabés
- Departament de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Iteng Ng-Choi
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - María Ángeles Martínez
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | - Blanca R Manzano
- Universidad de Castilla-La Mancha, Facultad de Ciencias y Tecnologías Químicas-IRICA, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Félix A Jalón
- Universidad de Castilla-La Mancha, Facultad de Ciencias y Tecnologías Químicas-IRICA, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Gustavo Espino
- Departamento de Química, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Lidia Feliu
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | - Marta Planas
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | - Rafael de Llorens
- Departament de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Anna Massaguer
- Departament de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain.
| |
Collapse
|
36
|
Pons BJ, Loiseau N, Hashim S, Tadrist S, Mirey G, Vignard J. Functional Study of Haemophilus ducreyi Cytolethal Distending Toxin Subunit B. Toxins (Basel) 2020; 12:toxins12090530. [PMID: 32825080 PMCID: PMC7551728 DOI: 10.3390/toxins12090530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
The Cytolethal Distending Toxin (CDT) is produced by many Gram-negative pathogenic bacteria responsible for major foodborne diseases worldwide. CDT induces DNA damage and cell cycle arrest in host-cells, eventually leading to senescence or apoptosis. According to structural and sequence comparison, the catalytic subunit CdtB is suggested to possess both nuclease and phosphatase activities, carried by a single catalytic site. However, the impact of each activity on cell-host toxicity is yet to be characterized. Here, we analyze the consequences of cell exposure to different CDT mutated on key CdtB residues, focusing on cell viability, cell cycle defects, and DNA damage induction. A first class of mutant, devoid of any activity, targets putative catalytic (H160A), metal binding (D273R), and DNA binding residues (R117A-R144A-N201A). The second class of mutants (A163R, F156-T158, and the newly identified G114T), which gathers mutations on residues potentially involved in lipid substrate binding, has only partially lost its toxic effects. However, their defects are alleviated when CdtB is artificially introduced inside cells, except for the F156-T158 double mutant that is defective in nuclear addressing. Therefore, our data reveal that CDT toxicity is mainly correlated to CdtB nuclease activity, whereas phosphatase activity may probably be involved in CdtB intracellular trafficking.
Collapse
Affiliation(s)
| | | | | | | | - Gladys Mirey
- Correspondence: (G.M.); (J.V.); Tel.: +33-582-066-338 (G.M.)
| | - Julien Vignard
- Correspondence: (G.M.); (J.V.); Tel.: +33-582-066-338 (G.M.)
| |
Collapse
|
37
|
Abstract
The presence of actin in the nucleus has historically been a highly contentious issue. It is now, however, well accepted that actin has physiologically important roles in the nucleus. In this Review, we describe the evolution of our thinking about actin in the nucleus starting with evidence supporting its involvement in transcription, chromatin remodeling and intranuclear movements. We also review the growing literature on the mechanisms that regulate the import and export of actin and how post-translational modifications of actin could regulate nuclear actin. We end with an extended discussion of the role of nuclear actin in the repair of DNA double stranded breaks.
Collapse
Affiliation(s)
- Leonid Serebryannyy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, United States.
| |
Collapse
|
38
|
Wang AS, Chen LC, Wu RA, Hao Y, McSwiggen DT, Heckert AB, Richardson CD, Gowen BG, Kazane KR, Vu JT, Wyman SK, Shin JJ, Darzacq X, Walter JC, Corn JE. The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells. Mol Cell 2020; 79:221-233.e5. [PMID: 32603710 PMCID: PMC7398558 DOI: 10.1016/j.molcel.2020.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/26/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022]
Abstract
Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9's activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times.
Collapse
Affiliation(s)
- Alan S Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Leo C Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yvonne Hao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David T McSwiggen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute of Regenerative Medicine Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alec B Heckert
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute of Regenerative Medicine Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher D Richardson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin G Gowen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Katelynn R Kazane
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathan T Vu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stacia K Wyman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jiyung J Shin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute of Regenerative Medicine Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jacob E Corn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
39
|
Nuclear actin dynamics in gene expression and genome organization. Semin Cell Dev Biol 2020; 102:105-112. [DOI: 10.1016/j.semcdb.2019.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/28/2019] [Accepted: 10/24/2019] [Indexed: 11/19/2022]
|
40
|
Lawrimore CJ, Lawrimore J, He Y, Chavez S, Bloom K. Polymer perspective of genome mobilization. Mutat Res 2020; 821:111706. [PMID: 32516654 DOI: 10.1016/j.mrfmmm.2020.111706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Chromosome motion is an intrinsic feature of all DNA-based metabolic processes and is a particularly well-documented response to both DNA damage and repair. By using both biological and polymer physics approaches, many of the contributing factors of chromatin motility have been elucidated. These include the intrinsic properties of chromatin, such as stiffness, as well as the loop modulators condensin and cohesin. Various biological factors such as external tethering to nuclear domains, ATP-dependent processes, and nucleofilaments further impact chromatin motion. DNA damaging agents that induce double-stranded breaks also cause increased chromatin motion that is modulated by recruitment of repair and checkpoint proteins. Approaches that integrate biological experimentation in conjunction with models from polymer physics provide mechanistic insights into the role of chromatin dynamics in biological function. In this review we discuss the polymer models and the effects of both DNA damage and repair on chromatin motion as well as mechanisms that may underlie these effects.
Collapse
Affiliation(s)
- Colleen J Lawrimore
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Josh Lawrimore
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Yunyan He
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Sergio Chavez
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Kerry Bloom
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States.
| |
Collapse
|
41
|
Nuclear Inositides and Inositide-Dependent Signaling Pathways in Myelodysplastic Syndromes. Cells 2020; 9:cells9030697. [PMID: 32178280 PMCID: PMC7140618 DOI: 10.3390/cells9030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by peripheral blood cytopenia and abnormal myeloproliferation, as well as a variable risk of evolution into acute myeloid leukemia (AML). The nucleus is a highly organized organelle with several distinct domains where nuclear inositides localize to mediate essential cellular events. Nuclear inositides play a critical role in the modulation of erythropoiesis or myelopoiesis. Here, we briefly review the nuclear structure, the localization of inositides and their metabolic enzymes in subnuclear compartments, and the molecular aspects of nuclear inositides in MDS.
Collapse
|
42
|
Tonnemacher S, Eltsov M, Jakob B. Correlative Light and Electron Microscopy (CLEM) Analysis of Nuclear Reorganization Induced by Clustered DNA Damage Upon Charged Particle Irradiation. Int J Mol Sci 2020; 21:ijms21061911. [PMID: 32168789 PMCID: PMC7139895 DOI: 10.3390/ijms21061911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 01/12/2023] Open
Abstract
Chromatin architecture plays major roles in gene regulation as well as in the repair of DNA damaged by endogenous or exogenous factors, such as after radiation. Opening up the chromatin might provide the necessary accessibility for the recruitment and binding of repair factors, thus facilitating timely and correct repair. The observed formation of ionizing radiation-induced foci (IRIF) of factors, such as 53BP1, upon induction of DNA double-strand breaks have been recently linked to local chromatin decompaction. Using correlative light and electron microscopy (CLEM) in combination with DNA-specific contrasting for transmission electron microscopy or tomography, we are able to show that at the ultrastructural level, these DNA damage domains reveal a chromatin compaction and organization not distinguishable from regular euchromatin upon irradiation with carbon or iron ions. Low Density Areas (LDAs) at sites of particle-induced DNA damage, as observed after unspecific uranyl acetate (UA)-staining, are thus unlikely to represent pure chromatin decompaction. RNA-specific terbium-citrate (Tb) staining suggests rather a reduced RNA density contributing to the LDA phenotype. Our observations are discussed in the view of liquid-like phase separation as one of the mechanisms of regulating DNA repair.
Collapse
|
43
|
Hyrskyluoto A, Vartiainen MK. Regulation of nuclear actin dynamics in development and disease. Curr Opin Cell Biol 2020; 64:18-24. [PMID: 32088545 DOI: 10.1016/j.ceb.2020.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/21/2022]
Abstract
Actin has essential functions both in the cytoplasm and in the nucleus, where it has been linked to key nuclear processes, from transcription to DNA damage response. The multifunctional nature of actin suggests that the cell must contain mechanisms to accurately control the cellular actin balance. Indeed, recent results have demonstrated that nuclear actin levels fluctuate to regulate the transcriptional activity of the cell and that controlled nuclear actin polymerization is required for transcription activation, cell cycle progression, and DNA repair. Intriguingly, aberrant nuclear actin regulation has been observed, for example, in cancer, signifying the importance of this process for cellular homeostasis. This review discussed the latest research on how nuclear actin is regulated, and how this influences actin-dependent nuclear processes.
Collapse
Affiliation(s)
- Alise Hyrskyluoto
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Maria K Vartiainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
44
|
Chen M, Wen T, Horn HT, Chandrahas VK, Thapa N, Choi S, Cryns VL, Anderson RA. The nuclear phosphoinositide response to stress. Cell Cycle 2020; 19:268-289. [PMID: 31902273 PMCID: PMC7028212 DOI: 10.1080/15384101.2019.1711316] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence reveals that nuclear phosphoinositides (PIs) serve as central signaling hubs that control a multitude of nuclear processes by regulating the activity of nuclear proteins. In response to cellular stressors, PIs accumulate in the nucleus and multiple PI isomers are synthesized by the actions of PI-metabolizing enzymes, kinases, phosphatases and phospholipases. By directly interacting with effector proteins, phosphoinositide signals transduce changes in cellular functions. Here we describe nuclear phosphoinositide signaling in multiple sub-nuclear compartments and summarize the literature that demonstrates roles for specific kinases, phosphatases, and phospholipases in the orchestration of nuclear phosphoinositide signaling in response to cellular stress. Additionally, we discuss the specific PI-protein complexes through which these lipids execute their functions by regulating the configuration, stability, and transcription activity of their effector proteins. Overall, our review provides a detailed landscape of the current understanding of the nuclear PI-protein interactome and its role in shaping the coordinated response to cellular stress.
Collapse
Affiliation(s)
- Mo Chen
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tianmu Wen
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Hudson T. Horn
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Narendra Thapa
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Suyong Choi
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Vincent L. Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Richard A. Anderson
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
45
|
Thomas M, Ladoux B, Toyama Y. Desmosomal Junctions Govern Tissue Integrity and Actomyosin Contractility in Apoptotic Cell Extrusion. Curr Biol 2020; 30:682-690.e5. [DOI: 10.1016/j.cub.2020.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/22/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
|
46
|
Percipalle P, Vartiainen M. Cytoskeletal proteins in the cell nucleus: a special nuclear actin perspective. Mol Biol Cell 2020; 30:1781-1785. [PMID: 31306096 PMCID: PMC6727747 DOI: 10.1091/mbc.e18-10-0645] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The emerging role of cytoskeletal proteins in the cell nucleus has become a new frontier in cell biology. Actin and actin-binding proteins regulate chromatin and gene expression, but importantly they are beginning to be essential players in genome organization. These actin-based functions contribute to genome stability and integrity while affecting DNA replication and global transcription patterns. This is likely to occur through interactions of actin with nuclear components including nuclear lamina and subnuclear organelles. An exciting future challenge is to understand how these actin-based genome-wide mechanisms may regulate development and differentiation by interfering with the mechanical properties of the cell nucleus and how regulated actin polymerization plays a role in maintaining nuclear architecture. With a special focus on actin, here we summarize how cytoskeletal proteins operate in the nucleus and how they may be important to consolidate nuclear architecture for sustained gene expression or silencing.
Collapse
Affiliation(s)
- Piergiorgio Percipalle
- Biology Program, Science Division, New York University Abu Dhabi, 12988 Abu Dhabi, United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Maria Vartiainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
47
|
Vazquez-Levin M, Verón G. Myo‐inositol in health and disease: its impact on semen parameters and male fertility. Andrology 2019; 8:277-298. [DOI: 10.1111/andr.12718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Affiliation(s)
- M.H. Vazquez-Levin
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer Instituto de Biología y Medicina Experimental (IBYME)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐ Fundación IBYME (FIBYME) Ciudad Autónoma de Buenos Aires Argentina
| | - G.L. Verón
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer Instituto de Biología y Medicina Experimental (IBYME)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐ Fundación IBYME (FIBYME) Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
48
|
Caridi CP, Plessner M, Grosse R, Chiolo I. Nuclear actin filaments in DNA repair dynamics. Nat Cell Biol 2019; 21:1068-1077. [PMID: 31481797 PMCID: PMC6736642 DOI: 10.1038/s41556-019-0379-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Recent development of innovative tools for live imaging of actin filaments (F-actin) enabled the detection of surprising nuclear structures responding to various stimuli, challenging previous models that actin is substantially monomeric in the nucleus. We review these discoveries, focusing on double-strand break (DSB) repair responses. These studies revealed a remarkable network of nuclear filaments and regulatory mechanisms coordinating chromatin dynamics with repair progression and led to a paradigm shift by uncovering the directed movement of repair sites.
Collapse
Affiliation(s)
| | - Matthias Plessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg im Breisgau, Germany
- CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg im Breisgau, Germany
- CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Irene Chiolo
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Abstract
DNA double-strand breaks (DSBs) are particularly challenging to repair in pericentromeric heterochromatin because of the increased risk of aberrant recombination in highly repetitive sequences. Recent studies have identified specialized mechanisms enabling 'safe' homologous recombination (HR) repair in heterochromatin. These include striking nuclear actin filaments (F-actin) and myosins that drive the directed motion of repair sites to the nuclear periphery for 'safe' repair. Here, we summarize our current understanding of the mechanisms involved, and propose how they might operate in the context of a phase-separated environment.
Collapse
|
50
|
Nuclear Phosphoinositides: Their Regulation and Roles in Nuclear Functions. Int J Mol Sci 2019; 20:ijms20122991. [PMID: 31248120 PMCID: PMC6627530 DOI: 10.3390/ijms20122991] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
Polyphosphoinositides (PPIns) are a family of seven lipid messengers that regulate a vast array of signalling pathways to control cell proliferation, migration, survival and differentiation. PPIns are differentially present in various sub-cellular compartments and, through the recruitment and regulation of specific proteins, are key regulators of compartment identity and function. Phosphoinositides and the enzymes that synthesise and degrade them are also present in the nuclear membrane and in nuclear membraneless compartments such as nuclear speckles. Here we discuss how PPIns in the nucleus are modulated in response to external cues and how they function to control downstream signalling. Finally we suggest a role for nuclear PPIns in liquid phase separations that are involved in the formation of membraneless compartments within the nucleus.
Collapse
|