1
|
Luo L, Li Q, Xing C, Li C, Pan Y, Sun H, Yu X, Wen K, Shen J, Wang Z. Antibody-based therapy: An alternative for antimicrobial treatment in the post-antibiotic era. Microbiol Res 2025; 290:127974. [PMID: 39577369 DOI: 10.1016/j.micres.2024.127974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
The consecutive growth of antimicrobial resistance and the spread of resistance genes worldwide, especially the emergence of superbugs, have made traditional antibiotic-based treatments inadequate to fight bacterial infections. Therefore, new therapeutic modalities for bacterial infections are urgently needed. Antibodies are considered to be an effective alternative to antibiotics. The emergence and advancement of technologies such as hybridoma, antibody purification, transgenic mice, phage display, and protein engineering have enabled the production of large quantities of humanized antibodies with high purity and affinity. Antibodies has achieved remarkable achievements in the field of medicine in the past decades. Antibody-based therapy is expected to be an effective way to treat drug-resistant bacterial infections in the post-antibiotic era due to its merits of high specificity, which leads to no selective pressure on non-target bacteria and could cooperate with antibiotics to enhance the antimicrobial effect. This review first introduces the mechanism of action of antibodies against bacterial infections, then summarizes the reported antimicrobial antibodies according to different targets, discusses the advantages and limitations of the antibody-based therapy for antimicrobial treatment, and finally, the perspectives of antimicrobial antibodies developing have been prospected, providing a reference for the development of new antimicrobial antibodies.
Collapse
Affiliation(s)
- Liang Luo
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Chen Xing
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China
| | - Chenglong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yantong Pan
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China
| | - He Sun
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Xuezhi Yu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China.
| |
Collapse
|
2
|
Shen D, Seco BMS, Teixeira Alves LG, Yao L, Bräutigam M, Opitz B, Witzenrath M, Fries BC, Seeberger PH. Semisynthetic Glycoconjugate Vaccine Lead against Klebsiella pneumoniae Serotype O2afg Induces Functional Antibodies and Reduces the Burden of Acute Pneumonia. J Am Chem Soc 2024. [PMID: 39666976 DOI: 10.1021/jacs.4c13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) bacteria are a serious global health concern due to their drug-resistance to nearly all available antibiotics, fast spread, and high mortality rate. O2afg is a major CR-Kp serotype in the sequence type 258 group (KPST258) that is weakly immunogenic in humans. Here, we describe the creation and evaluation of semisynthetic O2afg glycoconjugate vaccine leads containing one and two repeating units of the polysaccharide epitope that covers the surface of the bacteria conjugated to the carrier protein CRM197. The semisynthetic glycoconjugate containing two repeating units induced functional IgG antibodies in rabbits with opsonophagocytic killing activity and enhanced complement activation and complement-mediated killing of CR-Kp. Passive immunization reduced the burden of acute pneumonia in mice and may represent an alternative to antimicrobial therapy. The semisynthetic glycoconjugate vaccine lead against CR-Kp expressing O2afg antigen is awaiting preclinical development.
Collapse
Affiliation(s)
- Dacheng Shen
- Department of Bimolecular System, Max Planck Institute of Colloids and Interfaces; 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bruna M S Seco
- Department of Bimolecular System, Max Planck Institute of Colloids and Interfaces; 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Luiz Gustavo Teixeira Alves
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charite-Universitätsmedizin Berlin; 10117 Berlin, Germany
| | - Ling Yao
- Department of Bimolecular System, Max Planck Institute of Colloids and Interfaces; 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Maria Bräutigam
- Department of Bimolecular System, Max Planck Institute of Colloids and Interfaces; 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bastian Opitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charite-Universitätsmedizin Berlin; 10117 Berlin, Germany
- German Center for Lung Research (DZL), 12203 Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charite-Universitätsmedizin Berlin; 10117 Berlin, Germany
- German Center for Lung Research (DZL), 12203 Berlin, Germany
| | - Bettina C Fries
- Department of Medicine, Infectious Disease Division, Stony Brook University; Stony Brook, New York 11794, United States
- Veteran's Administration Medical Center, Northport, New York 11768, United States
| | - Peter H Seeberger
- Department of Bimolecular System, Max Planck Institute of Colloids and Interfaces; 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
3
|
Xu L, Li J, Wu W, Wu X, Ren J. Klebsiella pneumoniae capsular polysaccharide: Mechanism in regulation of synthesis, virulence, and pathogenicity. Virulence 2024; 15:2439509. [PMID: 39668724 DOI: 10.1080/21505594.2024.2439509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/04/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae exhibits strong pathogenicity and can cause severe invasive infections but is historically recognized as antibiotic-susceptible. In recent years, the escalating global prevalence of antibiotic-resistant hypervirulent K. pneumoniae has raised substantial concerns and created an urgent demand for effective treatment options. Capsular polysaccharide (CPS) is one of the main virulence determinants contributing to the hypervirulent phenotype. The structure of CPS varies widely among strains, and both the structure and composition of CPS can influence the virulence of K. pneumoniae. CPS possesses various immune evasion mechanisms that promote the survival of K. pneumoniae, as well as its colonization and dissemination. Given the proven viability of therapies that target the capsule, improving our understanding of the CPS structure is critical to effectively directing treatment strategies. In this review, the structure and typing of CPS are addressed as well as genes related to synthesis and regulation, relationships with virulence, and pathogenic mechanisms. We aim to provide a reference for research on the pathogenesis of K. pneumoniae.
Collapse
Affiliation(s)
- Li Xu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
| | - Jiayang Li
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenqi Wu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Miller JC, Cross AS, Tennant SM, Baliban SM. Klebsiella pneumoniae Lipopolysaccharide as a Vaccine Target and the Role of Antibodies in Protection from Disease. Vaccines (Basel) 2024; 12:1177. [PMID: 39460343 PMCID: PMC11512408 DOI: 10.3390/vaccines12101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Klebsiella pneumoniae is well recognized as a serious cause of infection in healthcare-associated settings and immunocompromised individuals; however, accumulating evidence from resource-limited nations documents an alarming rise in community-acquired K. pneumoniae infections, manifesting as bacteremia and pneumonia as well as neonatal sepsis. The emergence of hypervirulent and antibiotic-resistant K. pneumoniae strains threatens treatment options for clinicians. Effective vaccination strategies could represent a viable alternative that would both preempt the need for antibiotics to treat K. pneumoniae infections and reduce the burden of K. pneumoniae disease globally. There are currently no approved K. pneumoniae vaccines. We review the evidence for K. pneumoniae lipopolysaccharide (LPS) as a vaccine and immunotherapeutic target and discuss the role of antibodies specific for the core or O-antigen determinants within LPS in protection against Klebsiella spp. disease. We expand on the known role of the Klebsiella spp. capsule and O-antigen modifications in antibody surface accessibility to LPS as well as the in vitro and in vivo effector functions reported for LPS-specific antibodies. We summarize key hypotheses stemming from these studies, review the role of humoral immunity against K. pneumoniae O-antigen for protection, and identify areas requiring further research.
Collapse
Affiliation(s)
- Jernelle C. Miller
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.M.); (A.S.C.); (S.M.T.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alan S. Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.M.); (A.S.C.); (S.M.T.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.M.); (A.S.C.); (S.M.T.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Scott M. Baliban
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.M.); (A.S.C.); (S.M.T.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Wantuch PL, Knoot CJ, Robinson LS, Vinogradov E, Scott NE, Harding CM, Rosen DA. Heptavalent O-Antigen Bioconjugate Vaccine Exhibiting Differential Functional Antibody Responses Against Diverse Klebsiella pneumoniae Isolates. J Infect Dis 2024; 230:578-589. [PMID: 38401891 PMCID: PMC11420709 DOI: 10.1093/infdis/jiae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 02/26/2024] Open
Abstract
Klebsiella pneumoniae is the leading cause of neonatal sepsis and is increasingly difficult to treat owing to antibiotic resistance. Vaccination represents a tractable approach to combat this resistant bacterium; however, there is currently not a licensed vaccine. Surface polysaccharides, including O-antigens of lipopolysaccharide, have long been attractive candidates for vaccine inclusion. Herein we describe the generation of a bioconjugate vaccine targeting 7 predominant O-antigen subtypes in K. pneumoniae. Each bioconjugate was immunogenic in isolation, with limited cross-reactivity among subtypes. Vaccine-induced antibodies demonstrated varying degrees of binding to a wide variety of K. pneumoniae strains. Furthermore, serum from vaccinated mice induced complement-mediated killing of many of these strains. Finally, increased capsule interfered with the ability of O-antigen antibodies to bind and mediate killing of some K. pneumoniae strains. Taken together, these data indicate that this novel heptavalent O-antigen bioconjugate vaccine formulation exhibits limited efficacy against some, but not all, K. pneumoniae isolates.
Collapse
Affiliation(s)
- Paeton L Wantuch
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | - Evgeny Vinogradov
- Human Health Therapeutics Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - David A Rosen
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
6
|
van der Lans SPA, Bardoel BW, Ruyken M, de Haas CJC, Baijens S, Muts RM, Scheepmaker LM, Aerts PC, van 't Wout MFL, Preiner J, Marijnissen RJ, Schuurman J, Beurskens FJ, Kerkman PF, Rooijakkers SHM. Agnostic B cell selection approach identifies antibodies against K. pneumoniae that synergistically drive complement activation. Nat Commun 2024; 15:8100. [PMID: 39285158 PMCID: PMC11405761 DOI: 10.1038/s41467-024-52372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Antibody-dependent complement activation plays a key role in the natural human immune response to infections. Currently, the understanding of which antibody-antigen combinations drive a potent complement response on bacteria is limited. Here, we develop an antigen-agnostic approach to stain and single-cell sort human IgG memory B cells recognizing intact bacterial cells, keeping surface antigens in their natural context. With this method we successfully identified 29 antibodies against K. pneumoniae, a dominant cause of hospital-acquired infections with increasing antibiotic resistance. Combining genetic tools and functional analyses, we reveal that the capacity of antibodies to activate complement on K. pneumoniae critically depends on their antigenic target. Furthermore, we find that antibody combinations can synergistically activate complement on K. pneumoniae by strengthening each other's binding in an Fc-independent manner. Understanding the molecular basis of effective complement activation by antibody combinations to mimic a polyclonal response could accelerate the development of antibody-based therapies against problematic infections.
Collapse
Affiliation(s)
- Sjors P A van der Lans
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bart W Bardoel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maartje Ruyken
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stan Baijens
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Remy M Muts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lisette M Scheepmaker
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marije F L van 't Wout
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | - Priscilla F Kerkman
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Masson FM, Káradóttir S, van der Lans SPA, Doorduijn DJ, de Haas CJC, Rooijakkers SHM, Bardoel BW. Klebsiella LPS O1-antigen prevents complement-mediated killing by inhibiting C9 polymerization. Sci Rep 2024; 14:20701. [PMID: 39237647 PMCID: PMC11377433 DOI: 10.1038/s41598-024-71487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
The Gram-negative bacterium Klebsiella pneumoniae is an important human pathogen. Its treatment has been complicated by the emergence of multi-drug resistant strains. The human complement system is an important part of our innate immune response that can directly kill Gram-negative bacteria by assembling membrane attack complex (MAC) pores into the bacterial outer membrane. To resist this attack, Gram-negative bacteria can modify their lipopolysaccharide (LPS). Especially the decoration of the LPS outer core with the O-antigen polysaccharide has been linked to increased bacterial survival in serum, but not studied in detail. In this study, we characterized various clinical Klebsiella pneumoniae isolates and show that expression of the LPS O1-antigen correlates with resistance to complement-mediated killing. Mechanistic data reveal that the O1-antigen does not inhibit C3b deposition and C5 conversion. In contrast, we see more efficient formation of C5a, and deposition of C6 and C9 when an O-antigen is present. Further downstream analyses revealed that the O1-antigen prevents correct insertion and polymerization of the final MAC component C9 into the bacterial membrane. Altogether, we show that the LPS O1-antigen is a key determining factor for complement resistance by K. pneumoniae and provide insights into the molecular basis of O1-mediated MAC evasion.
Collapse
Affiliation(s)
- Frerich M Masson
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Salvör Káradóttir
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Dennis J Doorduijn
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Bart W Bardoel
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Berry SK, Rust S, Irving L, Bartholdson Scott J, Weinert LA, Dougan G, Christie G, Warrener P, Minter R, Grant AJ. Characterization of mAbs against Klebsiella pneumoniae type 3 fimbriae isolated in a target-independent phage display campaign. Microbiol Spectr 2024; 12:e0040024. [PMID: 38940542 PMCID: PMC11302298 DOI: 10.1128/spectrum.00400-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
We used phage display, antibody engineering, and high-throughput assays to identify antibody-accessible targets of Klebsiella pneumoniae. We report the discovery of monoclonal antibodies (mAbs) binding to type 3 fimbrial proteins, including MrkA. We found that anti-MrkA mAbs were cross-reactive to a diverse panel of K. pneumoniae clinical isolates, representing different O-serotypes. mAbs binding to MrkA have previously been described and have been shown to provide prophylactic protection, although only modest protection when dosed therapeutically in vivo in a murine lung infection model. Here, we used a combination of binding and opsonophagocytic killing studies using a high-content imaging platform to provide a possible explanation for the modest therapeutic efficacy in vivo reported in that model. Our work shows that expression of K. pneumoniae type 3 fimbriae in in vitro culture is not homogenous within a bacterial population. Instead, sub-populations of bacteria that do, and do not, express type 3 fimbriae exist. In a high-content opsonophagocytic killing assay, we showed that MrkA-targeting antibodies initially promote killing by macrophages; however, over time, this effect is diminished. We hypothesize the reason for this is that bacteria not expressing MrkA can evade opsonophagocytosis. Our data support the fact that MrkA is a conserved, immunodominant protein that is antibody accessible on the surface of K. pneumoniae and suggest that additional studies should evaluate the potential of using anti-MrkA antibodies in different stages of K. pneumoniae infection (different sites in the body) as well as against K. pneumoniae biofilms in the body during infection and associated with medical devices.IMPORTANCEThere is an unmet, urgent need for the development of novel antimicrobial therapies for the treatment of Klebsiella pneumoniae infections. We describe the use of phage display, antibody engineering, and high-throughput assays to identify antibody-accessible targets of K. pneumoniae. We discovered monoclonal antibodies (mAbs) binding to the type 3 fimbrial protein MrkA. The anti-MrkA mAbs were found to be highly cross-reactive, binding to all K. pneumoniae strains tested from a diverse panel of clinical isolates, and were active in an opsonophagocytic killing assay at pM concentrations. MrkA is important for biofilm formation; thus, our data support further exploration of the use of anti-MrkA antibodies for preventing and/or controlling K. pneumoniae in biofilms and during infection.
Collapse
Affiliation(s)
- Sophia K. Berry
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Antibody Discovery and Protein Engineering, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Steven Rust
- Antibody Discovery and Protein Engineering, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Lorraine Irving
- Antibody Discovery and Protein Engineering, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Josefin Bartholdson Scott
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gordon Dougan
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Paul Warrener
- Microbial Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Ralph Minter
- Antibody Discovery and Protein Engineering, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Kelly SD, Williams DM, Zhu S, Kim T, Jana M, Nothof J, Thota VN, Lowary TL, Whitfield C. Klebsiella pneumoniae O-polysaccharide biosynthesis highlights the diverse organization of catalytic modules in ABC transporter-dependent glycan assembly. J Biol Chem 2024; 300:107420. [PMID: 38815868 PMCID: PMC11231755 DOI: 10.1016/j.jbc.2024.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
Klebsiella pneumoniae provides influential prototypes for lipopolysaccharide O antigen (OPS) biosynthesis in Gram-negative bacteria. Sequences of OPS-biosynthesis gene clusters in serotypes O4 and O7 suggest fundamental differences in the organization of required enzyme modules compared to other serotypes. Furthermore, some required activities were not assigned by homology shared with characterized enzymes. The goal of this study was therefore to resolve the serotype O4 and O7 pathways to expand our broader understanding of glycan polymerization and chain termination processes. The O4 and O7 antigens were produced from cloned genetic loci in recombinant Escherichia coli. Systematic in vivo and in vitro approaches were then applied to assign each enzyme in each of the pathways, defining the necessary components for polymerization and chain termination. OPS assembly is accomplished by multiprotein complexes formed by interactions between polymerase components variably distributed in single and multimodule proteins. In each complex, a terminator function is present in a protein containing a characteristic coiled-coil molecular ruler, which determines glycan chain length. In serotype O4, we discovered a CMP-α-3-deoxy-ᴅ-manno-octulosonic acid-dependent chain-terminating glycosyltransferase that is the founding member of a new glycosyltransferase family (GT137) and potentially identifies a new glycosyltransferase fold. The O7 OPS is terminated by a methylphosphate moiety, like the K. pneumoniae O3 antigen, but the methyltransferase-kinase enzyme pairs responsible for termination in these serotypes differ in sequence and predicted structures. Together, the characterization of O4 and O7 has established unique enzyme activities and provided new insight into glycan-assembly strategies that are widely distributed in bacteria.
Collapse
Affiliation(s)
- Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Danielle M Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shawna Zhu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Taeok Kim
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Manas Jana
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy Nothof
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
10
|
La Guidara C, Adamo R, Sala C, Micoli F. Vaccines and Monoclonal Antibodies as Alternative Strategies to Antibiotics to Fight Antimicrobial Resistance. Int J Mol Sci 2024; 25:5487. [PMID: 38791526 PMCID: PMC11122364 DOI: 10.3390/ijms25105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the most critical threats to global public health in the 21st century, causing a large number of deaths every year in both high-income and low- and middle-income countries. Vaccines and monoclonal antibodies can be exploited to prevent and treat diseases caused by AMR pathogens, thereby reducing antibiotic use and decreasing selective pressure that favors the emergence of resistant strains. Here, differences in the mechanism of action and resistance of vaccines and monoclonal antibodies compared to antibiotics are discussed. The state of the art for vaccine technologies and monoclonal antibodies are reviewed, with a particular focus on approaches validated in clinical studies. By underscoring the scope and limitations of the different emerging technologies, this review points out the complementary of vaccines and monoclonal antibodies in fighting AMR. Gaps in antigen discovery for some pathogens, as well as challenges associated with the clinical development of these therapies against AMR pathogens, are highlighted.
Collapse
Affiliation(s)
- Chiara La Guidara
- Magnetic Resonance Center CERM, University of Florence, 50019 Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.R.L. (GVGH), 53100 Siena, Italy
| |
Collapse
|
11
|
Hwang W, Wantuch PL, Bernshtein B, Zhiteneva J, Slater D, Vater KH, Sridhar S, Oliver E, Roach DJ, Rao S, Turbett SE, Knoot CJ, Harding CM, Amin MN, Cross AS, LaRocque RC, Rosen DA, Harris JB. Antibody responses in Klebsiella pneumoniae bloodstream infection: a cohort study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591958. [PMID: 38746292 PMCID: PMC11092611 DOI: 10.1101/2024.05.01.591958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Klebsiella pneumonia (Kpn) is the fourth leading cause of infection-related deaths globally, yet little is known about human antibody responses to invasive Kpn. In this study, we sought to determine whether the O-specific polysaccharide (OPS) antigen, a vaccine candidate, is immunogenic in humans with Kpn bloodstream infection (BSI). We also sought to define the cross-reactivity of human antibody responses among structurally related Kpn OPS subtypes and to assess the impact of capsule production on OPS-targeted antibody binding and function. Methods We measured plasma antibody responses to OPS (and MrkA, a fimbrial protein) in a cohort of patients with Kpn BSI and compared these with controls, including a cohort of healthy individuals and a cohort of individuals with Enterococcus BSI. We performed flow cytometry to measure the impact of Kpn capsule production on whole cell antibody binding and complement deposition, utilizing patient isolates with variable levels of capsule production and isogenic capsule-deficient strains derived from these isolates. Findings We enrolled 69 patients with Kpn BSI. Common OPS serotypes accounted for 57/69 (83%) of infections. OPS was highly immunogenic in patients with Kpn BSI, and peak OPS-IgG antibody responses in patients were 10 to 30-fold higher than antibody levels detected in healthy controls, depending on the serotype. There was significant cross-reactivity among structurally similar OPS subtypes, including the O1v1/O1v2, O2v1/O2v2 and O3/O3b subtypes. Physiological amounts of capsule produced by both hyperencapsulated and non-hyperencapsulated Kpn significantly inhibited OPS-targeted antibody binding and function. Interpretation OPS was highly immunogenic in patients with Kpn BSI, supporting its potential as a candidate vaccine antigen. The strong cross-reactivity observed between similar OPS subtypes in humans with Kpn BSI suggests that it may not be necessary to include all subtypes in an OPS-based vaccine. However, these observations are tempered by the fact that capsule production, even in non-highly encapsulated strains, has the potential to interfere with OPS antibody binding. This may limit the effectiveness of vaccines that exclusively target OPS. Funding National Institute of Allergy and Infectious Diseases at the National Institutes of Health. Research in Context Evidence before this study: Despite the potential of O-specific polysaccharide (OPS) as a vaccine antigen against Klebsiella pneumoniae (Kpn), the immunogenicity of OPS in humans remains largely unstudied, creating a significant knowledge gap with regard to vaccine development. A search of PubMed for publications up to March 18, 2024, using the terms " Klebsiella pneumoniae " and "O-specific polysaccharide" or "O-antigen" or "lipopolysaccharide" revealed no prior studies addressing OPS antibody responses in humans with Kpn bloodstream infections (BSI). One prior study 1 evaluated antibody response to a single lipopolysaccharide (which contains one subtype of OPS) in humans with invasive Kpn infection; however, in this study OPS typing of the infecting strains and target antigen were not described. Added value of this study: Our investigation into OPS immunogenicity in a human cohort marks a significant advance. Analyzing plasma antibody responses in 69 patients with Kpn BSI, we found OPS to be broadly immunogenic across all the types and subtypes examined, and there was significant cross-reactivity among structurally related OPS antigens. We also demonstrated that Kpn capsule production inhibit OPS antibody binding and the activation of complement on the bacterial surface, even in classical Kpn strains expressing lower levels of capsule.Implications of all the available evidence: While the immunogenicity and broad cross-reactivity of OPS in humans with Kpn BSI suggests it is a promising vaccine candidate, the obstruction of OPS antibody binding and engagement by physiologic levels of Kpn capsule underscores the potential limitations of an exclusively OPS-antigen based vaccine for Kpn. Our study provides insights for the strategic development of vaccines aimed at combating Kpn infections, an important antimicrobial resistant pathogen.
Collapse
|
12
|
Zhang Y, Sun P, Li T, Li J, Ye J, Li X, Wu J, Lu Y, Zhu L, Wang H, Pan C. Efficient Production of Self-Assembled Bioconjugate Nanovaccines against Klebsiella pneumoniae O2 Serotype in Engineered Escherichia coli. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:728. [PMID: 38668222 PMCID: PMC11054253 DOI: 10.3390/nano14080728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Nanoparticles (NPs) have been surfacing as a pivotal platform for vaccine development. In our previous work, we developed a cholera toxin B subunit (CTB)-based self-assembled nanoparticle (CNP) and produced highly promising bioconjugate nanovaccines by loading bacterial polysaccharide (OPS) in vivo. In particular, the Klebsiella pneumoniae O2 serotype vaccine showcased a potent immune response and protection against infection. However, extremely low yields limited its further application. In this study, we prepared an efficient Klebsiella pneumoniae bioconjugate nanovaccine in Escherichia coli with a very high yield. By modifying the 33rd glycine (G) in the CNP to aspartate (D), we were able to observe a dramatically increased expression of glycoprotein. Subsequently, through a series of mutations, we determined that G33D was essential to increasing production. In addition, this increase only occurred in engineered E. coli but not in the natural host K. pneumoniae strain 355 (Kp355) expressing OPSKpO2. Next, T-cell epitopes were fused at the end of the CNP(G33D), and animal experiments showed that fusion of the M51 peptide induced high antibody titers, consistent with the levels of the original nanovaccine, CNP-OPSKpO2. Hence, we provide an effective approach for the high-yield production of K. pneumoniae bioconjugate nanovaccines and guidance for uncovering glycosylation mechanisms and refining glycosylation systems.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Juntao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Jingqin Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Xiang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Ying Lu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Hengliang Wang
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| |
Collapse
|
13
|
Wantuch PL, Knoot CJ, Robinson LS, Vinogradov E, Scott NE, Harding CM, Rosen DA. A heptavalent O-antigen bioconjugate vaccine exhibits differential functional antibody responses against diverse Klebsiella pneumoniae isolates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571344. [PMID: 38168360 PMCID: PMC10760053 DOI: 10.1101/2023.12.12.571344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Klebsiella pneumoniae is a concerning pathogen that is now the leading cause of neonatal sepsis and is increasingly difficult to treat due to heightened antibiotic resistance. Thus, there is an urgent need for preventive and effective immunotherapies targeting K. pneumoniae. Vaccination represents a tractable approach to combat this resistant bacterium in some settings; however, there is currently not a licensed K. pneumoniae vaccine available. K. pneumoniae surface polysaccharides, including the terminal O-antigen polysaccharides of lipopolysaccharide, have long been attractive candidates for vaccine inclusion. Herein we describe the generation of a bioconjugate vaccine targeting seven of the predominant O-antigen subtypes in K. pneumoniae. Each of the seven bioconjugates were immunogenic in isolation, with limited cross-reactivity among subtypes. Vaccine-induced antibodies demonstrated varying degrees of binding to a wide variety of K. pneumoniae strains, including suspected hypervirulent strains, all expressing different O-antigen and capsular polysaccharide combinations. Further, sera from vaccinated mice induced complement-mediated killing of many of these K. pneumoniae strains. Finally, we found that increased quantity of capsule interferes with O-antigen antibodies' ability to bind and mediate killing of some K. pneumoniae strains, including those carrying hypervirulence-associated genes. Taken together, these data indicate that this novel heptavalent O-antigen bioconjugate vaccine formulation exhibits promising efficacy against some, but not all, K. pneumoniae isolates.
Collapse
Affiliation(s)
- Paeton L Wantuch
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | - Evgeny Vinogradov
- National Research Council Canada, Human Health Therapeutics Centre, Ottawa, ON K1A 0R6, Canada
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - David A Rosen
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110. USA
| |
Collapse
|
14
|
Simonis A, Kreer C, Albus A, Rox K, Yuan B, Holzmann D, Wilms JA, Zuber S, Kottege L, Winter S, Meyer M, Schmitt K, Gruell H, Theobald SJ, Hellmann AM, Meyer C, Ercanoglu MS, Cramer N, Munder A, Hallek M, Fätkenheuer G, Koch M, Seifert H, Rietschel E, Marlovits TC, van Koningsbruggen-Rietschel S, Klein F, Rybniker J. Discovery of highly neutralizing human antibodies targeting Pseudomonas aeruginosa. Cell 2023; 186:5098-5113.e19. [PMID: 37918395 DOI: 10.1016/j.cell.2023.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Drug-resistant Pseudomonas aeruginosa (PA) poses an emerging threat to human health with urgent need for alternative therapeutic approaches. Here, we deciphered the B cell and antibody response to the virulence-associated type III secretion system (T3SS) in a cohort of patients chronically infected with PA. Single-cell analytics revealed a diverse B cell receptor repertoire directed against the T3SS needle-tip protein PcrV, enabling the production of monoclonal antibodies (mAbs) abrogating T3SS-mediated cytotoxicity. Mechanistic studies involving cryoelectron microscopy identified a surface-exposed C-terminal PcrV epitope as the target of highly neutralizing mAbs with broad activity against drug-resistant PA isolates. These anti-PcrV mAbs were as effective as treatment with conventional antibiotics in vivo. Our study reveals that chronically infected patients represent a source of neutralizing antibodies, which can be exploited as therapeutics against PA.
Collapse
Affiliation(s)
- Alexander Simonis
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50937 Cologne, Germany.
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Alexandra Albus
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Biao Yuan
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf (UKE), 22607 Hamburg, Germany; Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany; Deutsches Elektronen-Synchrotron Zentrum (DESY), 22607 Hamburg, Germany
| | - Dmitriy Holzmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Joana A Wilms
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sylvia Zuber
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lisa Kottege
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sandra Winter
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Meike Meyer
- CF Centre, Pediatric Pulmonology and Allergology, University Children's Hospital Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Centre for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Kristin Schmitt
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Anna-Maria Hellmann
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department of Experimental Pediatric Oncology, University Children's Hospital Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christina Meyer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Meryem Seda Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nina Cramer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Antje Munder
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, 30625 Hannover, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50937 Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Harald Seifert
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50937 Cologne, Germany; Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany
| | - Ernst Rietschel
- CF Centre, Pediatric Pulmonology and Allergology, University Children's Hospital Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Centre for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thomas C Marlovits
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf (UKE), 22607 Hamburg, Germany; Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany; Deutsches Elektronen-Synchrotron Zentrum (DESY), 22607 Hamburg, Germany
| | - Silke van Koningsbruggen-Rietschel
- CF Centre, Pediatric Pulmonology and Allergology, University Children's Hospital Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Centre for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Florian Klein
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50937 Cologne, Germany; Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50937 Cologne, Germany.
| |
Collapse
|
15
|
DeLeo FR, Porter AR, Kobayashi SD, Freedman B, Hao M, Jiang J, Lin YT, Kreiswirth BN, Chen L. Interaction of multidrug-resistant hypervirulent Klebsiella pneumoniae with components of human innate host defense. mBio 2023; 14:e0194923. [PMID: 37671860 PMCID: PMC10653787 DOI: 10.1128/mbio.01949-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/07/2023] Open
Abstract
IMPORTANCE Klebsiella pneumoniae strains with a combination of multidrug resistance and hypervirulence genotypes (MDR hvKp) have emerged as a cause of human infections. The ability of these microbes to avoid killing by the innate immune system remains to be tested fully. To that end, we compared the ability of a global collection of hvKp and MDR hvKp clinical isolates to survive in human blood and resist phagocytic killing by human neutrophils. The two MDR hvKp clinical isolates tested (ST11 and ST147) were killed in human blood and by human neutrophils in vitro, whereas phagocytic killing of hvKp clinical isolates (ST23 and ST86) required specific antisera. Although the data were varied and often isolate specific, they are an important first step toward gaining an enhanced understanding of host defense against MDR hvKp.
Collapse
Affiliation(s)
- Frank R. DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Adeline R. Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Scott D. Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Brett Freedman
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Mingju Hao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Jianping Jiang
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Barry N. Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
16
|
Solovev AS, Denisova EM, Kurbatova EA, Kutsevalova OY, Boronina LG, Ageevets VA, Sidorenko SV, Krylov VB, Nifantiev NE. Synthesis of methylphosphorylated oligomannosides structurally related to lipopolysaccharide O-antigens of Klebsiella pneumoniae serotype O3 and their application for detection of specific antibodies in rabbit and human sera. Org Biomol Chem 2023; 21:8306-8319. [PMID: 37794804 DOI: 10.1039/d3ob01203d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Methylphosphorylated mono-, di- and trimannosides structurally related to the lipopolysaccharide (LPS) O-antigens of Klebsiella pneumoniae of serotype O3 were synthesized and conjugated with a biotin tag. The stereo- and regioselective assembly of target carbohydrate chains was conducted using uniform monosaccharide synthetic blocks. After that, a methylphosphate group was introduced by coupling with a methyl-H-phosphonate reagent followed by oxidation and deprotection to give the target oligosaccharides. The 1H and 13C NMR spectra of the obtained compounds showed a good fit with the spectrum of the corresponding natural polysaccharide. The newly prepared biotinylated oligosaccharides along with the previously reported biotinylated glycoconjugates related to galactan I and galactan II of K. pneumoniae LPS were used for the ELISA detection of antibodies in anti-K. pneumoniae rabbit sera. Anti-O3 serum antibodies specifically recognized the synthesized oligosaccharide ligands with terminal methylphosphomannosyl residues, whereas anti-O1 serum antibodies recognized the oligosaccharide related to K. pneumoniae galactan II. The analysis of human sera from patients with confirmed Klebsiella infection also revealed the presence of antibodies against the synthesized oligosaccharides in clinical cases. Thus, the described compounds together with other Klebsiella related antigenic oligosaccharides could be potentially used as molecular probes for K. pneumoniae serological diagnostics development and strain serotyping.
Collapse
Affiliation(s)
- Arsenii S Solovev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| | - Evgeniya M Denisova
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation.
| | - Ekaterina A Kurbatova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
- Laboratory of Immunology, I. I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Olga Y Kutsevalova
- National Medical Research Center of Oncology, Laboratory of Clinical Microbiology, 14 Liniya Str., 63, 344037 Rostov-on-Don, Russia
| | - Liubov G Boronina
- Ural State Medical University, 3 Repina Str., 620028 Yekaterinburg, Russia
| | - Vladimir A Ageevets
- Pediatric Research and Clinical Center for Infectious Diseases, 9 Prof. Popov Street, 197022 Saint Petersburg, Russia
| | - Sergey V Sidorenko
- Pediatric Research and Clinical Center for Infectious Diseases, 9 Prof. Popov Street, 197022 Saint Petersburg, Russia
| | - Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation.
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| |
Collapse
|
17
|
Wantuch PL, Rosen DA. Klebsiella pneumoniae: adaptive immune landscapes and vaccine horizons. Trends Immunol 2023; 44:826-844. [PMID: 37704549 DOI: 10.1016/j.it.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023]
Abstract
Klebsiella pneumoniae is among the most common antibiotic-resistant pathogens causing nosocomial infections. Additionally, it is a leading cause of neonatal sepsis and childhood mortality across the globe. Despite its clinical importance, we are only beginning to understand how the mammalian adaptive immune system responds to this pathogen. Further, many studies investigating potential K. pneumoniae vaccine candidates or alternative therapies have been launched in recent years. Here, we review the current state of knowledge on the adaptive immune response to K. pneumoniae infections and progress towards developing vaccines and other therapies to combat these infections.
Collapse
Affiliation(s)
- Paeton L Wantuch
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David A Rosen
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Cross AS. Hit 'em Where It Hurts: Gram-Negative Bacterial Lipopolysaccharide as a Vaccine Target. Microbiol Mol Biol Rev 2023; 87:e0004522. [PMID: 37432116 PMCID: PMC10521362 DOI: 10.1128/mmbr.00045-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
Infections with antimicrobial-resistant (AMR) bacteria pose an increasing threat to the ability to perform surgical procedures, organ transplantation, and treat cancer among many other medical conditions. There are few new antimicrobials in the development pipeline. Vaccines against AMR Gram-negative bacteria may reduce the use of antimicrobials and prevent bacterial transmission. This review traces the origins of lipopolysaccharide (LPS)-based vaccines against Gram-negative bacteria, the role of O polysaccharides and LPS core regions as potential vaccine targets, the development of new vaccine technologies, and their application to vaccines in current development.
Collapse
Affiliation(s)
- Alan S. Cross
- Center for Vaccine Development and Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Hazen TH, Adediran T, Hitchcock S, O’Hara LM, Pineles L, Michalski JM, Johnson JK, Nguyen MH, Calfee DP, Miller LG, Harris AD, Rasko DA. Clinical and Bacterial Characteristics Associated with Glove and Gown Contamination by Carbapenem-Resistant Klebsiella pneumoniae in the Health Care Setting. Microbiol Spectr 2023; 11:e0177523. [PMID: 37289087 PMCID: PMC10434059 DOI: 10.1128/spectrum.01775-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKp) is a pathogen of significant concern to public health, as it has become increasingly associated with difficult-to-treat community-acquired and hospital-associated infections. Transmission of K. pneumoniae between patients through interactions with shared health care personnel (HCP) has been described as a source of infection in health care settings. However, it is not known whether specific lineages or isolates of K. pneumoniae are associated with increased transmission. Thus, we used whole-genome sequencing to analyze the genetic diversity of 166 carbapenem-resistant K. pneumoniae isolates from five U.S. hospitals in four states as part of a multicenter study examining risk factors for glove and gown contamination by carbapenem-resistant Enterobacterales (CRE). The CRKp isolates exhibited considerable genomic diversity with 58 multilocus sequence types (STs), including four newly designated STs. ST258 was the most prevalent ST, representing 31% (52/166) of the CRKp isolates, but was similarly prevalent among patients who had high, intermediate, and low CRKp transmission. Increased transmission was associated with clinical characteristics including a nasogastric (NG) tube or an endotracheal tube or tracheostomy (ETT/Trach). Overall, our findings provide important insight into the diversity of CRKp associated with transmission from patients to the gloves and gowns of HCP. These findings suggest that certain clinical characteristics and the presence of CRKp in the respiratory tract, rather than specific lineages or genetic content, are more often associated with increased transmission of CRKp from patients to HCP. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKp) is a significant public health concern that has contributed to the spread of carbapenem resistance and has been linked to high morbidity and mortality. Transmission of K. pneumoniae among patients through interactions with shared health care personnel (HCP) has been described as a source of infection in health care settings; however, it remains unknown whether particular bacterial characteristics are associated with increased CRKp transmission. Using comparative genomics, we demonstrate that CRKp isolates associated with high or intermediate transmission exhibit considerable genomic diversity, and there were no K. pneumoniae lineages or genes that were universally predictive of increased transmission. Our findings suggest that certain clinical characteristics and the presence of CRKp, rather than specific lineages or genetic content of CRKp, are more often associated with increased transmission of CRKp from patients to HCP.
Collapse
Affiliation(s)
- Tracy H. Hazen
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timileyin Adediran
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie Hitchcock
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lyndsay M. O’Hara
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa Pineles
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jane M. Michalski
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J. Kristie Johnson
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - M. Hong Nguyen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David P. Calfee
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Loren G. Miller
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Anthony D. Harris
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Jati AP, Sola-Campoy PJ, Bosch T, Schouls LM, Hendrickx APA, Bautista V, Lara N, Raangs E, Aracil B, Rossen JWA, Friedrich AW, Navarro Riaza AM, Cañada-García JE, Ramírez de Arellano E, Oteo-Iglesias J, Pérez-Vázquez M, García-Cobos S. Widespread Detection of Yersiniabactin Gene Cluster and Its Encoding Integrative Conjugative Elements (ICE Kp) among Nonoutbreak OXA-48-Producing Klebsiella pneumoniae Clinical Isolates from Spain and the Netherlands. Microbiol Spectr 2023; 11:e0471622. [PMID: 37310221 PMCID: PMC10434048 DOI: 10.1128/spectrum.04716-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
In this study, we determined the presence of virulence factors in nonoutbreak, high-risk clones and other isolates belonging to less common sequence types associated with the spread of OXA-48-producing Klebsiella pneumoniae clinical isolates from The Netherlands (n = 61) and Spain (n = 53). Most isolates shared a chromosomally encoded core of virulence factors, including the enterobactin gene cluster, fimbrial fim and mrk gene clusters, and urea metabolism genes (ureAD). We observed a high diversity of K-Locus and K/O loci combinations, KL17 and KL24 (both 16%), and the O1/O2v1 locus (51%) being the most prevalent in our study. The most prevalent accessory virulence factor was the yersiniabactin gene cluster (66.7%). We found seven yersiniabactin lineages-ybt 9, ybt 10, ybt 13, ybt 14, ybt 16, ybt 17, and ybt 27-which were chromosomally embedded in seven integrative conjugative elements (ICEKp): ICEKp3, ICEKp4, ICEKp2, ICEKp5, ICEKp12, ICEKp10, and ICEKp22, respectively. Multidrug-resistant lineages-ST11, ST101, and ST405-were associated with ybt 10/ICEKp4, ybt 9/ICEKp3, and ybt 27/ICEKp22, respectively. The fimbrial adhesin kpi operon (kpiABCDEFG) was predominant among ST14, ST15, and ST405 isolates, as well as the ferric uptake system kfuABC, which was also predominant among ST101 isolates. No convergence of hypervirulence and resistance was observed in this collection of OXA-48-producing K. pneumoniae clinical isolates. Nevertheless, two isolates, ST133 and ST792, were positive for the genotoxin colibactin gene cluster (ICEKp10). In this study, the integrative conjugative element, ICEKp, was the major vehicle for yersiniabactin and colibactin gene clusters spreading. IMPORTANCE Convergence of multidrug resistance and hypervirulence in Klebsiella pneumoniae isolates has been reported mostly related to sporadic cases or small outbreaks. Nevertheless, little is known about the real prevalence of carbapenem-resistant hypervirulent K. pneumoniae since these two phenomena are often separately studied. In this study, we gathered information on the virulent content of nonoutbreak, high-risk clones (i.e., ST11, ST15, and ST405) and other less common STs associated with the spread of OXA-48-producing K. pneumoniae clinical isolates. The study of virulence content in nonoutbreak isolates can help us to expand information on the genomic landscape of virulence factors in K. pneumoniae population by identifying virulence markers and their mechanisms of spread. Surveillance should focus not only on antimicrobial resistance but also on virulence characteristics to avoid the spread of multidrug and (hyper)virulent K. pneumoniae that may cause untreatable and more severe infections.
Collapse
Affiliation(s)
- Afif P. Jati
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Indonesian Society of Bioinformatics and Biodiversity, Indonesia
| | - Pedro J. Sola-Campoy
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Thijs Bosch
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Leo M. Schouls
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Antoni P. A. Hendrickx
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Verónica Bautista
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Noelia Lara
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Erwin Raangs
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Belén Aracil
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - John W. A. Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Laboratory of Medical Microbiology and Infectious Diseases, Isala Hospital, Zwolle, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alex W. Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- University Hospital Münster, Institute of European Prevention Networks in Infection Control, Münster, Germany
| | - Ana M. Navarro Riaza
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Javier E. Cañada-García
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Eva Ramírez de Arellano
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia García-Cobos
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - The Dutch and Spanish Collaborative Working Groups on Surveillance on Carbapenemase-Producing Enterobacterales
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Indonesian Society of Bioinformatics and Biodiversity, Indonesia
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Medical Microbiology and Infectious Diseases, Isala Hospital, Zwolle, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- University Hospital Münster, Institute of European Prevention Networks in Infection Control, Münster, Germany
| |
Collapse
|
21
|
van der Lans SPA, Janet-Maitre M, Masson FM, Walker KA, Doorduijn DJ, Janssen AB, van Schaik W, Attrée I, Rooijakkers SHM, Bardoel BW. Colistin resistance mutations in phoQ can sensitize Klebsiella pneumoniae to IgM-mediated complement killing. Sci Rep 2023; 13:12618. [PMID: 37537263 PMCID: PMC10400624 DOI: 10.1038/s41598-023-39613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
Due to multi-drug resistance, physicians increasingly use the last-resort antibiotic colistin to treat infections with the Gram-negative bacterium Klebsiella pneumoniae. Unfortunately, K. pneumoniae can also develop colistin resistance. Interestingly, colistin resistance has dual effects on bacterial clearance by the immune system. While it increases resistance to antimicrobial peptides, colistin resistance has been reported to sensitize certain bacteria for killing by human serum. Here we investigate the mechanisms underlying this increased serum sensitivity, focusing on human complement which kills Gram-negatives via membrane attack complex (MAC) pores. Using in vitro evolved colistin resistant strains and a fluorescent MAC-mediated permeabilization assay, we showed that two of the three tested colistin resistant strains, Kp209_CSTR and Kp257_CSTR, were sensitized to MAC. Transcriptomic and mechanistic analyses focusing on Kp209_CSTR revealed that a mutation in the phoQ gene locked PhoQ in an active state, making Kp209_CSTR colistin resistant and MAC sensitive. Detailed immunological assays showed that complement activation on Kp209_CSTR in human serum required specific IgM antibodies that bound Kp209_CSTR but did not recognize the wild-type strain. Together, our results show that developing colistin resistance affected recognition of Kp209_CSTR and its killing by the immune system.
Collapse
Affiliation(s)
- Sjors P A van der Lans
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Manon Janet-Maitre
- Bacterial Pathogenesis and Cellular Responses Group, UMR5075, Institute of Structural Biology, University Grenoble Alpes, Grenoble, France
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Frerich M Masson
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kimberly A Walker
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dennis J Doorduijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Axel B Janssen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ina Attrée
- Bacterial Pathogenesis and Cellular Responses Group, UMR5075, Institute of Structural Biology, University Grenoble Alpes, Grenoble, France
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Kelly SD, Ovchinnikova OG, Müller F, Steffen M, Braun M, Sweeney RP, Kowarik M, Follador R, Lowary TL, Serventi F, Whitfield C. Identification of a second glycoform of the clinically prevalent O1 antigen from Klebsiella pneumoniae. Proc Natl Acad Sci U S A 2023; 120:e2301302120. [PMID: 37428935 PMCID: PMC10629545 DOI: 10.1073/pnas.2301302120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/15/2023] [Indexed: 07/12/2023] Open
Abstract
Carbapenemase and extended β-lactamase-producing Klebsiella pneumoniae isolates represent a major health threat, stimulating increasing interest in immunotherapeutic approaches for combating Klebsiella infections. Lipopolysaccharide O antigen polysaccharides offer viable targets for immunotherapeutic development, and several studies have described protection with O-specific antibodies in animal models of infection. O1 antigen is produced by almost half of clinical Klebsiella isolates. The O1 polysaccharide backbone structure is known, but monoclonal antibodies raised against the O1 antigen showed varying reactivity against different isolates that could not be explained by the known structure. Reinvestigation of the structure by NMR spectroscopy revealed the presence of the reported polysaccharide backbone (glycoform O1a), as well as a previously unknown O1b glycoform composed of the O1a backbone modified with a terminal pyruvate group. The activity of the responsible pyruvyltransferase (WbbZ) was confirmed by western immunoblotting and in vitro chemoenzymatic synthesis of the O1b terminus. Bioinformatic data indicate that almost all O1 isolates possess genes required to produce both glycoforms. We describe the presence of O1ab-biosynthesis genes in other bacterial species and report a functional O1 locus on a bacteriophage genome. Homologs of wbbZ are widespread in genetic loci for the assembly of unrelated glycostructures in bacteria and yeast. In K. pneumoniae, simultaneous production of both O1 glycoforms is enabled by the lack of specificity of the ABC transporter that exports the nascent glycan, and the data reported here provide mechanistic understanding of the capacity for evolution of antigenic diversity within an important class of biomolecules produced by many bacteria.
Collapse
Affiliation(s)
- Steven D. Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Olga G. Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | | | | | - Martin Braun
- LimmaTech Biologics AG, Schlieren8952, Switzerland
| | - Ryan P. Sweeney
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
| | | | | | - Todd L. Lowary
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Taipei, Nangang11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei10617, Taiwan
| | | | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| |
Collapse
|
23
|
Kumar CK, Sands K, Walsh TR, O'Brien S, Sharland M, Lewnard JA, Hu H, Srikantiah P, Laxminarayan R. Global, regional, and national estimates of the impact of a maternal Klebsiella pneumoniae vaccine: A Bayesian modeling analysis. PLoS Med 2023; 20:e1004239. [PMID: 37216371 DOI: 10.1371/journal.pmed.1004239] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Despite significant global progress in reducing neonatal mortality, bacterial sepsis remains a major cause of neonatal deaths. Klebsiella pneumoniae (K. pneumoniae) is the leading pathogen globally underlying cases of neonatal sepsis and is frequently resistant to antibiotic treatment regimens recommended by the World Health Organization (WHO), including first-line therapy with ampicillin and gentamicin, second-line therapy with amikacin and ceftazidime, and meropenem. Maternal vaccination to prevent neonatal infection could reduce the burden of K. pneumoniae neonatal sepsis in low- and middle-income countries (LMICs) but the potential impact of vaccination remains poorly quantified. We estimated the potential impact of such vaccination on cases and deaths of K. pneumoniae neonatal sepsis and project the global effects of routine immunization of pregnant women with the K. pneumoniae vaccine as antimicrobial resistance (AMR) increases. METHODS AND FINDINGS We developed a Bayesian mixture-modeling framework to estimate the effects of a hypothetical K. pneumoniae maternal vaccine with 70% efficacy administered with coverage equivalent to that of the maternal tetanus vaccine on neonatal sepsis infections and mortality. To parameterize our model, we used data from 3 global studies of neonatal sepsis and/or mortality-with 2,330 neonates who died with sepsis surveilled from 2016 to 2020 undertaken in 18 mainly LMICs across all WHO regions (Ethiopia, Kenya, Mali, Mozambique, Nigeria, Rwanda, Sierra Leone, South Africa, Uganda, Brazil, Italy, Greece, Pakistan, Bangladesh, India, Thailand, China, and Vietnam). Within these studies, 26.95% of fatal neonatal sepsis cases were culture-positive for K. pneumoniae. We analyzed 9,070 K. pneumoniae genomes from human isolates gathered globally from 2001 to 2020 to quantify the temporal rate of acquisition of AMR genes in K. pneumoniae isolates to predict the future number of drug-resistant cases and deaths that could be averted by vaccination. Resistance rates to carbapenems are increasing most rapidly and 22.43% [95th percentile Bayesian credible interval (CrI): 5.24 to 41.42] of neonatal sepsis deaths are caused by meropenem-resistant K. pneumoniae. Globally, we estimate that maternal vaccination could avert 80,258 [CrI: 18,084 to 189,040] neonatal deaths and 399,015 [CrI: 334,523 to 485,442] neonatal sepsis cases yearly worldwide, accounting for more than 1.49% [CrI: 0.33 to 3.51] of all neonatal deaths. The largest relative benefits are in Africa (Sierra Leone, Mali, Niger) and South-East Asia (Bangladesh) where vaccination could avert over 5% of all neonatal deaths. Nevertheless, our modeling only considers country-level trends in K. pneumoniae neonatal sepsis deaths and is unable to consider within-country variability in bacterial prevalence that may impact the projected burden of sepsis. CONCLUSIONS A K. pneumoniae maternal vaccine could have widespread, sustained global benefits as AMR in K. pneumoniae continues to increase.
Collapse
Affiliation(s)
- Chirag K Kumar
- Princeton University, Princeton, New Jersey, United States of America
| | - Kirsty Sands
- Ineos Oxford Institute for Antimicrobial Resistance, Department of Zoology, Oxford, United Kingdom
| | - Timothy R Walsh
- Ineos Oxford Institute for Antimicrobial Resistance, Department of Zoology, Oxford, United Kingdom
| | - Seamus O'Brien
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | - Mike Sharland
- Center for Neonatal and Paediatric Infection (CNPI), Institute of Infection and Immunity, St George's University of London, London, United Kingdom
| | - Joseph A Lewnard
- Division of Epidemiology, School of Public Health, University of California at Berkeley, Berkeley, California, United States of America
| | - Hao Hu
- Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Padmini Srikantiah
- Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Ramanan Laxminarayan
- Princeton University, Princeton, New Jersey, United States of America
- One Health Trust, Bengaluru, India
| |
Collapse
|
24
|
Liu Y, Pan C, Wang K, Guo Y, Sun Y, Li X, Sun P, Wu J, Wang H, Zhu L. Preparation of a Klebsiella pneumoniae conjugate nanovaccine using glycol-engineered Escherichia coli. Microb Cell Fact 2023; 22:95. [PMID: 37149632 PMCID: PMC10163571 DOI: 10.1186/s12934-023-02099-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/17/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Engineered strains of Escherichia coli have been used to produce bioconjugate vaccines using Protein Glycan Coupling Technology (PGCT). Nanovaccines have also entered the vaccine development arena with advances in nanotechnology and have been significantly developed, but chassis cells for conjugate nanovaccines have not been reported. RESULTS To facilitate nanovaccine preparation, a generic recombinant protein (SpyCather4573) was used as the acceptor protein for O-linked glycosyltransferase PglL, and a glycol-engineered Escherichia coli strain with these two key components (SC4573 and PglL) integrated in its genome was developed in this study. The targeted glycoproteins with antigenic polysaccharides produced by our bacterial chassis can be spontaneously bound to proteinous nanocarriers with surface exposed SpyTag in vitro to form conjugate nanovaccines. To improve the yields of the targeted glycoprotein, a series of gene cluster deletion experiments was carried out, and the results showed that the deletion of the yfdGHI gene cluster increased the expression of glycoproteins. Using the updated system, to the best of our knowledge, we report for the first time the successful preparation of an effective Klebsiella pneumoniae O1 conjugate nanovaccine (KPO1-VLP), with antibody titers between 4 and 5 (Log10) after triple immunization and up to 100% protection against virulent strain challenge. CONCLUSIONS Our results define a convenient and reliable framework for bacterial glycoprotein vaccine preparation that is flexible and versatile, and the genomic stability of the engineered chassis cells promises a wide range of applications for biosynthetic glycobiology research.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Kangfeng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
- College of Life Science, Hebei University, Baoding, 071002, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - YanGe Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
25
|
Wantuch PL, Knoot CJ, Robinson LS, Vinogradov E, Scott NE, Harding CM, Rosen DA. Capsular polysaccharide inhibits vaccine-induced O-antigen antibody binding and function across both classical and hypervirulent K2:O1 strains of Klebsiella pneumoniae. PLoS Pathog 2023; 19:e1011367. [PMID: 37146068 PMCID: PMC10191323 DOI: 10.1371/journal.ppat.1011367] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
Klebsiella pneumoniae presents as two circulating pathotypes: classical K. pneumoniae (cKp) and hypervirulent K. pneumoniae (hvKp). Classical isolates are considered urgent threats due to their antibiotic resistance profiles, while hvKp isolates have historically been antibiotic susceptible. Recently, however, increased rates of antibiotic resistance have been observed in both hvKp and cKp, further underscoring the need for preventive and effective immunotherapies. Two distinct surface polysaccharides have gained traction as vaccine candidates against K. pneumoniae: capsular polysaccharide and the O-antigen of lipopolysaccharide. While both targets have practical advantages and disadvantages, it remains unclear which of these antigens included in a vaccine would provide superior protection against matched K. pneumoniae strains. Here, we report the production of two bioconjugate vaccines, one targeting the K2 capsular serotype and the other targeting the O1 O-antigen. Using murine models, we investigated whether these vaccines induced specific antibody responses that recognize K2:O1 K. pneumoniae strains. While each vaccine was immunogenic in mice, both cKp and hvKp strains exhibited decreased O-antibody binding in the presence of capsule. Further, O1 antibodies demonstrated decreased killing in serum bactericidal assays with encapsulated strains, suggesting that the presence of K. pneumoniae capsule blocks O1-antibody binding and function. Finally, the K2 vaccine outperformed the O1 vaccine against both cKp and hvKp in two different murine infection models. These data suggest that capsule-based vaccines may be superior to O-antigen vaccines for targeting hvKp and some cKp strains, due to capsule blocking the O-antigen.
Collapse
Affiliation(s)
- Paeton L. Wantuch
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Cory J. Knoot
- Omniose, Saint Louis, Missouri, United States of America
| | | | - Evgeny Vinogradov
- National Research Council Canada, Human Health Therapeutics Centre, Ottawa, Ontario, Canada
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - David A. Rosen
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
26
|
Zhou K, Xue CX, Xu T, Shen P, Wei S, Wyres KL, Lam MMC, Liu J, Lin H, Chen Y, Holt KE, Xiao Y. A point mutation in recC associated with subclonal replacement of carbapenem-resistant Klebsiella pneumoniae ST11 in China. Nat Commun 2023; 14:2464. [PMID: 37117217 PMCID: PMC10147710 DOI: 10.1038/s41467-023-38061-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/13/2023] [Indexed: 04/30/2023] Open
Abstract
Adaptation to selective pressures is crucial for clinically important pathogens to establish epidemics, but the underlying evolutionary drivers remain poorly understood. The current epidemic of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a significant threat to public health. In this study we analyzed the genome sequences of 794 CRKP bloodstream isolates collected in 40 hospitals in China between 2014 and 2019. We uncovered a subclonal replacement in the predominant clone ST11, where the previously prevalent subclone OL101:KL47 was replaced by O2v1:KL64 over time in a stepwise manner. O2v1:KL64 carried a higher load of mobile genetic elements, and a point mutation exclusively detected in the recC of O2v1:KL64 significantly promotes recombination proficiency. The epidemic success of O2v1:KL64 was further associated with a hypervirulent sublineage with enhanced resistance to phagocytosis, sulfamethoxazole-trimethoprim, and tetracycline. The phenotypic alterations were linked to the overrepresentation of hypervirulence determinants and antibiotic genes conferred by the acquisition of an rmpA-positive pLVPK-like virulence plasmid and an IncFII-type multidrug-resistant plasmid, respectively. The dissemination of the sublineage was further promoted by more frequent inter-hospital transmission. The results collectively demonstrate that the expansion of O2v1:KL64 is correlated to a repertoire of genomic alterations convergent in a subpopulation with evolutionary advantages.
Collapse
Affiliation(s)
- Kai Zhou
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Chun-Xu Xue
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Tingting Xu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Sha Wei
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Margaret M C Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Jinquan Liu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Haoyun Lin
- Department of Clinical Laboratory, Shenzhen People's Hospital, Shenzhen, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
27
|
Liang Z, Wang Y, Lai Y, Zhang J, Yin L, Yu X, Zhou Y, Li X, Song Y. Host defense against the infection of Klebsiella pneumoniae: New strategy to kill the bacterium in the era of antibiotics? Front Cell Infect Microbiol 2022; 12:1050396. [PMID: 36506034 PMCID: PMC9730340 DOI: 10.3389/fcimb.2022.1050396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a typical gram-negative iatrogenic bacterium that often causes bacteremia, pneumonia and urinary tract infection particularly among those with low immunity. Although antibiotics is the cornerstone of anti-infections, the clinical efficacy of β-lactamase and carbapenems drugs has been weakened due to the emergence of drug-resistant K. pneumoniae. Recent studies have demonstrated that host defense plays a critical role in killing K. pneumoniae. Here, we summarize our current understanding of host immunity mechanisms against K. pneumoniae, including mechanical barrier, innate immune cells, cellular immunity and humoral immunity, providing a theoretical basis and the new strategy for the clinical treatment of K. pneumoniae through improving host immunity.
Collapse
Affiliation(s)
- Zihan Liang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yiyao Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yixiang Lai
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Jingyi Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Lanlan Yin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Xiang Yu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yongqin Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Xinzhi Li
- College of Basic Medical Science, China Three Gorges University, Yichang, China,Affiliated Renhe Hospital of China Three Gorges University, Yichang, China,*Correspondence: Yinhong Song, ; Xinzhi Li,
| | - Yinhong Song
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China,*Correspondence: Yinhong Song, ; Xinzhi Li,
| |
Collapse
|
28
|
Opstrup KV, Bennike TB, Christiansen G, Birkelund S. Complement killing of clinical Klebsiella pneumoniae isolates is serum concentration dependent. Microbes Infect 2022; 25:105074. [PMID: 36336240 DOI: 10.1016/j.micinf.2022.105074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Klebsiella pneumoniae is an opportunistic gram-negative pathogen causing serious infections, including sepsis. In plasma, activation of the complement cascades is important for killing bacteria. Thirty clinical Klebsiella spp. blood isolates were analyzed for serum susceptibility in 75% normal human serum (NHS). Twenty-two were serum resistant and eight were serum sensitive, and subsequently tested in 5-75% NHS. Two isolates were killed in 5% and the remaining six in 50%-75% NHS. The two 5% sensitive isolates showed binding of complement (C)4 and C3 in 5% NHS with formation of membrane attack complex (MAC). Inhibition of the classical/lectin mediated pathways (CP/LP) using a C4 specific nanobody, hC4Nb8, led to survival of both isolates in 5% NHS. Using nanobody hC3Nb1, inhibiting the alternative pathway (AP), the isolates were killed in 5% NHS, and amplification of the CP/LP by AP was not necessary for killing. Sole AP killing of these isolates when inhibiting CP/LP with hC4Nb8 was observed in 50% NHS, stressing the concentration dependent functionality of AP. For the less sensitive isolates, killing required activation of CP/LP and AP demonstrated by inhibition with nanobodies. AP inhibition resulted in no C3 deposition on the serum resistant isolate, supporting that AP was the sole activation pathway.
Collapse
Affiliation(s)
- Katharina V Opstrup
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 5, 9220, Aalborg East, Denmark
| | - Tue B Bennike
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 5, 9220, Aalborg East, Denmark
| | - Gunna Christiansen
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 5, 9220, Aalborg East, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 5, 9220, Aalborg East, Denmark.
| |
Collapse
|
29
|
Banerjee K, Motley MP, Boniche-Alfaro C, Bhattacharya S, Shah R, Ardizzone A, Fries BC. Patient-Derived Antibody Data Yields Development of Broadly Cross-Protective Monoclonal Antibody against ST258 Carbapenem-Resistant Klebsiella pneumoniae. Microbiol Spectr 2022; 10:e0176022. [PMID: 35862974 PMCID: PMC9430753 DOI: 10.1128/spectrum.01760-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
The most pressing challenge for the development of anti-capsular antibodies is maximizing coverage against the heterogenous capsular polysaccharide (CPS) of carbapenem-resistant Klebsiella pneumoniae (CR-Kp). So far, only CR-Kp with wzi154 CPS has been successfully targeted by antibodies. Here, we present murine antibody 24D11, which was developed by vaccinating mice with purified wzi50-type CPS. Cross-reactivity and protective efficacy of MAb 24D11 were confirmed against CR-Kp that express the 3 most prevalent CPS types (wzi29, wzi154, wzi50) using both in vitro and in vivo infection models. 24D11 induced complement-mediated and independent opsonophagocytosis in macrophages as well as killing of all CR-Kp strains in whole blood cells derived from healthy donors. In a murine intratracheal infection model, 24D11 reduced lung burden and dissemination of CR-Kp strains when administered 4 h pre- or postinfection. The protective efficacy of 24D11 remained effective in neutropenic mice. This is the first antibody which exhibits cross-protective efficacy against clade 1 and 2 ST258 CR-Kp strains. It overcomes a major barrier to successfully target wzi29, a major CPS expressed by ST258 CR-Kp. The finding that 24D11 also exhibits potent protective efficacy against wzi154 CR-Kp strains highlights its high potential as a lead agent for the development of broadly active immunotherapy. IMPORTANCE Here, we present in vitro and in vivo data for the wzi50 CPS-specific monoclonal antibody MAb 24D11, demonstrating its cross-protective efficacy against three prominent win types (wzi29, wzi154, and wzi50) of the carbapenem-resistant clonal group CG258. In a murine pulmonary infection model, MAb 24D11 reduced bacterial lung burden and dissemination to other organs even if administered 4 h postinfection. Its protective efficacy was also observed in neutropenic mice, which highlights its potential value in clinical settings where oncology patients with CG258 infections may also be neutropenic.
Collapse
Affiliation(s)
- Kasturi Banerjee
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran’s Administration Medical Center, Northport, New York, USA
| | - Michael P. Motley
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Camila Boniche-Alfaro
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran’s Administration Medical Center, Northport, New York, USA
| | - Somanon Bhattacharya
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Raj Shah
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Andrew Ardizzone
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Bettina C. Fries
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran’s Administration Medical Center, Northport, New York, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
30
|
Wang H, Chen D, Lu H. Anti-bacterial monoclonal antibodies: next generation therapy against superbugs. Appl Microbiol Biotechnol 2022; 106:3957-3972. [PMID: 35648146 DOI: 10.1007/s00253-022-11989-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022]
Abstract
Prior to the nineteenth century, infectious disease was one of the leading causes of death. Human life expectancy has roughly doubled over the past century as a result of the development of antibiotics and vaccines. However, the emergence of antibiotic-resistant superbugs brings new challenges. The side effects of broad-spectrum antibiotics, such as causing antimicrobial resistance and destroying the normal flora, often limit their applications. Furthermore, the development of new antibiotics has lagged far behind the emergence and spread of antibiotic resistance. On the other hand, the genome complexity of bacteria makes it difficult to create effective vaccines. Therefore, novel therapeutic agents in supplement to antibiotics and vaccines are urgently needed to improve the treatment of infections. In recent years, monoclonal antibodies (mAbs) have achieved remarkable clinical success in a variety of fields. In the treatment of infectious diseases, mAbs can play functions through multiple mechanisms, including toxins neutralization, virulence factors inhibition, complement-mediated killing activity, and opsonic phagocytosis. Toxins and bacterial surface components are good targets to generate antibodies against. The U.S. FDA has approved three monoclonal antibody drugs, and there are numerous candidates in the preclinical or clinical trial stages. This article reviews recent advances in the research and development of anti-bacterial monoclonal antibody drugs in order to provide a valuable reference for future studies in this area. KEY POINTS: • Novel drugs against antibiotic-resistant superbugs are urgently required • Monoclonal antibodies can treat bacterial infections through multiple mechanisms • There are many anti-bacterial monoclonal antibodies developed in recent years and some candidates have entered the preclinical or clinical stages of development.
Collapse
Affiliation(s)
- Hui Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
31
|
Wyres K, Holt K. Regional differences in carbapenem-resistant Klebsiella pneumoniae. THE LANCET. INFECTIOUS DISEASES 2022; 22:309-310. [PMID: 34767752 DOI: 10.1016/s1473-3099(21)00425-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Kelly Wyres
- Department of Infectious Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Kathryn Holt
- Department of Infectious Diseases, Monash University, Melbourne, VIC 3004, Australia; Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
32
|
Lam MMC, Wick RR, Judd LM, Holt KE, Wyres KL. Kaptive 2.0: updated capsule and lipopolysaccharide locus typing for the Klebsiella pneumoniae species complex. Microb Genom 2022; 8:000800. [PMID: 35311639 PMCID: PMC9176290 DOI: 10.1099/mgen.0.000800] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/12/2022] [Indexed: 11/18/2022] Open
Abstract
The outer polysaccharide capsule and lipopolysaccharide (LPS) antigens are key targets for novel control strategies targeting Klebsiella pneumoniae and related taxa from the K. pneumoniae species complex (KpSC), including vaccines, phage and monoclonal antibody therapies. Given the importance and growing interest in these highly diverse surface antigens, we had previously developed Kaptive, a tool for rapidly identifying and typing capsule (K) and outer LPS (O) loci from whole genome sequence data. Here, we report two significant updates, now freely available in Kaptive 2.0 (https://github.com/katholt/kaptive): (i) the addition of 16 novel K locus sequences to the K locus reference database following an extensive search of >17 000 KpSC genomes; and (ii) enhanced O locus typing to enable prediction of the clinically relevant O2 antigen (sub)types, for which the genetic determinants have been recently described. We applied Kaptive 2.0 to a curated dataset of >12 000 public KpSC genomes to explore for the first time, to the best of our knowledge, the distribution of predicted O (sub)types across species, sampling niches and clones, which highlighted key differences in the distributions that warrant further investigation. As the uptake of genomic surveillance approaches continues to expand globally, the application of Kaptive 2.0 will generate novel insights essential for the design of effective KpSC control strategies.
Collapse
Affiliation(s)
- Margaret M. C. Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Ryan R. Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Louise M. Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Kelly L. Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
33
|
Emelianova AG, Petrova NV, Fremez C, Fontanié M, Tarasov SА, Epstein ОI. Therapeutic potential of highly diluted antibodies in antibiotic-resistant infection. Eur J Pharm Sci 2022; 173:106161. [DOI: 10.1016/j.ejps.2022.106161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/02/2021] [Accepted: 03/02/2022] [Indexed: 12/31/2022]
|
34
|
Halder T, Yadav S. Total synthesis of the O-antigen repeating unit of Providencia stuartii O49 serotype through linear and one-pot assemblies. Beilstein J Org Chem 2021; 17:2915-2921. [PMID: 34956410 PMCID: PMC8685571 DOI: 10.3762/bjoc.17.199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Capsular polysaccharides of pathogenic bacteria have been reported to be effective vaccines against diseases caused by them. Providencia stuartii is a class of enterobacteria of the family Providencia that is responsible for several antibiotic resistant infections, particularly urinary tract infections of patients with prolonged catheterization in hospital settings. Towards the goal of development of vaccine candidates against this pathogen, we herein report the total synthesis of a trisaccharide repeating unit of the O-antigen polysaccharide of the P. stuartii O49 serotype containing the →6)-β-ᴅ-Galp-(1→3)-β-ᴅ-GalpNAc(1→4)-α-ᴅ-Galp(1→ linkage. The synthesis of the trisaccharide repeating unit was carried out first by a linear strategy involving the [1 + (1 + 1 = 2)] assembly, followed by a one-pot synthesis involving [1 + 1 + 1] strategy from the corresponding monosaccharides. The one-pot method provided a higher yield of the protected trisaccharide intermediate (73%) compared to the two step synthesis (66%). The protected trisaccharide was then deprotected and N-acetylated to finally afford the desired trisaccharide repeating unit as its α-p-methoxyphenyl glycoside.
Collapse
Affiliation(s)
- Tanmoy Halder
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Somnath Yadav
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
35
|
Berry SK, Rust S, Caceres C, Irving L, Bartholdson Scott J, Tabor DE, Dougan G, Christie G, Warrener P, Minter R, Grant AJ. Phenotypic whole-cell screening identifies a protective carbohydrate epitope on Klebsiella pneumoniae. MAbs 2021; 14:2006123. [PMID: 34923908 PMCID: PMC8726669 DOI: 10.1080/19420862.2021.2006123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The increasing global occurrence of recalcitrant multi-drug resistant Klebsiella pneumoniae infections warrants the investigation of alternative therapy options, such as the use of monoclonal antibodies (mAbs). We used a target-agnostic phage display approach to K. pneumoniae bacteria lacking bulky, highly variable surface polysaccharides in order to isolate antibodies targeting conserved epitopes among clinically relevant strains. One antibody population contained a high proportion of unique carbohydrate binders, and biolayer interferometry revealed these antibodies bound to lipopolysaccharide (LPS). Antibodies that bound to O1 and O1/O2 LPS were identified. Antibodies were found to promote opsonophagocytic killing by human monocyte-derived macrophages and clearance of macrophage-associated bacteria when assessed using high-content imaging. One antibody, B39, was found to protect mice in a lethal model of K. pneumoniae pneumonia against both O1 and O2 strains when dosed therapeutically. High-content imaging, western blotting and fluorescence-activated cell sorting were used to determine binding to a collection of clinical K. pneumoniae O1 and O2 strains. The data suggests B39 binds to D-galactan-I and D-galactan-II of the LPS of O1 and O2 strains. Thus, we have discovered an mAb with novel binding and functional activity properties that is a promising candidate for development as a novel biotherapeutic for the treatment and prevention of K. pneumoniae infections.
Collapse
Affiliation(s)
- Sophia K Berry
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Antibody Discovery and Protein Engineering, Biopharmaceuticals R&d, AstraZeneca, Cambridge, UK
| | - Steven Rust
- Antibody Discovery and Protein Engineering, Biopharmaceuticals R&d, AstraZeneca, Cambridge, UK
| | - Carolina Caceres
- Microbial Sciences, Biopharmaceuticals R&d, AstraZeneca, Gaithersburg, MD, USA
| | - Lorraine Irving
- Antibody Discovery and Protein Engineering, Biopharmaceuticals R&d, AstraZeneca, Cambridge, UK
| | - Josefin Bartholdson Scott
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - David E Tabor
- Microbial Sciences, Biopharmaceuticals R&d, AstraZeneca, Gaithersburg, MD, USA
| | - Gordon Dougan
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Paul Warrener
- Microbial Sciences, Biopharmaceuticals R&d, AstraZeneca, Gaithersburg, MD, USA
| | - Ralph Minter
- Antibody Discovery and Protein Engineering, Biopharmaceuticals R&d, AstraZeneca, Cambridge, UK.,Alchemab Therapeutics, Russel Square, London, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Opoku-Temeng C, Malachowa N, Kobayashi SD, DeLeo FR. Innate Host Defense against Klebsiella pneumoniae and the Outlook for Development of Immunotherapies. J Innate Immun 2021; 14:167-181. [PMID: 34628410 DOI: 10.1159/000518679] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative commensal bacterium and opportunistic pathogen. In healthy individuals, the innate immune system is adept at protecting against K. pneumoniae infection. Notably, the serum complement system and phagocytic leukocytes (e.g., neutrophils) are highly effective at eliminating K. pneumoniae and thereby preventing severe disease. On the other hand, the microbe is a major cause of healthcare-associated infections, especially in individuals with underlying susceptibility factors, such as pre-existing severe illness or immune suppression. The burden of K. pneumoniae infections in hospitals is compounded by antibiotic resistance. Treatment of these infections is often difficult largely because the microbes are usually resistant to multiple antibiotics (multidrug resistant [MDR]). There are a limited number of treatment options for these infections and new therapies, and preventative measures are needed. Here, we review host defense against K. pneumoniae and discuss recent therapeutic measures and vaccine approaches directed to treat and prevent severe disease caused by MDR K. pneumoniae.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
37
|
Flores-Valdez M, Ares MA, Rosales-Reyes R, Torres J, Girón JA, Weimer BC, Mendez-Tenorio A, De la Cruz MA. Whole Genome Sequencing of Pediatric Klebsiella pneumoniae Strains Reveals Important Insights Into Their Virulence-Associated Traits. Front Microbiol 2021; 12:711577. [PMID: 34489901 PMCID: PMC8418058 DOI: 10.3389/fmicb.2021.711577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Klebsiella pneumoniae is recognized as a common cause of nosocomial infections and outbreaks causing pneumonia, septicemia, and urinary tract infections. This opportunistic bacterium shows an increasing acquisition of antibiotic-resistance genes, which complicates treatment of infections. Hence, fast reliable strain typing methods are paramount for the study of this opportunistic pathogen’s multi-drug resistance genetic profiles. In this study, thirty-eight strains of K. pneumoniae isolated from the blood of pediatric patients were characterized by whole-genome sequencing and genomic clustering methods. Genes encoding β-lactamase were found in all the bacterial isolates, among which the blaSHV variant was the most prevalent (53%). Moreover, genes encoding virulence factors such as fimbriae, capsule, outer membrane proteins, T4SS and siderophores were investigated. Additionally, a multi-locus sequence typing (MLST) analysis revealed 24 distinct sequence types identified within the isolates, among which the most frequently represented were ST76 (16%) and ST70 (11%). Based on LPS structure, serotypes O1 and O3 were the most prevalent, accounting for approximately 63% of all infections. The virulence capsular types K10, K136, and K2 were present in 16, 13, and 8% of the isolates, respectively. Phylogenomic analysis based on virtual genome fingerprints correlated with the MLST data. The phylogenomic reconstruction also denoted association between strains with a higher abundance of virulence genes and virulent serotypes compared to strains that do not possess these traits. This study highlights the value of whole-genomic sequencing in the surveillance of virulence attributes among clinical K. pneumoniae strains.
Collapse
Affiliation(s)
- Mauricio Flores-Valdez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Laboratorio de Biotecnología y Bioinformática Genómica, Escuela Nacional De Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Mexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, 100K Pathogen Genome Project, University of California, Davis, Davis, CA, United States
| | - Alfonso Mendez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, Escuela Nacional De Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Mexico City, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
38
|
Assoni L, Girardello R, Converso TR, Darrieux M. Current Stage in the Development of Klebsiella pneumoniae Vaccines. Infect Dis Ther 2021; 10:2157-2175. [PMID: 34476772 PMCID: PMC8412853 DOI: 10.1007/s40121-021-00533-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/24/2021] [Indexed: 01/14/2023] Open
Abstract
Klebsiella pneumoniae is a bacterium capable of colonizing mucous membranes, causing serious infections. Widespread antibiotic resistance in K. pneumoniae—either through intrinsic mechanisms or via acquisition from different species, especially in hospital environments—limits the therapeutic options against this pathogen, further aggravating the disease burden. To date, there are no vaccines available against K. pneumoniae infection. Although formulations based on capsular polysaccharides have been proposed, the high variability in capsular serotypes limits vaccine coverage. Recombinant vaccines based on surface exposed bacterial antigens are a promising alternative owing to their conservation among different serotypes and accessibility to the immune system. Many vaccine candidates have been proposed, some of which have reached clinical trials. The present review summarizes the current status of K. pneumoniae vaccine development. Different strategies including whole cell vaccines, outer membrane vesicles (OMVs), ribosome, polysaccharide, lipopolysaccharide (LPS), and protein-based formulations are discussed. The contribution of antibody and cell-mediated responses is also presented. In summary, K. pneumoniae vaccines are feasible and a promising strategy to prevent infections and to reduce the antimicrobial resistance burden worldwide.
Collapse
Affiliation(s)
- Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Raquel Girardello
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil.
| |
Collapse
|
39
|
Ali S, Alam M, Hasan GM, Hassan MI. Potential therapeutic targets of Klebsiella pneumoniae: a multi-omics review perspective. Brief Funct Genomics 2021; 21:63-77. [PMID: 34448478 DOI: 10.1093/bfgp/elab038] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/15/2022] Open
Abstract
The multidrug resistance developed in many organisms due to the prolonged use of antibiotics has been an increasing global health crisis. Klebsiella pneumoniae is a causal organism for various infections, including respiratory, urinary tract and biliary diseases. Initially, immunocompromised individuals are primarily affected by K. pneumoniae. Due to the emergence of hypervirulent strains recently, both healthy and immunocompetent individuals are equally susceptible to K. pneumoniae infections. The infections caused by multidrug-resistant and hypervirulent K. pneumoniae strains are complicated to treat, illustrating an urgent need to develop novel and more practical approaches to combat the pathogen. We focused on the previously performed high-throughput analyses by other groups to discover several novel enzymes that may be considered attractive drug targets of K. pneumoniae. These targets qualify most of the selection criteria for drug targeting, including an absence of its homolog's gene in the host. The capsule, lipopolysaccharide, fimbriae, siderophores and essential virulence factors facilitate the pathogen entry, infection and survival inside the host. This review discusses K. pneumoniae pathophysiology, including its virulence determinants and further the potential drug targets that might facilitate the discovery of novel drugs and effective treatment regimens shortly.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| |
Collapse
|
40
|
Peng Z, Wu J, Wang K, Li X, Sun P, Zhang L, Huang J, Liu Y, Hua X, Yu Y, Pan C, Wang H, Zhu L. Production of a Promising Biosynthetic Self-Assembled Nanoconjugate Vaccine against Klebsiella Pneumoniae Serotype O2 in a General Escherichia Coli Host. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100549. [PMID: 34032027 PMCID: PMC8292882 DOI: 10.1002/advs.202100549] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Indexed: 05/09/2023]
Abstract
Klebsiella pneumoniae has emerged as a severe opportunistic pathogen with multiple drug resistances. Finding effective vaccines against this pathogen is urgent. Although O-polysaccharides (OPS) of K. pneumoniae are suitable antigens for the preparation of vaccines given their low levels of diversity, the low immunogenicity (especially serotype O2) limit their application. In this study, a general Escherichia coli host system is developed to produce a nanoscale conjugate vaccine against K. pneumoniae using the Nano-B5 self-assembly platform. The experimental data illustrate that this nanoconjugate vaccine can induce an efficient humoral immune response in draining lymph nodes (dLNs) and elicit high titers of the IgG antibody against bacterial lipopolysaccharide (LPS). The ideal prophylactic effects of these nanoconjugate vaccines are further demonstrated in mouse models of both systemic and pulmonary infection. These results demonstrate that OPS with low immunogenicity can be changed into an effective antigen, indicating that other haptens may be applicable to this strategy in the future. To the knowledge, this is the first study to produce biosynthetic nanoconjugate vaccines against K. pneumoniae in E. coli, and this strategy can be applied to the development of other vaccines against pathogenic bacteria.
Collapse
Affiliation(s)
- Zhehui Peng
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyNo. 20, Dongda Street, Fengtai DistrictBeijing100071P. R. China
| | - Jun Wu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyNo. 20, Dongda Street, Fengtai DistrictBeijing100071P. R. China
| | - Kangfeng Wang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyNo. 20, Dongda Street, Fengtai DistrictBeijing100071P. R. China
| | - Xin Li
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyNo. 20, Dongda Street, Fengtai DistrictBeijing100071P. R. China
| | - Peng Sun
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyNo. 20, Dongda Street, Fengtai DistrictBeijing100071P. R. China
| | - Lulu Zhang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyNo. 20, Dongda Street, Fengtai DistrictBeijing100071P. R. China
| | - Jing Huang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyNo. 20, Dongda Street, Fengtai DistrictBeijing100071P. R. China
| | - Yan Liu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyNo. 20, Dongda Street, Fengtai DistrictBeijing100071P. R. China
| | - Xiaoting Hua
- Department of Infectious DiseasesSir Run Run Shaw HospitalCollege of MedicineZhejiang University866 Yuhangtang RdHangzhou310058P. R. China
| | - Yunsong Yu
- Department of Infectious DiseasesSir Run Run Shaw HospitalCollege of MedicineZhejiang University866 Yuhangtang RdHangzhou310058P. R. China
| | - Chao Pan
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyNo. 20, Dongda Street, Fengtai DistrictBeijing100071P. R. China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyNo. 20, Dongda Street, Fengtai DistrictBeijing100071P. R. China
| | - Li Zhu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyNo. 20, Dongda Street, Fengtai DistrictBeijing100071P. R. China
| |
Collapse
|
41
|
Bulati M, Busà R, Carcione C, Iannolo G, Di Mento G, Cuscino N, Di Gesù R, Piccionello AP, Buscemi S, Carreca AP, Barbera F, Monaco F, Cardinale F, Conaldi PG, Douradinha B. Klebsiella pneumoniae Lipopolysaccharides Serotype O2afg Induce Poor Inflammatory Immune Responses Ex Vivo. Microorganisms 2021; 9:microorganisms9061317. [PMID: 34204279 PMCID: PMC8234205 DOI: 10.3390/microorganisms9061317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/05/2023] Open
Abstract
Currently, Klebsiella pneumoniae is a pathogen of clinical relevance due to its plastic ability of acquiring resistance genes to multiple antibiotics. During K. pneumoniae infections, lipopolysaccharides (LPS) play an ambiguous role as they both activate immune responses but can also play a role in immune evasion. The LPS O2a and LPS O2afg serotypes are prevalent in most multidrug resistant K. pneumoniae strains. Thus, we sought to understand if those two particular LPS serotypes were involved in a mechanism of immune evasion. We have extracted LPS (serotypes O1, O2a and O2afg) from K. pneumoniae strains and, using human monocytes ex vivo, we assessed the ability of those LPS antigens to induce the production of pro-inflammatory cytokines and chemokines. We observed that, when human monocytes are incubated with LPS serotypes O1, O2a or O2afg strains, O2afg and, to a lesser extent, O2a but not O1 failed to elicit the production of pro-inflammatory cytokines and chemokines, which suggests a role in immune evasion. Our preliminary data also shows that nuclear translocation of NF-κB, a process which regulates an immune response against infections, occurs in monocytes incubated with LPS O1 and, to a smaller extent, with LPS O2a, but not with the LPS serotype O2afg. Our results indicate that multidrug resistant K. pneumoniae expressing LPS O2afg serotypes avoid an initial inflammatory immune response and, consequently, are able to systematically spread inside the host unharmed, which results in the several pathologies associated with this bacterium.
Collapse
Affiliation(s)
- Matteo Bulati
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Rosalia Busà
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Claudia Carcione
- Fondazione Ri.MED, 90133 Palermo, Italy; (C.C.); (R.D.G.); (A.P.C.)
| | - Gioacchin Iannolo
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Giuseppina Di Mento
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Nicola Cuscino
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Roberto Di Gesù
- Fondazione Ri.MED, 90133 Palermo, Italy; (C.C.); (R.D.G.); (A.P.C.)
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies-STEBICEF, University of Palermo, 90133 Palermo, Italy; (A.P.P.); (S.B.)
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies-STEBICEF, University of Palermo, 90133 Palermo, Italy; (A.P.P.); (S.B.)
| | | | - Floriana Barbera
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Francesco Monaco
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Francesca Cardinale
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Pier Giulio Conaldi
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Bruno Douradinha
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
- Fondazione Ri.MED, 90133 Palermo, Italy; (C.C.); (R.D.G.); (A.P.C.)
- Correspondence: ; Tel.: +39-091-2192649; Fax: +39-091-2192423
| |
Collapse
|
42
|
Pugia M, Bose T, Tjioe M, Frabutt D, Baird Z, Cao Z, Vorsilak A, McLuckey I, Barron MR, Barron M, Denys G, Carpenter J, Das A, Kaur K, Roy S, Sen CK, Deiss F. Multiplexed Signal Ion Emission Reactive Release Amplification (SIERRA) Assay for the Culture-Free Detection of Gram-Negative and Gram-Positive Bacteria and Antimicrobial Resistance Genes. Anal Chem 2021; 93:6604-6612. [PMID: 33819029 PMCID: PMC9097648 DOI: 10.1021/acs.analchem.0c00453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The global prevalence of antibiotic-resistant bacteria has increased the risk of dangerous infections, requiring rapid diagnosis and treatment. The standard method for diagnosis of bacterial infections remains dependent on slow culture-based methods, carried out in central laboratories, not easily extensible to rapid identification of organisms, and thus not optimal for timely treatments at the point-of-care (POC). Here, we demonstrate rapid detection of bacteria by combining electrochemical immunoassays (EC-IA) for pathogen identification with confirmatory quantitative mass spectral immunoassays (MS-IA) based on signal ion emission reactive release amplification (SIERRA) nanoparticles with unique mass labels. This diagnostic method uses compatible reagents for all involved assays and standard fluidics for automatic sample preparation at POC. EC-IA, based on alkaline phosphatase-conjugated pathogen-specific antibodies, quantified down to 104 bacteria per sample when testing Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa lysates. EC-IA quantitation was also obtained for wound samples. The MS-IA using nanoparticles against S. aureus, E. coli, Klebsiella pneumoniae, and P. aeruginosa allowed selective quantitation of ∼105 bacteria per sample. This method preserves bacterial cells allowing extraction and amplification of 16S ribosomal RNA genes and antibiotic resistance genes, as was demonstrated through identification and quantitation of two strains of E. coli, resistant and nonresistant due to β-lactamase cefotaximase genes. Finally, the combined immunoassays were compared against culture using remnant deidentified patient urine samples. The sensitivities for these immunoassays were 83, 95, and 92% for the prediction of S. aureus, P. aeruginosa, and E. coli or K. pneumoniae positive culture, respectively, while specificities were 85, 92, and 97%. The diagnostic platform presented here with fluidics and combined immunoassays allows for pathogen isolation within 5 min and identification in as little as 15 min to 1 h, to help guide the decision for additional testing, optimally only on positive samples, such as multiplexed or resistance gene assays (6 h).
Collapse
Affiliation(s)
- Michael Pugia
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - Tiyash Bose
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - Marco Tjioe
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - Dylan Frabutt
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - Zane Baird
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - Zehui Cao
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - Anna Vorsilak
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - Ian McLuckey
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - M Regina Barron
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, LD326, Indianapolis, Indiana 46202, United States
| | - Monica Barron
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, LD326, Indianapolis, Indiana 46202, United States
| | - Gerald Denys
- Division of Clinical Microbiology, Department of Pathology and Laboratory Medicine, IU Health Pathology Laboratory, Indiana University School of Medicine, 350 W. 11th Street, Room 6027B, Indianapolis, Indiana 46202, United States
| | - Jessica Carpenter
- Division of Clinical Microbiology, Department of Pathology and Laboratory Medicine, IU Health Pathology Laboratory, Indiana University School of Medicine, 350 W. 11th Street, Room 6027B, Indianapolis, Indiana 46202, United States
| | - Amitava Das
- Indiana Center for Regenerative Medicine and Engineering (ICRME), IU Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, 975 W. Walnut Street, Suite #444, Indianapolis, Indiana 46202,United States
| | - Karamjeet Kaur
- Indiana Center for Regenerative Medicine and Engineering (ICRME), IU Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, 975 W. Walnut Street, Suite #444, Indianapolis, Indiana 46202,United States
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering (ICRME), IU Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, 975 W. Walnut Street, Suite #444, Indianapolis, Indiana 46202,United States
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering (ICRME), IU Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, 975 W. Walnut Street, Suite #444, Indianapolis, Indiana 46202,United States
| | - Frédérique Deiss
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, LD326, Indianapolis, Indiana 46202, United States
| |
Collapse
|
43
|
Arato V, Raso MM, Gasperini G, Berlanda Scorza F, Micoli F. Prophylaxis and Treatment against Klebsiella pneumoniae: Current Insights on This Emerging Anti-Microbial Resistant Global Threat. Int J Mol Sci 2021; 22:4042. [PMID: 33919847 PMCID: PMC8070759 DOI: 10.3390/ijms22084042] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Klebsiella pneumoniae (Kp) is an opportunistic pathogen and the leading cause of healthcare-associated infections, mostly affecting subjects with compromised immune systems or suffering from concurrent bacterial infections. However, the dramatic increase in hypervirulent strains and the emergence of new multidrug-resistant clones resulted in Kp occurrence among previously healthy people and in increased morbidity and mortality, including neonatal sepsis and death across low- and middle-income countries. As a consequence, carbapenem-resistant and extended spectrum β-lactamase-producing Kp have been prioritized as a critical anti-microbial resistance threat by the World Health Organization and this has renewed the interest of the scientific community in developing a vaccine as well as treatments alternative to the now ineffective antibiotics. Capsule polysaccharide is the most important virulence factor of Kp and plays major roles in the pathogenesis but its high variability (more than 100 different types have been reported) makes the identification of a universal treatment or prevention strategy very challenging. However, less variable virulence factors such as the O-Antigen, outer membrane proteins as fimbriae and siderophores might also be key players in the fight against Kp infections. Here, we review elements of the current status of the epidemiology and the molecular pathogenesis of Kp and explore specific bacterial antigens as potential targets for both prophylactic and therapeutic solutions.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy; (V.A.); (M.M.R.); (G.G.); (F.B.S.)
| |
Collapse
|
44
|
Cassotta A, Goldstein JD, Durini G, Jarrossay D, Baggi Menozzi F, Venditti M, Russo A, Falcone M, Lanzavecchia A, Gagliardi MC, Latorre D, Sallusto F. Broadly reactive human CD4 + T cells against Enterobacteriaceae are found in the naïve repertoire and are clonally expanded in the memory repertoire. Eur J Immunol 2021; 51:648-661. [PMID: 33226131 PMCID: PMC7986685 DOI: 10.1002/eji.202048630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/15/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
Enterobacteriaceae are a large family of Gram-negative bacteria that includes both commensals and opportunistic pathogens. The latter can cause severe nosocomial infections, with outbreaks of multi-antibiotics resistant strains, thus being a major public health threat. In this study, we report that Enterobacteriaceae-reactive memory Th cells were highly enriched in a CCR6+ CXCR3+ Th1*/17 cell subset and produced IFN-γ, IL-17A, and IL-22. This T cell subset was severely reduced in septic patients with K. pneumoniae bloodstream infection who also selectively lacked circulating K. pneumonie-reactive T cells. By combining heterologous antigenic stimulation, single cell cloning and TCR Vβ sequencing, we demonstrate that a large fraction of memory Th cell clones was broadly cross-reactive to several Enterobacteriaceae species. These cross-reactive Th cell clones were expanded in vivo and a large fraction of them recognized the conserved outer membrane protein A antigen. Interestingly, Enterobacteriaceae broadly cross-reactive T cells were also prominent among in vitro primed naïve T cells. Collectively, these data point to the existence of immunodominant T cell epitopes shared among different Enterobacteriaceae species and targeted by cross-reactive T cells that are readily found in the pre-immune repertoire and are clonally expanded in the memory repertoire.
Collapse
Affiliation(s)
- Antonino Cassotta
- Institute for Research in BiomedicineUniversità della Svizzera italianaBellinzonaSwitzerland
- Institute of MicrobiologyETH ZurichSwitzerland
| | - Jérémie D. Goldstein
- Institute for Research in BiomedicineUniversità della Svizzera italianaBellinzonaSwitzerland
| | - Greta Durini
- Institute for Research in BiomedicineUniversità della Svizzera italianaBellinzonaSwitzerland
| | - David Jarrossay
- Institute for Research in BiomedicineUniversità della Svizzera italianaBellinzonaSwitzerland
| | | | - Mario Venditti
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Alessandro Russo
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Marco Falcone
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Antonio Lanzavecchia
- Institute for Research in BiomedicineUniversità della Svizzera italianaBellinzonaSwitzerland
| | | | - Daniela Latorre
- Institute for Research in BiomedicineUniversità della Svizzera italianaBellinzonaSwitzerland
- Institute of MicrobiologyETH ZurichSwitzerland
| | - Federica Sallusto
- Institute for Research in BiomedicineUniversità della Svizzera italianaBellinzonaSwitzerland
- Institute of MicrobiologyETH ZurichSwitzerland
| |
Collapse
|
45
|
Karvouniaris M, Pontikis K, Nitsotolis T, Poulakou G. New perspectives in the antibiotic treatment of mechanically ventilated patients with infections from Gram-negatives. Expert Rev Anti Infect Ther 2020; 19:825-844. [PMID: 33270485 DOI: 10.1080/14787210.2021.1859369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Ventilator-associated pneumonia (VAP) is a common and potentially fatal complication of mechanical ventilation that is often caused by multidrug-resistant (MDR) Gram-negative bacteria (GNB). Despite the repurposing of older treatments and the novel antimicrobials, many resistance mechanisms cannot be confronted, and novel therapies are needed.Areas covered: We searched the literature for keywords regarding the treatment of GNB infections in mechanically ventilated patients. This narrative review presents new data on antibiotics and non-antibiotic approaches focusing on Phase 3 trials against clinically significant GNB that cause VAP.Expert opinion: Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam stand out as new options for infections by Klebsiella pneumoniae carbapenemase-producing bacteria, whereas ceftolozane-tazobactam adds therapeutic flexibility in Pseudomonas aeruginosa infections with multiple resistance mechanisms. Ceftazidime-avibactam and ceftolozane-tazobactam have relevant literature. Aztreonam-avibactam holds promise for the treatment of infections by metallo-β-lactamase (MBL)-producing organisms. Recently approved cefiderocol possesses an extended antibacterial spectrum, including KPC- and MBL-producers. However, recently published data have toned down optimism about treating VAP caused by carbapenem-resistant Acinetobacter baumannii. For the latter, eravacycline may provide additional hope, pending pertinent data. Non-antibiotic treatments currently being considered as adjunct therapeutic approaches are welcome. Nevertheless, they will hopefully substitute current antimicrobials in the future.
Collapse
Affiliation(s)
- Marios Karvouniaris
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Konstantinos Pontikis
- ICU First Department of Respiratory Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Thomas Nitsotolis
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Garyphallia Poulakou
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| |
Collapse
|
46
|
Graney PL, Lai K, Post S, Brito I, Cyster J, Singh A. Organoid Polymer Functionality and Mode of Klebsiella Pneumoniae Membrane Antigen Presentation Regulates Ex Vivo Germinal Center Epigenetics in Young and Aged B Cells. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2001232. [PMID: 33692664 PMCID: PMC7939142 DOI: 10.1002/adfm.202001232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Antibiotic-resistant bacteria are a major global health threat that continues to rise due to a lack of effective vaccines. Of concern are Klebsiella pneumoniae that fail to induce in vivo germinal center B cell responses, which facilitate antibody production to fight infection. Immunotherapies using antibodies targeting antibiotic-resistant bacteria are emerging as promising alternatives, however, they cannot be efficiently derived ex vivo, necessitating the need for immune technologies to develop therapeutics. Here, PEG-based immune organoids were developed to elucidate the effects of polymer end-point chemistry, integrin ligands, and mode of K. pneumoniae antigen presentation on germinal center-like B cell phenotype and epigenetics, to better define the lymph node microenvironment factors regulating ex vivo germinal center dynamics. Notably, PEG vinyl sulfone or acrylate failed to sustain primary immune cells, but functionalization with maleimide (PEG-4MAL) led to B cell expansion and germinal center-like induction. RNA sequencing analysis of lymph node stromal and germinal center B cells showed niche associated heterogeneity of integrin-related genes. Incorporation of niche-mimicking peptides revealed that collagen-1 promoted germinal center-like dynamics and epigenetics. PEG-4MAL organoids elucidated the impact of K. pneumoniae outer membrane-embedded protein antigen versus soluble antigen presentation on germinal centers and preserved the response across young and aged mice.
Collapse
Affiliation(s)
- Pamela L. Graney
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY
| | - Kristine Lai
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY
| | - Sarah Post
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Biological and Biomedical Sciences, Cornell University, Ithaca, NY
| | - Ilana Brito
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY
| | - Jason Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Ankur Singh
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA
- Corresponding author:
| |
Collapse
|
47
|
The Role of IgG Subclass in Antibody-Mediated Protection against Carbapenem-Resistant Klebsiella pneumoniae. mBio 2020; 11:mBio.02059-20. [PMID: 32900809 PMCID: PMC7482069 DOI: 10.1128/mbio.02059-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae is an urgent public health threat that causes life-threatening infections in immunocompromised hosts. Its resistance to nearly all antibiotics necessitates novel strategies to treat it, including the use of monoclonal antibodies. Monoclonal antibodies are emerging as important adjuncts to traditional pharmaceuticals, and studying how they protect against specific bacteria such as Klebsiella pneumoniae is crucial to their development as effective therapies. Antibody subclass is often overlooked but is a major factor in how an antibody interacts with other mediators of immunity. This paper is the first to examine how the subclass of anticapsular monoclonal antibodies can affect efficacy against CR-Kp. Additionally, this work sheds light on the viability of monoclonal antibody therapy in neutropenic patients, who are most vulnerable to CR-Kp infection. Monoclonal antibodies (MAbs) have the potential to assist in the battle against multidrug-resistant bacteria such as carbapenem-resistant Klebsiella pneumoniae (CR-Kp). However, the characteristics by which these antibodies (Abs) function, such as the role of antibody subclass, must be determined before such modalities can be carried from the bench to the bedside. We performed a subclass switch on anticapsular monoclonal murine IgG3 (mIgG3) hybridomas and identified and purified a murine IgG1 (mIgG1) hybridoma line through sib selection. We then compared the ability of the mIgG1 and mIgG3 antibodies to control CR-Kp sequence type 258 (ST258) infection both in vitro and in vivo. We found by enzyme-limited immunosorbent assay (ELISA) and flow cytometry that mIgG3 has superior binding to the CR-Kp capsular polysaccharide (CPS) and superior agglutinating ability compared to mIgG1. The mIgG3 also, predictably, had better complement-mediated serum bactericidal activity than the mIgG1 and also promoted neutrophil-mediated killing at concentrations lower than that of the mIgG1. In contrast, the mIgG1 had marginally better activity in improving macrophage-mediated phagocytosis. Comparing their activities in a pulmonary infection model with wild-type as well as neutropenic mice, both antibodies reduced organ burden in a nonlethal challenge, regardless of neutrophil status, with mIgG1 having the highest overall burden reduction in both scenarios. However, at a lethal inoculum, both antibodies showed reduced efficacy in neutropenic mice, with mIgG3 retaining the most activity. These findings suggest the viability of monoclonal Ab adjunctive therapy in neutropenic patients that cannot mount their own immune response, while also providing some insight into the relative contributions of immune mediators in CR-Kp protection.
Collapse
|
48
|
Choi M, Hegerle N, Nkeze J, Sen S, Jamindar S, Nasrin S, Sen S, Permala-Booth J, Sinclair J, Tapia MD, Johnson JK, Mamadou S, Thaden JT, Fowler VG, Aguilar A, Terán E, Decre D, Morel F, Krogfelt KA, Brauner A, Protonotariou E, Christaki E, Shindo Y, Lin YT, Kwa AL, Shakoor S, Singh-Moodley A, Perovic O, Jacobs J, Lunguya O, Simon R, Cross AS, Tennant SM. The Diversity of Lipopolysaccharide (O) and Capsular Polysaccharide (K) Antigens of Invasive Klebsiella pneumoniae in a Multi-Country Collection. Front Microbiol 2020; 11:1249. [PMID: 32595624 PMCID: PMC7303279 DOI: 10.3389/fmicb.2020.01249] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Klebsiella pneumoniae is a common cause of sepsis and is particularly associated with healthcare-associated infections. New strategies are needed to prevent or treat infections due to the emergence of multi-drug resistant K. pneumoniae. The goal of this study was to determine the diversity and distribution of O (lipopolysaccharide) and K (capsular polysaccharide) antigens on a large (>500) global collection of K. pneumoniae strains isolated from blood to inform vaccine development efforts. A total of 645 K. pneumoniae isolates were collected from the blood of patients in 13 countries during 2005-2017. Antibiotic susceptibility was determined using the Kirby-Bauer disk diffusion method. O antigen types including the presence of modified O galactan types were determined by PCR. K types were determined by multiplex PCR and wzi capsular typing. Sequence types of isolates were determined by multilocus sequence typing (MLST) targeting seven housekeeping genes. Among 591 isolates tested for antimicrobial resistance, we observed that 19.3% of isolates were non-susceptible to carbapenems and 62.1% of isolates were multidrug resistant (from as low as 16% in Sweden to 94% in Pakistan). Among 645 isolates, four serotypes, O1, O2, O3, and O5, accounted for 90.1% of K. pneumoniae strains. Serotype O1 was associated with multidrug resistance. Fifty percent of 199 tested O1 and O2 strains were gmlABC-positive, indicating the presence of the modified polysaccharide subunit D-galactan III. The most common K type was K2 by both multiplex PCR and wzi capsular typing. Of 39 strains tested by MLST, 36 strains were assigned to 26 known sequence types of which ST14, ST25, and ST258 were the most common. Given the limited number of O antigen types, diverse K antigen types and the high multidrug resistance, we believe that an O antigen-based vaccine would offer an excellent prophylactic strategy to prevent K. pneumoniae invasive infection.
Collapse
Affiliation(s)
- Myeongjin Choi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nicolas Hegerle
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joseph Nkeze
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shaichi Sen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sanchita Jamindar
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shamima Nasrin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sunil Sen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jasnehta Permala-Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James Sinclair
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Milagritos D Tapia
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - J Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sylla Mamadou
- Centre pour le Développement des Vaccins, Bamako, Mali
| | - Joshua T Thaden
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, United States
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC, United States.,Duke Clinical Research Institute, Durham, NC, United States
| | - Ana Aguilar
- Colegio de Ciencias de la Salud e Instituto de Microbiologia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Enrique Terán
- Colegio de Ciencias de la Salud e Instituto de Microbiologia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Dominique Decre
- Département de Bactériologie, Centre d'Immunologie et des Maladies Infectieuses-Paris, Cimi-Paris, INSERM U1135, AP-HP, Sorbonne Université, Hôpitaux Universitaires Est Parisien, Paris, France
| | - Florence Morel
- Département de Bactériologie, Centre d'Immunologie et des Maladies Infectieuses-Paris, Cimi-Paris, INSERM U1135, AP-HP, Sorbonne Université, Hôpitaux Universitaires Est Parisien, Paris, France
| | | | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Eirini Christaki
- Department of Medicine, AHEPA University Hospital, Thessaloniki, Greece.,Medical School, University of Cyprus, Nicosia, Cyprus
| | - Yuichiro Shindo
- Department of Respiratory Medicine, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Andrea L Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.,Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Sadia Shakoor
- Departments of Pathology and Pediatrics, Aga Khan University, Karachi, Pakistan
| | - Ashika Singh-Moodley
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Johannesburg, South Africa
| | - Olga Perovic
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Johannesburg, South Africa
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Octavie Lunguya
- Department of Clinical Microbiology and Microbiology, National Institute for Biomedical Research, University Hospital of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Raphael Simon
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alan S Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
49
|
Iwanaga N, Sandquist I, Wanek A, McCombs J, Song K, Kolls JK. Host immunology and rational immunotherapy for carbapenem-resistant Klebsiella pneumoniae infection. JCI Insight 2020; 5:135591. [PMID: 32213713 PMCID: PMC7205435 DOI: 10.1172/jci.insight.135591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/18/2020] [Indexed: 01/07/2023] Open
Abstract
Infections due to carbapenem-resistant Klebsiella pneumoniae have emerged as a global threat due to its widespread antimicrobial resistance. Transplant recipients and patients with hematologic malignancies have high mortality rate, suggesting host factors in susceptibility. We developed a model of pulmonary infection using ST258 strain C4, KPC-2 clone, which are predominant K. pneumoniae carbapenemase-producing (KPC-producing) bacteria, and demonstrated that Rag2-/- Il2rg-/- mice - but not WT C57BL/6 or Rag2-/- mice - were susceptible to this opportunistic infection. Using single cell RNA sequencing in infected Rag2-/- mice, we identified distinct clusters of Ifng+ NK cells and Il17a+, Il22+, and inducible T cell costimulatory molecule-positive (ICOS+) group 3 innate lymphoid cells (ILCs) that were critical for host resistance. As solid organ transplantation is a risk factor, we generated a more clinically relevant model using FK506 in WT C57BL/6 mice. We further demonstrated that immunotherapy with recombinant IL-22 treatment ameliorated the ST258 pulmonary infection in both FK506-treated WT mice and Rag2-/- Il2rg-/- mice via hepatic IL-22ra1 signaling. These data support the development of host-directed immunotherapy as an adjunct treatment to new antibiotics.
Collapse
|
50
|
Twentyman J, Morffy Smith C, Nims JS, Dahler AA, Rosen DA. A murine model demonstrates capsule-independent adaptive immune protection in survivors of Klebsiella pneumoniae respiratory tract infection. Dis Model Mech 2020; 13:13/3/dmm043240. [PMID: 32298236 PMCID: PMC7104859 DOI: 10.1242/dmm.043240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/20/2020] [Indexed: 01/09/2023] Open
Abstract
Klebsiella pneumoniae represents a growing clinical threat, given its rapid development of antibiotic resistance, necessitating new therapeutic strategies. Existing live-infection models feature high mortality rates, limiting their utility in the study of natural adaptive immune response to this pathogen. We developed a preclinical model of pneumonia with low overall mortality, in which previously exposed mice are protected from subsequent respiratory tract challenge with K. pneumoniae Histologic analyses of infected murine lungs demonstrate lymphocytic aggregates surrounding vasculature and larger airways. Initial exposure in RAG1 knockout mice (lacking functional B and T cells) failed to confer protection against subsequent K. pneumoniae challenge. While administration of isolated K. pneumoniae capsule was sufficient to provide protection, we also found that initial inoculation with K. pneumoniae mutants lacking capsule (Δcps), O-antigen (ΔwecA) or both conferred protection from subsequent wild-type infection and elicited K. pneumoniae-specific antibody responses, indicating that non-capsular antigens may also elicit protective immunity. Experiments in this model will inform future development of multivalent vaccines to prevent invasive K. pneumoniae infections.
Collapse
Affiliation(s)
- Joy Twentyman
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Catherine Morffy Smith
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Julia S Nims
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Aubree A Dahler
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David A Rosen
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St Louis, MO 63110, USA .,Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|