1
|
Schubert Y, Luber S, Marzari N, Linscott E. Predicting electronic screening for fast Koopmans spectral functional calculations. NPJ COMPUTATIONAL MATERIALS 2024; 10:299. [PMID: 39712949 PMCID: PMC11659161 DOI: 10.1038/s41524-024-01484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
Koopmans spectral functionals are a powerful extension of Kohn-Sham density-functional theory (DFT) that enables the prediction of spectral properties with state-of-the-art accuracy. The success of these functionals relies on capturing the effects of electronic screening through scalar, orbital-dependent parameters. These parameters have to be computed for every calculation, making Koopmans spectral functionals more expensive than their DFT counterparts. In this work, we present a machine-learning model that-with minimal training-can predict these screening parameters directly from orbital densities calculated at the DFT level. We show in two prototypical use cases that using the screening parameters predicted by this model, instead of those calculated from linear response, leads to orbital energies that differ by less than 20 meV on average. Since this approach dramatically reduces run times with minimal loss of accuracy, it will enable the application of Koopmans spectral functionals to classes of problems that previously would have been prohibitively expensive, such as the prediction of temperature-dependent spectral properties. More broadly, this work demonstrates that measuring violations of piecewise linearity (i.e., curvature in total energies with respect to occupancies) can be done efficiently by combining frozen-orbital approximations and machine learning.
Collapse
Affiliation(s)
- Yannick Schubert
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Nicola Marzari
- Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Center for Scientific Computing, Theory and Data, Paul Scherrer Institute, 5352 Villigen PSI, Switzerland
| | - Edward Linscott
- Center for Scientific Computing, Theory and Data, Paul Scherrer Institute, 5352 Villigen PSI, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Paul Scherrer Institute, 5352 Villigen PSI, Switzerland
| |
Collapse
|
2
|
Flór M, Wilkins DM, de la Puente M, Laage D, Cassone G, Hassanali A, Roke S. Dissecting the hydrogen bond network of water: Charge transfer and nuclear quantum effects. Science 2024; 386:eads4369. [PMID: 39446897 DOI: 10.1126/science.ads4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
The molecular structure of water is dynamic, with intermolecular hydrogen (H) bond interactions being modified by both electronic charge transfer and nuclear quantum effects (NQEs). Electronic charge transfer and NQEs potentially change under acidic or basic conditions, but such details have not been measured. In this work, we developed correlated vibrational spectroscopy, a symmetry-based method that separates interacting from noninteracting molecules in self- and cross-correlation spectra, giving access to previously inaccessible information. We found that hydroxide (OH-) donated ~8% more negative charge to the H bond network of water, and hydronium (H3O+) accepted ~4% less negative charge from the H bond network of water. Deuterium oxide (D2O) had ~9% more H bonds compared with water (H2O), and acidic solutions displayed more dominant NQEs than basic ones.
Collapse
Affiliation(s)
- Mischa Flór
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David M Wilkins
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Miguel de la Puente
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Damien Laage
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Giuseppe Cassone
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), Messina, Italy
| | - Ali Hassanali
- The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
3
|
Martins-Costa MTC, Ruiz-López MF. The Effect of Electric Fields on Oxidization Processes at the Air-Water Interface. Angew Chem Int Ed Engl 2024:e202418593. [PMID: 39601791 DOI: 10.1002/anie.202418593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
At the air-water interface, many reactions are accelerated, sometimes by several orders of magnitude. This phenomenon has proved to be particularly important in water microdroplets, where the spontaneous oxidation of many species stable in bulk has been experimentally demonstrated. Different theories have been proposed to explain this finding, but it is currently believed that the role of interfacial electric fields is key. In this work, we have carried out a quantum chemistry study aimed at shedding some light on this question. We have studied two prototypical processes in which a hydroxide anion transfers its excess electron to either the water environment or a dioxygen molecule. To model the interface, we use a cluster of 21 water molecules immersed in an electric field, and we examine the energetics of the studied reactions as a function of field magnitude. Our results reveal that electric fields close to those estimated for the neat air-water interface (∼0.15 V ⋅ Å-1) have a moderate effect on the reaction energetics and that much stronger fields (>1 V ⋅ Å-1) are required to get spontaneous electron transfer. Therefore, the study suggests that additional factors such as an excess charge in microdroplets need to be considered for explaining the experimental observations.
Collapse
Affiliation(s)
- Marilia T C Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506, Vandoeuvre-les-Nancy, France
| | - Manuel F Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506, Vandoeuvre-les-Nancy, France
| |
Collapse
|
4
|
Palos E, Bull-Vulpe EF, Zhu X, Agnew H, Gupta S, Saha S, Paesani F. Current Status of the MB-pol Data-Driven Many-Body Potential for Predictive Simulations of Water Across Different Phases. J Chem Theory Comput 2024; 20:9269-9289. [PMID: 39401055 DOI: 10.1021/acs.jctc.4c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Developing a molecular-level understanding of the properties of water is central to numerous scientific and technological applications. However, accurately modeling water through computer simulations has been a significant challenge due to the complex nature of the hydrogen-bonding network that water molecules form under different thermodynamic conditions. This complexity has led to over five decades of research and many modeling attempts. The introduction of the MB-pol data-driven many-body potential energy function marked a significant advancement toward a universal molecular model capable of predicting the structural, thermodynamic, dynamical, and spectroscopic properties of water across all phases. By integrating physics-based and data-driven (i.e., machine-learned) components, which correctly capture the delicate balance among different many-body interactions, MB-pol achieves chemical and spectroscopic accuracy, enabling realistic molecular simulations of water, from gas-phase clusters to liquid water and ice. In this review, we present a comprehensive overview of the data-driven many-body formalism adopted by MB-pol, highlight the main results and predictions made from computer simulations with MB-pol to date, and discuss the prospects for future extensions to data-driven many-body potentials of generic and reactive molecular systems.
Collapse
Affiliation(s)
- Etienne Palos
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Ethan F Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Xuanyu Zhu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Henry Agnew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Shreya Gupta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Suman Saha
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- Halicioǧlu Data Science Institute, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Janicki MJ, Szabla R. Chalcogen Bonds Enable Efficient Photoreduction of Sulfur-Containing Heterocycles. Angew Chem Int Ed Engl 2024:e202413498. [PMID: 39363735 DOI: 10.1002/anie.202413498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Chalcogen bonding interactions have attracted significant attention in a broad chemistry community, with a particular focus on their ability to stabilise the key transition states in various organic synthetic routes. In this work, we demonstrate that they can also be harnessed in selective photoredox reactions, which cannot be otherwise achieved with alternative approaches to photoreduction. We demonstrate this concept through the photoreduction of the sulfur-containing DNA nucleoside precursor thioanhydrouridine to 2'-deoxy-thiouridine, revealing the previously unrecognized role of bisulfide in this process. Based on quantum chemical simulations, we identify a stable chalcogen-bonding complex of the hydrosulfide anion and thionhydrouridine (HS-⋅⋅⋅S contacts), which enables directional photoinduced electron transfer, resulting in the formation of non-canonical DNA nucleoside. We also disprove the possibility that photoreduction of thioanhydronucleosides could be initiated by hydrated electrons generated from irradiated bisulfide anions which do not interact with the chromophore. Finally, we show that selective photoreduction mediated by chalcogen bonds can only occur for chromophores, which exhibit sufficiently long excited-state lifetimes in the locally-excited states to undergo transition to the productive charge transfer state. These findings can be further used in the design of similar photoredox reactions which can employ the potential of chalcogen bonding interactions.
Collapse
Affiliation(s)
- Mikołaj J Janicki
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370, Wrocław, Poland
| | - Rafał Szabla
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370, Wrocław, Poland
| |
Collapse
|
6
|
Geuna F, Pensotti A, Vecchione R, Germano R. Hints of Biological Activity of Xerosydryle: Preliminary Evidence on the Early Stages of Seedling Development. Int J Mol Sci 2024; 25:8717. [PMID: 39201403 PMCID: PMC11354744 DOI: 10.3390/ijms25168717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Xerosydryle belongs to a new category of materials resulting from the interaction of water with various hydrophilic polymers. These materials can exhibit different properties depending on the kind of polymer-water interaction. Previous research confirmed the existence of a solid manifestation of water at room temperature. The thermal properties of dissolved xerosydryle in water are similar to those of biological macromolecules during denaturation but with greater stability. This study investigated the biological effect of xerosydryle on a living system for the first time, using a seed germination model. The interaction was evaluated using physiological assays such as chlorophyll shifts, potassium (re)uptake during the onset of germination and a transcriptome approach. Seeds were treated with samples of xerosydryle and distilled water. Transcriptome analysis of germinating seeds highlighted differences (up- and down-regulated genes) between seeds treated with xerosydryle and those treated with distilled water. Overall, the experiments performed indicate that xerosydryle, even at low concentrations, interferes with seedling growth in a manner similar to an osmotic modulator. This work paves the way for a more comprehensive exploration of the active biological role of xerosydryle and similar compounds on living matter and opens up speculation on the interactions at the boundaries between physics, chemistry, and biology.
Collapse
Affiliation(s)
- Filippo Geuna
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy (DISAA), University of Milan, 20133 Milan, Italy
| | - Andrea Pensotti
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Research Unit of Philosophy of Science and Human Development, Campus BioMedico University, 00128 Rome, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy;
| | - Roberto Germano
- PROMETE S.r.l., CNR Spin off, Piazzale V. Tecchio, 45, 80125 Napoli, Italy;
| |
Collapse
|
7
|
Berrens M, Kundu A, Calegari Andrade MF, Pham TA, Galli G, Donadio D. Nuclear Quantum Effects on the Electronic Structure of Water and Ice. J Phys Chem Lett 2024; 15:6818-6825. [PMID: 38916450 PMCID: PMC11229061 DOI: 10.1021/acs.jpclett.4c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
The electronic properties and optical response of ice and water are intricately shaped by their molecular structure, including the quantum mechanical nature of the hydrogen atoms. Despite numerous previous studies, a comprehensive understanding of the nuclear quantum effects (NQEs) on the electronic structure of water and ice at finite temperatures remains elusive. Here, we utilize molecular simulations that harness efficient machine-learning potentials and many-body perturbation theory to assess how NQEs impact the electronic bands of water and hexagonal ice. By comparing path-integral and classical simulations, we find that NQEs lead to a larger renormalization of the fundamental gap of ice, compared to that of water, ultimately yielding similar bandgaps in the two systems, consistent with experimental estimates. Our calculations suggest that the increased quantum mechanical delocalization of protons in ice, relative to water, is a key factor leading to the enhancement of NQEs on the electronic structure of ice.
Collapse
Affiliation(s)
- Margaret
L. Berrens
- Department
of Chemistry, University of California Davis, One Shields Ave.. Davis, California 95616, United States
| | - Arpan Kundu
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Marcos F. Calegari Andrade
- Quantum
Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
| | - Tuan Anh Pham
- Quantum
Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
| | - Giulia Galli
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Materials
Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Davide Donadio
- Department
of Chemistry, University of California Davis, One Shields Ave.. Davis, California 95616, United States
| |
Collapse
|
8
|
Chen Z, Li Z, Xie J, Zhang P, Tong T, Wang Y, Hu J, Wörner HJ, Tian SX. Direct Observation of Anionic Yields from the Liquid-Vapor Interface by Electron Irradiation. J Phys Chem Lett 2024; 15:5607-5611. [PMID: 38758196 DOI: 10.1021/acs.jpclett.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Dissociative electron attachment (DEA) is widely believed to play a high-profile role in ionizing radiation damages of bioorganic molecules, and its fundamentals are mainly learned from the gas-phase studies. However, the DEA process in aqueous solution is still in debate. Here we provide experimental evidence about the DEA processes of liquid methanol by using electron-impact-time-delayed mass spectrometry. In contrast to the gas- and solid-phase DEAs, methoxide ion CH3O- is the predominant product from the liquid interface. Furthermore, this anion can be produced with both the primary low-energy electrons and the inelastically scattered and secondary low-energy electrons. On the contrary, the primary low-energy electrons in the liquid bulk are more likely to be solvated, rather than directly participating in the DEA process. Our study provides new insights into radiation chemistry, particularly of bioorganic relevance.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ziyuan Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jingchen Xie
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Pengju Zhang
- Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Tiantian Tong
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yue Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jie Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hans Jakob Wörner
- Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Shan Xi Tian
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
9
|
Wang X, Krause P, Kirschbaum T, Palczynski K, Dzubiella J, Bande A. Photo-excited charge transfer from adamantane to electronic bound states in water. Phys Chem Chem Phys 2024; 26:8158-8176. [PMID: 38380443 DOI: 10.1039/d3cp04602h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Aqueous nanodiamonds illuminated by UV light produce free solvated electrons, which may drive high-energy reduction reactions in water. However, the influence of water conformations on the excited-state electron-transfer mechanism are still under debate. In this work, we offer a theoretical study of charge-transfer states in adamantane-water structures obtained by linear-response time-dependent density-functional theory. Small water clusters with broken hydrogen bonds are found to efficiently bind the electron from adamantane. A distinction is made with respect to the nature of the water clusters: some bind the electron in a water cavity, others along a strong permanent total dipole. These two types of bound states are more strongly binding, the higher their electron affinity and their positive electrostatic potential, the latter being dominated by the energy of the lowest unoccupied molecular orbital of the isolated water clusters. Structural sampling in a thermal equilibrium at room temperature via molecular dynamics snapshots confirms under which conditions the underlying waters clusters can occur and verifies that broken hydrogen bonds in the water network close to adamantane can create traps for the solvated electron.
Collapse
Affiliation(s)
- Xiangfei Wang
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Pascal Krause
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Thorren Kirschbaum
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Institute of Mathematics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Karol Palczynski
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Joachim Dzubiella
- Applied Theoretical Physics - Computational Physics, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, 79104 Freiburg, Germany.
| | - Annika Bande
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167 Hannover, Germany
| |
Collapse
|
10
|
Tal A, Bischoff T, Pasquarello A. Absolute energy levels of liquid water from many-body perturbation theory with effective vertex corrections. Proc Natl Acad Sci U S A 2024; 121:e2311472121. [PMID: 38427604 PMCID: PMC10927489 DOI: 10.1073/pnas.2311472121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/31/2024] [Indexed: 03/03/2024] Open
Abstract
We demonstrate the importance of addressing the Γ vertex and thus going beyond the GW approximation for achieving the energy levels of liquid water in many-body perturbation theory. In particular, we consider an effective vertex function in both the polarizability and the self-energy, which does not produce any computational overhead compared with the GW approximation. We yield the band gap, the ionization potential, and the electron affinity in good agreement with experiment and with a hybrid functional description. The achieved electronic structure and dielectric screening further lead to a good description of the optical absorption spectrum, as obtained through the solution of the Bethe-Salpeter equation. In particular, the experimental peak position of the exciton is accurately reproduced.
Collapse
Affiliation(s)
- Alexey Tal
- Chaire de Simulation à l’Echelle Atomique, Ecole Polytechnique Fédérale de Lausanne, LausanneCH-1015, Switzerland
| | - Thomas Bischoff
- Chaire de Simulation à l’Echelle Atomique, Ecole Polytechnique Fédérale de Lausanne, LausanneCH-1015, Switzerland
| | - Alfredo Pasquarello
- Chaire de Simulation à l’Echelle Atomique, Ecole Polytechnique Fédérale de Lausanne, LausanneCH-1015, Switzerland
| |
Collapse
|
11
|
Feldman YMY, Hirshberg B. Quadratic scaling bosonic path integral molecular dynamics. J Chem Phys 2023; 159:154107. [PMID: 37855315 DOI: 10.1063/5.0173749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
Bosonic exchange symmetry leads to fascinating quantum phenomena, from exciton condensation in quantum materials to the superfluidity of liquid 4He. Unfortunately, path integral molecular dynamics (PIMD) simulations of bosons are computationally prohibitive beyond ∼100 particles, due to a cubic scaling with the system size. We present an algorithm that reduces the complexity from cubic to quadratic, allowing the first simulations of thousands of bosons using PIMD. Our method is orders of magnitude faster, with a speedup that scales linearly with the number of particles and the number of imaginary time slices (beads). Simulations that would have otherwise taken decades can now be done in days. In practice, the new algorithm eliminates most of the added computational cost of including bosonic exchange effects, making them almost as accessible as PIMD simulations of distinguishable particles.
Collapse
Affiliation(s)
- Yotam M Y Feldman
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- The Ratner Center for Single Molecule Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Barak Hirshberg
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- The Ratner Center for Single Molecule Science, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Pederson MR, Withanage KPK, Hooshmand Z, Johnson AI, Baruah T, Yamamoto Y, Zope RR, Kao DY, Shukla PB, Johnson JK, Peralta JE, Jackson KA. Use of FLOSIC for understanding anion-solvent interactions. J Chem Phys 2023; 159:154112. [PMID: 37861122 DOI: 10.1063/5.0172300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
An Achille's heel of lower-rung density-functional approximations is that the highest-occupied-molecular-orbital energy levels of anions, known to be stable or metastable in nature, are often found to be positive in the worst case or above the lowest-unoccupied-molecular-orbital levels on neighboring complexes that are not expected to accept charge. A trianionic example, [Cr(C2O4)3]3-, is of interest for constraining models linking Cr isotope ratios in rock samples to oxygen levels in Earth's atmosphere over geological timescales. Here we describe how crowd sourcing can be used to carry out self-consistent Fermi-Löwdin-Orbital-Self-Interaction corrected calculations (FLOSIC) on this trianion in solution. The calculations give a physically correct description of the electronic structure of the trianion and water. In contrast, uncorrected local density approximation (LDA) calculations result in approximately half of the anion charge being transferred to the water bath due to the effects of self-interaction error. Use of group-theory and the intrinsic sparsity of the theory enables calculations roughly 125 times faster than our initial implementation in the large N limit reached here. By integrating charge density densities and Coulomb potentials over regions of space and analyzing core-level shifts of the Cr and O atoms as a function of position and functional, we unambiguously show that FLOSIC, relative to LDA, reverses incorrect solute-solvent charge transfer in the trianion-water complex. In comparison to other functionals investigated herein, including Hartree-Fock and the local density approximation, the FLOSIC Cr 1s eigenvalues provide the best agreement with experimental core ionization energies.
Collapse
Affiliation(s)
- Mark R Pederson
- Physics Department, University of Texas at El Paso, El Paso, Texas 79968, USA
| | | | - Zahra Hooshmand
- Physics Department, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Alex I Johnson
- Physics Department, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Physics Department, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Yoh Yamamoto
- Physics Department, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Rajendra R Zope
- Physics Department, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Der-You Kao
- NASA Postdoctoral Program, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - Priyanka B Shukla
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - J Karl Johnson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Juan E Peralta
- Physics Department, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
| | - Koblar A Jackson
- Physics Department, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
| |
Collapse
|
13
|
Mendonça BHS, de Moraes EE, Kirch A, Batista RJC, de Oliveira AB, Barbosa MC, Chacham H. Flow through Deformed Carbon Nanotubes Predicted by Rigid and Flexible Water Models. J Phys Chem B 2023; 127:8634-8643. [PMID: 37754781 DOI: 10.1021/acs.jpcb.3c02889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
In this study, using nonequilibrium molecular dynamics simulation, the flow of water in deformed carbon nanotubes is studied for two water models TIP4P/2005 and simple point charge/FH (SPC/FH). The results demonstrated a nonuniform dependence of the flow on the tube deformation and the flexibility imposed on the water molecules, leading to an unexpected increase in the flow in some cases. The effects of the tube diameter and pressure gradient are investigated to explain the abnormal flow behavior with different degrees of structural deformation.
Collapse
Affiliation(s)
- Bruno H S Mendonça
- Departamento de Física, ICEX, Universidade Federal de Minas Gerais, CP 702, Belo Horizonte 30123-970, MG, Brazil
| | - Elizane E de Moraes
- Instituto de Física, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador 40210-340, BA, Brazil
| | - Alexsandro Kirch
- Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo 05315-970, SP, Brazil
| | - Ronaldo J C Batista
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
| | - Alan B de Oliveira
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
| | - Marcia C Barbosa
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Hélio Chacham
- Departamento de Física, ICEX, Universidade Federal de Minas Gerais, CP 702, Belo Horizonte 30123-970, MG, Brazil
| |
Collapse
|
14
|
Mato J, Willow SY, Werhahn JC, Xantheas SS. The Back Door to the Surface Hydrated Electron. J Phys Chem Lett 2023; 14:8221-8226. [PMID: 37672781 DOI: 10.1021/acs.jpclett.3c01479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
We use a Mg+ metal to extend the size regime of aqueous clusters to extrapolate to the bulk limit of the vertical detachment energy (VDE) of the solvated electron to >3,200, a value between 1 to over 2 orders of magnitude larger than the one previously measured experimentally or computed theoretically. We relate the VDE to the energy difference between the Mg+(H2O)n and Mg2+(H2O)n systems and the metal's second ionization potential. The extrapolated bulk VDEs of the localized surface electron, which moves away from the metal as n increases, are 1.89 ± 0.01 eV for semiempirical (n ∼ 3,200; PM6-D3H4) and 1.73 ± 0.03 eV (n ∼ 150; HF) and 1.83 ± 0.02 eV (n ∼ 150; MP2) for ab initio, in excellent agreement with the 1.6-1.8 eV range of experimental results. The VDEs converge from above (larger values) to the bulk limit, in a manner that is qualitatively opposite from previous studies and experiments lacking a charged metal, a fact justifying the "back door" approach to the solvated electron.
Collapse
Affiliation(s)
- Joani Mato
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS J7-10, Richland, Washington 99352, United States
| | - Soohaeng Yoo Willow
- Department of Energy Science, Sungkyunkwan University, Seobu-ro 2066, Suwon 16419, Republic of Korea
| | - Jasper C Werhahn
- Department of Physics E11, Technical University of Munich, James-Franck-Strasse, D-85748 Garching, Germany
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS J7-10, Richland, Washington 99352, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
15
|
Zhan J, Govoni M, Galli G. Nonempirical Range-Separated Hybrid Functional with Spatially Dependent Screened Exchange. J Chem Theory Comput 2023; 19:5851-5862. [PMID: 37591004 DOI: 10.1021/acs.jctc.3c00580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Electronic structure calculations based on density functional theory (DFT) have successfully predicted numerous ground-state properties of a variety of molecules and materials. However, exchange and correlation functionals currently used in the literature, including semilocal and hybrid functionals, are often inaccurate to describe the electronic properties of heterogeneous solids, especially systems composed of building blocks with large dielectric mismatch. Here, we present a dielectric-dependent range-separated hybrid functional, screened-exchange range-separated hybrid (SE-RSH), for the investigation of heterogeneous materials. We define a spatially dependent fraction of exact exchange inspired by the static Coulomb-hole and screened-exchange (COHSEX) approximation used in many-body perturbation theory, and we show that the proposed functional accurately predicts the electronic structure of several nonmetallic interfaces, three- and two-dimensional, pristine, and defective solids and nanoparticles.
Collapse
Affiliation(s)
- Jiawei Zhan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Marco Govoni
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics, Computer Science, and Mathematics, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Giulia Galli
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
16
|
Riera M, Knight C, Bull-Vulpe EF, Zhu X, Agnew H, Smith DGA, Simmonett AC, Paesani F. MBX: A many-body energy and force calculator for data-driven many-body simulations. J Chem Phys 2023; 159:054802. [PMID: 37526156 PMCID: PMC10550339 DOI: 10.1063/5.0156036] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Many-Body eXpansion (MBX) is a C++ library that implements many-body potential energy functions (PEFs) within the "many-body energy" (MB-nrg) formalism. MB-nrg PEFs integrate an underlying polarizable model with explicit machine-learned representations of many-body interactions to achieve chemical accuracy from the gas to the condensed phases. MBX can be employed either as a stand-alone package or as an energy/force engine that can be integrated with generic software for molecular dynamics and Monte Carlo simulations. MBX is parallelized internally using Open Multi-Processing and can utilize Message Passing Interface when available in interfaced molecular simulation software. MBX enables classical and quantum molecular simulations with MB-nrg PEFs, as well as hybrid simulations that combine conventional force fields and MB-nrg PEFs, for diverse systems ranging from small gas-phase clusters to aqueous solutions and molecular fluids to biomolecular systems and metal-organic frameworks.
Collapse
Affiliation(s)
- Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Christopher Knight
- Argonne National Laboratory, Computational Science Division, Lemont, Illinois 60439, USA
| | - Ethan F. Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Xuanyu Zhu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Henry Agnew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | - Andrew C. Simmonett
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
17
|
Jin S, Chen H, Yuan X, Xing D, Wang R, Zhao L, Zhang D, Gong C, Zhu C, Gao X, Chen Y, Zhang X. The Spontaneous Electron-Mediated Redox Processes on Sprayed Water Microdroplets. JACS AU 2023; 3:1563-1571. [PMID: 37388681 PMCID: PMC10301804 DOI: 10.1021/jacsau.3c00191] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023]
Abstract
Water is considered as an inert environment for the dispersion of many chemical systems. However, by simply spraying bulk water into microsized droplets, the water microdroplets have been shown to possess a large plethora of unique properties, including the ability to accelerate chemical reactions by several orders of magnitude compared to the same reactions in bulk water, and/or to trigger spontaneous reactions that cannot occur in bulk water. A high electric field (∼109 V/m) at the air-water interface of microdroplets has been postulated to be the probable cause of the unique chemistries. This high field can even oxidize electrons out of hydroxide ions or other closed-shell molecules dissolved in water, forming radicals and electrons. Subsequently, the electrons can trigger further reduction processes. In this Perspective, by showing a large number of such electron-mediated redox reactions, and by studying the kinetics of these reactions, we opine that the redox reactions on sprayed water microdroplets are essentially processes using electrons as the charge carriers. The potential impacts of the redox capability of microdroplets are also discussed in a larger context of synthetic chemistry and atmospheric chemistry.
Collapse
Affiliation(s)
- Shuihui Jin
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Huan Chen
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xu Yuan
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Dong Xing
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Ruijing Wang
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Lingling Zhao
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Dongmei Zhang
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Chu Gong
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Chenghui Zhu
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xufeng Gao
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Yeye Chen
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xinxing Zhang
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Beijing
National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
18
|
Reshetnyak I, Lorin A, Pasquarello A. Many-body screening effects in liquid water. Nat Commun 2023; 14:2705. [PMID: 37169764 PMCID: PMC10175292 DOI: 10.1038/s41467-023-38420-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
The screening arising from many-body excitations is a crucial quantity for describing absorption and inelastic X-ray scattering (IXS) of materials. Similarly, the electron screening plays a critical role in state-of-the-art approaches for determining the fundamental band gap. However, ab initio studies of the screening in liquid water have remained limited. Here, we use a combined analysis based on the Bethe-Salpeter equation and time-dependent density functional theory. We first show that absorption spectra at near-edge energies are insufficient to assess the accuracy by which the screening is described. Next, when the energy range under scrutiny is extended, we instead find that the IXS spectra are highly sensitive and allow for the selection of the optimal theoretical scheme. This leads to good agreement with experiment over a large range of transferred energies and momenta, and enables establishing the elusive fundamental band gap of liquid water at 9.3 eV.
Collapse
Affiliation(s)
- Igor Reshetnyak
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Arnaud Lorin
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Alfredo Pasquarello
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
19
|
Huang H, Xue L, Lu G, Cheng S, Bu Y. Hydrated electrons as nodes in porous clathrate hydrates. J Chem Phys 2023; 158:114504. [PMID: 36948798 DOI: 10.1063/5.0135335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
We investigate the structures of hydrated electrons (e- aq) in one of water's solid phases, namely, clathrate hydrates (CHs). Using density functional theory (DFT) calculations, DFT-based ab initio molecular dynamics (AIMD), and path-integral AIMD simulations with periodic boundary conditions, we find that the structure of the e- aq@node model is in good agreement with the experiment, suggesting that an e- aq could form a node in CHs. The node is a H2O defect in CHs that is supposed to be composed of four unsaturated hydrogen bonds. Since CHs are porous crystals that possess cavities that can accommodate small guest molecules, we expect that these guest molecules can be used to tailor the electronic structure of the e- aq@node, and it leads to experimentally observed optical absorption spectra of CHs. Our findings have a general interest and extend the knowledge of e- aq into porous aqueous systems.
Collapse
Affiliation(s)
- Haibei Huang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Lijuan Xue
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Shibo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
20
|
van der Linde C, Ončák M, Cunningham EM, Tang WK, Siu CK, Beyer MK. Surface or Internal Hydration - Does It Really Matter? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:337-354. [PMID: 36744598 PMCID: PMC9983018 DOI: 10.1021/jasms.2c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The precise location of an ion or electron, whether it is internally solvated or residing on the surface of a water cluster, remains an intriguing question. Subtle differences in the hydrogen bonding network may lead to a preference for one or the other. Here we discuss spectroscopic probes of the structure of gas-phase hydrated ions in combination with quantum chemistry, as well as H/D exchange as a means of structure elucidation. With the help of nanocalorimetry, we look for thermochemical signatures of surface vs internal solvation. Examples of strongly size-dependent reactivity are reviewed which illustrate the influence of surface vs internal solvation on unimolecular rearrangements of the cluster, as well as on the rate and product distribution of ion-molecule reactions.
Collapse
Affiliation(s)
- Christian van der Linde
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| | - Milan Ončák
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| | - Ethan M. Cunningham
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| | - Wai Kit Tang
- Institute
of Research Management and Services (IPPP), Research and Innovation
Management Complex, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Chi-Kit Siu
- Department
of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, PR China
| | - Martin K. Beyer
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| |
Collapse
|
21
|
Winter B, Thürmer S, Wilkinson I. Absolute Electronic Energetics and Quantitative Work Functions of Liquids from Photoelectron Spectroscopy. Acc Chem Res 2023; 56:77-85. [PMID: 36599420 PMCID: PMC9850918 DOI: 10.1021/acs.accounts.2c00548] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Liquid-jet photoelectron spectroscopy (LJ-PES) enabled a breakthrough in the experimental study of the electronic structure of liquid water, aqueous solutions, and volatile liquids more generally. The novelty of this technique, dating back over 25 years, lies in stabilizing a continuous, micron-diameter LJ in a vacuum environment to enable PES studies. A key quantity in PES is the most probable energy associated with vertical promotion of an electron into vacuum: the vertical ionization energy, VIE, for neutrals and cations, or vertical detachment energy, VDE, for anions. These quantities can be used to identify species, their chemical states and bonding environments, and their structural properties in solution. The ability to accurately measure VIEs and VDEs is correspondingly crucial. An associated principal challenge is the determination of these quantities with respect to well-defined energy references. Only with recently developed methods are such measurements routinely and generally viable for liquids. Practically, these methods involve the application of condensed-matter concepts to the acquisition of photoelectron (PE) spectra from liquid samples, rather than solely relying on molecular-physics treatments that have been commonly implemented since the first LJ-PES experiments. This includes explicit consideration of the traversal of electrons to and through the liquid's surface, prior to free-electron detection. Our approach to measuring VIEs and VDEs with respect to the liquid vacuum level specifically involves detecting the lowest-energy electrons emitted from the sample, which have barely enough energy to surmount the surface potential and accumulate in the low-energy tail of the liquid-phase spectrum. By applying a sufficient bias potential to the liquid sample, this low-energy spectral tail can generally be exposed, with its sharp, low-energy cutoff revealing the genuine kinetic-energy-zero in a measured spectrum, independent of any perturbing intrinsic or extrinsic potentials in the experiment. Together with a precisely known ionizing photon energy, this feature enables the straightforward determination of VIEs or VDEs, with respect to the liquid-phase vacuum level, from any PE feature of interest. Furthermore, by additionally determining solution-phase VIEs and VDEs with respect to the common equilibrated energy level in condensed matter, the Fermi level─the generally implemented reference energy in solid-state PES─solution work functions, eΦ, and liquid-vacuum surface dipole effects can be quantified. With LJs, the Fermi level can only be properly accessed by controlling unwanted surface charging and all other extrinsic potentials, which lead to energy shifts of all PE features and preclude access to accurate electronic energetics. More specifically, conditions must be engineered to minimize all undesirable potentials, while maintaining the equilibrated, intrinsic (contact) potential difference between the sample and apparatus. The establishment of these liquid-phase, accurate energy-referencing protocols importantly enables VIE and VDE determinations from near-arbitrary solutions and the quantitative distinction between bulk electronic structure and interfacial effects. We will review and exemplify these protocols for liquid water and several exemplary aqueous solutions here, with a focus on the lowest-ionization- or lowest-detachment-energy PE peaks, which importantly relate to the oxidative stabilities of aqueous-phase species.
Collapse
Affiliation(s)
- Bernd Winter
- Molecular
Physics Department, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Stephan Thürmer
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan,
| | - Iain Wilkinson
- Institute
of Electronic Structure Dynamics, Helmholtz-Zentrum
Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany,
| |
Collapse
|
22
|
Buchner F, Kirschbaum T, Venerosy A, Girard H, Arnault JC, Kiendl B, Krueger A, Larsson K, Bande A, Petit T, Merschjann C. Early dynamics of the emission of solvated electrons from nanodiamonds in water. NANOSCALE 2022; 14:17188-17195. [PMID: 36394505 PMCID: PMC9714771 DOI: 10.1039/d2nr03919b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Solvated electrons are among the most reductive species in an aqueous environment. Diamond materials have been proposed as a promising source of solvated electrons, but the underlying emission process in water remains elusive so far. Here, we show spectroscopic evidence for the emission of solvated electrons from detonation nanodiamonds upon excitation with both deep ultraviolet (225 nm) and visible (400 nm) light using ultrafast transient absorption. The crucial role of surface termination in the emission process is evidenced by comparing hydrogenated, hydroxylated and carboxylated nanodiamonds. In particular, a transient response that we attribute to solvated electrons is observed on hydrogenated nanodiamonds upon visible light excitation, while it shows a sub-ps recombination due to trap states when excited with deep ultraviolet light. The essential role of surface reconstructions on the nanodiamonds in these processes is proposed based on density functional theory calculations. These results open new perspectives for solar-driven emission of solvated electrons in an aqueous phase using nanodiamonds.
Collapse
Affiliation(s)
- Franziska Buchner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Thorren Kirschbaum
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Freie Universität Berlin, FB Mathematik & Informatik, Artificial Intelligence for the Sciences, Arnimallee 12, D-14195 Berlin, Germany
| | - Amélie Venerosy
- CEA, LIST, Diamond Sensors Laboratory, Bâtiment 451, PC 45, 91191 Gif sur Yvette Cedex, France
| | - Hugues Girard
- CEA, LIST, Diamond Sensors Laboratory, Bâtiment 451, PC 45, 91191 Gif sur Yvette Cedex, France
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif sur Yvette Cedex, France
| | - Jean-Charles Arnault
- CEA, LIST, Diamond Sensors Laboratory, Bâtiment 451, PC 45, 91191 Gif sur Yvette Cedex, France
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif sur Yvette Cedex, France
| | - Benjamin Kiendl
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Anke Krueger
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Karin Larsson
- Uppsala University, Lägerhyddsvägen 1, 751 21, Uppsala, Sweden
| | - Annika Bande
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Tristan Petit
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Christoph Merschjann
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| |
Collapse
|
23
|
Low PJ, Chu W, Nie Z, Bin Mohd Yusof MS, Prezhdo OV, Loh ZH. Observation of a transient intermediate in the ultrafast relaxation dynamics of the excess electron in strong-field-ionized liquid water. Nat Commun 2022; 13:7300. [DOI: 10.1038/s41467-022-34981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractA unified picture of the electronic relaxation dynamics of ionized liquid water has remained elusive despite decades of study. Here, we employ sub-two-cycle visible to short-wave infrared pump-probe spectroscopy and ab initio nonadiabatic molecular dynamics simulations to reveal that the excess electron injected into the conduction band (CB) of ionized liquid water undergoes sequential relaxation to the hydrated electron s ground state via an intermediate state, identified as the elusive p excited state. The measured CB and p-electron lifetimes are 0.26 ± 0.02 ps and 62 ± 10 fs, respectively. Ab initio quantum dynamics yield similar lifetimes and furthermore reveal vibrational modes that participate in the different stages of electronic relaxation, with initial relaxation within the dense CB manifold coupled to hindered translational motions whereas subsequent p-to-s relaxation facilitated by librational and even intramolecular bending modes of water. Finally, energetic considerations suggest that a hitherto unobserved trap state resides ~0.3-eV below the CB edge of liquid water. Our results provide a detailed atomistic picture of the electronic relaxation dynamics of ionized liquid water with unprecedented time resolution.
Collapse
|
24
|
Zhuang D, Riera M, Zhou R, Deary A, Paesani F. Hydration Structure of Na + and K + Ions in Solution Predicted by Data-Driven Many-Body Potentials. J Phys Chem B 2022; 126:9349-9360. [PMID: 36326071 DOI: 10.1021/acs.jpcb.2c05674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The hydration structure of Na+ and K+ ions in solution is systematically investigated using a hierarchy of molecular models that progressively include more accurate representations of many-body interactions. We found that a conventional empirical pairwise additive force field that is commonly used in biomolecular simulations is unable to reproduce the extended X-ray absorption fine structure (EXAFS) spectra for both ions. In contrast, progressive inclusion of many-body effects rigorously derived from the many-body expansion of the energy allows the MB-nrg potential energy functions (PEFs) to achieve nearly quantitative agreement with the experimental EXAFS spectra, thus enabling the development of a molecular-level picture of the hydration structure of both Na+ and K+ in solution. Since the MB-nrg PEFs have already been shown to accurately describe isomeric equilibria and vibrational spectra of small ion-water clusters in the gas phase, the present study demonstrates that the MB-nrg PEFs effectively represent the long-sought-after models able to correctly predict the properties of ionic aqueous systems from the gas to the liquid phase, which has so far remained elusive.
Collapse
Affiliation(s)
- Debbie Zhuang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Ruihan Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Alexander Deary
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California92093, United States
| |
Collapse
|
25
|
Shirani J, Farraj SA, Yuan S, Bevan KH. First-principles redox energy estimates under the condition of satisfying the general form of Koopmans’ theorem: An atomistic study of aqueous iron. J Chem Phys 2022; 157:184110. [DOI: 10.1063/5.0098476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In this work, we explore the relative accuracy to which a hybrid functional, in the context of density functional theory, may predict redox properties under the constraint of satisfying the general form of Koopmans’ theorem. Taking aqueous iron as our model system within the framework of first-principles molecular dynamics, direct comparison between computed single-particle energies and experimental ionization data is assessed by both (1) tuning the degree of hybrid exchange, to satisfy the general form of Koopmans’ theorem, and (2) ensuring the application of finite-size corrections. These finite-size corrections are benchmarked through classical molecular dynamics calculations, extended to large atomic ensembles, for which good convergence is obtained in the large supercell limit. Our first-principles findings indicate that while precise quantitative agreement with experimental ionization data cannot always be attained for solvated systems, when satisfying the general form of Koopmans’ theorem via hybrid functionals, theoretically robust estimates of single-particle redox energies are most often arrived at by employing a total energy difference approach. That is, when seeking to employ a value of exact exchange that does not satisfy the general form of Koopmans’ theorem, but some other physical metric, the single-particle energy estimate that would most closely align with the general form of Koopmans’ theorem is obtained from a total energy difference approach. In this respect, these findings provide important guidance for the more general comparison of redox energies computed via hybrid functionals with experimental data.
Collapse
Affiliation(s)
- Javad Shirani
- Division of Materials Engineering, Faculty of Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Sinan Abi Farraj
- Division of Materials Engineering, Faculty of Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Shuaishuai Yuan
- Division of Materials Engineering, Faculty of Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Kirk H. Bevan
- Division of Materials Engineering, Faculty of Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
- Centre for the Physics of Materials, Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
| |
Collapse
|
26
|
Mueller CM, Schatz GC. An Algorithmic Approach Based on Data Trees and Genetic Algorithms to Understanding Charged and Neutral Metal Nanocluster Growth. J Phys Chem A 2022; 126:5864-5872. [PMID: 35997527 DOI: 10.1021/acs.jpca.2c04645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metal nanocluster growth pathways are challenging to study due to the number of possible species involved and the branching nature of possible mechanisms. We present a data tree-based approach to mapping these reaction pathways based on structures and energies obtained from Density Functional Theory (DFT) computations and including positive, negative, and neutral clusters in a continuum solvent of water. We also develop a genetic algorithm to study the relative stability of the clusters, which we combine with the data tree method to determine the effects that favorable decomposition reactions have on the reaction pathways. Introducing data tree pruning based on the exothermicity of each reaction, and including the first and second most important paths for each cluster up to five atoms including positive, neutral, and negative clusters, is then implemented to determine the cluster growth paths. These most favorable Ag-Ag reaction pathways are in agreement with more limited prior theoretical and experimental results, but they provide more systematic results that include predictions about the importance of clusters not previously identified. A key feature of the data tree approach is that it provides a comprehensive sampling of possible clusters, but without needing to generate the entire reaction tree. Additionally, the data tree-based approach allows for flexibility in the analysis based on restricting reactant charge or size, selecting a starting species to mimic an experimental precursor, and choosing a maximum allowable final cluster size or charge of interest.
Collapse
Affiliation(s)
- Chelsea M Mueller
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
27
|
Yu VWZ, Govoni M. GPU Acceleration of Large-Scale Full-Frequency GW Calculations. J Chem Theory Comput 2022; 18:4690-4707. [PMID: 35913080 DOI: 10.1021/acs.jctc.2c00241] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many-body perturbation theory is a powerful method to simulate electronic excitations in molecules and materials starting from the output of density functional theory calculations. By implementing the theory efficiently so as to run at scale on the latest leadership high-performance computing systems it is possible to extend the scope of GW calculations. We present a GPU acceleration study of the full-frequency GW method as implemented in the WEST code. Excellent performance is achieved through the use of (i) optimized GPU libraries, e.g., cuFFT and cuBLAS, (ii) a hierarchical parallelization strategy that minimizes CPU-CPU, CPU-GPU, and GPU-GPU data transfer operations, (iii) nonblocking MPI communications that overlap with GPU computations, and (iv) mixed precision in selected portions of the code. A series of performance benchmarks has been carried out on leadership high-performance computing systems, showing a substantial speedup of the GPU-accelerated version of WEST with respect to its CPU version. Good strong and weak scaling is demonstrated using up to 25 920 GPUs. Finally, we showcase the capability of the GPU version of WEST for large-scale, full-frequency GW calculations of realistic systems, e.g., a nanostructure, an interface, and a defect, comprising up to 10 368 valence electrons.
Collapse
Affiliation(s)
- Victor Wen-Zhe Yu
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Marco Govoni
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
28
|
Liu J, Lan J, He X. Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks. J Phys Chem A 2022; 126:3926-3936. [PMID: 35679610 DOI: 10.1021/acs.jpca.2c00601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate and efficient simulation of liquids, such as water and salt solutions, using high-level wave function theories is still a formidable task for computational chemists owing to the high computational costs. In this study, we develop a deep machine learning potential based on fragment-based second-order Møller-Plesset perturbation theory (DP-MP2) for water through neural networks. We show that the DP-MP2 potential predicts the structural, dynamical, and thermodynamic properties of liquid water in better agreement with the experimental data than previous studies based on density functional theory (DFT). The nuclear quantum effects (NQEs) on the properties of liquid water are also examined, which are noticeable in affecting the structural and dynamical properties of liquid water under ambient conditions. This work provides a general framework for quantitative predictions of the properties of condensed-phase systems with the accuracy of high-level wave function theory while achieving significant computational savings compared to ab initio simulations.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jinggang Lan
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
29
|
Signorell R, Winter B. Photoionization of the aqueous phase: clusters, droplets and liquid jets. Phys Chem Chem Phys 2022; 24:13438-13460. [PMID: 35510623 PMCID: PMC9176186 DOI: 10.1039/d2cp00164k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022]
Abstract
This perspective article reviews specific challenges associated with photoemission spectroscopy of bulk liquid water, aqueous solutions, water droplets and water clusters. The main focus lies on retrieving accurate energetics and photoelectron angular information from measured photoemission spectra, and on the question how these quantities differ in different aqueous environments. Measured photoelectron band shapes, vertical binding energies (ionization energies), and photoelectron angular distributions are influenced by various phenomena. We discuss the influences of multiple energy-dependent electron scattering in aqueous environments, and we discuss different energy referencing methods, including the application of a bias voltage to access absolute energetics of solvent and solute. Recommendations how to account for or minimize the influence of electron scattering are provided. The example of the hydrated electron in different aqueous environments illustrates how one can account for electron scattering, while reliable methods addressing parasitic potentials and proper energy referencing are demonstrated for ionization from the outermost valence orbital of neat liquid water.
Collapse
Affiliation(s)
- Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| | - Bernd Winter
- Molecular Physics Department, Fritz-Haber-Institute der Max-Planck-Gesellschaft, Faradayweg 4-6, 14196 Berlin, Germany.
| |
Collapse
|
30
|
Lu YX, Lin CT, Tsai MH, Lin KC. Review-Hysteresis in Carbon Nano-Structure Field Effect Transistor. MICROMACHINES 2022; 13:mi13040509. [PMID: 35457813 PMCID: PMC9029578 DOI: 10.3390/mi13040509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
In recent decades, the research of nano-structure devices (e.g., carbon nanotube and graphene) has experienced rapid growth. These materials have supreme electronic, thermal, optical and mechanical properties and have received widespread concern in different fields. It is worth noting that gate hysteresis behavior of field effect transistors can always be found in ambient conditions, which may influence the transmission appearance. Many researchers have put forward various views on this question. Here, we summarize and discuss the mechanisms behind hysteresis, different influencing factors and improvement methods which help decrease or eliminate unevenness and asymmetry.
Collapse
|
31
|
Cruzeiro VWD, Galib M, Limmer DT, Götz AW. Uptake of N 2O 5 by aqueous aerosol unveiled using chemically accurate many-body potentials. Nat Commun 2022; 13:1266. [PMID: 35273144 PMCID: PMC8913772 DOI: 10.1038/s41467-022-28697-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
The reactive uptake of N2O5 to aqueous aerosol is a major loss channel for nitrogen oxides in the troposphere. Despite its importance, a quantitative picture of the uptake mechanism is missing. Here we use molecular dynamics simulations with a data-driven many-body model of coupled-cluster accuracy to quantify thermodynamics and kinetics of solvation and adsorption of N2O5 in water. The free energy profile highlights that N2O5 is selectively adsorbed to the liquid-vapor interface and weakly solvated. Accommodation into bulk water occurs slowly, competing with evaporation upon adsorption from gas phase. Leveraging the quantitative accuracy of the model, we parameterize and solve a reaction-diffusion equation to determine hydrolysis rates consistent with experimental observations. We find a short reaction-diffusion length, indicating that the uptake is dominated by interfacial features. The parameters deduced here, including solubility, accommodation coefficient, and hydrolysis rate, afford a foundation for which to consider the reactive loss of N2O5 in more complex solutions.
Collapse
Affiliation(s)
- Vinícius Wilian D Cruzeiro
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mirza Galib
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Kavli Energy NanoScience Institute, Berkeley, CA, USA.
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
32
|
Gadeyne T, Zhang P, Schild A, Wörner HJ. Low-energy electron distributions from the photoionization of liquid water: a sensitive test of electron mean free paths. Chem Sci 2022; 13:1675-1692. [PMID: 35282614 PMCID: PMC8826766 DOI: 10.1039/d1sc06741a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 11/21/2022] Open
Abstract
The availability of accurate mean free paths for slow electrons (<50 eV) in water is central to the understanding of many electron-driven processes in aqueous solutions, but their determination poses major challenges to experiment and theory alike. Here, we describe a joint experimental and theoretical study demonstrating a novel approach for testing, and, in the future, refining such mean free paths. We report the development of Monte-Carlo electron-trajectory simulations including elastic and inelastic electron scattering, as well as energy loss and secondary-electron production to predict complete photoelectron spectra of liquid water. These simulations are compared to a new set of photoelectron spectra of a liquid-water microjet recorded over a broad range of photon energies in the extreme ultraviolet (20-57 eV). Several previously published sets of scattering parameters are investigated, providing direct and intuitive insights on how they influence the shape of the low-energy electron spectra. A pronounced sensitivity to the escape barrier is also demonstrated. These simulations considerably advance our understanding of the origin of the prominent low-energy electron distributions in photoelectron spectra of liquid water and clarify the influence of scattering parameters and the escape barrier on their shape. They moreover describe the reshaping and displacement of low-energy photoelectron bands caused by vibrationally inelastic scattering. Our work provides a quantitative basis for the interpretation of the complete photoelectron spectra of liquids and opens the path to fully predictive simulations of low-energy scattering in liquid water.
Collapse
Affiliation(s)
- Titouan Gadeyne
- Laboratory for Physical Chemistry, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
- Département de Chimie, École Normale Supérieure, PSL University 75005 Paris France
| | - Pengju Zhang
- Laboratory for Physical Chemistry, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Axel Schild
- Laboratory for Physical Chemistry, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Hans Jakob Wörner
- Laboratory for Physical Chemistry, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
33
|
Brezina K, Kostal V, Jungwirth P, Marsalek O. Electronic structure of the solvated benzene radical anion. J Chem Phys 2022; 156:014501. [PMID: 34998349 DOI: 10.1063/5.0076115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The benzene radical anion is a molecular ion pertinent to several organic reactions, including the Birch reduction of benzene in liquid ammonia. The species exhibits a dynamic Jahn-Teller effect due to its open-shell nature and undergoes pseudorotation of its geometry. Here, we characterize the complex electronic structure of this condensed-phase system based on ab initio molecular dynamics simulations and GW calculations of the benzene radical anion solvated in liquid ammonia. Using detailed analysis of the molecular and electronic structure, we find that the spatial character of the excess electron of the solvated radical anion follows the underlying Jahn-Teller distortions of the molecular geometry. We decompose the electronic density of states to isolate the contribution of the solute and to examine the response of the solvent to its presence. Our findings show the correspondence between instantaneous molecular structure and spin density; provide important insights into the electronic stability of the species, revealing that it is, indeed, a bound state in the condensed phase; and offer electronic densities of states that aid in the interpretation of experimental photoelectron spectra.
Collapse
Affiliation(s)
- Krystof Brezina
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Vojtech Kostal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Ondrej Marsalek
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| |
Collapse
|
34
|
Lan J, Yamamoto YI, Suzuki T, Rybkin VV. Shallow and deep trap states of solvated electrons in methanol and their formation, electronic excitation, and relaxation dynamics. Chem Sci 2022; 13:3837-3844. [PMID: 35432888 PMCID: PMC8966712 DOI: 10.1039/d1sc06666h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
We present condensed-phase first-principles molecular dynamics simulations to elucidate the presence of different electron trapping sites in liquid methanol and their roles in the formation, electronic transitions, and relaxation of solvated electrons (emet−) in methanol. Excess electrons injected into liquid methanol are most likely trapped by methyl groups, but rapidly diffuse to more stable trapping sites with dangling OH bonds. After localization at the sites with one free OH bond (1OH trapping sites), reorientation of other methanol molecules increases the OH coordination number and the trap depth, and ultimately four OH bonds become coordinated with the excess electrons under thermal conditions. The simulation identified four distinct trapping states with different OH coordination numbers. The simulation results also revealed that electronic transitions of emet− are primarily due to charge transfer between electron trapping sites (cavities) formed by OH and methyl groups, and that these transitions differ from hydrogenic electronic transitions involving aqueous solvated electrons (eaq−). Such charge transfer also explains the alkyl-chain-length dependence of the photoabsorption peak wavelength and the excited-state lifetime of solvated electrons in primary alcohols. Condensed-phase first-principles molecular dynamics simulations elucidate the presence of different electron trapping sites in liquid methanol and their roles in the formation, electronic transitions, and relaxation of solvated electrons.![]()
Collapse
Affiliation(s)
- Jinggang Lan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Yo-ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Vladimir V. Rybkin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
35
|
Gallo P, Bachler J, Bove LE, Böhmer R, Camisasca G, Coronas LE, Corti HR, de Almeida Ribeiro I, de Koning M, Franzese G, Fuentes-Landete V, Gainaru C, Loerting T, de Oca JMM, Poole PH, Rovere M, Sciortino F, Tonauer CM, Appignanesi GA. Advances in the study of supercooled water. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:143. [PMID: 34825973 DOI: 10.1140/epje/s10189-021-00139-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
In this review, we report recent progress in the field of supercooled water. Due to its uniqueness, water presents numerous anomalies with respect to most simple liquids, showing polyamorphism both in the liquid and in the glassy state. We first describe the thermodynamic scenarios hypothesized for the supercooled region and in particular among them the liquid-liquid critical point scenario that has so far received more experimental evidence. We then review the most recent structural indicators, the two-state model picture of water, and the importance of cooperative effects related to the fact that water is a hydrogen-bonded network liquid. We show throughout the review that water's peculiar properties come into play also when water is in solution, confined, and close to biological molecules. Concerning dynamics, upon mild supercooling water behaves as a fragile glass former following the mode coupling theory, and it turns into a strong glass former upon further cooling. Connections between the slow dynamics and the thermodynamics are discussed. The translational relaxation times of density fluctuations show in fact the fragile-to-strong crossover connected to the thermodynamics arising from the existence of two liquids. When considering also rotations, additional crossovers come to play. Mobility-viscosity decoupling is also discussed in supercooled water and aqueous solutions. Finally, the polyamorphism of glassy water is considered through experimental and simulation results both in bulk and in salty aqueous solutions. Grains and grain boundaries are also discussed.
Collapse
Affiliation(s)
- Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy.
| | - Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Livia E Bove
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Luis E Coronas
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Horacio R Corti
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Ingrid de Almeida Ribeiro
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
| | - Maurice de Koning
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
- Center for Computing in Engineering & Sciences, Universidade Estadual de Campinas, UNICAMP, 13083-861, Campinas, São Paulo, Brazil
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Violeta Fuentes-Landete
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | | | - Peter H Poole
- Department of Physics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Christina M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| |
Collapse
|
36
|
Bull-Vulpe EF, Riera M, Götz AW, Paesani F. MB-Fit: Software infrastructure for data-driven many-body potential energy functions. J Chem Phys 2021; 155:124801. [PMID: 34598567 DOI: 10.1063/5.0063198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many-body potential energy functions (MB-PEFs), which integrate data-driven representations of many-body short-range quantum mechanical interactions with physics-based representations of many-body polarization and long-range interactions, have recently been shown to provide high accuracy in the description of molecular interactions from the gas to the condensed phase. Here, we present MB-Fit, a software infrastructure for the automated development of MB-PEFs for generic molecules within the TTM-nrg (Thole-type model energy) and MB-nrg (many-body energy) theoretical frameworks. Besides providing all the necessary computational tools for generating TTM-nrg and MB-nrg PEFs, MB-Fit provides a seamless interface with the MBX software, a many-body energy and force calculator for computer simulations. Given the demonstrated accuracy of the MB-PEFs, particularly within the MB-nrg framework, we believe that MB-Fit will enable routine predictive computer simulations of generic (small) molecules in the gas, liquid, and solid phases, including, but not limited to, the modeling of quantum isomeric equilibria in molecular clusters, solvation processes, molecular crystals, and phase diagrams.
Collapse
Affiliation(s)
- Ethan F Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
37
|
Caruso A, Paesani F. Data-driven many-body models enable a quantitative description of chloride hydration from clusters to bulk. J Chem Phys 2021; 155:064502. [PMID: 34391363 DOI: 10.1063/5.0059445] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We present a new data-driven potential energy function (PEF) describing chloride-water interactions, which is developed within the many-body-energy (MB-nrg) theoretical framework. Besides quantitatively reproducing low-order many-body energy contributions, the new MB-nrg PEF is able to correctly predict the interaction energies of small chloride-water clusters calculated at the coupled cluster level of theory. Importantly, classical and quantum molecular dynamics simulations of a single chloride ion in water demonstrate that the new MB-nrg PEF predicts x-ray spectra in close agreement with the experimental results. Comparisons with an popular empirical model and a polarizable PEF emphasize the importance of an accurate representation of short-range many-body effect while demonstrating that pairwise additive representations of chloride-water and water-water interactions are inadequate for correctly representing the hydration structure of chloride in both gas-phase clusters and solution. We believe that the analyses presented in this study provide additional evidence for the accuracy and predictive ability of the MB-nrg PEFs, which can then enable more realistic simulations of ionic aqueous systems in different environments.
Collapse
Affiliation(s)
- Alessandro Caruso
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
38
|
Thürmer S, Malerz S, Trinter F, Hergenhahn U, Lee C, Neumark DM, Meijer G, Winter B, Wilkinson I. Accurate vertical ionization energy and work function determinations of liquid water and aqueous solutions. Chem Sci 2021; 12:10558-10582. [PMID: 34447550 PMCID: PMC8356740 DOI: 10.1039/d1sc01908b] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/02/2021] [Indexed: 01/29/2023] Open
Abstract
The absolute-scale electronic energetics of liquid water and aqueous solutions, both in the bulk and at associated interfaces, are the central determiners of water-based chemistry. However, such information is generally experimentally inaccessible. Here we demonstrate that a refined implementation of the liquid microjet photoelectron spectroscopy (PES) technique can be adopted to address this. Implementing concepts from condensed matter physics, we establish novel all-liquid-phase vacuum and equilibrated solution–metal-electrode Fermi level referencing procedures. This enables the precise and accurate determination of previously elusive water solvent and solute vertical ionization energies, VIEs. Notably, this includes quantification of solute-induced perturbations of water's electronic energetics and VIE definition on an absolute and universal chemical potential scale. Defining and applying these procedures over a broad range of ionization energies, we accurately and respectively determine the VIE and oxidative stability of liquid water as 11.33 ± 0.03 eV and 6.60 ± 0.08 eV with respect to its liquid-vacuum-interface potential and Fermi level. Combining our referencing schemes, we accurately determine the work function of liquid water as 4.73 ± 0.09 eV. Further, applying our novel approach to a pair of exemplary aqueous solutions, we extract absolute VIEs of aqueous iodide anions, reaffirm the robustness of liquid water's electronic structure to high bulk salt concentrations (2 M sodium iodide), and quantify reference-level dependent reductions of water's VIE and a 0.48 ± 0.13 eV contraction of the solution's work function upon partial hydration of a known surfactant (25 mM tetrabutylammonium iodide). Our combined experimental accomplishments mark a major advance in our ability to quantify electronic–structure interactions and chemical reactivity in liquid water, which now explicitly extends to the measurement of absolute-scale bulk and interfacial solution energetics, including those of relevance to aqueous electrochemical processes. A generalised liquid-phase photoelectron spectroscopy approach is reported, allowing accurate, absolute energy scale ionisation energies of liquid water and aqueous solutions, as well as liquid water's work function to be reported.![]()
Collapse
Affiliation(s)
- Stephan Thürmer
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-Ku Kyoto 606-8502 Japan
| | - Sebastian Malerz
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Florian Trinter
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany .,Institut für Kernphysik, Goethe-Universität Max-von-Laue-Straße 1 60438 Frankfurt am Main Germany
| | - Uwe Hergenhahn
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Chin Lee
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany .,Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA.,Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Daniel M Neumark
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA.,Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Gerard Meijer
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Bernd Winter
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Iain Wilkinson
- Department of Locally-Sensitive & Time-Resolved Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 14109 Berlin Germany
| |
Collapse
|
39
|
Weng G, Vlček V. Efficient treatment of molecular excitations in the liquid phase environment via stochastic many-body theory. J Chem Phys 2021; 155:054104. [PMID: 34364336 DOI: 10.1063/5.0058410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurate predictions of charge excitation energies of molecules in the disordered condensed phase are central to the chemical reactivity, stability, and optoelectronic properties of molecules and critically depend on the specific environment. Herein, we develop a stochastic GW method for calculating these charge excitation energies. The approach employs maximally localized electronic states to define the electronic subspace of a molecule and the rest of the system, both of which are randomly sampled. We test the method on three solute-solvent systems: phenol, thymine, and phenylalanine in water. The results are in excellent agreement with the previous high-level calculations and available experimental data. The stochastic calculations for supercells containing up to 1000 electrons representing the solvated systems are inexpensive and require ≤1000 central processing unit hrs. We find that the coupling with the environment accounts for ∼40% of the total correlation energy. The solvent-to-solute feedback mechanism incorporated in the molecular correlation term causes up to 0.6 eV destabilization of the quasiparticle energy. Simulated photo-emission spectra exhibit red shifts, state-degeneracy lifting, and lifetime shortening. Our method provides an efficient approach for an accurate study of excitations of large molecules in realistic condensed phase environments.
Collapse
Affiliation(s)
- Guorong Weng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | - VojtĚch Vlček
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| |
Collapse
|
40
|
Pérez Ramírez L, Boucly A, Saudrais F, Bournel F, Gallet JJ, Maisonhaute E, Milosavljević AR, Nicolas C, Rochet F. The Fermi level as an energy reference in liquid jet X-ray photoelectron spectroscopy studies of aqueous solutions. Phys Chem Chem Phys 2021; 23:16224-16233. [PMID: 34304262 DOI: 10.1039/d1cp01511g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To advance the understanding of key electrochemical and photocatalytic processes that depend on the electronic structure of aqueous solutions, X-ray photoemission spectroscopy has become an invaluable tool, especially when practiced with liquid microjet setups. Determining vertical ionization energies referenced to the vacuum level, and binding energies referenced to the Fermi level, including the much-coveted reorganization energy of the oxidized species of a redox couple, requires that energy levels be properly defined. The present paper addresses specifically how the vacuum level "just outside the surface" can be known through the energy position of the rising edge of the secondary electrons, and how the Fermi level reference is uniquely determined via the introduction of a redox couple. Taking the case of the ferricyanide/ferrocyanide and ferric/ferrous couples, this study also tackles issues related to the electrokinetic effects inherent to the production of a liquid jet in a vacuum, which has become the standard water sample environment for photoemission experiments.
Collapse
Affiliation(s)
- Lucía Pérez Ramírez
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 4 Place Jussieu, 75005 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
de Almeida JM, Nguyen NL, Colonna N, Chen W, Rodrigues Miranda C, Pasquarello A, Marzari N. Electronic Structure of Water from Koopmans-Compliant Functionals. J Chem Theory Comput 2021; 17:3923-3930. [PMID: 34137253 DOI: 10.1021/acs.jctc.1c00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Obtaining a precise theoretical description of the spectral properties of liquid water poses challenges for both molecular dynamics (MD) and electronic structure methods. The lower computational cost of the Koopmans-compliant functionals with respect to Green's function methods allows the simulations of many MD trajectories, with a description close to the state-of-art quasi-particle self-consistent GW plus vertex corrections method (QSGW + fxc). Thus, we explore water spectral properties when different MD approaches are used, ranging from classical MD to first-principles MD, and including nuclear quantum effects. We have observed that different MD approaches lead to up to 1 eV change in the average band gap; thus, we focused on the band gap dependence with the geometrical properties of a system to explain such spread. We have evaluated the changes in the band gap due to variations in the intramolecular O-H bond distance and HOH angle, as well as the intermolecular hydrogen bond O···O distance and the OHO angles. We have observed that the dominant contribution comes from the O-H bond length; the O···O distance plays a secondary role, and the other geometrical properties do not significantly influence the gap. Furthermore, we analyze the electronic density of states (DOS), where the KIPZ functional shows good agreement with the DOS obtained with state-of-art approaches employing quasi-particle self-consistent GW plus vertex corrections. The O-H bond length also significantly influences the DOS. When nuclear quantum effects are considered, broadening of the peaks driven by the broader distribution of the O-H bond lengths is observed, leading to a closer agreement with the experimental photoemission spectra.
Collapse
Affiliation(s)
- James Moraes de Almeida
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Santo André, 09210-580 SP, Brazil.,Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ngoc Linh Nguyen
- Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nicola Colonna
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland.,National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Wei Chen
- Institute of Condensed Matter and Nanoscience, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | | - Alfredo Pasquarello
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nicola Marzari
- Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
42
|
Cruzeiro VWD, Wildman A, Li X, Paesani F. Relationship between Hydrogen-Bonding Motifs and the 1b 1 Splitting in the X-ray Emission Spectrum of Liquid Water. J Phys Chem Lett 2021; 12:3996-4002. [PMID: 33877847 DOI: 10.1021/acs.jpclett.1c00486] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The split of the 1b1 peak observed in the X-ray emission (XE) spectrum of liquid water has been the focus of intense research. Although several hypotheses have been proposed to explain the origin of this split, a consensus has not yet been reached. Here, we introduce a novel theoretical/computation approach which, combining path-integral molecular dynamics simulations with the MB-pol model and time-dependent density functional theory calculations, predicts the 1b1 splitting in liquid water and not in crystalline ice, in agreement with the experimental observations. A systematic analysis of the underlying local structure of liquid water at ambient conditions indicates that several different hydrogen-bonding motifs contribute to the overall XE line shape in the energy range corresponding to emissions from the 1b1 orbitals. This suggests that it is not possible to unambiguously attribute the split of the 1b1 peak to only two specific structural arrangements of the underlying hydrogen-bonding network.
Collapse
Affiliation(s)
- Vinícius Wilian D Cruzeiro
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Andrew Wildman
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Francesco Paesani
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
43
|
Hahn MB, Dietrich PM, Radnik J. In situ monitoring of the influence of water on DNA radiation damage by near-ambient pressure X-ray photoelectron spectroscopy. Commun Chem 2021; 4:50. [PMID: 36697687 PMCID: PMC9814248 DOI: 10.1038/s42004-021-00487-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
Ionizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further.
Collapse
Affiliation(s)
- Marc Benjamin Hahn
- grid.14095.390000 0000 9116 4836Institut für Experimentalphysik, Freie Universität Berlin, Berlin, Germany ,grid.71566.330000 0004 0603 5458Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| | | | - Jörg Radnik
- grid.71566.330000 0004 0603 5458Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| |
Collapse
|
44
|
Malerz S, Trinter F, Hergenhahn U, Ghrist A, Ali H, Nicolas C, Saak CM, Richter C, Hartweg S, Nahon L, Lee C, Goy C, Neumark DM, Meijer G, Wilkinson I, Winter B, Thürmer S. Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions. Phys Chem Chem Phys 2021; 23:8246-8260. [PMID: 33710216 DOI: 10.1039/d1cp00430a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the effects of electron collision and indirect ionization processes, occurring at photoexcitation and electron kinetic energies well below 30 eV, on the photoemission spectra of liquid water. We show that the nascent photoelectron spectrum and, hence, the inferred electron binding energy can only be accurately determined if electron energies are large enough that cross sections for quasi-elastic scattering processes, such as vibrational excitation, are negligible. Otherwise, quasi-elastic scattering leads to strong, down-to-few-meV kinetic energy scattering losses from the direct photoelectron features, which manifest in severely distorted intrinsic photoelectron peak shapes. The associated cross-over point from predominant (known) electronically inelastic to quasi-elastic scattering seems to arise at surprisingly large electron kinetic energies, of approximately 10-14 eV. Concomitantly, we present evidence for the onset of indirect, autoionization phenomena (occurring via superexcited states) within a few eV of the primary and secondary ionization thresholds. These processes are inferred to compete with the direct ionization channels and primarily produce low-energy photoelectrons at photon and electron impact excitation energies below ∼15 eV. Our results highlight that vibrational inelastic electron scattering processes and neutral photoexcitation and autoionization channels become increasingly important when photon and electron kinetic energies are decreased towards the ionization threshold. Correspondingly, we show that for neat water and aqueous solutions, great care must be taken when quantitatively analyzing photoelectron spectra measured too close to the ionization threshold. Such care is essential for the accurate determination of solvent and solute ionization energies as well as photoelectron branching ratios and peak magnitudes.
Collapse
Affiliation(s)
- Sebastian Malerz
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dong SS, Govoni M, Galli G. Machine learning dielectric screening for the simulation of excited state properties of molecules and materials. Chem Sci 2021; 12:4970-4980. [PMID: 34163744 PMCID: PMC8179553 DOI: 10.1039/d1sc00503k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 11/21/2022] Open
Abstract
Accurate and efficient calculations of absorption spectra of molecules and materials are essential for the understanding and rational design of broad classes of systems. Solving the Bethe-Salpeter equation (BSE) for electron-hole pairs usually yields accurate predictions of absorption spectra, but it is computationally expensive, especially if thermal averages of spectra computed for multiple configurations are required. We present a method based on machine learning to evaluate a key quantity entering the definition of absorption spectra: the dielectric screening. We show that our approach yields a model for the screening that is transferable between multiple configurations sampled during first principles molecular dynamics simulations; hence it leads to a substantial improvement in the efficiency of calculations of finite temperature spectra. We obtained computational gains of one to two orders of magnitude for systems with 50 to 500 atoms, including liquids, solids, nanostructures, and solid/liquid interfaces. Importantly, the models of dielectric screening derived here may be used not only in the solution of the BSE but also in developing functionals for time-dependent density functional theory (TDDFT) calculations of homogeneous and heterogeneous systems. Overall, our work provides a strategy to combine machine learning with electronic structure calculations to accelerate first principles simulations of excited-state properties.
Collapse
Affiliation(s)
- Sijia S Dong
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory Lemont IL 60439 USA
- Pritzker School of Molecular Engineering, The University of Chicago Chicago IL 60637 USA
| | - Marco Govoni
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory Lemont IL 60439 USA
- Pritzker School of Molecular Engineering, The University of Chicago Chicago IL 60637 USA
| | - Giulia Galli
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory Lemont IL 60439 USA
- Pritzker School of Molecular Engineering, The University of Chicago Chicago IL 60637 USA
| |
Collapse
|
46
|
Gao L, Zhang L, Fu Q, Bu Y. Molecular Dynamics Characterization of Dielectron Hydration in Liquid Water with Unique Double Proton Transfers. J Chem Theory Comput 2021; 17:666-677. [PMID: 33474934 DOI: 10.1021/acs.jctc.0c01123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radiation chemistry of water and aqueous solutions has always been an interesting scientific issue owing to involving electronic excitations, ionization of solvated species, and formation of radiolytic species and many elementary reactions, but the underlying mechanisms are still poorly understood. Here, we for the first time molecular dynamics characterize the hydration dynamics of two correlated electrons and their triggered unique phenomena in liquid water associated with radiolysis of water using the combined hybrid functional and nonlocal dispersion functional. Hydration of two electrons may experience two distinctly different mechanisms, one forming a spin-paired closed-shell unicaged dielectron hydrate (e22-aq) and the other forming a spin-paired metastable open-shell bicaged hydrated electron pair (e-aq···e-aq) which exhibits intriguing antiferromagnetic spin coupling dynamics (in a range of -40 cm-1 to -500 cm-1). e-aq···e-aq can recombine to e22-aq through a unique solvent fluctuation-controlled gradual-flowing mechanism, and enlarging fluctuation can promote the conversion. Interestingly, we directly observe that e22-aq as the precursor can trigger hydrogen evolution via unique continuous spontaneous double proton transfer to the dielectron with a short-lived H-aq intermediate, but e-aq···e-aq does not directly. This is the first direct observation for the connection between e22-aq and spontaneous hydrogen evolution including participation of H-aq in aqueous solution, bridging relevant experimental phenomena. This work also evidences an unnoticed process, the double proton transfer mediated charge separation, and presents the first detailed analysis regarding the evolution dynamics of e22-aq for the understanding of the radiolysis reactions in aqueous solutions.
Collapse
Affiliation(s)
- Liang Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Liang Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Qiang Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
47
|
Cruz JV, Giuliatti S, Alves LB, Silva RC, Ferreira EFB, Kimani NM, Silva CHTP, Souza JSND, Espejo-Román JM, Santos CBR. Identification of novel potential cyclooxygenase-2 inhibitors using ligand- and structure-based virtual screening approaches. J Biomol Struct Dyn 2021; 40:5386-5408. [PMID: 33427075 DOI: 10.1080/07391102.2020.1871413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cyclooxygenase 2 (COX-2) is a well-established target for the design of anti-inflammatory intermediates. Celecoxib was selected as a template molecule to perform ligand-based virtual screening, i.e. to search for structures with similarity in shape and electrostatic potential, with a gradual increase in accuracy through the combined fitting of several steps using eight commercial databases. The molecules ZINC408709 and ZINC2090319 reproduced values within the limits established in an initial study of absorption and distribution in the body. No alert was fired for possible toxic groups when these molecules were subjected to toxicity prediction. Molecular docking results with these compounds showed a higher binding affinity in comparison to rofecoxib for the COX-2 target. Additionally, ZINC408709 and ZINC2090319 were predicted to be potentially biologically active. In in silico prediction of endocrine disruption potential, it was established that the molecule ZINC2090319 binds strongly to the target related to cardiovascular risk in a desirable way as a non-steroidal antagonist and ZINC408709 binds strongly to the target that is associated with the treatment of inflammatory pathologies and similar to celecoxib. Metabolites generated from these compounds are less likely to have side effects. Simulations were used to evaluate the interaction of compounds with COX-1 and COX-2 during 200 ns. Despite the differences, ZINC408709 molecule showed better stability for COX-2 during molecular dynamics simulation. In the calculations of free energy MM/PBSA, the molecule ZINC408709 ΔGbind value has a higher affinity to celecoxib and rofecoxib COX-2. This demonstrates that the selected substances can be considered as promising COX-2 inhibitors. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Josiane V Cruz
- Graduate Program in Pharmaceutical Innovation, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil.,Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
| | - Silvana Giuliatti
- Bioinformatics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Levy B Alves
- Bioinformatics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Raí C Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Elenilze F B Ferreira
- Graduate Program in Pharmaceutical Innovation, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil.,Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil.,Laboratory of Organic Chemistry and Biochemistry, University of the State of Amapá, Macapá, Brazil
| | - Njogu M Kimani
- Department of Physical Sciences, University of Embu, Embu, Kenya
| | - Carlos H T P Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil.,Computational Laboratory of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - João S N de Souza
- Department of Chemistry, Federal University of Piaui, Teresina, Brazil
| | - José M Espejo-Román
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Biosanitary Institute of Granada (Ibs.GRANADA), University of Granada, Granada, Spain
| | - Cleydson B R Santos
- Graduate Program in Pharmaceutical Innovation, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil.,Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
| |
Collapse
|
48
|
Chen M, Li L, Zhu R, Zhu J, He H. Intrinsic water layering next to soft, solid, hydrophobic, and hydrophilic substrates. J Chem Phys 2020; 153:224702. [DOI: 10.1063/5.0030021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Meng Chen
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
| | - Lin Li
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxi Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
von Szentpály L, Kaya S, Karakuş N. Why and When Is Electrophilicity Minimized? New Theorems and Guiding Rules. J Phys Chem A 2020; 124:10897-10908. [DOI: 10.1021/acs.jpca.0c08196] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- László von Szentpály
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Savaş Kaya
- Department of Pharmacy, Health Services Vocational School, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Nihat Karakuş
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| |
Collapse
|
50
|
Ban L, West CW, Chasovskikh E, Gartmann TE, Yoder BL, Signorell R. Below Band Gap Formation of Solvated Electrons in Neutral Water Clusters? J Phys Chem A 2020; 124:7959-7965. [PMID: 32878434 PMCID: PMC7536715 DOI: 10.1021/acs.jpca.0c06935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Indexed: 01/25/2023]
Abstract
Below band gap formation of solvated electrons in neutral water clusters using pump-probe photoelectron imaging is compared with recent data for liquid water and with above band gap excitation studies in liquid and clusters. Similar relaxation times on the order of 200 fs and 1-2 ps are retrieved for below and above band gap excitation, in both clusters and liquid. The independence of the relaxation times from the generation process indicates that these times are dominated by the solvent response, which is significantly slower than the various solvated electron formation processes. The analysis of the temporal evolution of the vertical electron binding energy and the electron binding energy at half-maximum suggests a dependence of the solvation time on the binding energy.
Collapse
Affiliation(s)
- Loren Ban
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Christopher W. West
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Egor Chasovskikh
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Thomas E. Gartmann
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Bruce L. Yoder
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Ruth Signorell
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| |
Collapse
|