1
|
Sindik N, Pereza N, Dević Pavlić S. Epigenetics of oogenesis. Arch Gynecol Obstet 2025; 311:183-190. [PMID: 39694903 DOI: 10.1007/s00404-024-07882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Epigenetic changes include all modifications affecting the expression of genes without changing the nucleotide sequence of the genome. Most studied epigenetic changes include DNA methylation, histone alterations and non-coding RNAs. DNA methylation is an important epigenetic mark, protecting the genome during gametogenesis and early embryo development. Demethylation process is a genome-wide event, taking place in two distinct waves during gametogenesis. The first event helps restore naïve pluripotency of the zygote, while the second event aids in the loss of parental epigenetic memory and facilitates specification of gametes. Histone modifications were recognized in murine and human primordial germ cells where their subsets condense chromatin, protecting it from dynamic changes taking place during gamete maturation. Deacetylation of histones was recognized as an important prerequisite of chromosomal segregation during metaphase II. Germline-specific ncRNAs and piRNAs are important in inhibiting transposon activity during gametogenesis, protecting overall genome stability. All epigenetic changes are prone to disruption, especially by exogenous factors. In recent years, with the increase in infertility, the association between assisted reproductive technology (ART) and its effects on epigenome remodeling of gametes have gained importance. The aim of this review is to summarize the epigenetic modifications crucial for oocyte development, while highlighting their role in reproductive disorders and ART.
Collapse
Affiliation(s)
- Neda Sindik
- Faculty of Medicine, Department of Medical Biology and Genetics, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Nina Pereza
- Faculty of Medicine, Department of Medical Biology and Genetics, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Sanja Dević Pavlić
- Faculty of Medicine, Department of Medical Biology and Genetics, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia.
| |
Collapse
|
2
|
da Silva Santos R, Pascoalino Pinheiro D, Gustavo Hirth C, Barbosa Bezerra MJ, Joyce de Lima Silva-Fernandes I, Andréa da Silva Oliveira F, Viana de Holanda Barros M, Silveira Ramos E, A. Moura A, Filho ODMM, Pessoa C, Miranda Furtado CL. Hypomethylation at H19DMR in penile squamous cell carcinoma is not related to HPV infection. Epigenetics 2024; 19:2305081. [PMID: 38245880 PMCID: PMC10802203 DOI: 10.1080/15592294.2024.2305081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Penile squamous cell carcinoma (SCC) is a rare and aggressive tumour mainly related to lifestyle behaviour and human papillomavirus (HPV) infection. Environmentally induced loss of imprinting (LOI) at the H19 differentially methylated region (H19DMR) is associated with many cancers in the early events of tumorigenesis and may be involved in the pathogenesis of penile SCC. We sought to evaluate the DNA methylation pattern at H19DMR and its association with HPV infection in men with penile SCC by bisulfite sequencing (bis-seq). We observed an average methylation of 32.2% ± 11.6% at the H19DMR of penile SCC and did not observe an association between the p16INK4a+ (p = 0.59) and high-risk HPV+ (p = 0.338) markers with methylation level. The average methylation did not change according to HPV positive for p16INK4a+ or hrHPV+ (35.4% ± 10%) and negative for both markers (32.4% ± 10.1%) groups. As the region analysed has a binding site for the CTCF protein, the hypomethylation at the surrounding CpG sites might alter its insulator function. In addition, there was a positive correlation between intense polymorphonuclear cell infiltration and hypomethylation at H19DMR (p = 0.035). Here, we report that hypomethylation at H19DMR in penile SCC might contribute to tumour progression and aggressiveness regardless of HPV infection.
Collapse
Affiliation(s)
- Renan da Silva Santos
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | - Maisa Viana de Holanda Barros
- Postgraduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ester Silveira Ramos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Arlindo A. Moura
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Animal Science, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Odorico de Moraes Manoel Filho
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Postgraduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cristiana Libardi Miranda Furtado
- Postgraduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil
- Graduate Program in Medical Sciences, Universidade de Fortaleza, Fortaleza, Ceará, Brazil
| |
Collapse
|
3
|
Khan SA, Theunissen TW. Modeling X-chromosome inactivation and reactivation during human development. Curr Opin Genet Dev 2023; 82:102096. [PMID: 37597506 PMCID: PMC10588740 DOI: 10.1016/j.gde.2023.102096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/27/2023] [Accepted: 07/16/2023] [Indexed: 08/21/2023]
Abstract
Stem-cell-based embryo models generate much excitement as they offer a window into an early phase of human development that has remained largely inaccessible to scientific investigation. An important epigenetic phenomenon during early embryogenesis is the epigenetic silencing of one of the two X chromosomes in female embryos, which ensures an equal output of X-linked gene expression between the sexes. X-chromosome inactivation (XCI) is thought to be established within the first three weeks of human development, although the inactive X-chromosome is reactivated in primordial germ cells (PGCs) that migrate to the embryonic gonads. Here, we summarize our current understanding of X-chromosome dynamics during human development and comment on the potential of recently established stem-cell-based models to reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Shafqat A Khan
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. https://twitter.com/@sakhan2019
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Mizuta K, Saitou M. Key mechanisms and in vitro reconstitution of fetal oocyte development in mammals. Curr Opin Genet Dev 2023; 82:102091. [PMID: 37556984 DOI: 10.1016/j.gde.2023.102091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 08/11/2023]
Abstract
During fetal oocyte development in mammals, germ cells progress through meiotic prophase I to form primordial follicles with pregranulosa cells. The primordial follicles remain dormant until oogenesis resumes during puberty. Studies in mice have elucidated mechanisms governing oogenesis, leading to the successful induction of functional oocytes from mouse pluripotent stem cells in vitro. Based on the in vivo/in vitro knowledge in mice and the histological and transcriptomic evidence for fetal oocyte development in humans and primates, human/primate oocyte-like cells corresponding to the early stage of oocytes in vivo have been successfully induced in vitro. Here, we discuss recent advances in our understanding of the mechanisms of fetal oocyte development in mammals, as well as in in vitro oogenesis.
Collapse
Affiliation(s)
- Ken Mizuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
5
|
Saani I, Raj N, Sood R, Ansari S, Mandviwala HA, Sanchez E, Boussios S. Clinical Challenges in the Management of Malignant Ovarian Germ Cell Tumours. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6089. [PMID: 37372675 DOI: 10.3390/ijerph20126089] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/29/2023]
Abstract
Nonepithelial ovarian cancers (NEOC) are a group of rare malignancies, including germ cell tumours (GCT) and sex cord-stromal tumours (SCST), along with small-cell carcinomas and sarcomas. GCTs represent 2-5% of ovarian cancers, with a yearly incidence of 4:100,000, and they usually affect young women and adolescents. Precursory germ cells of the ovary form the basis of GCT. They are histologically classified into primitive GCT, teratomas, and monodermal and somatic-type tumours associated with dermoid cysts. A primitive GCT can be either a yolk sac tumour (YST), dysgerminoma, or mixed germ cell neoplasm. Teratomas are either mature (benign) or immature (malignant). Given that malignant GCTs occur rarely compared to epithelial ovarian tumours (EOC), greater focus is required in their diagnosis and treatment. In this article, we review the epidemiology, clinical manifestations, diagnosis, and molecular biology, along with the management and therapeutic challenges.
Collapse
Affiliation(s)
- Iqra Saani
- Department of Medicine, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
| | - Nitish Raj
- Department of Radiology, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, UK
| | - Raja Sood
- Department of Clinical Medical Education, Epsom and St Helier University Hospitals NHS Trust, Epsom KT18 7EG, UK
| | - Shahbaz Ansari
- Department of Medicine, Glan Clwyd Hospital, NHS Wales, Denbighshire LL18 5UJ, UK
| | - Haider Abbas Mandviwala
- Department of Internal Medicine, School of Medicine, Faculty of Health Sciences, Ziauddin Medical University, Karachi 75000, Sindh, Pakistan
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
6
|
Gyobu‐Motani S, Yabuta Y, Mizuta K, Katou Y, Okamoto I, Kawasaki M, Kitamura A, Tsukiyama T, Iwatani C, Tsuchiya H, Tsujimura T, Yamamoto T, Nakamura T, Saitou M. Induction of fetal meiotic oocytes from embryonic stem cells in cynomolgus monkeys. EMBO J 2023; 42:e112962. [PMID: 36929479 PMCID: PMC10152148 DOI: 10.15252/embj.2022112962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
Human in vitro oogenesis provides a framework for clarifying the mechanism of human oogenesis. To create its benchmark, it is vital to promote in vitro oogenesis using a model physiologically close to humans. Here, we establish a foundation for in vitro oogenesis in cynomolgus (cy) monkeys (Macaca fascicularis): cy female embryonic stem cells harboring one active and one inactive X chromosome (Xa and Xi, respectively) differentiate robustly into primordial germ cell-like cells, which in xenogeneic reconstituted ovaries develop efficiently into oogonia and, remarkably, further into meiotic oocytes at the zygotene stage. This differentiation entails comprehensive epigenetic reprogramming, including Xi reprogramming, yet Xa and Xi remain epigenetically asymmetric with, as partly observed in vivo, incomplete Xi reactivation. In humans and monkeys, the Xi epigenome in pluripotent stem cells functions as an Xi-reprogramming determinant. We further show that developmental pathway over-activations with suboptimal up-regulation of relevant meiotic genes impede in vitro meiotic progression. Cy in vitro oogenesis exhibits critical homology with the human system, including with respect to bottlenecks, providing a salient model for advancing human in vitro oogenesis.
Collapse
Affiliation(s)
- Sayuri Gyobu‐Motani
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ken Mizuta
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yoshitaka Katou
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ikuhiro Okamoto
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masanori Kawasaki
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ayaka Kitamura
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Chizuru Iwatani
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Hideaki Tsuchiya
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Taro Tsujimura
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Center for Advanced Intelligence Project, RIKENTokyoJapan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
- The Hakubi Center for Advanced ResearchKyoto UniversityKyotoJapan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| |
Collapse
|
7
|
Mattimoe T, Payer B. The compleX balancing act of controlling X-chromosome dosage and how it impacts mammalian germline development. Biochem J 2023; 480:521-537. [PMID: 37096944 PMCID: PMC10212525 DOI: 10.1042/bcj20220450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 04/26/2023]
Abstract
In female mammals, the two X chromosomes are subject to epigenetic gene regulation in order to balance X-linked gene dosage with autosomes and in relation to males, which have one X and one Y chromosome. This is achieved by an intricate interplay of several processes; X-chromosome inactivation and reactivation elicit global epigenetic regulation of expression from one X chromosome in a stage-specific manner, whilst the process of X-chromosome upregulation responds to this by fine-tuning transcription levels of the second X. The germline is unique in its function of transmitting both the genetic and epigenetic information from one generation to the next, and remodelling of the X chromosome is one of the key steps in setting the stage for successful development. Here, we provide an overview of the complex dynamics of X-chromosome dosage control during embryonic and germ cell development, and aim to decipher its potential role for normal germline competency.
Collapse
Affiliation(s)
- Tom Mattimoe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
8
|
Dong F, Ping P, Ma Y, Chen XF. Application of single-cell RNA sequencing on human testicular samples: a comprehensive review. Int J Biol Sci 2023; 19:2167-2197. [PMID: 37151874 PMCID: PMC10158017 DOI: 10.7150/ijbs.82191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/25/2023] [Indexed: 05/09/2023] Open
Abstract
So far there has been no comprehensive review using systematic literature search strategies to show the application of single-cell RNA sequencing (scRNA-seq) in the human testis of the whole life cycle (from embryos to aging males). Here, we summarized the application of scRNA-seq analyses on various human testicular biological samples. A systematic search was conducted in PubMed and Gene Expression Omnibus (GEO), focusing on English researches published after 2009. Articles related to GEO data-series were also retrieved in PubMed or BioRxiv. 81 full-length studies were finally included in the review. ScRNA-seq has been widely used on different human testicular samples with various library strategies, and new cell subtypes such as State 0 spermatogonial stem cells (SSC) and stage_a/b/c Sertoli cells (SC) were identified. For the development of normal testes, scRNA-seq-based evidence showed dynamic transcriptional changes of both germ cells and somatic cells from embryos to adults. And dysregulated metabolic signaling or hedgehog signaling were revealed by scRNA-seq in aged SC or Leydig cells (LC), respectively. For infertile males, scRNA-seq studies revealed profound changes of testes, such as the increased proportion of immature SC/LC of Klinefelter syndrome, the somatic immaturity and altered germline autophagy of patients with non-obstructive azoospermia, and the repressed differentiation of SSC in trans-females receiving testosterone inhibition therapy. Besides, the re-analyzing of public scRNA-seq data made further discoveries such as the potential vulnerability of testicular SARS-CoV-2 infection, and both evolutionary conservatism and divergence among species. ScRNA-seq analyses would unveil mechanisms of testes' development and changes so as to help developing novel treatments for male infertility.
Collapse
Affiliation(s)
- Fan Dong
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ping Ping
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yi Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiang-Feng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shanghai Human Sperm Bank, Shanghai, China
| |
Collapse
|
9
|
Roelen BAJ, Chuva de Sousa Lopes SM. Stay on the road: from germ cell specification to gonadal colonization in mammals. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210259. [PMID: 36252219 PMCID: PMC9574628 DOI: 10.1098/rstb.2021.0259] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The founder cells of the gametes are primordial germ cells (PGCs). In mammals, PGCs are specified early during embryonic development, at the boundary between embryonic and extraembryonic tissue, long before their later residences, the gonads, have developed. Despite the differences in form and behaviour when differentiated into oocytes or sperm cells, in the period between specification and gonadal colonization, male and female PGCs are morphologically indistinct and largely regulated by similar mechanisms. Here, we compare different modes and mechanisms that lead to the formation of PGCs, putting in context protocols that are in place to differentiate both human and mouse pluripotent stem cells into PGC-like cells. In addition, we review important aspects of the migration of PGCs to the gonadal ridges, where they undergo further sex-specific differentiation. Defects in migration need to be effectively corrected, as misplaced PGCs can become tumorigenic. Concluding, a combination of in vivo studies and the development of adequate innovative in vitro models, ensuring both robustness and standardization, are providing us with the tools for a greater understanding of the first steps of gametogenesis and to develop disease models to study the origin of germ cell tumours. This article is part of the theme issue ‘Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom’.
Collapse
Affiliation(s)
- Bernard A J Roelen
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands.,Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Susana M Chuva de Sousa Lopes
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy.,Department of Anatomy and Embryology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
10
|
Somatic XIST activation and features of X chromosome inactivation in male human cancers. Cell Syst 2022; 13:932-944.e5. [PMID: 36356577 DOI: 10.1016/j.cels.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/09/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
Abstract
Expression of the non-coding RNA XIST is essential for initiating X chromosome inactivation (XCI) during early development in female mammals. As the main function of XCI is to enable dosage compensation of chromosome X genes between the sexes, XCI and XIST expression are generally absent in male normal tissues, except in germ cells and in individuals with supernumerary X chromosomes. Via a systematic analysis of public sequencing data of both cancerous and normal tissues, we report that XIST is somatically activated in a subset of male human cancers across diverse lineages. Some of these cancers display hallmarks of XCI, including silencing of gene expression, reduced chromatin accessibility, and increased DNA methylation across chromosome X, suggesting that the developmentally restricted, female-specific program of XCI can be somatically accessed in male cancers.
Collapse
|
11
|
Fetal germ cell development in humans, a link with infertility. Semin Cell Dev Biol 2022; 131:58-65. [PMID: 35431137 DOI: 10.1016/j.semcdb.2022.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
Gametes are cells that have the unique ability to give rise to new individuals as well as transmit (epi)genetic information across generations. Generation of functionally competent gametes, oocytes and sperm cells, depends to some extent on several fundamental processes that occur during fetal development. Direct studies on human fetal germ cells remain hindered by ethical considerations and inaccessibility to human fetal material. Therefore, the majority of our current knowledge of germ cell development still comes from an invaluable body of research performed using different mammalian species. During the last decade, our understanding of human fetal germ cells has increased due to the successful use of human pluripotent stem cells to model aspects of human early gametogenesis and advancements on single-cell omics. Together, this has contributed to determine the cell types and associated molecular signatures in the developing human gonads. In this review, we will put in perspective the knowledge obtained from several mammalian models (mouse, monkey, pig). Moreover, we will discuss the main events during human fetal (female) early gametogenesis and how the dysregulation of this highly complex and lengthy process can link to infertility later in life.
Collapse
|
12
|
Mizuta K, Katou Y, Nakakita B, Kishine A, Nosaka Y, Saito S, Iwatani C, Tsuchiya H, Kawamoto I, Nakaya M, Tsukiyama T, Nagano M, Kojima Y, Nakamura T, Yabuta Y, Horie A, Mandai M, Ohta H, Saitou M. Ex vivo reconstitution of fetal oocyte development in humans and cynomolgus monkeys. EMBO J 2022; 41:e110815. [PMID: 35912849 PMCID: PMC9475534 DOI: 10.15252/embj.2022110815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/14/2022] Open
Abstract
In vitro oogenesis is key to elucidating the mechanism of human female germ-cell development and its anomalies. Accordingly, pluripotent stem cells have been induced into primordial germ cell-like cells and into oogonia with epigenetic reprogramming, yet further reconstitutions remain a challenge. Here, we demonstrate ex vivo reconstitution of fetal oocyte development in both humans and cynomolgus monkeys (Macaca fascicularis). With an optimized culture of fetal ovary reaggregates over three months, human and monkey oogonia enter and complete the first meiotic prophase to differentiate into diplotene oocytes that form primordial follicles, the source for oogenesis in adults. The cytological and transcriptomic progressions of fetal oocyte development in vitro closely recapitulate those in vivo. A comparison of single-cell transcriptomes among humans, monkeys, and mice unravels primate-specific and conserved programs driving fetal oocyte development, the former including a distinct transcriptomic transformation upon oogonia-to-oocyte transition and the latter including two active X chromosomes with little X-chromosome upregulation. Our study provides a critical step forward for realizing human in vitro oogenesis and uncovers salient characteristics of fetal oocyte development in primates.
Collapse
Affiliation(s)
- Ken Mizuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Katou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Baku Nakakita
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aoi Kishine
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiaki Nosaka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Saki Saito
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Kawamoto
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Masataka Nakaya
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Masahiro Nagano
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoji Kojima
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihito Horie
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Ohta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Chitiashvili T, Hsu FM, Dror I, Plath K, Clark A. FGFR3 is expressed by human primordial germ cells and is repressed after meiotic initiation to form primordial oocytes. Stem Cell Reports 2022; 17:1268-1278. [PMID: 35594860 PMCID: PMC9214056 DOI: 10.1016/j.stemcr.2022.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/19/2023] Open
Abstract
Human germ cell development is a highly regulated process beginning soon after embryo implantation with the specification of primordial germ cells (PGCs) and ending in adulthood with the differentiation of gametes. Here, we show that fibroblast growth factor receptor 3 (FGFR3) is expressed by human PGCs during the first and second trimester, becoming repressed as PGCs differentiate into primordial oocytes. Using fluorescence-activated cell sorting (FACS) with antibodies that recognize FGFR3 followed by single-cell RNA sequencing, we show that isolating FGFR3-positive cells enriches for human PGCs. Taken together, FGFR3 could be used in future studies as a strategy to identify maturing PGCs in vitro.
Collapse
Affiliation(s)
- Tsotne Chitiashvili
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA,Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA,Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Fei-man Hsu
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Iris Dror
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA,Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Amander Clark
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA,Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA,Corresponding author
| |
Collapse
|
14
|
Marečková M, Massalha H, Lorenzi V, Vento-Tormo R. Mapping Human Reproduction with Single-Cell Genomics. Annu Rev Genomics Hum Genet 2022; 23:523-547. [PMID: 35567278 DOI: 10.1146/annurev-genom-120121-114415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The trillions of cells in the human body develop as a result of the fusion of two extremely specialized cells: an oocyte and a sperm. This process is essential for the continuation of our species, as it ensures that parental genetic information is mixed and passed on from generation to generation. In addition to producing oocytes, the female reproductive system must provide the environment for the appropriate development of the fetus until birth. New genomic and computational tools offer unique opportunities to study the tight spatiotemporal regulatory mechanisms that are required for the cycle of human reproduction. This review explores how single-cell technologies have been used to build cellular atlases of the human reproductive system across the life span and how these maps have proven useful to better understand reproductive pathologies and dissect the heterogeneity of in vitro model systems. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Magda Marečková
- Wellcome Sanger Institute, Cambridge, United Kingdom; .,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom;
| | - Hassan Massalha
- Wellcome Sanger Institute, Cambridge, United Kingdom; .,Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
15
|
Fang F, Iaquinta PJ, Xia N, Liu L, Diao L, Reijo Pera RA. Transcriptional control of human gametogenesis. Hum Reprod Update 2022; 28:313-345. [PMID: 35297982 PMCID: PMC9071081 DOI: 10.1093/humupd/dmac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
The pathways of gametogenesis encompass elaborate cellular specialization accompanied by precise partitioning of the genome content in order to produce fully matured spermatozoa and oocytes. Transcription factors are an important class of molecules that function in gametogenesis to regulate intrinsic gene expression programs, play essential roles in specifying (or determining) germ cell fate and assist in guiding full maturation of germ cells and maintenance of their populations. Moreover, in order to reinforce or redirect cell fate in vitro, it is transcription factors that are most frequently induced, over-expressed or activated. Many reviews have focused on the molecular development and genetics of gametogenesis, in vivo and in vitro, in model organisms and in humans, including several recent comprehensive reviews: here, we focus specifically on the role of transcription factors. Recent advances in stem cell biology and multi-omic studies have enabled deeper investigation into the unique transcriptional mechanisms of human reproductive development. Moreover, as methods continually improve, in vitro differentiation of germ cells can provide the platform for robust gain- and loss-of-function genetic analyses. These analyses are delineating unique and shared human germ cell transcriptional network components that, together with somatic lineage specifiers and pluripotency transcription factors, function in transitions from pluripotent stem cells to gametes. This grand theme review offers additional insight into human infertility and reproductive disorders that are linked predominantly to defects in the transcription factor networks and thus may potentially contribute to the development of novel treatments for infertility.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Phillip J Iaquinta
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Ninuo Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Diao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Renee A Reijo Pera
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
- McLaughlin Research Institute, Great Falls, MT, USA
| |
Collapse
|
16
|
Single-Cell Transcriptomics Analysis of Human Small Antral Follicles. Int J Mol Sci 2021; 22:ijms222111955. [PMID: 34769386 PMCID: PMC8584910 DOI: 10.3390/ijms222111955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
Human ovarian folliculogenesis is a highly regulated and complex process. Characterization of follicular cell signatures during this dynamic process is important to understand follicle fate (to grow, become dominant, or undergo atresia). The transcriptional signature of human oocytes and granulosa cells (GCs) in early-growing and ovulatory follicles have been previously described; however, that of oocytes with surrounding GCs in small antral follicles have not been studied yet. Here, we have generated a unique dataset of single-cell transcriptomics (SmartSeq2) consisting of the oocyte with surrounding GCs from several individual (non-dominant) small antral follicles isolated from adult human ovaries. We have identified two main types of (healthy) follicles, with a distinct oocyte and GC signature. Using the CellphoneDB algorithm, we then investigated the bi-directional ligand–receptor interactions regarding the transforming growth factor-β (TGFβ)/bone morphogenetic protein (BMP), wingless-type (MMTV)-integration site (WNT), NOTCH, and receptor tyrosine kinases (RTK) signaling pathways between oocyte and GCs within each antral follicle type. Our work not only revealed the diversity of small antral follicles, but also contributes to fill the gap in mapping the molecular landscape of human folliculogenesis and oogenesis.
Collapse
|
17
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Mitinori Saitou
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Katsuhiko Hayashi
- Department of Developmental Stem Cell Biology, Faculty of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.,Department of Germline Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Tissue of Origin, but Not XCI State, Influences Germ Cell Differentiation from Human Pluripotent Stem Cells. Cells 2021; 10:cells10092400. [PMID: 34572048 PMCID: PMC8466594 DOI: 10.3390/cells10092400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are not only a promising tool to investigate differentiation to many cell types, including the germline, but are also a potential source of cells to use for regenerative medicine purposes in the future. However, current in vitro models to generate human primordial germ cell-like cells (hPGCLCs) have revealed high variability regarding differentiation efficiency depending on the hPSC lines used. Here, we investigated whether differences in X chromosome inactivation (XCI) in female hPSCs could contribute to the variability of hPGCLC differentiation efficiency during embryoid body (EB) formation. For this, we first characterized the XCI state in different hPSC lines by investigating the expression of XIST and H3K27me3, followed by differentiation and quantification of hPGCLCs. We observed that the XCI state did not influence the efficiency to differentiate to hPGCLCs; rather, hPSCs derived from cells isolated from urine showed an increased trend towards hPGCLCs differentiation compared to skin-derived hPSCs. In addition, we also characterized the XCI state in the generated hPGCLCs. Interestingly, we observed that independent of the XCI state of the hPSCs used, both hPGCLCs and soma cells in the EBs acquired XIST expression, indicative of an inactive X chromosome. In fact, culture conditions for EB formation seemed to promote XIST expression. Together, our results contribute to understanding how epigenetic properties of hPSCs influence differentiation and to optimize differentiation methods to obtain higher numbers of hPGCLCs, the first step to achieve human in vitro gametogenesis.
Collapse
|
19
|
PI3K/PTEN/AKT Signaling Pathways in Germ Cell Development and Their Involvement in Germ Cell Tumors and Ovarian Dysfunctions. Int J Mol Sci 2021; 22:ijms22189838. [PMID: 34575999 PMCID: PMC8467417 DOI: 10.3390/ijms22189838] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
Several studies indicate that the PI3K/PTEN/AKT signaling pathways are critical regulators of ovarian function including the formation of the germ cell precursors, termed primordial germ cells, and the follicular pool maintenance. This article reviews the current state of knowledge of the functional role of the PI3K/PTEN/AKT pathways during primordial germ cell development and the dynamics of the ovarian primordial follicle reserve and how dysregulation of these signaling pathways may contribute to the development of some types of germ cell tumors and ovarian dysfunctions.
Collapse
|
20
|
Fan X, Moustakas I, Torrens-Juaneda V, Lei Q, Hamer G, Louwe LA, Pilgram GSK, Szuhai K, Matorras R, Eguizabal C, van der Westerlaken L, Mei H, Chuva de Sousa Lopes SM. Transcriptional progression during meiotic prophase I reveals sex-specific features and X chromosome dynamics in human fetal female germline. PLoS Genet 2021; 17:e1009773. [PMID: 34499650 PMCID: PMC8428764 DOI: 10.1371/journal.pgen.1009773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
During gametogenesis in mammals, meiosis ensures the production of haploid gametes. The timing and length of meiosis to produce female and male gametes differ considerably. In contrast to males, meiotic prophase I in females initiates during development. Hence, the knowledge regarding progression through meiotic prophase I is mainly focused on human male spermatogenesis and female oocyte maturation during adulthood. Therefore, it remains unclear how the different stages of meiotic prophase I between human oogenesis and spermatogenesis compare. Analysis of single-cell transcriptomics data from human fetal germ cells (FGC) allowed us to identify the molecular signatures of female meiotic prophase I stages leptotene, zygotene, pachytene and diplotene. We have compared those between male and female germ cells in similar stages of meiotic prophase I and revealed conserved and specific features between sexes. We identified not only key players involved in the process of meiosis, but also highlighted the molecular components that could be responsible for changes in cellular morphology that occur during this developmental period, when the female FGC acquire their typical (sex-specific) oocyte shape as well as sex-differences in the regulation of DNA methylation. Analysis of X-linked expression between sexes during meiotic prophase I suggested a transient X-linked enrichment during female pachytene, that contrasts with the meiotic sex chromosome inactivation in males. Our study of the events that take place during meiotic prophase I provide a better understanding not only of female meiosis during development, but also highlights biomarkers that can be used to study infertility and offers insights in germline sex dimorphism in humans.
Collapse
Affiliation(s)
- Xueying Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Vanessa Torrens-Juaneda
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Qijing Lei
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Leoni A. Louwe
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonneke S. K. Pilgram
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roberto Matorras
- IVIRMA, IVI Bilbao, Bilbao, Spain; Human Reproduction Unit, Cruces University Hospital, Bilbao, Spain; Department of Obstetrics and Gynecology, Basque Country University, Spain; Biocruces Bizkaia Health Research Institute, Bilbao, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, Cell Therapy, Stem Cells and Tissues Group, Barakaldo, Spain
| | | | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
21
|
Haniffa M, Taylor D, Linnarsson S, Aronow BJ, Bader GD, Barker RA, Camara PG, Camp JG, Chédotal A, Copp A, Etchevers HC, Giacobini P, Göttgens B, Guo G, Hupalowska A, James KR, Kirby E, Kriegstein A, Lundeberg J, Marioni JC, Meyer KB, Niakan KK, Nilsson M, Olabi B, Pe'er D, Regev A, Rood J, Rozenblatt-Rosen O, Satija R, Teichmann SA, Treutlein B, Vento-Tormo R, Webb S. A roadmap for the Human Developmental Cell Atlas. Nature 2021; 597:196-205. [PMID: 34497388 PMCID: PMC10337595 DOI: 10.1038/s41586-021-03620-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development.
Collapse
Affiliation(s)
- Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Deanne Taylor
- Department of Biomedical and Health Informatics (DBHi), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Bruce J Aronow
- Division of Developmental Biology and Biomedical Informatics, Cincinnati Children's Hospital Medical Centre, Cincinnati, OH, USA
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Roger A Barker
- Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Pablo G Camara
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), University of Basel, Basel, Switzerland
| | - Alain Chédotal
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Andrew Copp
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm, CHU Lille, Lille Neuroscience and Cognition, UMR-S 1172, Université Lille, Lille, France
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ania Hupalowska
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Emily Kirby
- Centre of Genomics and Policy, McGill University, Montreal, Quebec, Canada
| | - Arnold Kriegstein
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Joakim Lundeberg
- Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - John C Marioni
- Cancer Research Institute UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Kathy K Niakan
- Francis Crick Institute, London, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Bayanne Olabi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Jennifer Rood
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Rahul Satija
- New York Genome Center, New York University, New York, NY, USA
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | | | - Simone Webb
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Zeng S, Hua Y, Zhang Y, Liu G, Zhao C. GLEANER: a web server for GermLine cycle Expression ANalysis and Epigenetic Roadmap visualization. BMC Bioinformatics 2021; 22:289. [PMID: 34058973 PMCID: PMC8165803 DOI: 10.1186/s12859-021-04217-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Germline cells are important carriers of genetic and epigenetic information transmitted across generations in mammals. During the mammalian germline cell development cycle (i.e., the germline cycle), cell potency changes cyclically, accompanied by dynamic transcriptional changes and epigenetic reprogramming. Recently, to understand these dynamic and regulatory mechanisms, multiomic analyses, including transcriptomic and epigenomic analyses of DNA methylation, chromatin accessibility and histone modifications of germline cells, have been performed for different stages in human and mouse germline cycles. However, the long time span of the germline cycle and material scarcity of germline cells have largely limited the understanding of these dynamic characteristic changes. A tool that integrates the existing multiomics data and visualizes the overall continuous dynamic trends in the germline cycle can partially overcome such limitations. RESULTS Here, we present GLEANER, a web server for GermLine cycle Expression ANalysis and Epigenetics Roadmap visualization. GLEANER provides a comprehensive collection of the transcriptome, DNA methylome, chromatin accessibility, and H3K4me3, H3K27me3, and H3K9me3 histone modification characteristics in human and mouse germline cycles. For each input gene, GLEANER shows the integrative analysis results of its transcriptional and epigenetic features, the genes with correlated transcriptional changes, and the overall continuous dynamic trends in the germline cycle. We further used two case studies to demonstrate the detailed functionality of GLEANER and highlighted that it can provide valuable clues to the epigenetic regulation mechanisms in the genetic and epigenetic information transmitted during the germline cycle. CONCLUSIONS To the best of our knowledge, GLEANER is the first web server dedicated to the analysis and visualization of multiomics data related to the mammalian germline cycle. GLEANER is freely available at http://compbio-zhanglab.org/GLEANER .
Collapse
Affiliation(s)
- Shiyang Zeng
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Yuwei Hua
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Yong Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Guifen Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China.
| | - Chengchen Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
23
|
Man L, Lustgarten-Guahmich N, Kallinos E, Redhead-Laconte Z, Liu S, Schattman B, Redmond D, Hancock K, Zaninovic N, Schattman G, Rosenwaks Z, James D. Comparison of Human Antral Follicles of Xenograft versus Ovarian Origin Reveals Disparate Molecular Signatures. Cell Rep 2021; 32:108027. [PMID: 32783948 DOI: 10.1016/j.celrep.2020.108027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/13/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The activation, growth, and maturation of oocytes to an ovulatory phase, termed folliculogenesis, is governed by the orchestrated activity of multiple specialized cell types within the ovary; yet, the mechanisms governing diversification and behavior of discrete cellular sub-populations within follicles are poorly understood. We use bulk and single-cell RNA sequencing to distinguish the transcriptional signature of prospectively isolated granulosa and theca/stroma cell subsets within human antral follicles derived from xenografts or ovaries. The analysis deconstructs phenotypic diversification within small (<4 mm) antral follicles, identifying secreted factors that are differentially enriched between mural and oophorus granulosa cells, and segregating stromal/support and steroidal activity between theca externa and interna, respectively. Multiple factors are differentially expressed in follicles of xenograft versus ovarian origin. These data capture a high-resolution transcriptional signature of granulosa and theca subpopulations and provide a systems-level portrait of cellular diversification in early antral human follicles.
Collapse
Affiliation(s)
- Limor Man
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nicole Lustgarten-Guahmich
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Eleni Kallinos
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zachary Redhead-Laconte
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Sally Liu
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Benjamin Schattman
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - David Redmond
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kolbe Hancock
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nikica Zaninovic
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Glenn Schattman
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zev Rosenwaks
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Daylon James
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY 10065, USA; Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
24
|
Mishra S, Taelman J, Chang YW, Boel A, De Sutter P, Heindryckx B, Chuva De Sousa Lopes SM. Sex-Specific Isolation and Propagation of Human Premeiotic Fetal Germ Cells and Germ Cell-Like Cells. Cells 2021; 10:cells10051214. [PMID: 34065661 PMCID: PMC8156680 DOI: 10.3390/cells10051214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
The second trimester of human development is marked by asynchronous gonadal development hampering the isolation of homogenous populations of early and late fetal germ cells (FGCs). We evaluated the feasibility of using surface markers TNAP, PDPN, EPCAM and ITGA6 to isolate FGCs as well as human primordial germ cell-like cells (hPGCLCs) derived from embryonic stem cells (hESCs) from both sexes by fluorescence-activated cell sorting (FACS). Our results suggest that a combination of TNAP and PDPN was sufficient to separate populations of premeiotic FGCs and hPGCLCs in both sexes. This combination of antibodies also proved efficient in separating 'mitotic' from 'retinoic-acid responsive' female FGCs. Furthermore, we report that the differentiation efficiency of TNAP+PDPN+ hPGCLCs from hESCs was sex-independent, but the ability to propagate differed considerably between the sexes. In contrast to male, female hPGCLCs retained their characteristics and exhibited robust colony-forming ability when cultured for five days in medium containing LIF, forskolin and FGF2. We conclude that marked sex differences exist in the isolation and propagation of human FGCs and hPGCLCs. Our study provides novel insights relevant for the optimization of in vitro gametogenesis in humans.
Collapse
Affiliation(s)
- Swati Mishra
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.M.); (J.T.); (A.B.); (P.D.S.)
| | - Jasin Taelman
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.M.); (J.T.); (A.B.); (P.D.S.)
| | - Yolanda W. Chang
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333 ZC Leiden, The Netherlands;
| | - Annekatrien Boel
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.M.); (J.T.); (A.B.); (P.D.S.)
| | - Petra De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.M.); (J.T.); (A.B.); (P.D.S.)
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.M.); (J.T.); (A.B.); (P.D.S.)
- Correspondence: (B.H.); (S.M.C.D.S.L.); Tel.: +32-9332-4748 (B.H.); +31-71-526-9350 (S.M.C.D.S.L.)
| | - Susana M. Chuva De Sousa Lopes
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.M.); (J.T.); (A.B.); (P.D.S.)
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333 ZC Leiden, The Netherlands;
- Correspondence: (B.H.); (S.M.C.D.S.L.); Tel.: +32-9332-4748 (B.H.); +31-71-526-9350 (S.M.C.D.S.L.)
| |
Collapse
|
25
|
Alberio R, Kobayashi T, Surani MA. Conserved features of non-primate bilaminar disc embryos and the germline. Stem Cell Reports 2021; 16:1078-1092. [PMID: 33979595 PMCID: PMC8185373 DOI: 10.1016/j.stemcr.2021.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Post-implantation embryo development commences with a bilaminar disc in most mammals, including humans. Whereas access to early human embryos is limited and subject to greater ethical scrutiny, studies on non-primate embryos developing as bilaminar discs offer exceptional opportunities for advances in gastrulation, the germline, and the basis for evolutionary divergence applicable to human development. Here, we discuss the advantages of investigations in the pig embryo as an exemplar of development of a bilaminar disc embryo with relevance to early human development. Besides, the pig has the potential for the creation of humanized organs for xenotransplantation. Precise genetic engineering approaches, imaging, and single-cell analysis are cost effective and efficient, enabling research into some outstanding questions on human development and for developing authentic models of early human development with stem cells.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - Toshihiro Kobayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan; The Graduate University of Advanced Studies, Okazaki, Aichi 444-8787, Japan
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
26
|
Mishra S, Taelman J, Popovic M, Tilleman L, Duthoo E, van der Jeught M, Deforce D, van Nieuwerburgh F, Menten B, de Sutter P, Boel A, Chuva De Sousa Lopes SM, Heindryckx B. Activin A-derived human embryonic stem cells show increased competence to differentiate into primordial germ cell-like cells. Stem Cells 2021; 39:551-563. [PMID: 33470497 PMCID: PMC8248136 DOI: 10.1002/stem.3335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Protocols for specifying human primordial germ cell-like cells (hPGCLCs) from human embryonic stem cells (hESCs) remain hindered by differences between hESC lines, their derivation methods, and maintenance culture conditions. This poses significant challenges for establishing reproducible in vitro models of human gametogenesis. Here, we investigated the influence of activin A (ActA) during derivation and maintenance on the propensity of hESCs to differentiate into PGCLCs. We show that continuous ActA supplementation during hESC derivation (from blastocyst until the formation of the post-inner cell mass intermediate [PICMI]) and supplementation (from the first passage of the PICMI onwards) is beneficial to differentiate hESCs to PGCLCs subsequently. Moreover, comparing isogenic primed and naïve states prior to differentiation, we showed that conversion of hESCs to the 4i-state improves differentiation to (TNAP [tissue nonspecific alkaline phosphatase]+/PDPN [podoplanin]+) PGCLCs. Those PGCLCs expressed several germ cell markers, including TFAP2C (transcription factor AP-2 gamma), SOX17 (SRY-box transcription factor 17), and NANOS3 (nanos C2HC-type zinc finger 3), and markers associated with germ cell migration, CXCR4 (C-X-C motif chemokine receptor 4), LAMA4 (laminin subunit alpha 4), ITGA6 (integrin subunit alpha 6), and CDH4 (cadherin 4), suggesting that the large numbers of PGCLCs obtained may be suitable to differentiate further into more mature germ cells. Finally, hESCs derived in the presence of ActA showed higher competence to differentiate to hPGCLC, in particular if transiently converted to the 4i-state. Our work provides insights into the differences in differentiation propensity of hESCs and delivers an optimized protocol to support efficient human germ cell derivation.
Collapse
Affiliation(s)
- Swati Mishra
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Jasin Taelman
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Mina Popovic
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical SciencesGhent UniversityGhentBelgium
| | - Evi Duthoo
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Margot van der Jeught
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical SciencesGhent UniversityGhentBelgium
| | - Filip van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical SciencesGhent UniversityGhentBelgium
| | - Björn Menten
- Department of Pediatrics and Medical Genetics, Center for Medical GeneticsGhent University HospitalGhentBelgium
| | - Petra de Sutter
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Annekatrien Boel
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Susana M. Chuva De Sousa Lopes
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
- Department of Anatomy and EmbryologyLeiden University Medical CentreLeidenThe Netherlands
| | - Björn Heindryckx
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| |
Collapse
|
27
|
Hancock GV, Wamaitha SE, Peretz L, Clark AT. Mammalian primordial germ cell specification. Development 2021; 148:148/6/dev189217. [PMID: 33722957 DOI: 10.1242/dev.189217] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The peri-implantation window of mammalian development is the crucial window for primordial germ cell (PGC) specification. Whereas pre-implantation dynamics are relatively conserved between species, the implantation window marks a stage of developmental divergence between key model organisms, and thus potential variance in the cell and molecular mechanisms for PGC specification. In humans, PGC specification is very difficult to study in vivo To address this, the combined use of human and nonhuman primate embryos, and stem cell-based embryo models are essential for determining the origin of PGCs, as are comparative analyses to the equivalent stages of mouse development. Understanding the origin of PGCs in the peri-implantation embryo is crucial not only for accurate modeling of this essential process using stem cells, but also in determining the role of global epigenetic reprogramming upon which sex-specific differentiation into gametes relies.
Collapse
Affiliation(s)
- Grace V Hancock
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Sissy E Wamaitha
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Lior Peretz
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Amander T Clark
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA .,Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
Zhu Q, Sang F, Withey S, Tang W, Dietmann S, Klisch D, Ramos-Ibeas P, Zhang H, Requena CE, Hajkova P, Loose M, Surani MA, Alberio R. Specification and epigenomic resetting of the pig germline exhibit conservation with the human lineage. Cell Rep 2021; 34:108735. [PMID: 33567277 PMCID: PMC7873836 DOI: 10.1016/j.celrep.2021.108735] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/17/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Investigations of the human germline and programming are challenging because of limited access to embryonic material. However, the pig as a model may provide insights into transcriptional network and epigenetic reprogramming applicable to both species. Here we show that, during the pre- and early migratory stages, pig primordial germ cells (PGCs) initiate large-scale epigenomic reprogramming, including DNA demethylation involving TET-mediated hydroxylation and, potentially, base excision repair (BER). There is also macroH2A1 depletion and increased H3K27me3 as well as X chromosome reactivation (XCR) in females. Concomitantly, there is dampening of glycolytic metabolism genes and re-expression of some pluripotency genes like those in preimplantation embryos. We identified evolutionarily young transposable elements and gene coding regions resistant to DNA demethylation in acutely hypomethylated gonadal PGCs, with potential for transgenerational epigenetic inheritance. Detailed insights into the pig germline will likely contribute significantly to advances in human germline biology, including in vitro gametogenesis.
Collapse
Affiliation(s)
- Qifan Zhu
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Sarah Withey
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Walfred Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sabine Dietmann
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Doris Klisch
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Priscila Ramos-Ibeas
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Haixin Zhang
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Cristina E Requena
- MRC London Institute of Medical Sciences (LMS), London, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Petra Hajkova
- MRC London Institute of Medical Sciences (LMS), London, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Matt Loose
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
29
|
Rehnitz J, Youness B, Nguyen XP, Dietrich JE, Roesner S, Messmer B, Strowitzki T, Vogt PH. FMR1 expression in human granulosa cells and variable ovarian response: control by epigenetic mechanisms. Mol Hum Reprod 2021; 27:6119639. [PMID: 33493269 DOI: 10.1093/molehr/gaab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
In humans, FMR1 (fragile X mental retardation 1) is strongly expressed in granulosa cells (GCs) of the female germline and apparently controls efficiency of folliculogenesis. Major control mechanism(s) of the gene transcription rate seem to be based on the rate of CpG-methylation along the CpG island promoter. Conducting CpG-methylation-specific bisulfite-treated PCR assays and subsequent sequence analyses of both gene alleles, revealed three variably methylated CpG domains (FMR1-VMR (variably methylated region) 1, -2, -3) and one completely unmethylated CpG-region (FMR1-UMR) in this extended FMR1-promoter-region. FMR1-UMR in the core promoter was exclusively present only in female GCs, suggesting expression from both gene alleles, i.e., escaping the female-specific X-inactivation mechanism for the second gene allele. Screening for putative target sites of transcription factors binding with CpG methylation dependence, we identified a target site for the transcriptional activator E2F1 in FMR1-VMR3. Using specific electrophoretic mobility shift assays, we found E2F1 binding efficiency to be dependent on CpG-site methylation in its target sequence. Comparative analysis of these CpGs revealed that CpG 94-methylation in primary GCs of women with normal and reduced efficiency of folliculogenesis statistically significant differences. We therefore conclude that E2F1 binding to FMR1-VMR3 in human GCs is part of an epigenetic mechanism regulating the efficiency of human folliculogenesis. Our data indicate that epigenetic mechanisms may control GC FMR1-expression rates.
Collapse
Affiliation(s)
- Julia Rehnitz
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany.,Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Berthe Youness
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Xuan Phuoc Nguyen
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Jens E Dietrich
- Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Sabine Roesner
- Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Birgitta Messmer
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Thomas Strowitzki
- Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Peter H Vogt
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| |
Collapse
|
30
|
Li L, Yang R, Yin C, Kee K. Studying human reproductive biology through single-cell analysis and in vitro differentiation of stem cells into germ cell-like cells. Hum Reprod Update 2020; 26:670-688. [PMID: 32464645 DOI: 10.1093/humupd/dmaa021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Understanding the molecular and cellular mechanisms of human reproductive development has been limited by the scarcity of human samples and ethical constraints. Recently, in vitro differentiation of human pluripotent stem cells into germ cells and single-cell analyses have opened new avenues to directly study human germ cells and identify unique mechanisms in human reproductive development. OBJECTIVE AND RATIONALE The goal of this review is to collate novel findings and insightful discoveries with these new methodologies, aiming at introducing researchers and clinicians to the use of these tools to study human reproductive biology and develop treatments for infertility. SEARCH METHODS PubMed was used to search articles and reviews with the following main keywords: in vitro differentiation, human stem cells, single-cell analysis, spermatogenesis, oogenesis, germ cells and other key terms related to these subjects. The search period included all publications from 2000 until now. OUTCOMES Single-cell analyses of human gonads have identified many important gene markers at different developmental stages and in subpopulations of cells. To validate the functional roles of these gene markers, researchers have used the in vitro differentiation of human pluripotent cells into germ cells and confirmed that some genetic requirements are unique in human germ cells and are not conserved in mouse models. Moreover, transcriptional regulatory networks and the interaction of germ and somatic cells in gonads were elucidated in these studies. WIDER IMPLICATIONS Single-cell analyses allow researchers to identify gene markers and potential regulatory networks using limited clinical samples. On the other hand, in vitro differentiation methods provide clinical researchers with tools to examine these newly identify gene markers and study the causative effects of mutations previously associated with infertility. Combining these two methodologies, researchers can identify gene markers and networks which are essential and unique in human reproductive development, thereby producing more accurate diagnostic tools for assessing reproductive disorders and developing treatments for infertility.
Collapse
Affiliation(s)
- Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China
| | - Risako Yang
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China
| | - Kehkooi Kee
- Department of Basic Medical Sciences, Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Panda A, Zylicz JJ, Pasque V. New Insights into X-Chromosome Reactivation during Reprogramming to Pluripotency. Cells 2020; 9:E2706. [PMID: 33348832 PMCID: PMC7766869 DOI: 10.3390/cells9122706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dosage compensation between the sexes results in one X chromosome being inactivated during female mammalian development. Chromosome-wide transcriptional silencing from the inactive X chromosome (Xi) in mammalian cells is erased in a process termed X-chromosome reactivation (XCR), which has emerged as a paradigm for studying the reversal of chromatin silencing. XCR is linked with germline development and induction of naive pluripotency in the epiblast, and also takes place upon reprogramming somatic cells to induced pluripotency. XCR depends on silencing of the long non-coding RNA (lncRNA) X inactive specific transcript (Xist) and is linked with the erasure of chromatin silencing. Over the past years, the advent of transcriptomics and epigenomics has provided new insights into the transcriptional and chromatin dynamics with which XCR takes place. However, multiple questions remain unanswered about how chromatin and transcription related processes enable XCR. Here, we review recent work on establishing the transcriptional and chromatin kinetics of XCR, as well as discuss a model by which transcription factors mediate XCR not only via Xist repression, but also by direct targeting of X-linked genes.
Collapse
Affiliation(s)
- Amitesh Panda
- Laboratory of Cellular Reprogramming and Epigenetic Regulation, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
| | - Jan J. Zylicz
- The Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Vincent Pasque
- Laboratory of Cellular Reprogramming and Epigenetic Regulation, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
32
|
Affiliation(s)
| | - Claire Rougeulle
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France.
| |
Collapse
|
33
|
Chitiashvili T, Dror I, Kim R, Hsu FM, Chaudhari R, Pandolfi E, Chen D, Liebscher S, Schenke-Layland K, Plath K, Clark A. Female human primordial germ cells display X-chromosome dosage compensation despite the absence of X-inactivation. Nat Cell Biol 2020; 22:1436-1446. [PMID: 33257808 PMCID: PMC7717582 DOI: 10.1038/s41556-020-00607-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
X-chromosome dosage compensation in female placental mammals is achieved by X-chromosome inactivation (XCI). Human pre-implantation embryos are an exception, in which dosage compensation occurs by X-chromosome dampening (XCD). Here, we examined whether XCD extends to human prenatal germ cells given their similarities to naive pluripotent cells. We found that female human primordial germ cells (hPGCs) display reduced X-linked gene expression before entering meiosis. Moreover, in hPGCs, both X chromosomes are active and express the long non-coding RNAs X active coating transcript (XACT) and X inactive specific transcript (XIST)-the master regulator of XCI-which are silenced after entry into meiosis. We find that XACT is a hPGC marker, describe XCD associated with XIST expression in hPGCs and suggest that XCD evolved in humans to regulate X-linked genes in pre-implantation embryos and PGCs. Furthermore, we found a unique mechanism of X-chromosome regulation in human primordial oocytes. Therefore, future studies of human germline development must consider the sexually dimorphic X-chromosome dosage compensation mechanisms in the prenatal germline.
Collapse
Affiliation(s)
- Tsotne Chitiashvili
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Iris Dror
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Rachel Kim
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Fei-Man Hsu
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Rohan Chaudhari
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Erica Pandolfi
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Di Chen
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Simone Liebscher
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute, University Tübingen, Reutlingen, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| | - Amander Clark
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
34
|
Estermann MA, Smith CA. Applying Single-Cell Analysis to Gonadogenesis and DSDs (Disorders/Differences of Sex Development). Int J Mol Sci 2020; 21:E6614. [PMID: 32927658 PMCID: PMC7555471 DOI: 10.3390/ijms21186614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
The gonads are unique among the body's organs in having a developmental choice: testis or ovary formation. Gonadal sex differentiation involves common progenitor cells that form either Sertoli and Leydig cells in the testis or granulosa and thecal cells in the ovary. Single-cell analysis is now shedding new light on how these cell lineages are specified and how they interact with the germline. Such studies are also providing new information on gonadal maturation, ageing and the somatic-germ cell niche. Furthermore, they have the potential to improve our understanding and diagnosis of Disorders/Differences of Sex Development (DSDs). DSDs occur when chromosomal, gonadal or anatomical sex are atypical. Despite major advances in recent years, most cases of DSD still cannot be explained at the molecular level. This presents a major pediatric concern. The emergence of single-cell genomics and transcriptomics now presents a novel avenue for DSD analysis, for both diagnosis and for understanding the molecular genetic etiology. Such -omics datasets have the potential to enhance our understanding of the cellular origins and pathogenesis of DSDs, as well as infertility and gonadal diseases such as cancer.
Collapse
Affiliation(s)
| | - Craig A. Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia;
| |
Collapse
|
35
|
Vincenz C, Lovett JL, Wu W, Shedden K, Strassmann BI. Loss of Imprinting in Human Placentas Is Widespread, Coordinated, and Predicts Birth Phenotypes. Mol Biol Evol 2020; 37:429-441. [PMID: 31639821 PMCID: PMC6993844 DOI: 10.1093/molbev/msz226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genomic imprinting leads to mono-allelic expression of genes based on parent of origin. Therian mammals and angiosperms evolved this mechanism in nutritive tissues, the placenta, and endosperm, where maternal and paternal genomes are in conflict with respect to resource allocation. We used RNA-seq to analyze allelic bias in the expression of 91 known imprinted genes in term human placentas from a prospective cohort study in Mali. A large fraction of the imprinted exons (39%) deviated from mono-allelic expression. Loss of imprinting (LOI) occurred in genes with either maternal or paternal expression bias, albeit more frequently in the former. We characterized LOI using binomial generalized linear mixed models. Variation in LOI was predominantly at the gene as opposed to the exon level, consistent with a single promoter driving the expression of most exons in a gene. Some genes were less prone to LOI than others, particularly lncRNA genes were rarely expressed from the repressed allele. Further, some individuals had more LOI than others and, within a person, the expression bias of maternally and paternally imprinted genes was correlated. We hypothesize that trans-acting maternal effect genes mediate correlated LOI and provide the mother with an additional lever to control fetal growth by extending her influence to LOI of the paternally imprinted genes. Limited evidence exists to support associations between LOI and offspring phenotypes. We show that birth length and placental weight were associated with allelic bias, making this the first comprehensive report of an association between LOI and a birth phenotype.
Collapse
Affiliation(s)
- Claudius Vincenz
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Jennie L Lovett
- Department of Anthropology, University of Michigan, Ann Arbor, MI
| | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI
| | - Kerby Shedden
- Department of Statistics, University of Michigan, Ann Arbor, MI
| | - Beverly I Strassmann
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI
- Department of Anthropology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
36
|
Patrat C, Ouimette JF, Rougeulle C. X chromosome inactivation in human development. Development 2020; 147:147/1/dev183095. [PMID: 31900287 DOI: 10.1242/dev.183095] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
X chromosome inactivation (XCI) is a key developmental process taking place in female mammals to compensate for the imbalance in the dosage of X-chromosomal genes between sexes. It is a formidable example of concerted gene regulation and a paradigm for epigenetic processes. Although XCI has been substantially deciphered in the mouse model, how this process is initiated in humans has long remained unexplored. However, recent advances in the experimental capacity to access human embryonic-derived material and in the laws governing ethical considerations of human embryonic research have allowed us to enlighten this black box. Here, we will summarize the current knowledge of human XCI, mainly based on the analyses of embryos derived from in vitro fertilization and of pluripotent stem cells, and highlight any unanswered questions.
Collapse
Affiliation(s)
- Catherine Patrat
- Université de Paris, UMR 1016, Institut Cochin, 75014 Paris, France .,Service de Biologie de la Reproduction - CECOS, Paris Centre Hospital, APHP.centre, 75014 Paris, France
| | | | - Claire Rougeulle
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013 Paris, France
| |
Collapse
|
37
|
Talon I, Janiszewski A, Chappell J, Vanheer L, Pasque V. Recent Advances in Understanding the Reversal of Gene Silencing During X Chromosome Reactivation. Front Cell Dev Biol 2019; 7:169. [PMID: 31552244 PMCID: PMC6733891 DOI: 10.3389/fcell.2019.00169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
Dosage compensation between XX female and XY male cells is achieved by a process known as X chromosome inactivation (XCI) in mammals. XCI is initiated early during development in female cells and is subsequently stably maintained in most somatic cells. Despite its stability, the robust transcriptional silencing of XCI is reversible, in the embryo and also in a number of reprogramming settings. Although XCI has been intensively studied, the dynamics, factors, and mechanisms of X chromosome reactivation (XCR) remain largely unknown. In this review, we discuss how new sequencing technologies and reprogramming approaches have enabled recent advances that revealed the timing of transcriptional activation during XCR. We also discuss the factors and chromatin features that might be important to understand the dynamics and mechanisms of the erasure of transcriptional gene silencing on the inactive X chromosome (Xi).
Collapse
Affiliation(s)
| | | | | | | | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Fan X, Bialecka M, Moustakas I, Lam E, Torrens-Juaneda V, Borggreven NV, Trouw L, Louwe LA, Pilgram GSK, Mei H, van der Westerlaken L, Chuva de Sousa Lopes SM. Single-cell reconstruction of follicular remodeling in the human adult ovary. Nat Commun 2019; 10:3164. [PMID: 31320652 PMCID: PMC6639403 DOI: 10.1038/s41467-019-11036-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
The ovary is perhaps the most dynamic organ in the human body, only rivaled by the uterus. The molecular mechanisms that regulate follicular growth and regression, ensuring ovarian tissue homeostasis, remain elusive. We have performed single-cell RNA-sequencing using human adult ovaries to provide a map of the molecular signature of growing and regressing follicular populations. We have identified different types of granulosa and theca cells and detected local production of components of the complement system by (atretic) theca cells and stromal cells. We also have detected a mixture of adaptive and innate immune cells, as well as several types of endothelial and smooth muscle cells to aid the remodeling process. Our results highlight the relevance of mapping whole adult organs at the single-cell level and reflect ongoing efforts to map the human body. The association between complement system and follicular remodeling may provide key insights in reproductive biology and (in)fertility.
Collapse
Affiliation(s)
- X Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands
| | - M Bialecka
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands
| | - I Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands.,Sequencing Analysis Support Core, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands
| | - E Lam
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands
| | - V Torrens-Juaneda
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands
| | - N V Borggreven
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - L Trouw
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - L A Louwe
- Department of Gynaecology, Division of Reproductive Medicine, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - G S K Pilgram
- Department of Gynaecology, Division of Reproductive Medicine, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - H Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands
| | - L van der Westerlaken
- Department of Gynaecology, Division of Reproductive Medicine, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - S M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands. .,Department for Reproductive Medicine, Ghent University Hospital, 9000, Ghent, Belgium.
| |
Collapse
|
39
|
Abstract
Germ cells undergo epigenome reprogramming for proper development of the next generation. The achievement of in vitro germ cell derivation from human and mouse pluripotent stem cells and further differentiation in a plane culture and in aggregation with gonadal somatic cells offers unprecedented opportunities for investigation of the germ cell development. Moreover, advances in low-input/single-cell genomics have enabled detailed investigation of epigenome dynamics during germ cell development. These technologies have advanced our knowledge of epigenome reprogramming during the specification and development of primordial germ cells, their sex differentiation, and gametogenesis. Key findings include details of chromatin remodeling and transcriptional regulation, progressive and comprehensive DNA demethylation, and tight links between DNA demethylation and histone marks during the development of primordial germ cells, acquisition of unique totipotent epigenome during oogenesis (e.g., broad H3K4me3 domains and low-level three-dimensional genomic organization), and unexpected organization of the sperm genome. Moreover, these studies suggest the importance of epigenome analyses for in-depth evaluations of in vitro gametogenesis.
Collapse
Affiliation(s)
- Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Nara, Japan.
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
40
|
Miranda Furtado CL, Salomão KB, Verruma CG, Paulino Leite SB, Lopes Rios ÁF, Bialecka M, Moustakas I, Mei H, de Paz CCP, Duarte G, Chuva de Sousa Lopes SM, Ramos ES. Variation in DNA methylation in the KvDMR1 (ICR2) region in first-trimester human pregnancies. Fertil Steril 2019; 111:1186-1193. [PMID: 30922639 DOI: 10.1016/j.fertnstert.2019.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To investigate the levels of DNA methylation in the KvDMR1 (KvLQT1 differentially methylated region 1) in embryonic and extra-embryonic tissues. DESIGN Cross-sectional study. SETTING University medical center and clinical hospital. PATIENT(S) Embryonic and/or extraembryonic tissues (umbilical cord, chorionic villus, chorion, decidua, and/or amnion) collected from 27 first-trimester pregnancies (up to 12 weeks of gestation, single embryos) from elective abortions, extravillous trophoblasts (EVTs) from the top of individual chorionic villi, and chorionic villi from 10 normal full-term placentas collected after birth. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) DNA methylation of the KvDMR1 region evaluated using quantitative analysis of DNA methylation followed by real-time polymerase chain reaction (qAMP) and bisulfite sequencing (bis-seq) analysis. RESULT(S) The results showed variability in KvDMR1 DNA methylation in different tissues from the same pregnancy. The average of DNA methylation was not different between the embryo, umbilical cord, amnion, and chorionic villi, despite the relatively low level of methylation observed in the amnion (33.50% ± 14.48%). Chorionic villi from term placentas showed a normal methylation pattern at KvDMR1 (42.60% ± 6.08%). The normal methylation pattern at KvDMR1 in chorionic villi (as well as in EVTs) from first-trimester placentas was confirmed by bis-seq. CONCLUSION(S) Our results highlight an existing heterogeneity in DNA methylation of the KvDMR1 region during first trimester and a consistent hypomethylation in the amnion in this period of gestation.
Collapse
Affiliation(s)
- Cristiana Libardi Miranda Furtado
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil; Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands; Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Karina Bezerra Salomão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Carolina Gennari Verruma
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Álvaro Fabrício Lopes Rios
- Biotechnology Laboratory, Center of Bioscience and Biotechnology, State University of North Fluminense Darcy Ribeiro, Campos dos Goitacazes, Rio de Janeiro, Brazil
| | - Monika Bialecka
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands; Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Claudia Cristina Paro de Paz
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil; Instituto de Zootecnia, Centro APTA de Bovinos de Corte, São Paulo, Brazil
| | - Geraldo Duarte
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ester Silveira Ramos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
41
|
Hochane M, van den Berg PR, Fan X, Bérenger-Currias N, Adegeest E, Bialecka M, Nieveen M, Menschaart M, Chuva de Sousa Lopes SM, Semrau S. Single-cell transcriptomics reveals gene expression dynamics of human fetal kidney development. PLoS Biol 2019; 17:e3000152. [PMID: 30789893 PMCID: PMC6400406 DOI: 10.1371/journal.pbio.3000152] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/05/2019] [Indexed: 01/30/2023] Open
Abstract
The current understanding of mammalian kidney development is largely based on mouse models. Recent landmark studies revealed pervasive differences in renal embryogenesis between mouse and human. The scarcity of detailed gene expression data in humans therefore hampers a thorough understanding of human kidney development and the possible developmental origin of kidney diseases. In this paper, we present a single-cell transcriptomics study of the human fetal kidney. We identified 22 cell types and a host of marker genes. Comparison of samples from different developmental ages revealed continuous gene expression changes in podocytes. To demonstrate the usefulness of our data set, we explored the heterogeneity of the nephrogenic niche, localized podocyte precursors, and confirmed disease-associated marker genes. With close to 18,000 renal cells from five different developmental ages, this study provides a rich resource for the elucidation of human kidney development, easily accessible through an interactive web application.
Collapse
Affiliation(s)
- Mazène Hochane
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | | | - Xueying Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Esmée Adegeest
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Monika Bialecka
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike Nieveen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| |
Collapse
|