1
|
Govender P, Ghai M. Population-specific differences in the human microbiome: Factors defining the diversity. Gene 2025; 933:148923. [PMID: 39244168 DOI: 10.1016/j.gene.2024.148923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Differences in microbial communities at different body habitats define the microbiome composition of the human body. The gut, oral, skin vaginal fluid and tissue microbiome, are pivotal for human development and immune response and cross talk between these microbiomes is evident. Population studies reveal that various factors, such as host genetics, diet, lifestyle, aging, and geographical location are strongly associated with population-specific microbiome differences. The present review discusses the factors that shape microbiome diversity in humans, and microbiome differences in African, Asian and Caucasian populations. Gut microbiome studies show that microbial species Bacteroides is commonly found in individuals living in Western countries (Caucasian populations), while Prevotella is prevalent in non-Western countries (African and Asian populations). This association is mainly due to the high carbohydrate, high fat diet in western countries in contrast to high fibre, low fat diets in African/ Asian regions. Majority of the microbiome studies focus on the bacteriome component; however, interesting findings reveal that increased bacteriophage richness, which makes up the virome component, correlates with decreased bacterial diversity, and causes microbiome dysbiosis. An increase of Caudovirales (bacteriophages) is associated with a decrease in enteric bacteria in inflammatory bowel diseases. Future microbiome studies should evaluate the interrelation between bacteriome and virome to fully understand their significance in the pathogenesis and progression of human diseases. With ethnic health disparities becoming increasingly apparent, studies need to emphasize on the association of population-specific microbiome differences and human diseases, to develop microbiome-based therapeutics. Additionally, targeted phage therapy is emerging as an attractive alternative to antibiotics for bacterial infections. With rapid rise in microbiome research, focus should be on standardizing protocols, advanced bioinformatics tools, and reducing sequencing platform related biases. Ultimately, integration of multi-omics data (genomics, transcriptomics, proteomics and metabolomics) will lead to precision models for personalized microbiome therapeutics advancement.
Collapse
Affiliation(s)
- Priyanka Govender
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa.
| |
Collapse
|
2
|
Marzano V, Levi Mortera S, Putignani L. Insights on Wet and Dry Workflows for Human Gut Metaproteomics. Proteomics 2024:e202400242. [PMID: 39740098 DOI: 10.1002/pmic.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
The human gut microbiota (GM) is a community of microorganisms that resides in the gastrointestinal (GI) tract. Recognized as a critical element of human health, the functions of the GM extend beyond GI well-being to influence overall systemic health and susceptibility to disease. Among the other omic sciences, metaproteomics highlights additional facets that make it a highly valuable discipline in the study of GM. Indeed, it allows the protein inventory of complex microbial communities. Proteins with associated taxonomic membership and function are identified and quantified from their constituent peptides by liquid chromatography coupled to mass spectrometry analyses and by querying specific databases (DBs). The aim of this review was to compile comprehensive information on metaproteomic studies of the human GM, with a focus on the bacterial component, to assist newcomers in understanding the methods and types of research conducted in this field. The review outlines key steps in a metaproteomic-based study, such as protein extraction, DB selection, and bioinformatic workflow. The importance of standardization is emphasized. In addition, a list of previously published studies is provided as hints for researchers interested in investigating the role of GM in health and disease states.
Collapse
Affiliation(s)
- Valeria Marzano
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Mottawea W, Yousuf B, Sultan S, Ahmed T, Yeo J, Hüttmann N, Li Y, Bouhlel NE, Hassan H, Zhang X, Minic Z, Hammami R. Multi-level analysis of gut microbiome extracellular vesicles-host interaction reveals a connection to gut-brain axis signaling. Microbiol Spectr 2024:e0136824. [PMID: 39699251 DOI: 10.1128/spectrum.01368-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024] Open
Abstract
Microbiota-released extracellular vesicles (MEVs) have emerged as a key player in intercellular signaling. However, their involvement in the gut-brain axis has been poorly investigated. We hypothesize that MEVs cross host cellular barriers and deliver their cargoes of bioactive compounds to the brain. In this study, we aimed to investigate the cargo capacity of MEVs for bioactive metabolites and their interactions with the host cellular barriers. First, we conducted a multi-omics profiling of MEVs' contents from ex vivo and stool samples. Metabolomics analysis identified various neuro-related compounds encapsulated within MEVs, such as arachidonyl-dopamine, gabapentin, glutamate, and N-acylethanolamines. Metaproteomics unveiled an enrichment of enzymes involved in neuronal metabolism, primarily in the glutamine/glutamate/gamma-aminobutyric acid (GABA) pathway. These neuro-related proteins and metabolites were correlated with Bacteroides spp. We isolated 18 Bacteroides strains and assessed their GABA production capacity in extracellular vesicles (EVs) and culture supernatant. A GABA-producing Bacteroides finegoldii, released EVs with a high GABA content (4 µM) compared to Phocaeicola massiliensis. Upon testing the capacity of MEVs to cross host barriers, MEVs exhibited a dose-dependent paracellular transport and were endocytosed by Caco-2 and hCMEC/D3 cells. Exposure of Caco-2 cells to MEVs did not alter expression of genes related to intestinal barrier integrity, while affected immune pathways and cell apoptosis process as revealed by RNA-seq analyses. In vivo, MEVs biodistributed across mice organs, including the brain, liver, stomach, and spleen. Our results highlight the ability of MEVs to cross the intestinal and blood-brain barriers to deliver their cargoes to distant organs, with potential implication for the gut-brain axis. IMPORTANCE Microbiota-released extracellular vesicles (MEVs) have emerged as a key player in intercellular signaling. In this study, a multi-level analysis revealed presence of a diverse array of biologically active molecules encapsulated within MEVs, including neuroactive metabolites, such as arachidonyl-dopamine, gabapentin, glutamate, and N-acylethanolamines, and gamma-aminobutyric acid (GABA). Metaproteomics also unveiled an enrichment of neural-related proteins, mainly the glutamine/glutamate/GABA pathway. MEVs were able to cross epithelial and blood-brain barriers in vitro. RNA-seq analyses showed that MEVs stimulate several immune pathways while suppressing cell apoptosis process. Furthermore, MEVs were able to traverse the intestinal barriers and reach distal organs, including the brain, thereby potentially influencing brain functionality and contributing to mental and behavior.
Collapse
Affiliation(s)
- Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Basit Yousuf
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Salma Sultan
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Tamer Ahmed
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - JuDong Yeo
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Yingxi Li
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Nour Elhouda Bouhlel
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Hebatoallah Hassan
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Xu Zhang
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
4
|
Cohen A, Li J, Butcher J, Singleton R, Barbeau P, Stintzi A, Mack DR. The intestinal microbiome, but not clinical aspects of inflammatory bowel disease, is impacted by lactose malabsorption compared to lactose digestion in children. Am J Clin Nutr 2024; 120:1335-1343. [PMID: 39374806 PMCID: PMC11619786 DOI: 10.1016/j.ajcnut.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Dietary exclusion of lactose from patients with inflammatory bowel disease (IBD) persists with speculation that deleterious effects are mediated through intestinal microbes. OBJECTIVES To compare IBD characteristics and changes in the intestinal microbiome (IM) at diagnosis in children with and without lactose malabsorption (LM). METHODS A cross-sectional cohort of children (8-17 y of age) diagnosed with Crohn's disease [n = 149 (63%)] or ulcerative colitis (n = 86) that had undergone lactose breath hydrogen testing was evaluated. The IM of mucosal luminal aspirates was profiled at the time of diagnosis using 16S ribosomal ribonucleic acid gene amplicon sequencing of the V6 hypervariable region. RESULTS Of the 235 children, 61 (26%) had LM. Microbial characterization yielded differences in bacterial differential abundance between children who could and could not absorb lactose, which varied by intestinal site and between subtypes of IBD. There were no differences in the ages [13.2 ± 3.0 y (mean ± standard deviation) compared with 12.7 ± 3.4 y; P = 0.25], sex (P = 0.88), extent of disease involvement or severity of disease at presentation (P = 0.74) when comparing those that could or could not absorb lactose nor was there a difference in the need for initiation of biological agents (P = 0.43) during 2 y of follow-up. CONCLUSIONS LM does not affect the clinical presentation or outcomes of children with IBD. However, this study establishes that a single nonabsorbed fermentable food product can alter the IM in both a regional and disease-specific manner. As we continue to learn more about the pathophysiology of IBD and the role of the IM in disease onset and progression, it would be of benefit to examine the impact of other potential fermentable nutrients and their products on IBD outcomes.
Collapse
Affiliation(s)
- Alexandra Cohen
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jennifer Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth Singleton
- CHEO Research Institute, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Pauline Barbeau
- CHEO Research Institute, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David R Mack
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; CHEO Research Institute, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Fan S, Qin P, Lu J, Wang S, Zhang J, Wang Y, Cheng A, Cao Y, Ding W, Zhang W. Bioprospecting of culturable marine biofilm bacteria for novel antimicrobial peptides. IMETA 2024; 3:e244. [PMID: 39742298 PMCID: PMC11683478 DOI: 10.1002/imt2.244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 01/03/2025]
Abstract
Antimicrobial peptides (AMPs) have become a viable source of novel antibiotics that are effective against human pathogenic bacteria. In this study, we construct a bank of culturable marine biofilm bacteria constituting 713 strains and their nearly complete genomes and predict AMPs using ribosome profiling and deep learning. Compared with previous approaches, ribosome profiling has improved the identification and validation of small open reading frames (sORFs) for AMP prediction. Among the 80,430 expressed sORFs, 341 are identified as candidate AMPs with high probability. Most potential AMPs have less than 40% similarity in their amino acid sequence compared to those listed in public databases. Furthermore, these AMPs are associated with bacterial groups that are not previously known to produce AMPs. Therefore, our deep learning model has acquired characteristics of unfamiliar AMPs. Chemical synthesis of 60 potential AMP sequences yields 54 compounds with antimicrobial activity, including potent inhibitory effects on various drug-resistant human pathogens. This study extends the range of AMP compounds by investigating marine biofilm microbiomes using a novel approach, accelerating AMP discovery.
Collapse
Affiliation(s)
- Shen Fan
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Peng Qin
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Jie Lu
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Shuaitao Wang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Jie Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Yan Wang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Aifang Cheng
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SARChina
| | - Yan Cao
- College of Pulmonary & Critical Care MedicineChinese PLA General HospitalBeijingChina
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Weipeng Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| |
Collapse
|
6
|
Gu M, Zhang D, Li C, Ren Y, Song G, Chen L, Li S, Zheng X. In-depth metaproteomics analysis reveals the protein profile and metabolism characteristics in pork during refrigerated storage. Food Chem 2024; 459:140149. [PMID: 39002337 DOI: 10.1016/j.foodchem.2024.140149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 07/15/2024]
Abstract
Alterations in microbiotas and endogenous enzymes have been implicated in meat deterioration. However, the factors that mediate the interactions between meat quality and microbiome profile were inadequately investigated. In this study, we collected pork samples throughout the refrigeration period and employed metaproteomics to characterize both the pork and microbial proteins. Our findings demonstrated that pork proteins associated with the catabolic process are upregulated during storage compared to the initial stage. Pseudomonas, Clostridium, Goodfellowiella, and Gonapodya contribute to the spoilage process. Notably, we observed an elevated abundance of microbial proteins related to glycolytic enzymes in refrigerated pork, identifying numerous proteins linked to biogenic amine production, thus highlighting their essential role in microbial decay. Further, we reveal that many of these microbial proteins from Pseudomonas are ribosomal proteins, promoting enzyme synthesis by enhancing transcription and translation. This study provides intrinsic insights into the underlying mechanisms by which microorganisms contribute to meat spoilage.
Collapse
Affiliation(s)
- Minghui Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Cheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yuqing Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Guangchun Song
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaochun Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
7
|
Levi Mortera S, Marzano V, Rapisarda F, Marangelo C, Pirona I, Vernocchi P, Di Michele M, Del Chierico F, Quintero MA, Fernandez I, Hazime H, Killian RM, Solis N, Ortega M, Damas OM, Proksell S, Kerman DH, Deshpande AR, Garces L, Scaldaferri F, Gasbarrini A, Abreu MT, Putignani L. Metaproteomics reveals diet-induced changes in gut microbiome function according to Crohn's disease location. MICROBIOME 2024; 12:217. [PMID: 39443987 PMCID: PMC11515613 DOI: 10.1186/s40168-024-01927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Crohn's disease (CD) is characterized by chronic intestinal inflammation. Diet is a key modifiable factor influencing the gut microbiome (GM) and a risk factor for CD. However, the impact of diet modulation on GM function in CD patients is understudied. Herein, we evaluated the effect of a high-fiber, low-fat diet (the Mi-IBD diet) on GM function in CD patients. All participants were instructed to follow the Mi-IBD diet for 8 weeks. One group of CD patients received one-time diet counseling only (Gr1); catered food was supplied for the other three groups, including CD patients (Gr2) and dyads of CD patients and healthy household controls (HHCs) residing within the same household (Gr3-HHC dyads). Stool samples were collected at baseline, week 8, and week 36, and analyzed by liquid chromatography-tandem mass spectrometry. RESULTS At baseline, the metaproteomic profiles of CD patients and HHCs differed. The Mi-IBD diet significantly increased carbohydrate and iron transport and metabolism. The predicted microbial composition underlying the metaproteomic changes differed between patients with ileal only disease (ICD) or colonic involvement: ICD was characterized by decreased Faecalibacterium abundance. Even on the Mi-IBD diet, the CD patient metaproteome displayed significant underrepresentation of carbohydrate and purine/pyrimidine synthesis pathways compared to that of HHCs. Human immune-related proteins were upregulated in CD patients compared to HHCs. CONCLUSIONS The Mi-IBD diet changed the microbial function of CD patients and enhanced carbohydrate metabolism. Our metaproteomic results highlight functional differences in the microbiome according to disease location. Notably, our dietary intervention yielded the most benefit for CD patients with colonic involvement compared to ileal-only disease. Video Abstract.
Collapse
Affiliation(s)
- Stefano Levi Mortera
- Immunology, Rheumatology and Infectious Disease Research Area, Human Microbiome Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valeria Marzano
- Immunology, Rheumatology and Infectious Disease Research Area, Human Microbiome Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federica Rapisarda
- Immunology, Rheumatology and Infectious Disease Research Area, Human Microbiome Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Marangelo
- Immunology, Rheumatology and Infectious Disease Research Area, Human Microbiome Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ilaria Pirona
- GenomeUp SRL, Rome, Italy
- Istituto Di Patologia Speciale Medica, Catholic University of the Sacred Heart, Rome, Italy
| | - Pamela Vernocchi
- Immunology, Rheumatology and Infectious Disease Research Area, Human Microbiome Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marta Di Michele
- Immunology, Rheumatology and Infectious Disease Research Area, Human Microbiome Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federica Del Chierico
- Immunology, Rheumatology and Infectious Disease Research Area, Human Microbiome Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria A Quintero
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Irina Fernandez
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Hajar Hazime
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rose M Killian
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Norma Solis
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mailenys Ortega
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Oriana M Damas
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Siobhan Proksell
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - David H Kerman
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Amar R Deshpande
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Luis Garces
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Franco Scaldaferri
- Istituto Di Patologia Speciale Medica, Catholic University of the Sacred Heart, Rome, Italy
- UOC Medicina Interna E Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Istituto Di Patologia Speciale Medica, Catholic University of the Sacred Heart, Rome, Italy
- UOC Medicina Interna E Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Maria T Abreu
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Lorenza Putignani
- Department of Diagnostics and Laboratory Medicine, Microbiology and Diagnostic Immunology Unit, Microbiomics and Immunology Unit, Rheumatology and Infectious Disease Research Area, Human Microbiome Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
8
|
Cao Q, Liu C, Li Y, Qin Y, Wang C, Wang T. The underlying mechanisms of oxytetracycline degradation mediated by gut microbial proteins and metabolites in Hermetia illucens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174224. [PMID: 38914334 DOI: 10.1016/j.scitotenv.2024.174224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Hermetia illucens larvae can enhance the degradation of oxytetracycline (OTC) through its biotransformation. However, the underlying mechanisms mediated by gut metabolites and proteins are unclear. To gain further insights, the kinetics of OTC degradation, the functional structures of gut bacterial communities, proteins, and metabolites were investigated. An availability-adjusted first-order model effectively evaluated OTC degradation kinetics, with degradation half-lives of 4.18 and 21.71 days for OTC degradation with and without larval biotransformation, respectively. Dominant bacteria in the larval guts were Enterococcus, Psychrobacter, Providencia, Myroides, Enterobacteriaceae, and Lactobacillales. OTC exposure led to significant differential expression of proteins, with functional classification revealing involvement in digestion, transformation, and adaptability to environmental stress. Upregulated proteins, such as aromatic ring hydroxylase, acted as oxidoreductases modifying the chemical structure of OTC. Unique metabolites, aclarubicin and sancycline identified were possible OTC metabolic intermediates. Correlation analysis revealed significant interdependence between gut bacteria, metabolites, and proteins. These findings reveal a synergistic mechanism involving gut microbial metabolism and enzyme structure that drives the rapid degradation of OTC and facilitates the engineering applications of bioremediation.
Collapse
Affiliation(s)
- Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Yun Li
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| |
Collapse
|
9
|
Sun Y, Xing Z, Liang S, Miao Z, Zhuo LB, Jiang W, Zhao H, Gao H, Xie Y, Zhou Y, Yue L, Cai X, Chen YM, Zheng JS, Guo T. metaExpertPro: A Computational Workflow for Metaproteomics Spectral Library Construction and Data-Independent Acquisition Mass Spectrometry Data Analysis. Mol Cell Proteomics 2024; 23:100840. [PMID: 39278598 DOI: 10.1016/j.mcpro.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/04/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Analysis of large-scale data-independent acquisition mass spectrometry metaproteomics data remains a computational challenge. Here, we present a computational pipeline called metaExpertPro for metaproteomics data analysis. This pipeline encompasses spectral library generation using data-dependent acquisition MS, protein identification and quantification using data-independent acquisition mass spectrometry, functional and taxonomic annotation, as well as quantitative matrix generation for both microbiota and hosts. By integrating FragPipe and DIA-NN, metaExpertPro offers compatibility with both Orbitrap and timsTOF MS instruments. To evaluate the depth and accuracy of identification and quantification, we conducted extensive assessments using human fecal samples and benchmark tests. Performance tests conducted on human fecal samples indicated that metaExpertPro quantified an average of 45,000 peptides in a 60-min diaPASEF injection. Notably, metaExpertPro outperformed three existing software tools by characterizing a higher number of peptides and proteins. Importantly, metaExpertPro maintained a low factual false discovery rate of approximately 5% for protein groups across four benchmark tests. Applying a filter of five peptides per genus, metaExpertPro achieved relatively high accuracy (F-score = 0.67-0.90) in genus diversity and showed a high correlation (rSpearman = 0.73-0.82) between the measured and true genus relative abundance in benchmark tests. Additionally, the quantitative results at the protein, taxonomy, and function levels exhibited high reproducibility and consistency across the commonly adopted public human gut microbial protein databases IGC and UHGP. In a metaproteomic analysis of dyslipidemia patients, metaExpertPro revealed characteristic alterations in microbial functions and potential interactions between the microbiota and the host.
Collapse
Affiliation(s)
- Yingying Sun
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Ziyuan Xing
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Shuang Liang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zelei Miao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lai-Bao Zhuo
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenhao Jiang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Hui Zhao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huanhuan Gao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yuting Xie
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yan Zhou
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Liang Yue
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Xue Cai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ju-Sheng Zheng
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Pavelescu LA, Profir M, Enache RM, Roşu OA, Creţoiu SM, Gaspar BS. A Proteogenomic Approach to Unveiling the Complex Biology of the Microbiome. Int J Mol Sci 2024; 25:10467. [PMID: 39408795 PMCID: PMC11476728 DOI: 10.3390/ijms251910467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The complex biology of the microbiome was elucidated once the genomics era began. The proteogenomic approach analyzes and integrates genetic makeup (genomics) and microbial communities' expressed proteins (proteomics). Therefore, researchers gained insights into gene expression, protein functions, and metabolic pathways, understanding microbial dynamics and behavior, interactions with host cells, and responses to environmental stimuli. In this context, our work aims to bring together data regarding the application of genomics, proteomics, and bioinformatics in microbiome research and to provide new perspectives for applying microbiota modulation in clinical practice with maximum efficiency. This review also synthesizes data from the literature, shedding light on the potential biomarkers and therapeutic targets for various diseases influenced by the microbiome.
Collapse
Affiliation(s)
- Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.A.P.); (M.P.); (O.A.R.)
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.A.P.); (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.A.P.); (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.A.P.); (M.P.); (O.A.R.)
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
11
|
Zhang Y, Thomas JP, Korcsmaros T, Gul L. Integrating multi-omics to unravel host-microbiome interactions in inflammatory bowel disease. Cell Rep Med 2024; 5:101738. [PMID: 39293401 PMCID: PMC11525031 DOI: 10.1016/j.xcrm.2024.101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
The gut microbiome is crucial for nutrient metabolism, immune regulation, and intestinal homeostasis with changes in its composition linked to complex diseases like inflammatory bowel disease (IBD). Although the precise host-microbial mechanisms in disease pathogenesis remain unclear, high-throughput sequencing have opened new ways to unravel the role of interspecies interactions in IBD. Systems biology-a holistic computational framework for modeling complex biological systems-is critical for leveraging multi-omics datasets to identify disease mechanisms. This review highlights the significance of multi-omics data in IBD research and provides an overview of state-of-the-art systems biology resources and computational tools for data integration. We explore gaps, challenges, and future directions in the research field aiming to uncover novel biomarkers and therapeutic targets, ultimately advancing personalized treatment strategies. While focusing on IBD, the proposed approaches are applicable for other complex diseases, like cancer, and neurodegenerative diseases, where the microbiome has also been implicated.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Surgery & Cancer, Imperial College London, London W12 0NN, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - John P Thomas
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; UKRI MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, London W12 0HS, UK
| | - Tamas Korcsmaros
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; NIHR Imperial BRC Organoid Facility, Imperial College London, London W12 0NN, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.
| | - Lejla Gul
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| |
Collapse
|
12
|
Wang A, Fekete EEF, Creskey M, Cheng K, Ning Z, Pfeifle A, Li X, Figeys D, Zhang X. Assessing fecal metaproteomics workflow and small protein recovery using DDA and DIA PASEF mass spectrometry. MICROBIOME RESEARCH REPORTS 2024; 3:39. [PMID: 39421247 PMCID: PMC11480776 DOI: 10.20517/mrr.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 10/19/2024]
Abstract
Aim: This study aims to evaluate the impact of experimental workflow on fecal metaproteomic observations, including the recovery of small and antimicrobial proteins often overlooked in metaproteomic studies. The overarching goal is to provide guidance for optimized metaproteomic experimental design, considering the emerging significance of the gut microbiome in human health, disease, and therapeutic interventions. Methods: Mouse feces were utilized as the experimental model. Fecal sample pre-processing methods (differential centrifugation and non-differential centrifugation), protein digestion techniques (in-solution and filter-aided), data acquisition modes (data-dependent and data-independent, or DDA and DIA) when combined with parallel accumulation-serial fragmentation (PASEF), and different bioinformatic workflows were assessed. Results: We showed that, in DIA-PASEF metaproteomics, the library-free search using protein sequence database generated from DDA-PASEF data achieved better identifications than using the generated spectral library. Compared to DDA, DIA-PASEF identified more microbial peptides, quantified more proteins with fewer missing values, and recovered more small antimicrobial proteins. We did not observe any obvious impacts of protein digestion methods on both taxonomic and functional profiles. However, differential centrifugation decreased the recovery of small and antimicrobial proteins, biased the taxonomic observation with a marked overestimation of Muribaculum species, and altered the measured functional compositions of metaproteome. Conclusion: This study underscores the critical impact of experimental choices on metaproteomic outcomes and sheds light on the potential biases introduced at different stages of the workflow. The comprehensive methodological comparisons serve as a valuable guide for researchers aiming to enhance the accuracy and completeness of metaproteomic analyses.
Collapse
Affiliation(s)
- Angela Wang
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Ontario, Canada
- Authors contributed equally
| | - Emily E F Fekete
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Ontario, Canada
- Authors contributed equally
| | - Marybeth Creskey
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Ontario, Canada
| | - Kai Cheng
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Ontario, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Ontario, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Ontario, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Ontario, Canada
| | - Annabelle Pfeifle
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Ontario, Canada
| | - Xuguang Li
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Ontario, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Ontario, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Ontario, Canada
| | - Xu Zhang
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Ontario, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Ontario, Canada
| |
Collapse
|
13
|
Neettiyath A, Chung K, Liu W, Lee LP. Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles. NANO CONVERGENCE 2024; 11:23. [PMID: 38918255 PMCID: PMC11199476 DOI: 10.1186/s40580-024-00431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Extracellular vesicles (EVs) are promising tools for the early diagnosis of diseases, and bacterial membrane vesicles (MVs) are especially important in health and environment monitoring. However, detecting EVs or bacterial MVs presents significant challenges for the clinical translation of EV-based diagnostics. In this Review, we provide a comprehensive discussion on the basics of nanoplasmonic sensing and emphasize recent developments in nanoplasmonics-based optical sensors to effectively identify EVs or bacterial MVs. We explore various nanoplasmonic sensors tailored for EV or bacterial MV detection, emphasizing the application of localized surface plasmon resonance through gold nanoparticles and their multimers. Additionally, we highlight advanced EV detection techniques based on surface plasmon polaritons using plasmonic thin film and nanopatterned structures. Furthermore, we evaluate the improved detection capability of surface-enhanced Raman spectroscopy in identifying and classifying these vesicles, aided by plasmonic nanostructures. Nanoplasmonic sensing techniques have remarkable precision and sensitivity, making them a potential tool for accurate EV detection in clinical applications, facilitating point-of-care molecular diagnostics. Finally, we summarize the challenges associated with nanoplasmonic EV or bacterial MV sensors and offer insights into potential future directions for this evolving field.
Collapse
Affiliation(s)
- Aparna Neettiyath
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Kyungwha Chung
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Wenpeng Liu
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea.
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
14
|
Moura F, Romeiro C, Petriz B, Cavichiolli N, Almeida JA, Castro A, Franco OL. Endurance exercise associated with a fructooligosaccharide diet modulates gut microbiota and increases colon absorptive area. J Gastroenterol Hepatol 2024; 39:1145-1154. [PMID: 38642000 DOI: 10.1111/jgh.16563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND AND AIM Fructooligosaccharide (FOS) supplementation can stimulate beneficial intestinal bacteria growth, but little is known about its influence on training performance. Therefore, this study analyzed FOS and exercise effects on gut microbiota and intestinal morphology of C57Bl/6 mice. METHODS Forty male mice were divided into four groups: standard diet-sedentary (SDS), standard diet-exercised (SDE), FOS supplemented (7.5% FOS)-sedentary (FDS), and FOS supplemented-exercised (FDE), n = 10 each group. Exercise training consisted of 60 min/day, 3 days/week, for 12 weeks. RESULTS SDE and FDE groups had an increase in aerobic performance compared to the pretraining period and SDS and FDS groups (P < 0.01), respectively. Groups with FOS increased colonic crypts size (P < 0.05). The FDE group presented rich microbiota (α-diversity) compared to other groups. The FDE group also acquired a greater microbial abundance (β-diversity) than other groups. The FDE group had a decrease in the Ruminococcaceae (P < 0.002) and an increase in Roseburia (P < 0.003), Enterorhabdus (P < 0.004) and Anaerotruncus (P < 0.006). CONCLUSIONS These findings suggest that aerobic exercise associated with FOS supplementation modulates gut microbiota and can increase colonic crypt size without improving endurance exercise performance.
Collapse
Affiliation(s)
- Filipe Moura
- Postgraduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil
- Laboratory of Molecular Physiology of Exercise, University Center UDF, Brasília, Brazil
- Center for Proteomic and Biochemical Analysis, Postgraduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - Caroline Romeiro
- Postgraduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil
| | - Bernardo Petriz
- Laboratory of Molecular Physiology of Exercise, University Center UDF, Brasília, Brazil
- Center for Proteomic and Biochemical Analysis, Postgraduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - Nathalia Cavichiolli
- S-Inova Biotech, Postgraduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil
| | | | - Alinne Castro
- S-Inova Biotech, Postgraduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil
| | - Octavio L Franco
- Postgraduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil
- Center for Proteomic and Biochemical Analysis, Postgraduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
- S-Inova Biotech, Postgraduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
15
|
Sun Z, Ning Z, Figeys D. The Landscape and Perspectives of the Human Gut Metaproteomics. Mol Cell Proteomics 2024; 23:100763. [PMID: 38608842 PMCID: PMC11098955 DOI: 10.1016/j.mcpro.2024.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/26/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
The human gut microbiome is closely associated with human health and diseases. Metaproteomics has emerged as a valuable tool for studying the functionality of the gut microbiome by analyzing the entire proteins present in microbial communities. Recent advancements in liquid chromatography and tandem mass spectrometry (LC-MS/MS) techniques have expanded the detection range of metaproteomics. However, the overall coverage of the proteome in metaproteomics is still limited. While metagenomics studies have revealed substantial microbial diversity and functional potential of the human gut microbiome, few studies have summarized and studied the human gut microbiome landscape revealed with metaproteomics. In this article, we present the current landscape of human gut metaproteomics studies by re-analyzing the identification results from 15 published studies. We quantified the limited proteome coverage in metaproteomics and revealed a high proportion of annotation coverage of metaproteomics-identified proteins. We conducted a preliminary comparison between the metaproteomics view and the metagenomics view of the human gut microbiome, identifying key areas of consistency and divergence. Based on the current landscape of human gut metaproteomics, we discuss the feasibility of using metaproteomics to study functionally unknown proteins and propose a whole workflow peptide-centric analysis. Additionally, we suggest enhancing metaproteomics analysis by refining taxonomic classification and calculating confidence scores, as well as developing tools for analyzing the interaction between taxonomy and function.
Collapse
Affiliation(s)
- Zhongzhi Sun
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Zhibin Ning
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
16
|
Wan S, Wang K, Huang P, Guo X, Liu W, Li Y, Zhang J, Li Z, Song J, Yang W, Zhang X, Ding X, Leong DT, Wang L. Mechanoelectronic stimulation of autologous extracellular vesicle biosynthesis implant for gut microbiota modulation. Nat Commun 2024; 15:3343. [PMID: 38637580 PMCID: PMC11026491 DOI: 10.1038/s41467-024-47710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Pathogenic gut microbiota is responsible for a few debilitating gastrointestinal diseases. While the host immune cells do produce extracellular vesicles to counteract some deleterious effects of the microbiota, the extracellular vesicles are of insufficient doses and at unreliable exposure times. Here we use mechanical stimulation of hydrogel-embedded macrophage in a bioelectronic controller that on demand boost production of up to 20 times of therapeutic extracellular vesicles to ameliorate the microbes' deleterious effects in vivo. Our miniaturized wireless bioelectronic system termed inducible mechanical activation for in-situ and sustainable generating extracellular vesicles (iMASSAGE), leverages on wireless electronics and responsive hydrogel to impose mechanical forces on macrophages to produce extracellular vesicles that rectify gut microbiome dysbiosis and ameliorate colitis. This in vivo controllable extracellular vesicles-produced system holds promise as platform to treat various other diseases.
Collapse
Affiliation(s)
- Shuangshuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Kepeng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Peihong Huang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Xian Guo
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Wurui Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Yaocheng Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Jingjing Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Zhiyang Li
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University, 210008, Nanjing, China
| | - Jiacheng Song
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 210023, Nanjing, China
| | - Wenjing Yang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, 430072, Wuhan, China
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China.
| |
Collapse
|
17
|
Li L, Mayne J, Beltran A, Zhang X, Ning Z, Figeys D. RapidAIM 2.0: a high-throughput assay to study functional response of human gut microbiome to xenobiotics. MICROBIOME RESEARCH REPORTS 2024; 3:26. [PMID: 38841404 PMCID: PMC11149095 DOI: 10.20517/mrr.2023.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Aim: Our gut microbiome has its own functionalities which can be modulated by various xenobiotic and biotic components. The development and application of a high-throughput functional screening approach of individual gut microbiomes accelerates drug discovery and our understanding of microbiome-drug interactions. We previously developed the rapid assay of individual microbiome (RapidAIM), which combined an optimized culturing model with metaproteomics to study gut microbiome responses to xenobiotics. In this study, we aim to incorporate automation and multiplexing techniques into RapidAIM to develop a high-throughput protocol. Methods: To develop a 2.0 version of RapidAIM, we automated the protein analysis protocol, and introduced a tandem mass tag (TMT) multiplexing technique. To demonstrate the typical outcome of the protocol, we used RapidAIM 2.0 to evaluate the effect of prebiotic kestose on ex vivo individual human gut microbiomes biobanked with five different workflows. Results: We describe the protocol of RapidAIM 2.0 with extensive details on stool sample collection, biobanking, in vitro culturing and stimulation, sample processing, metaproteomics measurement, and data analysis. The analysis depth of 5,014 ± 142 protein groups per multiplexed sample was achieved. A test on five biobanking methods using RapidAIM 2.0 showed the minimal effect of sample processing on live microbiota functional responses to kestose. Conclusions: Depth and reproducibility of RapidAIM 2.0 are comparable to previous manual label-free metaproteomic analyses. In the meantime, the protocol realizes culturing and sample preparation of 320 samples in six days, opening the door to extensively understanding the effects of xenobiotic and biotic factors on our internal ecology.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Figeys
- Correspondence to: Prof. Daniel Figeys, School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Ontario, Canada. E-mail:
| |
Collapse
|
18
|
Wu E, Mallawaarachchi V, Zhao J, Yang Y, Liu H, Wang X, Shen C, Lin Y, Qiao L. Contigs directed gene annotation (ConDiGA) for accurate protein sequence database construction in metaproteomics. MICROBIOME 2024; 12:58. [PMID: 38504332 PMCID: PMC10949615 DOI: 10.1186/s40168-024-01775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Microbiota are closely associated with human health and disease. Metaproteomics can provide a direct means to identify microbial proteins in microbiota for compositional and functional characterization. However, in-depth and accurate metaproteomics is still limited due to the extreme complexity and high diversity of microbiota samples. It is generally recommended to use metagenomic data from the same samples to construct the protein sequence database for metaproteomic data analysis. Although different metagenomics-based database construction strategies have been developed, an optimization of gene taxonomic annotation has not been reported, which, however, is extremely important for accurate metaproteomic analysis. RESULTS Herein, we proposed an accurate taxonomic annotation pipeline for genes from metagenomic data, namely contigs directed gene annotation (ConDiGA), and used the method to build a protein sequence database for metaproteomic analysis. We compared our pipeline (ConDiGA or MD3) with two other popular annotation pipelines (MD1 and MD2). In MD1, genes were directly annotated against the whole bacterial genome database; in MD2, contigs were annotated against the whole bacterial genome database and the taxonomic information of contigs was assigned to the genes; in MD3, the most confident species from the contigs annotation results were taken as reference to annotate genes. Annotation tools, including BLAST, Kaiju, and Kraken2, were compared. Based on a synthetic microbial community of 12 species, it was found that Kaiju with the MD3 pipeline outperformed the others in the construction of protein sequence database from metagenomic data. Similar performance was also observed with a fecal sample, as well as in silico mixed datasets of the simulated microbial community and the fecal sample. CONCLUSIONS Overall, we developed an optimized pipeline for gene taxonomic annotation to construct protein sequence databases. Our study can tackle the current taxonomic annotation reliability problem in metagenomics-derived protein sequence database and can promote the in-depth metaproteomic analysis of microbiome. The unique metagenomic and metaproteomic datasets of the 12 bacterial species are publicly available as a standard benchmarking sample for evaluating various analysis pipelines. The code of ConDiGA is open access at GitHub for the analysis of microbiota samples. Video Abstract.
Collapse
Affiliation(s)
- Enhui Wu
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Vijini Mallawaarachchi
- School of Computing, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT, 2600, Australia
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jinzhi Zhao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Yi Yang
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Hebin Liu
- Shanghai Omicsolution Co., Ltd, Shanghai, 200000, China
| | - Xiaoqing Wang
- Shanghai Omicsolution Co., Ltd, Shanghai, 200000, China
| | - Chengpin Shen
- Shanghai Omicsolution Co., Ltd, Shanghai, 200000, China
| | - Yu Lin
- School of Computing, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT, 2600, Australia
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
19
|
Pei Q, He M, Tang P, Zhang X, Huang X, Zhang X, Yang J, Li Z, Li L, Chen D. Salvia miltiorrhiza polysaccharide promotes the health of crayfish (Procambarus clarkii) by promoting hemocyte phagocytosis, protecting hepatopancreas and enhancing intestinal barrier function. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109405. [PMID: 38278337 DOI: 10.1016/j.fsi.2024.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Plant polysaccharides as immunomodulators are considered one of the effective measures to reduce antibiotic therapy in aquaculture. The immunomodulatory function of Salvia miltiorrhiza polysaccharides (SMP) has been demonstrated and begun to be applied in vertebrates, but its potential effect on crustaceans is unclear. In this study, crayfish (Procambarus clarkii) was fed with 0 %, 0.3 %, 0.7 %, 1.1 %, and 1.5 % SMP for 4 weeks to investigate the effects of SMP on hemocytes phagocytosis, hepatopancreatic function, and intestinal barrier function. The results revealed that hemocyte phagocytic activity was increased in all SMP groups. During the process of hemocytes phagocytic recognition and formation of phagosomes and phagolysosomes, the mRNA expression levels of mas, hem, rab3, ctsb, and lamp-1 were up-regulated mainly in the 0.3 % SMP group. During the clearance phase of phagocytosis, respiratory burst activity, ROS level, T-SOD, CAT, GST, and LZM activities were mainly increased in the 1.5 % SMP group. Hepatopancreas AKP and GOT activity were no significant change in all SMP groups. ACP activity was significantly enhanced in the 1.1 % SMP group. The GPT activity of 0.3-0.7 % SMP group was significantly decreased. The 0.7 % SMP group had the highest intestinal fold height. The highest index values of OTUs, Ace, Chao, and Shannon were in the 0.3 % SMP group. The dietary addition of 0.3 % SMP led to a tendency of increased relative abundance of Firmicutes and Bacteroidota at the phylum level, while the relative abundance of Proteobacteria at the phylum level decreased. In conclusion, dietary SMP could promote crayfish health by enhancing phagocytosis, protecting hepatopancreas and enhancing intestinal barrier function. This study contributes to the theoretical foundation for exploring the potential application of plant polysaccharides in crustaceans.
Collapse
Affiliation(s)
- Qiaolin Pei
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengxuan He
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Zhang
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
| | - Jiangyong Yang
- Chengdu Belorkon Bio-Tech Co., Ltd., Chengdu, 611130, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liangyu Li
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China.
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
20
|
Cisek AA, Szymańska E, Aleksandrzak-Piekarczyk T, Cukrowska B. The Role of Methanogenic Archaea in Inflammatory Bowel Disease-A Review. J Pers Med 2024; 14:196. [PMID: 38392629 PMCID: PMC10890621 DOI: 10.3390/jpm14020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Methanogenic archaea are a part of the commensal gut microbiota responsible for hydrogen sink and the efficient production of short-chain fatty acids. Dysbiosis of methanogens is suspected to play a role in pathogenesis of variety of diseases, including inflammatory bowel disease (IBD). Unlike bacteria, the diversity of archaea seems to be higher in IBD patients compared to healthy subjects, whereas the prevalence and abundance of gut methanogens declines in IBD, especially in ulcerative colitis. To date, studies focusing on methanogens in pediatric IBD are very limited; nevertheless, the preliminary results provide some evidence that methanogens may be influenced by the chronic inflammatory process in IBD. In this review, we demonstrated the development and diversity of the methanogenic community in IBD, both in adults and children.
Collapse
Affiliation(s)
- Agata Anna Cisek
- Department of Pathomorphology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Edyta Szymańska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | | | - Bożena Cukrowska
- Department of Pathomorphology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| |
Collapse
|
21
|
Cisek AA, Szymańska E, Wierzbicka-Rucińska A, Aleksandrzak-Piekarczyk T, Cukrowska B. Methanogenic Archaea in the Pediatric Inflammatory Bowel Disease in Relation to Disease Type and Activity. Int J Mol Sci 2024; 25:673. [PMID: 38203843 PMCID: PMC10779203 DOI: 10.3390/ijms25010673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The inflammatory bowel disease (IBD) is associated with gut microbiota dysbiosis; however, studies on methanogens-especially those focused on children-are extremely limited. The aim of this study was to determine the abundance of total methanogenic archaea and their three subgroups: Methanobrevibacter (Mb.) smithii, Methanosphaera (Ms.) stadtmanae, and Methanomassiliicoccales, in the feces of children with both active and inactive Crohn's disease (CD) and ulcerative colitis (UC). The results of a quantitative real-time PCR were cross-referenced with the disease type (CD vs. UC) and activity assessed with the use of Pediatric Crohn's Disease Activity Index (PCDAI) and Pediatric Ulcerative Colitis Activity Index (PUCAI) indices, and fecal calprotectin (FCP) concentration, and compared with controls. There was a significant decrease in the number of total methanogens in CD and UC compared to controls. The prevalence of total methanogens was also lower in UC compared to controls. Furthermore, patients from the inactive UC group were colonized by a lower number of Mb. smithii, and demonstrated the most pronounced positive correlation between the number of Ms. stadtmanae and the FCP concentration. Our results demonstrate that gut methanogens are related to the type and activity of pediatric IBD.
Collapse
Affiliation(s)
- Agata Anna Cisek
- Department of Pathomorphology, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Edyta Szymańska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Aldona Wierzbicka-Rucińska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | | | - Bożena Cukrowska
- Department of Pathomorphology, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| |
Collapse
|
22
|
Marzano V, Mortera SL, Marangelo C, Piazzesi A, Rapisarda F, Pane S, Del Chierico F, Vernocchi P, Romani L, Campana A, Palma P, Putignani L. The metaproteome of the gut microbiota in pediatric patients affected by COVID-19. Front Cell Infect Microbiol 2023; 13:1327889. [PMID: 38188629 PMCID: PMC10766818 DOI: 10.3389/fcimb.2023.1327889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The gut microbiota (GM) play a significant role in the infectivity and severity of COVID-19 infection. However, the available literature primarily focuses on adult patients and it is known that the microbiota undergoes changes throughout the lifespan, with significant alterations occurring during infancy and subsequently stabilizing during adulthood. Moreover, children have exhibited milder symptoms of COVID-19 disease, which has been associated with the abundance of certain protective bacteria. Here, we examine the metaproteome of pediatric patients to uncover the biological mechanisms that underlie this protective effect of the GM. Methods We performed nanoliquid chromatography coupled with tandem mass spectrometry on a high resolution analytical platform, resulting in label free quantification of bacterial protein groups (PGs), along with functional annotations via COG and KEGG databases by MetaLab-MAG. Additionally, taxonomic assignment was possible through the use of the lowest common ancestor algorithm provided by Unipept software. Results A COVID-19 GM functional dissimilarity respect to healthy subjects was identified by univariate analysis. The alteration in COVID-19 GM function is primarily based on bacterial pathways that predominantly involve metabolic processes, such as those related to tryptophan, butanoate, fatty acid, and bile acid biosynthesis, as well as antibiotic resistance and virulence. Discussion These findings highlight the mechanisms by which the pediatric GM could contribute to protection against the more severe manifestations of the disease in children. Uncovering these mechanisms can, therefore, have important implications in the discovery of novel adjuvant therapies for severe COVID-19.
Collapse
Affiliation(s)
- Valeria Marzano
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Chiara Marangelo
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonia Piazzesi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Rapisarda
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Pane
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Del Chierico
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Pamela Vernocchi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Romani
- Unit of Infectious Disease, Bambino Gesu’ Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Campana
- Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
23
|
Das A, Behera RN, Kapoor A, Ambatipudi K. The Potential of Meta-Proteomics and Artificial Intelligence to Establish the Next Generation of Probiotics for Personalized Healthcare. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17528-17542. [PMID: 37955263 DOI: 10.1021/acs.jafc.3c03834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The symbiosis of probiotic bacteria with humans has rendered various health benefits while providing nutrition and a suitable environment for their survival. However, the probiotics must survive unfavorable gut conditions to exert beneficial effects. The intrinsic resistance of probiotics to survive harsh conditions results from a myriad of proteins. Interaction of microbial proteins with the host is indispensable for modulating the gut microbiome, such as interaction with cell receptors and protective action against pathogens. The complex interplay of proteins should be unraveled by utilizing metaproteomic strategies. The contribution of probiotics to health is now widely accepted. However, due to the inconsistency of generalized probiotics, contemporary research toward precision probiotics has gained momentum for customized treatment. This review explores the application of metaproteomics and AI/ML algorithms in resolving multiomics data analysis and in silico prediction of microbial features for screening specific beneficial probiotic organisms. Implementing these integrative strategies could augment the potential of precision probiotics for personalized healthcare.
Collapse
Affiliation(s)
- Arpita Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rama N Behera
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ayushi Kapoor
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
24
|
Zhou F, Liang Q, Zhao X, Wu X, Fan S, Zhang X. Comparative metaproteomics reveal co-contribution of onion maggot and its gut microbiota to phoxim resistance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115649. [PMID: 37913580 DOI: 10.1016/j.ecoenv.2023.115649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Pesticide resistance inflicts significant economic losses on a global scale each year. To address this pressing issue, substantial efforts have been dedicated to unraveling the resistance mechanisms, particularly the newly discovered microbiota-derived pesticide resistance in recent decades. Previous research has predominantly focused on investigating microbiota-derived pesticide resistance from the perspective of the pest host, associated microbes, and their interactions. However, a gap remains in the quantification of the contribution by the pest host and associated microbes to this resistance. In this study, we investigated the toxicity of phoxim by examining one resistant and one sensitive Delia antiqua strain. We also explored the critical role of associated microbiota and host in conferring phoxim resistance. In addition, we used metaproteomics to compare the proteomic profile of the two D. antiqua strains. Lastly, we investigated the activity of detoxification enzymes in D. antiqua larvae and phoxim-degrading gut microbes, and assessed their respective contributions to phoxim resistance in D. antiqua. The results revealed contributions by D. antiqua and its gut bacteria to phoxim resistance. Metaproteomics showed that the two D. antiqua strains expressed different protein profiles. Detoxifying enzymes including Glutathione S-transferases, carboxylesterases, Superoxide Dismutase, Glutathione Peroxidase, and esterase B1 were overexpressed in the resistant strain and dominated in differentially expressed insect proteins. In addition, organophosphorus hydrolases combined with a group of ABC type transporters were overexpressed in the gut microbiota of resistant D. antiqua compared to the sensitive strain. 85.2% variation of the larval mortality resulting from phoxim treatment could be attributed to the combined effects of proteins from both from gut bacteria and D. antiqua, while the individual contribution of proteins from gut bacteria or D. antiqua alone accounted for less than 10% of the variation in larval mortality caused by phoxim. The activity of the overexpressed insect enzymes and the phoxim-degrading activity of gut bacteria in resistant D. antiqua larvae were further confirmed. This work enhances our understanding of microbiota-derived pesticide resistance and illuminates new strategies for controlling pesticide resistance in the context of insect-microbe mutualism.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Qingxia Liang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Xiaoyan Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Xiaoqing Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Susu Fan
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China.
| |
Collapse
|
25
|
Koneru S, Thiruvadi V, Ramesh M. Gut microbiome and its clinical implications: exploring the key players in human health. Curr Opin Infect Dis 2023; 36:353-359. [PMID: 37593952 DOI: 10.1097/qco.0000000000000958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
PURPOSE OF REVIEW The human gut harbors a diverse community of microorganisms known as the gut microbiota. Extensive research in recent years has shed light on the profound influence of the gut microbiome on human health and disease. This review aims to explore the role of the gut microbiome in various clinical conditions and highlight the emerging therapeutic potential of targeting the gut microbiota for disease management. RECENT FINDINGS Knowledge of the influence of gut microbiota on human physiology led to the development of various therapeutic possibilities such as fecal microbiota transplant (FMT), phage therapy, prebiotics, and probiotics. Recently, the U.S. FDA approved two FMT products for the treatment of recurrent Clostridioides difficile infection with ongoing research for the treatment of various disease conditions. SUMMARY Advancement in the knowledge of the association between gut microbiota and various disease processes has paved the way for novel therapeutics.
Collapse
Affiliation(s)
- Sindhuja Koneru
- Division of Infectious Diseases, Henry Ford Hospital, Detroit, Michigan, USA
| | | | | |
Collapse
|
26
|
Tunset ME, Haslene-Hox H, Van Den Bossche T, Maleki S, Vaaler A, Kondziella D. Blood-borne extracellular vesicles of bacteria and intestinal cells in patients with psychotic disorders. Nord J Psychiatry 2023; 77:686-695. [PMID: 37354486 DOI: 10.1080/08039488.2023.2223572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Human cells and bacteria secrete extracellular vesicles (EV) which play a role in intercellular communication. EV from the host intestinal epithelium are involved in the regulation of bacterial gene expression and growth. Bacterial EV (bactEV) produced in the intestine can pass to various tissues where they deliver biomolecules to many kinds of cells, including neurons. Emerging data indicate that gut microbiota is altered in patients with psychotic disorders. We hypothesized that the amount and content of blood-borne EV from intestinal cells and bactEV in psychotic patients would differ from healthy controls. METHODS We analyzed for human intestinal proteins by proteomics, for bactEV by metaproteomic analysis, and by measuring the level of lipopolysaccharide (LPS) in blood-borne EV from patients with psychotic disorders (n = 25), tested twice, in the acute phase of psychosis and after improvement, with age- and sex-matched healthy controls (n = 25). RESULTS Patients with psychotic disorders had lower LPS levels in their EV compared to healthy controls (p = .027). Metaproteome analyses confirmed LPS finding and identified Firmicutes and Bacteroidetes as dominating phyla. Total amounts of human intestine proteins in EV isolated from blood was lower in patients compared to controls (p = .02). CONCLUSIONS Our results suggest that bactEV and host intestinal EV are decreased in patients with psychosis and that this topic is worthy of further investigation given potential pathophysiological implications. Possible mechanisms involve dysregulation of the gut microbiota by host EV, altered translocation of bactEV to systemic circulation where bactEV can interact with both the brain and the immune system.
Collapse
Affiliation(s)
- Mette Elise Tunset
- Department of Psychosis and Rehabilitation, Psychiatry Clinic, St. Olavs University Hospital, Trondheim, Norway
- Department of Mental Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Hanne Haslene-Hox
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Tim Van Den Bossche
- VIB - UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Susan Maleki
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Arne Vaaler
- Department of Mental Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Acute Psychiatry, Psychiatry Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Dai C, Chen X, Qian S, Fan Y, Li L, Yuan J. Dysbiosis of intestinal homeostasis contribute to Whitmania pigra edema disease. Microb Biotechnol 2023; 16:1940-1956. [PMID: 37410351 PMCID: PMC10527190 DOI: 10.1111/1751-7915.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Whitmania pigra is widely used in traditional Chinese medicine. However, W. pigra is being threatened by an edema disease with unknown causes (WPE). In this study, a comprehensive exploration of virome, microbiome, and metabolome aberrations in the intestine of W. pigra was performed to address the aetiology of WPE. Virome analysis indicated that eukaryotic viruses did not contribute to WPE, whereas an expansion of Caudovirales was observed in WPE. Compared to the control, the microbial richness and diversity in diseased W. pigra decreased remarkably. Nine genera, including Aeromonas, Anaerotruncus, Vibrio, Proteocatella, Acinetobacter, and Brachyspira were overrepresented in WPE, whereas eleven genera, including Bifidobacterium, Phascolarctobacterium, Lactobacillus, Bacillus and AF12, were enriched in healthy individuals. Furthermore, certain metabolites, especially amino acids, short-chain fatty acids, and bile acids, were found to be linked to intestinal microbiota alterations in WPE. An integration of the microbiome and metabolome in WPE found that dysbiosis of the gut microbiota or metabolites caused WPE. Notably, W. pigra accepted intestinal microbiota transplantation from WPE donors developed WPE clinical signs eventually, and the dysbiotic intestinal microbiota can be recharacterized in this recipient W. pigra. Strikingly, pathological features of metanephridium and uraemic toxin enrichment in the gut indicated a putative interconnection between the gut and metanephridium in WPE, which represents the prototype of the gut-kidney axis in mammals. These finding exemplify the conservation of "microecological Koch's postulates" from annelids to insects and other vertebrates, which provides a direction of prevention and treatment for WPE and opens a new insight into the pathogenesis of aquatic animal diseases from an ecological perspective.
Collapse
Affiliation(s)
- Caijiao Dai
- Department of Aquatic Animal Medicine, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- National Aquatic Animal Diseases Para‐reference laboratory (HZAU)WuhanChina
| | - Xin Chen
- Department of Aquatic Animal Medicine, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- National Aquatic Animal Diseases Para‐reference laboratory (HZAU)WuhanChina
| | - Shiyu Qian
- Department of Aquatic Animal Medicine, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- Hubei Engineering Research Centre for Aquatic Animal Diseases Control and PreventionWuhanChina
| | - Yihui Fan
- Department of Aquatic Animal Medicine, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- Hubei Engineering Research Centre for Aquatic Animal Diseases Control and PreventionWuhanChina
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- National Aquatic Animal Diseases Para‐reference laboratory (HZAU)WuhanChina
- Hubei Engineering Research Centre for Aquatic Animal Diseases Control and PreventionWuhanChina
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- National Aquatic Animal Diseases Para‐reference laboratory (HZAU)WuhanChina
- Hubei Engineering Research Centre for Aquatic Animal Diseases Control and PreventionWuhanChina
| |
Collapse
|
28
|
Jagirdhar GSK, Perez JA, Perez AB, Surani S. Integration and implementation of precision medicine in the multifaceted inflammatory bowel disease. World J Gastroenterol 2023; 29:5211-5225. [PMID: 37901450 PMCID: PMC10600960 DOI: 10.3748/wjg.v29.i36.5211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex disease with variability in genetic, environmental, and lifestyle factors affecting disease presentation and course. Precision medicine has the potential to play a crucial role in managing IBD by tailoring treatment plans based on the heterogeneity of clinical and temporal variability of patients. Precision medicine is a population-based approach to managing IBD by integrating environmental, genomic, epigenomic, transcriptomic, proteomic, and metabolomic factors. It is a recent and rapidly developing medicine. The widespread adoption of precision medicine worldwide has the potential to result in the early detection of diseases, optimal utilization of healthcare resources, enhanced patient outcomes, and, ultimately, improved quality of life for individuals with IBD. Though precision medicine is promising in terms of better quality of patient care, inadequacies exist in the ongoing research. There is discordance in study conduct, and data collection, utilization, interpretation, and analysis. This review aims to describe the current literature on precision medicine, its multiomics approach, and future directions for its application in IBD.
Collapse
Affiliation(s)
| | - Jose Andres Perez
- Department of Medicine, Saint Francis Health Systems, Tulsa, OK 74133, United States
| | - Andrea Belen Perez
- Department of Research, Columbia University, New York, NY 10027, United States
| | - Salim Surani
- Department of Medicine and Pharmacology, Texas A&M University, College Station, TX 77413, United States
| |
Collapse
|
29
|
Di Vincenzo F, Yadid Y, Petito V, Emoli V, Masi L, Gerovska D, Araúzo-Bravo MJ, Gasbarrini A, Regenberg B, Scaldaferri F. Circular and Circulating DNA in Inflammatory Bowel Disease: From Pathogenesis to Potential Molecular Therapies. Cells 2023; 12:1953. [PMID: 37566032 PMCID: PMC10417561 DOI: 10.3390/cells12151953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic multifactorial disorders which affect the gastrointestinal tract with variable extent. Despite extensive research, their etiology and exact pathogenesis are still unknown. Cell-free DNAs (cfDNAs) are defined as any DNA fragments which are free from the origin cell and able to circulate into the bloodstream with or without microvescicles. CfDNAs are now being increasingly studied in different human diseases, like cancer or inflammatory diseases. However, to date it is unclear how IBD etiology is linked to cfDNAs in plasma. Extrachromosomal circular DNA (eccDNA) are non-plasmidic, nuclear, circular and closed DNA molecules found in all eukaryotes tested. CfDNAs appear to play an important role in autoimmune diseases, inflammatory processes, and cancer; recently, interest has also grown in IBD, and their role in the pathogenesis of IBD has been suggested. We now suggest that eccDNAs also play a role in IBD. In this review, we have comprehensively collected available knowledge in literature regarding cfDNA, eccDNA, and structures involving them such as neutrophil extracellular traps and exosomes, and their role in IBD. Finally, we focused on old and novel potential molecular therapies and drug delivery systems, such as nanoparticles, for IBD treatment.
Collapse
Affiliation(s)
- Federica Di Vincenzo
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Ylenia Yadid
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Valentina Petito
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
| | - Valeria Emoli
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Letizia Masi
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (M.J.A.-B.)
| | - Marcos Jesus Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (M.J.A.-B.)
- IKERBASQUE, Basque Foundation for Science, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonio Gasbarrini
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Birgitte Regenberg
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 13, Room 426, DK-2100 Copenhagen, Denmark;
| | - Franco Scaldaferri
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| |
Collapse
|
30
|
Botin T, Ramirez-Chamorro L, Vidic J, Langella P, Martin-Verstraete I, Chatel JM, Auger S. The Tolerance of Gut Commensal Faecalibacterium to Oxidative Stress Is Strain Dependent and Relies on Detoxifying Enzymes. Appl Environ Microbiol 2023; 89:e0060623. [PMID: 37382539 PMCID: PMC10370306 DOI: 10.1128/aem.00606-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Obligate anaerobic bacteria in genus Faecalibacterium are among the most dominant taxa in the colon of healthy individuals and contribute to intestinal homeostasis. A decline in the abundance of this genus is associated with the occurrence of various gastrointestinal disorders, including inflammatory bowel diseases. In the colon, these diseases are accompanied by an imbalance between the generation and elimination of reactive oxygen species (ROS), and oxidative stress is closely linked to disruptions in anaerobiosis. In this work, we explored the impact of oxidative stress on several strains of faecalibacteria. An in silico analysis of complete genomes of faecalibacteria revealed the presence of genes encoding O2- and/or ROS-detoxifying enzymes, including flavodiiron proteins, rubrerythrins, reverse rubrerythrins, superoxide reductases, and alkyl peroxidase. However, the presence and the number of these detoxification systems varied greatly among faecalibacteria. These results were confirmed by O2 stress survival tests, in which we found that strains differed widely in their sensitivity. We showed the protective role of cysteine, which limited the production of extracellular O2•- and improved the survival of Faecalibacterium longum L2-6 under high O2 tension. In the strain F. longum L2-6, we observed that the expression of genes encoding detoxifying enzymes was upregulated in the response to O2 or H2O2 stress but with different patterns of regulation. Based on these results, we propose a first model of the gene regulatory network involved in the response to oxidative stress in F. longum L2-6. IMPORTANCE Commensal bacteria in the genus Faecalibacterium have been proposed for use as next-generation probiotics, but efforts to cultivate and exploit the potential of these strains have been limited by their sensitivity to O2. More broadly, little is known about how commensal and health-associated bacterial species in the human microbiome respond to the oxidative stress that occurs as a result of inflammation in the colon. In this work, we provide insights regarding the genes that encode potential mechanisms of protection against O2 or ROS stress in faecalibacteria, which may facilitate future advances in work with these important bacteria.
Collapse
Affiliation(s)
- Tatiana Botin
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Luis Ramirez-Chamorro
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Jasmina Vidic
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Philippe Langella
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogénèse des Bactéries Anaérobies, Paris, France
- Institut Universitaire de France, Paris, France
| | - Jean-Marc Chatel
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Sandrine Auger
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| |
Collapse
|
31
|
Ascandari A, Aminu S, Safdi NEH, El Allali A, Daoud R. A bibliometric analysis of the global impact of metaproteomics research. Front Microbiol 2023; 14:1217727. [PMID: 37476667 PMCID: PMC10354264 DOI: 10.3389/fmicb.2023.1217727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Background Metaproteomics is a subfield in meta-omics that is used to characterize the proteome of a microbial community. Despite its importance and the plethora of publications in different research area, scientists struggle to fully comprehend its functional impact on the study of microbiomes. In this study, bibliometric analyses are used to evaluate the current state of metaproteomic research globally as well as evaluate the specific contribution of Africa to this burgeoning research area. In this study, we use bibliometric analyses to evaluate the current state of metaproteomic research globally, identify research frontiers and hotspots, and further predict future trends in metaproteomics. The specific contribution of Africa to this research area was evaluated. Methods Relevant documents from 2004 to 2022 were extracted from the Scopus database. The documents were subjected to bibliometric analyses and visualization using VOS viewer and Biblioshiny package in R. Factors such as the trends in publication, country and institutional cooperation networks, leading scientific journals, author's productivity, and keywords analyses were conducted. The African publications were ranked using Field-Weighted Citation Impact (FWCI) scores. Results A total of 1,138 documents were included and the number of publications increased drastically from 2004 to 2022 with more publications (170) reported in 2021. In terms of publishers, Frontiers in Microbiology had the highest number of total publications (62). The United States of America (USA), Germany, China, and Canada, together with other European countries were the most productive. Institution-wise, the Helmholtz Zentrum für Umweltforschung, Germany had more publications while Max Plank Institute had the highest total collaborative link strength. Jehmlich N. was the most productive author whereas Hettich RL had the highest h-index of 63. Regarding Africa, only 2.2% of the overall publications were from the continent with more publication outputs from South Africa. More than half of the publications from the continent had an FWCI score ≥ 1. Conclusion The scientific outputs of metaproteomics are rapidly evolving with developed countries leading the way. Although Africa showed prospects for future progress, this could only be accelerated by providing funding, increased collaborations, and mentorship programs.
Collapse
Affiliation(s)
- AbdulAziz Ascandari
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Suleiman Aminu
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Nour El Houda Safdi
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
32
|
Martín R, Rios-Covian D, Huillet E, Auger S, Khazaal S, Bermúdez-Humarán LG, Sokol H, Chatel JM, Langella P. Faecalibacterium: a bacterial genus with promising human health applications. FEMS Microbiol Rev 2023; 47:fuad039. [PMID: 37451743 PMCID: PMC10410495 DOI: 10.1093/femsre/fuad039] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
In humans, many diseases are associated with alterations in gut microbiota, namely increases or decreases in the abundance of specific bacterial groups. One example is the genus Faecalibacterium. Numerous studies have underscored that low levels of Faecalibacterium are correlated with inflammatory conditions, with inflammatory bowel disease (IBD) in the forefront. Its representation is also diminished in the case of several diseases, including colorectal cancer (CRC), dermatitis, and depression. Additionally, the relative presence of this genus is considered to reflect, at least in part, intestinal health status because Faecalibacterium is frequently present at reduced levels in individuals with gastrointestinal diseases or disorders. In this review, we first thoroughly describe updates to the taxonomy of Faecalibacterium, which has transformed a single-species taxon to a multispecies taxon over the last decade. We then explore the links discovered between Faecalibacterium abundance and various diseases since the first IBD-focused studies were published. Next, we examine current available strategies for modulating Faecalibacterium levels in the gut. Finally, we summarize the mechanisms underlying the beneficial effects that have been attributed to this genus. Together, epidemiological and experimental data strongly support the use of Faecalibacterium as a next-generation probiotic (NGP) or live biotherapeutic product (LBP).
Collapse
Affiliation(s)
- Rebeca Martín
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - David Rios-Covian
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Eugénie Huillet
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Sandrine Auger
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Sarah Khazaal
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Harry Sokol
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012 Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, F-75012, Paris, France
| | - Jean-Marc Chatel
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
33
|
Li L, Wang T, Ning Z, Zhang X, Butcher J, Serrana JM, Simopoulos CMA, Mayne J, Stintzi A, Mack DR, Liu YY, Figeys D. Revealing proteome-level functional redundancy in the human gut microbiome using ultra-deep metaproteomics. Nat Commun 2023; 14:3428. [PMID: 37301875 PMCID: PMC10257714 DOI: 10.1038/s41467-023-39149-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Functional redundancy is a key ecosystem property representing the fact that different taxa contribute to an ecosystem in similar ways through the expression of redundant functions. The redundancy of potential functions (or genome-level functional redundancy [Formula: see text]) of human microbiomes has been recently quantified using metagenomics data. Yet, the redundancy of expressed functions in the human microbiome has never been quantitatively explored. Here, we present an approach to quantify the proteome-level functional redundancy [Formula: see text] in the human gut microbiome using metaproteomics. Ultra-deep metaproteomics reveals high proteome-level functional redundancy and high nestedness in the human gut proteomic content networks (i.e., the bipartite graphs connecting taxa to functions). We find that the nested topology of proteomic content networks and relatively small functional distances between proteomes of certain pairs of taxa together contribute to high [Formula: see text] in the human gut microbiome. As a metric comprehensively incorporating the factors of presence/absence of each function, protein abundances of each function and biomass of each taxon, [Formula: see text] outcompetes diversity indices in detecting significant microbiome responses to environmental factors, including individuality, biogeography, xenobiotics, and disease. We show that gut inflammation and exposure to specific xenobiotics can significantly diminish the [Formula: see text] with no significant change in taxonomic diversity.
Collapse
Affiliation(s)
- Leyuan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Tong Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zhibin Ning
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Xu Zhang
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Joeselle M Serrana
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Caitlin M A Simopoulos
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Janice Mayne
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - David R Mack
- Department of Paediatrics, Faculty of Medicine, University of Ottawa and Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Daniel Figeys
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
34
|
Mu C, Zhao Q, Zhao Q, Yang L, Pang X, Liu T, Li X, Wang B, Fung SY, Cao H. Multi-omics in Crohn's disease: New insights from inside. Comput Struct Biotechnol J 2023; 21:3054-3072. [PMID: 37273853 PMCID: PMC10238466 DOI: 10.1016/j.csbj.2023.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) with complex clinical manifestations such as chronic diarrhea, weight loss and hematochezia. Despite the increasing incidence worldwide, cure of CD remains extremely difficult. The rapid development of high-throughput sequencing technology with integrated-omics analyses in recent years has provided a new means for exploring the pathogenesis, mining the biomarkers and designing targeted personalized therapeutics of CD. Host genomics and epigenomics unveil heredity-related mechanisms of susceptible individuals, while microbiome and metabolomics map host-microbe interactions in CD patients. Proteomics shows great potential in searching for promising biomarkers. Nonetheless, single omics technology cannot holistically connect the mechanisms with heterogeneity of pathological behavior in CD. The rise of multi-omics analysis integrates genetic/epigenetic profiles with protein/microbial metabolite functionality, providing new hope for comprehensive and in-depth exploration of CD. Herein, we emphasized the different omics features and applications of CD and discussed the current research and limitations of multi-omics in CD. This review will update and deepen our understanding of CD from integration of broad omics spectra and will provide new evidence for targeted individualized therapeutics.
Collapse
Affiliation(s)
- Chenlu Mu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qianjing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lijiao Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaomeng Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Shan-Yu Fung
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
35
|
Wang AJ, Song D, Hong YM, Liu NN. Multi-omics insights into the interplay between gut microbiota and colorectal cancer in the "microworld" age. Mol Omics 2023; 19:283-296. [PMID: 36916422 DOI: 10.1039/d2mo00288d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Colorectal cancer (CRC) is a multifactorial heterogeneous disease largely due to both genetic predisposition and environmental factors including the gut microbiota, a dynamic microbial ecosystem inhabiting the gastrointestinal tract. Elucidation of the molecular mechanisms by which the gut microbiota interacts with the host may contribute to the pathogenesis, diagnosis, and promotion of CRC. However, deciphering the influence of genetic variants and interactions with the gut microbial ecosystem is rather challenging. Despite recent advancements in single omics analysis, the application of multi-omics approaches to integrate multiple layers of information in the microbiome and host to introduce effective prevention, diagnosis, and treatment strategies is still in its infancy. Here, we integrate host- and microbe-based multi-omics studies, respectively, to provide a strategy to explore potential causal relationships between gut microbiota and colorectal cancer. Specifically, we summarize the recent multi-omics studies such as metagenomics combined with metabolomics and metagenomics combined with genomics. Meanwhile, the sample size and sample types commonly used in multi-omics research, as well as the methods of data analysis, were also generalized. We highlight multiple layers of information from multi-omics that need to be verified by different types of models. Together, this review provides new insights into the clinical diagnosis and treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- An-Jun Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Dingka Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Yue-Mei Hong
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| |
Collapse
|
36
|
Kalluri R, McAndrews KM. The role of extracellular vesicles in cancer. Cell 2023; 186:1610-1626. [PMID: 37059067 PMCID: PMC10484374 DOI: 10.1016/j.cell.2023.03.010] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 04/16/2023]
Abstract
Intercellular communication is a key feature of cancer progression and metastasis. Extracellular vesicles (EVs) are generated by all cells, including cancer cells, and recent studies have identified EVs as key mediators of cell-cell communication via packaging and transfer of bioactive constituents to impact the biology and function of cancer cells and cells of the tumor microenvironment. Here, we review recent advances in understanding the functional contribution of EVs to cancer progression and metastasis, as cancer biomarkers, and the development of cancer therapeutics.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
37
|
Peng J, Chan C, Meng F, Hu Y, Chen L, Lin G, Zhang S, Wheeler AR. Comparison of Database Searching Programs for the Analysis of Single-Cell Proteomics Data. J Proteome Res 2023; 22:1298-1308. [PMID: 36892105 DOI: 10.1021/acs.jproteome.2c00821] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Single-cell proteomics is emerging as an important subfield in the proteomics and mass spectrometry communities, with potential to reshape our understanding of cell development, cell differentiation, disease diagnosis, and the development of new therapies. Compared with significant advancements in the "hardware" that is used in single-cell proteomics, there has been little work comparing the effects of using different "software" packages to analyze single-cell proteomics datasets. To this end, seven popular proteomics programs were compared here, applying them to search three single-cell proteomics datasets generated by three different platforms. The results suggest that MSGF+, MSFragger, and Proteome Discoverer are generally more efficient in maximizing protein identifications, that MaxQuant is better suited for the identification of low-abundance proteins, that MSFragger is superior in elucidating peptide modifications, and that Mascot and X!Tandem are better for analyzing long peptides. Furthermore, an experiment with different loading amounts was carried out to investigate changes in identification results and to explore areas in which single-cell proteomics data analysis may be improved in the future. We propose that this comparative study may provide insight for experts and beginners alike operating in the emerging subfield of single-cell proteomics.
Collapse
Affiliation(s)
- Jiaxi Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Calvin Chan
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Fei Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan 410000, China
| | - Yechen Hu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Lingfan Chen
- Fujian Province New Drug Safety Evaluation Centre, Fujian Medical University, Fuzhou Fujian 350108, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan 410000, China.,Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, Hunan 410075, China
| | - Shen Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan 410000, China
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
38
|
Rodríguez-Díaz C, Martín-Reyes F, Taminiau B, Ho-Plágaro A, Camargo R, Fernandez-Garcia F, Pinazo-Bandera J, Toro-Ortiz JP, Gonzalo M, López-Gómez C, Rodríguez-Pacheco F, Rodríguez de los Ríos D, Daube G, Alcain-Martinez G, García-Fuentes E. The Metagenomic Composition and Effects of Fecal-Microbe-Derived Extracellular Vesicles on Intestinal Permeability Depend on the Patient's Disease. Int J Mol Sci 2023; 24:ijms24054971. [PMID: 36902401 PMCID: PMC10002483 DOI: 10.3390/ijms24054971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The composition and impact of fecal-microbe-derived extracellular vesicles (EVs) present in different diseases has not been analyzed. We determined the metagenomic profiling of feces and fecal-microbe-derived EVs from healthy subjects and patients with different diseases (diarrhea, morbid obesity and Crohn's disease (CD)) and the effect of these fecal EVs on the cellular permeability of Caco-2 cells. The control group presented higher proportions of Pseudomonas and Rikenellaceae_RC9_gut_group and lower proportions of Phascolarctobacterium, Veillonella and Veillonellaceae_ge in EVs when compared with the feces from which these EVs were isolated. In contrast, there were significant differences in 20 genera between the feces and EV compositions in the disease groups. Bacteroidales and Pseudomonas were increased, and Faecalibacterium, Ruminococcus, Clostridium and Subdoligranum were decreased in EVs from control patients compared with the other three groups of patients. Tyzzerella, Verrucomicrobiaceae, Candidatus_Paracaedibacter and Akkermansia were increased in EVs from the CD group compared with the morbid obesity and diarrhea groups. Fecal EVs from the morbid obesity, CD and, mainly, diarrhea induced a significant increase in the permeability of Caco-2 cells. In conclusion, the metagenomic composition of fecal-microbe-derived EVs changes depending on the disease of the patients. The modification of the permeability of Caco-2 cells produced by fecal EVs depends on the disease of the patients.
Collapse
Affiliation(s)
- Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Flores Martín-Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- Facultad de Medicina, Universidad de Málaga, 29010 Malaga, Spain
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Ailec Ho-Plágaro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Raquel Camargo
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Felix Fernandez-Garcia
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - José Pinazo-Bandera
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Juan Pedro Toro-Ortiz
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Montserrat Gonzalo
- UCG de Endocrinología y Nutrición, Hospital Regional Universitario, 29009 Malaga, Spain
| | - Carlos López-Gómez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Francisca Rodríguez-Pacheco
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Dámaris Rodríguez de los Ríos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Georges Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Guillermo Alcain-Martinez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- Correspondence: (G.A.-M.); (E.G.-F.)
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 29010 Malaga, Spain
- Correspondence: (G.A.-M.); (E.G.-F.)
| |
Collapse
|
39
|
Yan P, Sun Y, Luo J, Liu X, Wu J, Miao Y. Integrating the serum proteomic and fecal metaproteomic to analyze the impacts of overweight/obesity on IBD: a pilot investigation. Clin Proteomics 2023; 20:6. [PMID: 36759757 PMCID: PMC9909917 DOI: 10.1186/s12014-023-09396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) encompasses a group of chronic relapsing disorders which include ulcerative colitis (UC) and Crohn's disease (CD). The incidences of IBD and overweight/obesity are increasing in parallel. Here, we investigated alterations in proteomic in serum and metaproteomic in feces of IBD patients with overweight/obesity and aimed to explore the effect of overweight/ obesity on IBD and the underlying mechanism. METHODS This prospective observational study (n = 64) comprised 26 health control subjects (HC, 13 with overweight/obesity) and 38 IBD patients (19 with overweight/obesity) at a tertiary hospital. Overweight/obesity was evaluated by body mass index (BMI) and defined as a BMI greater than 24 kg/m2. The comprehensive serum proteomic and fecal metaproteomic analyses were conducted by ultra-performance liquid chromatography-Orbitrap Exploris 480 mass spectrometry. RESULTS UC and CD presented similar serum molecular profiles but distinct gut microbiota. UC and CD serum exhibited higher levels of cytoskeleton organization- associated and inflammatory response-related proteins than the HC serum. Compared the serum proteome of UC and CD without overweight/obesity, inflammatory response-associated proteins were dramatically decreased in UC and CD with overweight/obesity. Fecal metaproteome identified 66 species in the feces. Among them, Parasutterella excrementihominis was increased in CD compared with that in HC. UC group had a significant enrichment of Moniliophthora roreri, but had dramatically decreased abundances of Alistipes indistinctus, Clostridium methylpentosum, Bacteroides vulgatus, and Schizochytrium aggregatum. In addition, overweight/obesity could improve the microbial diversity of UC. Specifically, the UC patients with overweight/obesity had increased abundance of some probiotics in contrast to those without overweight/obesity, including Parabacteroides distasonis, Alistipes indistincus, and Ruminococcus bromii. CONCLUSION This study provided high-quality multi-omics data of IBD serum and fecal samples, which enabled deciphering the molecular bases of clinical phenotypes of IBD, revealing the impacts of microbiota on IBD, and emphasizing the important role of overweight/obesity in IBD.
Collapse
Affiliation(s)
- Ping Yan
- grid.285847.40000 0000 9588 0960Kunming Medical University, Kunming, China ,grid.440682.c0000 0001 1866 919XDepartment of Gastroenterology, First Affiliated Hospital of Dali University, Dali, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Yang Sun
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Juan Luo
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Xiaolin Liu
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Jing Wu
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China. .,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China.
| |
Collapse
|
40
|
Cheng K, Ning Z, Li L, Zhang X, Serrana JM, Mayne J, Figeys D. MetaLab-MAG: A Metaproteomic Data Analysis Platform for Genome-Level Characterization of Microbiomes from the Metagenome-Assembled Genomes Database. J Proteome Res 2023; 22:387-398. [PMID: 36508259 PMCID: PMC9903328 DOI: 10.1021/acs.jproteome.2c00554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 12/14/2022]
Abstract
The studies of microbial communities have drawn increased attention in various research fields such as agriculture, environment, and human health. Recently, metaproteomics has become a powerful tool to interpret the roles of the community members by investigating the expressed proteins of the microbes. However, analyzing the metaproteomic data sets at genome resolution is still challenging because of the lack of efficient bioinformatics tools. Here we develop MetaLab-MAG, a specially designed tool for the characterization of microbiomes from metagenome-assembled genomes databases. MetaLab-MAG was evaluated by analyzing various human gut microbiota data sets and performed comparably or better than searching the gene catalog protein database directly. MetaLab-MAG can quantify the genome-level microbiota compositions and supports both label-free and isobaric labeling-based quantification strategies. MetaLab-MAG removes the obstacles of metaproteomic data analysis and provides the researchers with in-depth and comprehensive information from the microbiomes.
Collapse
Affiliation(s)
- Kai Cheng
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Zhibin Ning
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Leyuan Li
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Xu Zhang
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Joeselle M. Serrana
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Janice Mayne
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
41
|
Alexander JL, Mullish BH, Danckert NP, Liu Z, Olbei ML, Saifuddin A, Torkizadeh M, Ibraheim H, Blanco JM, Roberts LA, Bewshea CM, Nice R, Lin S, Prabhudev H, Sands C, Horneffer-van der Sluis V, Lewis M, Sebastian S, Lees CW, Teare JP, Hart A, Goodhand JR, Kennedy NA, Korcsmaros T, Marchesi JR, Ahmad T, Powell N. The gut microbiota and metabolome are associated with diminished COVID-19 vaccine-induced antibody responses in immunosuppressed inflammatory bowel disease patients. EBioMedicine 2023; 88:104430. [PMID: 36634565 PMCID: PMC9831064 DOI: 10.1016/j.ebiom.2022.104430] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/07/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) treated with anti-TNF therapy exhibit attenuated humoral immune responses to vaccination against SARS-CoV-2. The gut microbiota and its functional metabolic output, which are perturbed in IBD, play an important role in shaping host immune responses. We explored whether the gut microbiota and metabolome could explain variation in anti-SARS-CoV-2 vaccination responses in immunosuppressed IBD patients. METHODS Faecal and serum samples were prospectively collected from infliximab-treated patients with IBD in the CLARITY-IBD study undergoing vaccination against SARS-CoV-2. Antibody responses were measured following two doses of either ChAdOx1 nCoV-19 or BNT162b2 vaccine. Patients were classified as having responses above or below the geometric mean of the wider CLARITY-IBD cohort. 16S rRNA gene amplicon sequencing, nuclear magnetic resonance (NMR) spectroscopy and bile acid profiling with ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) were performed on faecal samples. Univariate, multivariable and correlation analyses were performed to determine gut microbial and metabolomic predictors of response to vaccination. FINDINGS Forty-three infliximab-treated patients with IBD were recruited (30 Crohn's disease, 12 ulcerative colitis, 1 IBD-unclassified; 26 with concomitant thiopurine therapy). Eight patients had evidence of prior SARS-CoV-2 infection. Seventeen patients (39.5%) had a serological response below the geometric mean. Gut microbiota diversity was lower in below average responders (p = 0.037). Bilophila abundance was associated with better serological response, while Streptococcus was associated with poorer response. The faecal metabolome was distinct between above and below average responders (OPLS-DA R2X 0.25, R2Y 0.26, Q2 0.15; CV-ANOVA p = 0.038). Trimethylamine, isobutyrate and omega-muricholic acid were associated with better response, while succinate, phenylalanine, taurolithocholate and taurodeoxycholate were associated with poorer response. INTERPRETATION Our data suggest that there is an association between the gut microbiota and variable serological response to vaccination against SARS-CoV-2 in immunocompromised patients. Microbial metabolites including trimethylamine may be important in mitigating anti-TNF-induced attenuation of the immune response. FUNDING JLA is the recipient of an NIHR Academic Clinical Lectureship (CL-2019-21-502), funded by Imperial College London and The Joyce and Norman Freed Charitable Trust. BHM is the recipient of an NIHR Academic Clinical Lectureship (CL-2019-21-002). The Division of Digestive Diseases at Imperial College London receives financial and infrastructure support from the NIHR Imperial Biomedical Research Centre (BRC) based at Imperial College Healthcare NHS Trust and Imperial College London. Metabolomics studies were performed at the MRC-NIHR National Phenome Centre at Imperial College London; this work was supported by the Medical Research Council (MRC), the National Institute of Health Research (NIHR) (grant number MC_PC_12025) and infrastructure support was provided by the NIHR Imperial Biomedical Research Centre (BRC). The NIHR Exeter Clinical Research Facility is a partnership between the University of Exeter Medical School College of Medicine and Health, and Royal Devon and Exeter NHS Foundation Trust. This project is supported by the National Institute for Health Research (NIHR) Exeter Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NIHR or the UK Department of Health and Social Care.
Collapse
Affiliation(s)
- James L Alexander
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Gastroenterology and Hepatology, Imperial College Healthcare NHS Trust, London, United Kingdom.
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Gastroenterology and Hepatology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Nathan P Danckert
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Zhigang Liu
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Marton L Olbei
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Aamir Saifuddin
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; St Mark's Hospital and Academic Institute, Harrow, London, United Kingdom
| | - Melissa Torkizadeh
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; King's College London, London, United Kingdom
| | - Hajir Ibraheim
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Gastroenterology and Hepatology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Jesús Miguéns Blanco
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Lauren A Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Rachel Nice
- University of Exeter, Exeter, Devon, United Kingdom; Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Simeng Lin
- University of Exeter, Exeter, Devon, United Kingdom; Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Hemanth Prabhudev
- Department of Gastroenterology and Hepatology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Caroline Sands
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Verena Horneffer-van der Sluis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthew Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Shaji Sebastian
- Hull University Teaching Hospitals NHS Trust, Gastroenterology, Hull, United Kingdom; University of Hull, Hull York Medical School, Hull, United Kingdom
| | - Charlie W Lees
- Western General Hospital, Edinburgh, United Kingdom; The University of Edinburgh Centre for Genomic and Experimental Medicine, Edinburgh, United Kingdom
| | - Julian P Teare
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ailsa Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; St Mark's Hospital and Academic Institute, Harrow, London, United Kingdom
| | - James R Goodhand
- University of Exeter, Exeter, Devon, United Kingdom; Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Nicholas A Kennedy
- University of Exeter, Exeter, Devon, United Kingdom; Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Tamas Korcsmaros
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; Earlham Institute, Norwich, United Kingdom; Quadram Institute Bioscience, Norwich, United Kingdom
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tariq Ahmad
- University of Exeter, Exeter, Devon, United Kingdom; Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Nick Powell
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Gastroenterology and Hepatology, Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
42
|
Hodgkinson K, El Abbar F, Dobranowski P, Manoogian J, Butcher J, Figeys D, Mack D, Stintzi A. Butyrate's role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin Nutr 2023; 42:61-75. [PMID: 36502573 DOI: 10.1016/j.clnu.2022.10.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Butyrate is a key energy source for colonocytes and is produced by the gut microbiota through fermentation of dietary fiber. Butyrate is a histone deacetylase inhibitor and also signals through three G-protein coupled receptors. It is clear that butyrate has an important role in gastrointestinal health and that butyrate levels can impact both host and microbial functions that are intimately coupled with each other. Maintaining optimal butyrate levels improves gastrointestinal health in animal models by supporting colonocyte function, decreasing inflammation, maintaining the gut barrier, and promoting a healthy microbiome. Butyrate has also shown protective actions in the context of intestinal diseases such as inflammatory bowel disease, graft-versus-host disease of the gastrointestinal tract, and colon cancer, whereas lower levels of butyrate and/or the microbes which are responsible for producing this metabolite are associated with disease and poorer health outcomes. However, clinical efforts to increase butyrate levels in humans and reverse these negative outcomes have generated mixed results. This article discusses our current understanding of the molecular mechanisms of butyrate action with a focus on the gastrointestinal system, the links between host and microbial factors, and the efforts that are currently underway to apply the knowledge gained from the bench to bedside.
Collapse
Affiliation(s)
- Kendra Hodgkinson
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Faiha El Abbar
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Peter Dobranowski
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Juliana Manoogian
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David Mack
- Department of Paediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
43
|
Zhao J, Yang Y, Xu H, Zheng J, Shen C, Chen T, Wang T, Wang B, Yi J, Zhao D, Wu E, Qin Q, Xia L, Qiao L. Data-independent acquisition boosts quantitative metaproteomics for deep characterization of gut microbiota. NPJ Biofilms Microbiomes 2023; 9:4. [PMID: 36693863 PMCID: PMC9873935 DOI: 10.1038/s41522-023-00373-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Metaproteomics can provide valuable insights into the functions of human gut microbiota (GM), but is challenging due to the extreme complexity and heterogeneity of GM. Data-independent acquisition (DIA) mass spectrometry (MS) has been an emerging quantitative technique in conventional proteomics, but is still at the early stage of development in the field of metaproteomics. Herein, we applied library-free DIA (directDIA)-based metaproteomics and compared the directDIA with other MS-based quantification techniques for metaproteomics on simulated microbial communities and feces samples spiked with bacteria with known ratios, demonstrating the superior performance of directDIA by a comprehensive consideration of proteome coverage in identification as well as accuracy and precision in quantification. We characterized human GM in two cohorts of clinical fecal samples of pancreatic cancer (PC) and mild cognitive impairment (MCI). About 70,000 microbial proteins were quantified in each cohort and annotated to profile the taxonomic and functional characteristics of GM in different diseases. Our work demonstrated the utility of directDIA in quantitative metaproteomics for investigating intestinal microbiota and its related disease pathogenesis.
Collapse
Affiliation(s)
- Jinzhi Zhao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
| | - Yi Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311200, Hangzhou, China
| | - Hua Xu
- Department of Core Facility of Basic Medical Sciences, and Department of Psychiatry of Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Jianxujie Zheng
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
| | - Chengpin Shen
- Shanghai Omicsolution Co., Ltd, 201100, Shanghai, China
| | - Tian Chen
- Changhai Hospital, The Naval Military Medical University, 200433, Shanghai, China
| | - Tao Wang
- Department of Core Facility of Basic Medical Sciences, and Department of Psychiatry of Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Bing Wang
- College of Food Science and Technology, Shanghai Ocean University, 201306, Shanghai, China
| | - Jia Yi
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
| | - Dan Zhao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
| | - Enhui Wu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
| | - Qin Qin
- Changhai Hospital, The Naval Military Medical University, 200433, Shanghai, China.
| | - Li Xia
- Department of Core Facility of Basic Medical Sciences, and Department of Psychiatry of Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China.
| |
Collapse
|
44
|
Miura N, Okuda S. Current progress and critical challenges to overcome in the bioinformatics of mass spectrometry-based metaproteomics. Comput Struct Biotechnol J 2023; 21:1140-1150. [PMID: 36817962 PMCID: PMC9925844 DOI: 10.1016/j.csbj.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Metaproteomics is a relatively young field that has only been studied for approximately 15 years. Nevertheless, it has the potential to play a key role in disease research by elucidating the mechanisms of communication between the human host and the microbiome. Although it has been useful in developing an understanding of various diseases, its analytical strategies remain limited to the extended application of proteomics. The sequence databases in metaproteomics must be large because of the presence of thousands of species in a typical sample, which causes problems unique to large databases. In this review, we demonstrate the usefulness of metaproteomics in disease research through examples from several studies. Additionally, we discuss the challenges of applying metaproteomics to conventional proteomics analysis methods and introduce studies that may provide clues to the solutions. We also discuss the need for a standard false discovery rate control method for metaproteomics to replace common target-decoy search approaches in proteomics and a method to ensure the reliability of peptide spectrum match.
Collapse
Affiliation(s)
- Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
- Medical AI Center, Niigata University School of Medicine, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| |
Collapse
|
45
|
Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev 2023; 123:31-72. [PMID: 36317983 PMCID: PMC9837825 DOI: 10.1021/acs.chemrev.2c00431] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/12/2023]
Abstract
The human microbiome is composed of a collection of dynamic microbial communities that inhabit various anatomical locations in the body. Accordingly, the coevolution of the microbiome with the host has resulted in these communities playing a profound role in promoting human health. Consequently, perturbations in the human microbiome can cause or exacerbate several diseases. In this Review, we present our current understanding of the relationship between human health and disease development, focusing on the microbiomes found across the digestive, respiratory, urinary, and reproductive systems as well as the skin. We further discuss various strategies by which the composition and function of the human microbiome can be modulated to exert a therapeutic effect on the host. Finally, we examine technologies such as multiomics approaches and cellular reprogramming of microbes that can enable significant advancements in microbiome research and engineering.
Collapse
Affiliation(s)
- Nikhil Aggarwal
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Shohei Kitano
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ginette Ru Ying Puah
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - Sandra Kittelmann
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore
Institute of Technology, Singapore 138683, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
46
|
Cheung KCP, Jiao M, Xingxuan C, Wei J. Extracellular vesicles derived from host and gut microbiota as promising nanocarriers for targeted therapy in osteoporosis and osteoarthritis. Front Pharmacol 2023; 13:1051134. [PMID: 36686680 PMCID: PMC9859449 DOI: 10.3389/fphar.2022.1051134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/21/2022] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis (OP), a systemic bone disease that causes structural bone loss and bone mass loss, is often associated with fragility fractures. Extracellular vesicles (EVs) generated by mammalian and gut bacteria have recently been identified as important mediators in the intercellular signaling pathway that may play a crucial role in microbiota-host communication. EVs are tiny membrane-bound vesicles, which range in size from 20 to 400 nm. They carry a variety of biologically active substances across intra- and intercellular space. These EVs have developed as a promising research area for the treatment of OP because of their nanosized architecture, enhanced biocompatibility, reduced toxicity, drug loading capacity, ease of customization, and industrialization. This review describes the latest development of EVs derived from mammals and bacteria, including their internalization, isolation, biogenesis, classifications, topologies, and compositions. Additionally, breakthroughs in chemical sciences and the distinctive biological features of bacterial extracellular vesicles (BEVs) allow for the customization of modified BEVs for the therapy of OP. In conclusion, we give a thorough and in-depth summary of the main difficulties and potential future of EVs in the treatment of OP, as well as highlight innovative uses and choices for the treatment of osteoarthritis (OA).
Collapse
Affiliation(s)
- Kenneth Chat Pan Cheung
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ma Jiao
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chen Xingxuan
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jia Wei
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
47
|
Fekete EE, Figeys D, Zhang X. Microbiota-directed biotherapeutics: considerations for quality and functional assessment. Gut Microbes 2023; 15:2186671. [PMID: 36896938 PMCID: PMC10012963 DOI: 10.1080/19490976.2023.2186671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Mounting evidence points to causative or correlative roles of gut microbiome in the development of a myriad of diseases ranging from gastrointestinal diseases, metabolic diseases to neurological disorders and cancers. Consequently, efforts have been made to develop and apply therapeutics targeting the human microbiome, in particular the gut microbiota, for treating diseases and maintaining wellness. Here we summarize the current development of gut microbiota-directed therapeutics with a focus on novel biotherapeutics, elaborate the need of advanced -omics approaches for evaluating the microbiota-type biotherapeutics, and discuss the clinical and regulatory challenges. We also discuss the development and potential application of ex vivo microbiome assays and in vitro intestinal cellular models in this context. Altogether, this review aims to provide a broad view of promises and challenges of the emerging field of microbiome-directed human healthcare.
Collapse
Affiliation(s)
- Emily Ef Fekete
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Xu Zhang
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
48
|
de Freitas PNN, Silva CR, Constantin PP, Pileggi SAV, Vicari MR, Pileggi M. Fixing the Damage: The Evolution of Probiotics from Fermented Food to Biotherapeutic Products. A SUSTAINABLE GREEN FUTURE 2023:245-276. [DOI: 10.1007/978-3-031-24942-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
49
|
Gavin PG, Kim KW, Craig ME, Hill MM, Hamilton-Williams EE. Multi-omic interactions in the gut of children at the onset of islet autoimmunity. MICROBIOME 2022; 10:230. [PMID: 36527134 PMCID: PMC9756488 DOI: 10.1186/s40168-022-01425-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The gastrointestinal ecosystem is a highly complex environment with a profound influence on human health. Inflammation in the gut, linked to an altered gut microbiome, has been associated with the development of multiple human conditions including type 1 diabetes (T1D). Viruses infecting the gastrointestinal tract, especially enteroviruses, are also thought to play an important role in T1D pathogenesis possibly via overlapping mechanisms. However, it is not known whether the microbiome and virome act together or which risk factor may be of greater importance at the time when islet autoimmunity is initiated. RESULTS Here, we apply an integrative approach to combine comprehensive fecal virome, microbiome, and metaproteome data sampled before and at the onset of islet autoimmunity in 40 children at increased risk of T1D. We show strong age-related effects, with microbial and metaproteome diversity increasing with age while host antibody number and abundance declined with age. Mastadenovirus, which has been associated with a reduced risk of T1D, was associated with profound changes in the metaproteome indicating a functional shift in the microbiota. Multi-omic factor analysis modeling revealed a cluster of proteins associated with carbohydrate transport from the genus Faecalibacterium were associated with islet autoimmunity. CONCLUSIONS These findings demonstrate the interrelatedness of the gut microbiota, metaproteome and virome in young children. We show a functional remodeling of the gut microbiota accompanies both islet autoimmunity and viral infection with a switch in function in Faecalibacterium occurring at the onset of islet autoimmunity. Video Abstract.
Collapse
Affiliation(s)
- Patrick G Gavin
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
- Present Address: Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Present Address: Harvard Medical School, Boston, MA, USA
| | - Ki Wook Kim
- Virology Research Laboratory, Prince of Wales Hospital Randwick, Sydney, Australia
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Maria E Craig
- Virology Research Laboratory, Prince of Wales Hospital Randwick, Sydney, Australia
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- Institute of Endocrinology and Diabetes, Children's Hospital at Westmead, Sydney, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | |
Collapse
|
50
|
Wei L, Zhao D. M2 macrophage-derived exosomal miR-145-5p protects against the hypoxia/reoxygenation-induced pyroptosis of cardiomyocytes by inhibiting TLR4 expression. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1376. [PMID: 36660616 PMCID: PMC9843320 DOI: 10.21037/atm-22-6109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
Background Exosomes carrying micro ribonucleic acids (miRNAs) protect against myocardial ischemic injury. In the study, we sought to investigate the protective effect mechanism of M2 macrophage-derived exosome miR-145-5p in hypoxia-reoxygenation (H/R)-induced cardiomyocytes. Methods M2 macrophages were isolated and induced from blood donated by healthy donors. M2 macrophages were transfected with or without miR-145-5p. Exosomes derived from M2 macrophages were isolated and identified by flow cytometry, nanoparticle tracking analysis, and transmission electron microscopy (TEM). AC16 cells were used to establish an H/R model, and cell activity was detected using a Cell Counting Kit 8 (CCK-8). Western blot was used to detect the expression of gasdermin D (GSDMD), nucleotide-binding domain-like receptor protein 3 (NLRP3), and caspase-1 in the H/R-induced AC16 cells to evaluate pyroptosis. Immunofluorescence staining was used to detect the positive rates of PKH26 and caspase-1. Combined with database prediction, dual luciferase reporter assays were used to validate toll-like receptor 4 (TLR4) as a downstream target molecule of miR-145-5p. A real-time quantitative polymerase chain reaction (RT-qPCR) analysis and western blot were used to detect the expression of TLR4 in the AC16 cells. Results Flow cytometry, western blot, nanoparticle tracking and TEM results confirmed the successful isolation of M2 macrophage-derived exosomes. CCK-8 results showed M2 macrophage-derived exosomes decreased the viability of the H/R-induced cells. Western blot results showed the expressions of GSDMD, caspase-1, and NLRP3 were significantly downregulated in the H/R group. Moreover, CCK-8 results showed the M2 macrophage-derived exosome miR-145-5p significantly ameliorated H/R-induced AC16 cellular activity. Western blot results confirmed the expressions of GSDMD, NLRP3, and caspase-1 were significantly downregulated in the macrophage-derived exosome miR-145-5p group compared to the M2 macrophage-derived exosome NC (normal control) group. Immunofluorescence staining results displayed the same trend in terms of the caspase-1 positivity rate. Further, we demonstrated overexpression of TLR4 partially reversed the protective effect of M2 macrophage-derived exosome miR-145-5p in the H/R-induced AC16 cells. Additionally, overexpression of TLR4 reversed the protein expression associated with pyroptosis in M2 macrophage-derived exosome miR-145-5p in the H/R-induced AC16 cells. Conclusions Our study indicated M2 macrophage-derived exosomes carrying miR-145-5p inhibited H/R-induced cardiomyocyte pyroptosis by downregulating the expression of TLR4.
Collapse
Affiliation(s)
- Li Wei
- Department of Electrocardiogram, The First People’s Hospital of Nantong, Nantong, China
| | - Dongsheng Zhao
- Department of Cardiology, The First People’s Hospital of Nantong, Nantong, China
| |
Collapse
|