1
|
Medyanik AD, Anisimova PE, Kustova AO, Tarabykin VS, Kondakova EV. Developmental and Epileptic Encephalopathy: Pathogenesis of Intellectual Disability Beyond Channelopathies. Biomolecules 2025; 15:133. [PMID: 39858526 PMCID: PMC11763800 DOI: 10.3390/biom15010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of neuropediatric diseases associated with epileptic seizures, severe delay or regression of psychomotor development, and cognitive and behavioral deficits. What sets DEEs apart is their complex interplay of epilepsy and developmental delay, often driven by genetic factors. These two aspects influence one another but can develop independently, creating diagnostic and therapeutic challenges. Intellectual disability is severe and complicates potential treatment. Pathogenic variants are found in 30-50% of patients with DEE. Many genes mutated in DEEs encode ion channels, causing current conduction disruptions known as channelopathies. Although channelopathies indeed make up a significant proportion of DEE cases, many other mechanisms have been identified: impaired neurogenesis, metabolic disorders, disruption of dendrite and axon growth, maintenance and synapse formation abnormalities -synaptopathies. Here, we review recent publications on non-channelopathies in DEE with an emphasis on the mechanisms linking epileptiform activity with intellectual disability. We focus on three major mechanisms of intellectual disability in DEE and describe several recently identified genes involved in the pathogenesis of DEE.
Collapse
Affiliation(s)
- Alexandra D. Medyanik
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Polina E. Anisimova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Angelina O. Kustova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Victor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| |
Collapse
|
2
|
Krueger-Burg D. Understanding GABAergic synapse diversity and its implications for GABAergic pharmacotherapy. Trends Neurosci 2025; 48:47-61. [PMID: 39779392 DOI: 10.1016/j.tins.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Despite the substantial contribution of disruptions in GABAergic inhibitory neurotransmission to the etiology of psychiatric, neurodevelopmental, and neurodegenerative disorders, surprisingly few drugs targeting the GABAergic system are currently available, partly due to insufficient understanding of circuit-specific GABAergic synapse biology. In addition to GABA receptors, GABAergic synapses contain an elaborate organizational protein machinery that regulates the properties of synaptic transmission. Until recently, this machinery remained largely unexplored, but key methodological advances have now led to the identification of a wealth of new GABAergic organizer proteins. Notably, many of these proteins appear to function only at specific subsets of GABAergic synapses, creating a diversity of organizer complexes that may serve as circuit-specific targets for pharmacotherapies. The present review aims to summarize the methodological developments that underlie this newfound knowledge and provide a current overview of synapse-specific GABAergic organizer complexes, as well as outlining future avenues and challenges in translating this knowledge into clinical applications.
Collapse
Affiliation(s)
- Dilja Krueger-Burg
- Laboratory of Cell Biology and Neuroscience, Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
3
|
Wang W, Williams DJ, Teoh JJ, Soundararajan D, Zuberi A, Lutz CM, Frankel WN, Makinson CD. Impaired axon initial segment structure and function in a model of ARHGEF9 developmental and epileptic encephalopathy. Proc Natl Acad Sci U S A 2024; 121:e2400709121. [PMID: 39374387 PMCID: PMC11494352 DOI: 10.1073/pnas.2400709121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/25/2024] [Indexed: 10/09/2024] Open
Abstract
Developmental and epileptic encephalopathies (DEE) are rare but devastating and largely intractable childhood epilepsies. Genetic variants in ARHGEF9, encoding a scaffolding protein important for the organization of the postsynaptic density of inhibitory synapses, are associated with DEE accompanied by complex neurological phenotypes. In a mouse model carrying a patient-derived ARHGEF9 variant associated with severe disease, we observed aggregation of postsynaptic proteins and loss of functional inhibitory synapses at the axon initial segment (AIS), altered axo-axonic synaptic inhibition, disrupted action potential generation, and complex seizure phenotypes consistent with clinical observations. These results illustrate diverse roles of ARHGEF9 that converge on regulation of the structure and function of the AIS, thus revealing a pathological mechanism for ARHGEF9-associated DEE. This unique example of a neuropathological condition associated with multiple AIS dysfunctions may inform strategies for treating neurodevelopmental diseases.
Collapse
Affiliation(s)
- Wanqi Wang
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY10032
| | - Damian J. Williams
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY10032
| | - Jia Jie Teoh
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY10032
| | - Divyalakshmi Soundararajan
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY10032
| | - Aamir Zuberi
- The Rare and Orphan Disease Center, The Jackson Laboratory, Bar Harbor, ME04609
| | - Cathleen M. Lutz
- The Rare and Orphan Disease Center, The Jackson Laboratory, Bar Harbor, ME04609
| | - Wayne N. Frankel
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY10032
- The Rare and Orphan Disease Center, The Jackson Laboratory, Bar Harbor, ME04609
| | - Christopher D. Makinson
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY10032
| |
Collapse
|
4
|
Topchiy I, Mohbat J, Folorunso OO, Wang ZZ, Lazcano-Etchebarne C, Engin E. GABA system as the cause and effect in early development. Neurosci Biobehav Rev 2024; 161:105651. [PMID: 38579901 PMCID: PMC11081854 DOI: 10.1016/j.neubiorev.2024.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
GABA is the primary inhibitory neurotransmitter in the adult brain and through its actions on GABAARs, it protects against excitotoxicity and seizure activity, ensures temporal fidelity of neurotransmission, and regulates concerted rhythmic activity of neuronal populations. In the developing brain, the development of GABAergic neurons precedes that of glutamatergic neurons and the GABA system serves as a guide and framework for the development of other brain systems. Despite this early start, the maturation of the GABA system also continues well into the early postnatal period. In this review, we organize evidence around two scenarios based on the essential and protracted nature of GABA system development: 1) disruptions in the development of the GABA system can lead to large scale disruptions in other developmental processes (i.e., GABA as the cause), 2) protracted maturation of this system makes it vulnerable to the effects of developmental insults (i.e., GABA as the effect). While ample evidence supports the importance of GABA/GABAAR system in both scenarios, large gaps in existing knowledge prevent strong mechanistic conclusions.
Collapse
Affiliation(s)
- Irina Topchiy
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Julie Mohbat
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
| | - Oluwarotimi O Folorunso
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Ziyi Zephyr Wang
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | | | - Elif Engin
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Wang DS, Ju L, Pinguelo AG, Kaneshwaran K, Haffey SC, Lecker I, Gohil H, Wheeler MB, Kaustov L, Ariza A, Yu M, Volchuk A, Steinberg BE, Goldenberg NM, Orser BA. Crosstalk between GABA A receptors in astrocytes and neurons triggered by general anesthetic drugs. Transl Res 2024; 267:39-53. [PMID: 38042478 DOI: 10.1016/j.trsl.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
General anesthetic drugs cause cognitive deficits that persist after the drugs have been eliminated. Astrocytes may contribute to such cognition-impairing effects through the release of one or more paracrine factors that increase a tonic inhibitory conductance generated by extrasynaptic γ-aminobutyric acid type A (GABAA) receptors in hippocampal neurons. The mechanisms underlying this astrocyte-to-neuron crosstalk remain unknown. Interestingly, astrocytes express anesthetic-sensitive GABAA receptors. Here, we tested the hypothesis that anesthetic drugs activate astrocytic GABAA receptors to initiate crosstalk leading to a persistent increase in extrasynaptic GABAA receptor function in neurons. We also investigated the signaling pathways in neurons and aimed to identify the paracrine factors released from astrocytes. Astrocytes and neurons from mice were grown in primary cell cultures and studied using in vitro electrophysiological and biochemical assays. We discovered that the commonly used anesthetics etomidate (injectable) and sevoflurane (inhaled) stimulated astrocytic GABAA receptors, which in turn promoted the release paracrine factors, that increased the tonic current in neurons via a p38 MAPK-dependent signaling pathway. The increase in tonic current was mimicked by exogenous IL-1β and abolished by blocking IL-1 receptors; however, unexpectedly, IL-1β and other cytokines were not detected in astrocyte-conditioned media. In summary, we have identified a novel form of crosstalk between GABAA receptors in astrocytes and neurons that engages a p38 MAPK-dependent pathway. Brief commentary BACKGROUND: Many older patients experience cognitive deficits after surgery. Anesthetic drugs may be a contributing factor as they cause a sustained increase in the function of "memory blocking" extrasynaptic GABAA receptors in neurons. Interestingly, astrocytes are required for this increase; however, the mechanisms underlying the astrocyte-to-neuron crosstalk remain unknown. TRANSLATIONAL SIGNIFICANCE: We discovered that commonly used general anesthetic drugs stimulate GABAA receptors in astrocytes, which in turn release paracrine factors that trigger a persistent increase in extrasynaptic GABAA receptor function in neurons via p38 MAPK. This novel form of crosstalk may contribute to persistent cognitive deficits after general anesthesia and surgery.
Collapse
Affiliation(s)
- Dian-Shi Wang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Li Ju
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arsène G Pinguelo
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kirusanthy Kaneshwaran
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean C Haffey
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Irene Lecker
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Himaben Gohil
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Lilia Kaustov
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Anthony Ariza
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - MeiFeng Yu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allen Volchuk
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Benjamin E Steinberg
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada
| | - Neil M Goldenberg
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada; Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Beverley A Orser
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada.
| |
Collapse
|
6
|
Wang Y, Chen Y, Chen L, Herron BJ, Chen XY, Wolpaw JR. Motor learning changes the axon initial segment of the spinal motoneuron. J Physiol 2024; 602:2107-2126. [PMID: 38568869 PMCID: PMC11196014 DOI: 10.1113/jp283875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
We are studying the mechanisms of H-reflex operant conditioning, a simple form of learning. Modelling studies in the literature and our previous data suggested that changes in the axon initial segment (AIS) might contribute. To explore this, we used blinded quantitative histological and immunohistochemical methods to study in adult rats the impact of H-reflex conditioning on the AIS of the spinal motoneuron that produces the reflex. Successful, but not unsuccessful, H-reflex up-conditioning was associated with greater AIS length and distance from soma; greater length correlated with greater H-reflex increase. Modelling studies in the literature suggest that these increases may increase motoneuron excitability, supporting the hypothesis that they may contribute to H-reflex increase. Up-conditioning did not affect AIS ankyrin G (AnkG) immunoreactivity (IR), p-p38 protein kinase IR, or GABAergic terminals. Successful, but not unsuccessful, H-reflex down-conditioning was associated with more GABAergic terminals on the AIS, weaker AnkG-IR, and stronger p-p38-IR. More GABAergic terminals and weaker AnkG-IR correlated with greater H-reflex decrease. These changes might potentially contribute to the positive shift in motoneuron firing threshold underlying H-reflex decrease; they are consistent with modelling suggesting that sodium channel change may be responsible. H-reflex down-conditioning did not affect AIS dimensions. This evidence that AIS plasticity is associated with and might contribute to H-reflex conditioning adds to evidence that motor learning involves both spinal and brain plasticity, and both neuronal and synaptic plasticity. AIS properties of spinal motoneurons are likely to reflect the combined influence of all the motor skills that share these motoneurons. KEY POINTS: Neuronal action potentials normally begin in the axon initial segment (AIS). AIS plasticity affects neuronal excitability in development and disease. Whether it does so in learning is unknown. Operant conditioning of a spinal reflex, a simple learning model, changes the rat spinal motoneuron AIS. Successful, but not unsuccessful, H-reflex up-conditioning is associated with greater AIS length and distance from soma. Successful, but not unsuccessful, down-conditioning is associated with more AIS GABAergic terminals, less ankyrin G, and more p-p38 protein kinase. The associations between AIS plasticity and successful H-reflex conditioning are consistent with those between AIS plasticity and functional changes in development and disease, and with those predicted by modelling studies in the literature. Motor learning changes neurons and synapses in spinal cord and brain. Because spinal motoneurons are the final common pathway for behaviour, their AIS properties probably reflect the combined impact of all the behaviours that use these motoneurons.
Collapse
Affiliation(s)
- Yu Wang
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
| | - Yi Chen
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
| | - Lu Chen
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
| | - Bruce J. Herron
- Wadsworth Center, New York State Department of Health, 150 New Scotland Ave, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York
| | - Xiang Yang Chen
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York
| | - Jonathan R. Wolpaw
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York
| |
Collapse
|
7
|
MacLean A, Chappell AS, Kranzler J, Evrard A, Monchal H, Roucard C. BAER-101, a selective potentiator of α2- and α3-containing GABA A receptors, fully suppresses spontaneous cortical spike-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Drug Dev Res 2024; 85:e22160. [PMID: 38380694 DOI: 10.1002/ddr.22160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
BAER-101 (formerly AZD7325) is a selective partial potentiator of α2/3-containing γ-amino-butyric acid A receptors (GABAARs) and produces minimal sedation and dizziness. Antiseizure effects in models of Dravet and Fragile X Syndromes have been published. BAER-101 has been administered to over 700 healthy human volunteers and patients where it was found to be safe and well tolerated. To test the extent of the antiseizure activity of BAER-1010, we tested BAER-101 in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model, a widely used and translationally relevant model. GAERS rats with recording electrodes bilaterally located over the frontal and parietal cortices were used. Electroencepholographic (EEG) signals in freely moving awake rats were analyzed for spike-wave discharges (SWDs). BAER-101 was administered orally at doses of 0.3-100 mg/kg and diazepam was used as a positive control using a cross-over protocol with a wash-out period between treatments. The number of SWDs was dose-dependently reduced by BAER-101 with 0.3 mg/kg being the minimally effective dose (MED). The duration of and total time in SWDs were also reduced by BAER-101. Concentrations of drug in plasma achieved an MED of 10.1 nM, exceeding the Ki for α2 or α3, but 23 times lower than the Ki for α5-GABAARs. No adverse events were observed up to a dose 300× MED. The data support the possibility of antiseizure efficacy without the side effects associated with other GABAAR subtypes. This is the first report of an α2/3-selective GABA PAM suppressing seizures in the GAERS model. The data encourage proceeding to test BAER-101 in patients with epilepsy.
Collapse
|
8
|
Arias HR, Rudin D, Hines DJ, Contreras A, Gulsevin A, Manetti D, Anouar Y, De Deurwaerdere P, Meiler J, Romanelli MN, Liechti ME, Chagraoui A. The novel non-hallucinogenic compound DM506 (3-methyl-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole) induces sedative- and anxiolytic-like activity in mice by a mechanism involving 5-HT 2A receptor activation. Eur J Pharmacol 2024; 966:176329. [PMID: 38253116 DOI: 10.1016/j.ejphar.2024.176329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The anxiolytic and sedative-like effects of 3-methyl-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole (DM506), a non-hallucinogenic compound derived from ibogamine, were studied in mice. The behavioral effects were examined using Elevated O-maze and novelty suppressed feeding (NSFT) tests, open field test, and loss of righting reflex (LORR) test. The results showed that 15 mg/kg DM506 induced acute and long-lasting anxiolytic-like activity in naive and stressed/anxious mice, respectively. Repeated administration of 5 mg/kg DM506 did not cause cumulative anxiolytic activity or any side effects. Higher doses of DM506 (40 mg/kg) induced sedative-like activity, which was inhibited by a selective 5-HT2A receptor antagonist, volinanserin. Electroencephalography results showed that 15 mg/kg DM506 fumarate increased the transition from a highly alert state (fast γ wavelength) to a more synchronized deep-sleeping activity (δ wavelength), which is reflected in the sedative/anxiolytic activity in mice but without the head-twitch response observed in hallucinogens. The functional, radioligand binding, and molecular docking results showed that DM506 binds to the agonist sites of human 5-HT2A (Ki = 24 nM) and 5-HT2B (Ki = 16 nM) receptors and activates them with a potency (EC50) of 9 nM and 3 nM, respectively. DM506 was relatively less potent and behaved as a partial agonist (efficacy <80%) for both receptor subtypes compared to the full agonist DOI (2,5-dimethoxy-4-iodoamphetamine). Our study showed for the first time that the non-hallucinogenic compound DM506 induces anxiolytic- and sedative-like activities in naïve and stressed/anxious mice in a dose-, time-, and volinanserin-sensitive manner, likely through mechanisms involving 5-HT2A receptor activation.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| | - Deborah Rudin
- Divison of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Dustin J Hines
- Psychological and Brain Sciences, University of Nevada, Las Vegas, NV, USA
| | - April Contreras
- Psychological and Brain Sciences, University of Nevada, Las Vegas, NV, USA
| | - Alican Gulsevin
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Dina Manetti
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000, Mont-Saint-Aignan, France
| | - Philippe De Deurwaerdere
- Centre National de la Recherche Scientifique, Institut des Neurosciences Integratives et Cognitives d'Aquitaine, UMR, 5287, Bordeaux, France
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University Medical School, 04103, Leipzig, Germany
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Matthias E Liechti
- Divison of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Abdeslam Chagraoui
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, France; UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000, Mont-Saint-Aignan, France.
| |
Collapse
|
9
|
Tsai YC, Hleihil M, Otomo K, Abegg A, Cavaccini A, Panzanelli P, Cramer T, Ferrari KD, Barrett MJP, Bosshard G, Karayannis T, Weber B, Tyagarajan SK, Stobart JL. The gephyrin scaffold modulates cortical layer 2/3 pyramidal neuron responsiveness to single whisker stimulation. Sci Rep 2024; 14:4169. [PMID: 38379020 PMCID: PMC10879104 DOI: 10.1038/s41598-024-54720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
Gephyrin is the main scaffolding protein at inhibitory postsynaptic sites, and its clusters are the signaling hubs where several molecular pathways converge. Post-translational modifications (PTMs) of gephyrin alter GABAA receptor clustering at the synapse, but it is unclear how this affects neuronal activity at the circuit level. We assessed the contribution of gephyrin PTMs to microcircuit activity in the mouse barrel cortex by slice electrophysiology and in vivo two-photon calcium imaging of layer 2/3 (L2/3) pyramidal cells during single-whisker stimulation. Our results suggest that, depending on the type of gephyrin PTM, the neuronal activities of L2/3 pyramidal neurons can be differentially modulated, leading to changes in the size of the neuronal population responding to the single-whisker stimulation. Furthermore, we show that gephyrin PTMs have their preference for selecting synaptic GABAA receptor subunits. Our results identify an important role of gephyrin and GABAergic postsynaptic sites for cortical microcircuit function during sensory stimulation.
Collapse
Affiliation(s)
- Yuan-Chen Tsai
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mohammad Hleihil
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Kanako Otomo
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Andrin Abegg
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anna Cavaccini
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Teresa Cramer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Kim David Ferrari
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthew J P Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Giovanna Bosshard
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Theofanis Karayannis
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jillian L Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- College of Pharmacy, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada.
| |
Collapse
|
10
|
Li S, Wei X, Huang H, Ye L, Ma M, Sun L, Lu Y, Wu Y. Neuroplastin exerts antiepileptic effects through binding to the α1 subunit of GABA type A receptors to inhibit the internalization of the receptors. J Transl Med 2023; 21:707. [PMID: 37814294 PMCID: PMC10563248 DOI: 10.1186/s12967-023-04596-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Seizures are associated with a decrease in γ-aminobutyric type A acid receptors (GABAaRs) on the neuronal surface, which may be regulated by enhanced internalization of GABAaRs. When interactions between GABAaR subunit α-1 (GABRA1) and postsynaptic scaffold proteins are weakened, the α1-containing GABAaRs leave the postsynaptic membrane and are internalized. Previous evidence suggested that neuroplastin (NPTN) promotes the localization of GABRA1 on the postsynaptic membrane. However, the association between NPTN and GABRA1 in seizures and its effect on the internalization of α1-containing GABAaRs on the neuronal surface has not been studied before. METHODS An in vitro seizure model was constructed using magnesium-free extracellular fluid, and an in vivo model of status epilepticus (SE) was constructed using pentylenetetrazole (PTZ). Additionally, in vitro and in vivo NPTN-overexpression models were constructed. Electrophysiological recordings and internalization assays were performed to evaluate the action potentials and miniature inhibitory postsynaptic currents of neurons, as well as the intracellular accumulation ratio of α1-containing GABAaRs in neurons. Western blot analysis was performed to detect the expression of GABRA1 and NPTN both in vitro and in vivo. Immunofluorescence co-localization analysis and co-immunoprecipitation were performed to evaluate the interaction between GABRA1 and NPTN. RESULTS The expression of GABRA1 was found to be decreased on the neuronal surface both in vivo and in vitro seizure models. In the in vitro seizure model, α1-containing GABAaRs showed increased internalization. NPTN expression was found to be positively correlated with GABRA1 expression on the neuronal surface both in vivo and in vitro seizure models. In addition, NPTN overexpression alleviated seizures and NPTN was shown to bind to GABRA1 to form protein complexes that can be disrupted during seizures in both in vivo and in vitro models. Furthermore, NPTN was found to inhibit the internalization of α1-containing GABAaRs in the in vitro seizure model. CONCLUSION Our findings provide evidence that NPTN may exert antiepileptic effects by binding to GABRA1 to inhibit the internalization of α1-containing GABAaRs.
Collapse
Affiliation(s)
- Sijun Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Xing Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Hongmi Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Lin Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Meigang Ma
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Lanfeng Sun
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Yuling Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China.
| |
Collapse
|
11
|
Chen C, Tang X, Lan Z, Chen W, Su H, Li W, Li Y, Zhou X, Gao H, Feng X, Guo Y, Yao M, Deng W. GABAergic signaling abnormalities in a novel CLU mutation Alzheimer's disease mouse model. Transl Res 2023; 260:32-45. [PMID: 37211336 DOI: 10.1016/j.trsl.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The CLU rs11136000C mutation (CLUC) is the third most common risk factor for Alzheimer's disease (AD). However, the mechanism by which CLUC leads to abnormal GABAergic signaling in AD is unclear. To address this question, this study establishes the first chimeric mouse model of CLUC AD. Examination of grafted CLUC medial ganglionic eminence progenitors (CLUC hiMGEs) revealed increased GAD65/67 and a high frequency of spontaneous releasing events. CLUC hiMGEs also impaired cognition in chimeric mice and caused AD-related pathologies. The expression of GABA A receptor, subunit alpha 2 (Gabrα2) was higher in chimeric mice. Interestingly, cognitive impairment in chimeric mice was reversed by treatment with pentylenetetrazole, which is a GABA A receptor inhibitor. Taken together, these findings shed light on the pathogenesis of CLUC AD using a novel humanized animal model and suggest sphingolipid signaling over-activation as a potential mechanism of GABAergic signaling disorder.
Collapse
Affiliation(s)
- Chunxia Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China; Department of pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi P. R. China
| | - Xihe Tang
- Department of neurosurgery, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi P. R. China; Department of neurosurgery, Aviation General Hospital, Beijing, P. R. China
| | - Zhaohui Lan
- Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Bio-X Institutes, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wan Chen
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Hua Su
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, P. R. China
| | - Weidong Li
- Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Bio-X Institutes, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yaoxuan Li
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Xing Zhou
- Department of pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi P. R. China
| | - Hong Gao
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China
| | - Xinwei Feng
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China
| | - Ying Guo
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China
| | - Meicun Yao
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China.
| |
Collapse
|
12
|
Vivien J, El Azraoui A, Lheraux C, Lanore F, Aouizerate B, Herry C, Humeau Y, Bienvenu TCM. Axo-axonic cells in neuropsychiatric disorders: a systematic review. Front Cell Neurosci 2023; 17:1212202. [PMID: 37435048 PMCID: PMC10330806 DOI: 10.3389/fncel.2023.1212202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Imbalance between excitation and inhibition in the cerebral cortex is one of the main theories in neuropsychiatric disorder pathophysiology. Cortical inhibition is finely regulated by a variety of highly specialized GABAergic interneuron types, which are thought to organize neural network activities. Among interneurons, axo-axonic cells are unique in making synapses with the axon initial segment of pyramidal neurons. Alterations of axo-axonic cells have been proposed to be implicated in disorders including epilepsy, schizophrenia and autism spectrum disorder. However, evidence for the alteration of axo-axonic cells in disease has only been examined in narrative reviews. By performing a systematic review of studies investigating axo-axonic cells and axo-axonic communication in epilepsy, schizophrenia and autism spectrum disorder, we outline convergent findings and discrepancies in the literature. Overall, the implication of axo-axonic cells in neuropsychiatric disorders might have been overstated. Additional work is needed to assess initial, mostly indirect findings, and to unravel how defects in axo-axonic cells translates to cortical dysregulation and, in turn, to pathological states.
Collapse
Affiliation(s)
- Juliette Vivien
- Université de Bordeaux, Inserm Neurocentre Magendie U1215, Bordeaux, France
| | - Anass El Azraoui
- Université de Bordeaux, Inserm Neurocentre Magendie U1215, Bordeaux, France
- Univ Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Cloé Lheraux
- Université de Bordeaux, Inserm Neurocentre Magendie U1215, Bordeaux, France
| | - Frederic Lanore
- Centre Hospitalier Charles Perrens, Inserm Neurocentre Magendie U1215, Bordeaux, France
| | - Bruno Aouizerate
- Université de Bordeaux, Inserm Neurocentre Magendie U1215, Bordeaux, France
- Centre Hospitalier Charles Perrens, Inserm Neurocentre Magendie U1215, Bordeaux, France
- INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Cyril Herry
- Université de Bordeaux, Inserm Neurocentre Magendie U1215, Bordeaux, France
| | - Yann Humeau
- Univ Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Thomas C. M. Bienvenu
- Université de Bordeaux, Inserm Neurocentre Magendie U1215, Bordeaux, France
- Centre Hospitalier Charles Perrens, Inserm Neurocentre Magendie U1215, Bordeaux, France
| |
Collapse
|
13
|
Farajizadeh F, Taghian F, Jalali Dehkordi K, Mirsafaei Rizi R. Swimming training and herbal nanoformulations as natural remedies to improve sensory-motor impairment in rat midbrain tumor models: system biology, behavioral test, and experimental validation. 3 Biotech 2023; 13:149. [PMID: 37131964 PMCID: PMC10148939 DOI: 10.1007/s13205-023-03574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Motor impairment worsens health-related quality of life in patients with primary and metastatic midbrain tumors. Here, 56-male-Wistar rats were divided into eight groups: Normal group, Midbrain Tomur Model group, Model + Exe group, Model + Lipo, Model + Extract, Model + Lipo-Extract, Model + Extract-Exe, Model + Lipo-Extract + Exe. According to the aim, mid-brain tumor models were conducted by injections of the C6 glioma cell line (5 × 105 cell suspension) and stereotaxic techniques in the substantia nigra area. Furthermore, consumption of nanoformulation of herbals extract (100 mg/kg/day), crude extract (100 mg/kg/day), and swimming training (30 min, 3 days/week) as interventional protocols were performed for 6 weeks. In addition, we evaluated the effect of polyherbal nanoliposomes containing four plant extracts and swimming training on the GABArα1/TRKB/DRD2/DRD1a/TH network in the substantia nigra of the midbrain tumor rat model. Data emphasized that DRD2 might be a druggable protein with the network's highest significance cut-point effect that could modulate sensory-motor impairment. Furthermore, we found Quercetin, Ginsenosides, Curcumin, and Rutin, as bioactive compounds present in Ginseng, Matthiola incana, Turmeric, and Green-Tea extracts, could bind over the DRD2 protein with approved binding affinity scores. Based on our data, swimming training, and nanoliposome-enriched combined supplements could consider effective complementary medicine for motor impairment recovery induced by the midbrain tumor in the substantia nigra area. Hence, regular swimming training and natural medicines rich in polyphenolic bioactive components and antioxidative effects could modify and improve the dopamine receptors' function. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03574-3.
Collapse
Affiliation(s)
- Fariba Farajizadeh
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Khosro Jalali Dehkordi
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Rezvan Mirsafaei Rizi
- Department of Sports Injuries, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
14
|
Shin HS, Lee SH, Moon HJ, So YH, Lee HR, Lee EH, Jung EM. Exposure to polystyrene particles causes anxiety-, depression-like behavior and abnormal social behavior in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131465. [PMID: 37130475 DOI: 10.1016/j.jhazmat.2023.131465] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
In the era of plastic use, organisms are constantly exposed to polystyrene particles (PS-Ps). PS-Ps accumulated in living organisms exert negative effects on the body, although studies evaluating their effects on brain development are scarce. In this study, the effects of PS-Ps on nervous system development were investigated using cultured primary cortical neurons and mice exposed to PS-Ps at different stages of brain development. The gene expression associated with brain development was downregulated in embryonic brains following PS-Ps exposure, and Gabra2 expression decreased in the embryonic and adult mice exposed to PS-Ps. Additionally, offspring of PS-Ps-treated dams exhibited signs of anxiety- and depression-like behavior, and abnormal social behavior. We propose that PS-Ps accumulation in the brain disrupts brain development and behavior in mice. This study provides novel information regarding PS-Ps toxicity and its harmful effects on neural development and behavior in mammals.
Collapse
Affiliation(s)
- Hyun Seung Shin
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Ha Jung Moon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Hee So
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Ha Ram Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Eun-Hee Lee
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
15
|
Jarvis R, Josephine Ng SF, Nathanson AJ, Cardarelli RA, Abiraman K, Wade F, Evans-Strong A, Fernandez-Campa MP, Deeb TZ, Smalley JL, Jamier T, Gurrell IK, McWilliams L, Kawatkar A, Conway LC, Wang Q, Burli RW, Brandon NJ, Chessell IP, Goldman AJ, Maguire JL, Moss SJ. Direct activation of KCC2 arrests benzodiazepine refractory status epilepticus and limits the subsequent neuronal injury in mice. Cell Rep Med 2023; 4:100957. [PMID: 36889319 PMCID: PMC10040380 DOI: 10.1016/j.xcrm.2023.100957] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
Hyperpolarizing GABAAR currents, the unitary events that underlie synaptic inhibition, are dependent upon efficient Cl- extrusion, a process that is facilitated by the neuronal specific K+/Cl- co-transporter KCC2. Its activity is also a determinant of the anticonvulsant efficacy of the canonical GABAAR-positive allosteric: benzodiazepines (BDZs). Compromised KCC2 activity is implicated in the pathophysiology of status epilepticus (SE), a medical emergency that rapidly becomes refractory to BDZ (BDZ-RSE). Here, we have identified small molecules that directly bind to and activate KCC2, which leads to reduced neuronal Cl- accumulation and excitability. KCC2 activation does not induce any overt effects on behavior but prevents the development of and terminates ongoing BDZ-RSE. In addition, KCC2 activation reduces neuronal cell death following BDZ-RSE. Collectively, these findings demonstrate that KCC2 activation is a promising strategy to terminate BDZ-resistant seizures and limit the associated neuronal injury.
Collapse
Affiliation(s)
- Rebecca Jarvis
- Discovery, Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Shu Fun Josephine Ng
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Anna J Nathanson
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Ross A Cardarelli
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Krithika Abiraman
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Fergus Wade
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Aidan Evans-Strong
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Marina P Fernandez-Campa
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Joshua L Smalley
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Tanguy Jamier
- Discovery, Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ian K Gurrell
- Discovery, Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Lisa McWilliams
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Aarti Kawatkar
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Leslie C Conway
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Qi Wang
- Discovery, Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Roland W Burli
- Discovery, Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Nicholas J Brandon
- Discovery, Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Iain P Chessell
- Discovery, Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Aaron J Goldman
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1 6BT, UK.
| |
Collapse
|
16
|
Spectrin-beta 2 facilitates the selective accumulation of GABA A receptors at somatodendritic synapses. Commun Biol 2023; 6:11. [PMID: 36604600 PMCID: PMC9816108 DOI: 10.1038/s42003-022-04381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Fast synaptic inhibition is dependent on targeting specific GABAAR subtypes to dendritic and axon initial segment (AIS) synapses. Synaptic GABAARs are typically assembled from α1-3, β and γ subunits. Here, we isolate distinct GABAARs from the brain and interrogate their composition using quantitative proteomics. We show that α2-containing receptors co-assemble with α1 subunits, whereas α1 receptors can form GABAARs with α1 as the sole α subunit. We demonstrate that α1 and α2 subunit-containing receptors co-purify with distinct spectrin isoforms; cytoskeletal proteins that link transmembrane proteins to the cytoskeleton. β2-spectrin was preferentially associated with α1-containing GABAARs at dendritic synapses, while β4-spectrin was associated with α2-containing GABAARs at AIS synapses. Ablating β2-spectrin expression reduced dendritic and AIS synapses containing α1 but increased the number of synapses containing α2, which altered phasic inhibition. Thus, we demonstrate a role for spectrins in the synapse-specific targeting of GABAARs, determining the efficacy of fast neuronal inhibition.
Collapse
|
17
|
Li S, Huang H, Wei X, Ye L, Ma M, Ling M, Wu Y. The recycling of AMPA receptors/GABAa receptors is related to neuronal excitation/inhibition imbalance and may be regulated by KIF5A. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1103. [PMID: 36388788 PMCID: PMC9652568 DOI: 10.21037/atm-22-4337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 09/01/2023]
Abstract
BACKGROUND Excitation/inhibition imbalance (E/I imbalance), which involves an increase of alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) receptors (AMPARs) and decrease of gamma-aminobutyric acid type A (GABA) type A receptors (GABAaRs) on the neuron surface, has been documented in the pathogenesis of seizures. Notably, it has been established that both the glutamate receptor subunit 2 (GluR2) of AMPARs and beta 2/3 subunits of GABAaRs (Gabrb2+3) participate in the recycling mechanism mediated by the kinesin heavy chain isoform 5A (KIF5A), which determines the number of neuron surface receptors. However, it remains unclear whether receptor recycling is involved in the pathogenesis of seizures. METHODS Twelve adult male Sprague-Dawley rats were randomly allocated to the normal control (Ctl) group (n=6) and the pentylenetetrazol (PTZ)-induced seizure (Sez) group (n=6). The rats in the Ctl group were treated with saline. The rats in the Sez group received an intraperitoneal injection of PTZ at an initial dose of 40 mg/kg. Primary cultured neurons were obtained from newborn rats (24-hour-old). The neurons were exposed to magnesium-free (Mg2+-free) extracellular fluid for 3 hours to establish the seizure model in vitro. We detected the electrophysiology of the seizure model, the expression levels of KIF5A, GluR2, and Gabrb2+3, the recycling ratio of GluR2 and Gabrb2+3, the interaction between KIF5A and GluR2, and the interaction between KIF5A and Gabrb2+3. RESULTS In the Sez group, the expression of GluR2 on the cell surface was increased and the expression of Gabrb2+3 on the cell surface was decreased. The amplitude and frequency of action potentials were significantly increased in the Mg2+-free group. The amplitude and decay time of AMPAR-mediated miniature excitatory postsynaptic currents were increased in the Mg2+-free group. The amplitude and decay time of miniature inhibitory postsynaptic currents were decreased in the Mg2+-free group. The recycling ratio of GluR2 was increased and the recycling ratio of Gabrb2+3 was decreased in the Mg2+-free group. The interaction between KIF5A and GluR2 was increased, and the interaction between KIF5A and Gabrb2+3 was decreased in the seizure model in vivo and in vitro. CONCLUSIONS The recycling of AMPA receptors/GABAa receptors is related to E/I imbalance and may be regulated by KIF5A.
Collapse
Affiliation(s)
- Sijun Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongmi Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meigang Ma
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Min Ling
- Department of Biotechnology, Guangxi Medical University, Nanning, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
18
|
Imam N, Choudhury S, Heinze KG, Schindelin H. Differential modulation of collybistin conformational dynamics by the closely related GTPases Cdc42 and TC10. Front Synaptic Neurosci 2022; 14:959875. [PMID: 35989712 PMCID: PMC9386560 DOI: 10.3389/fnsyn.2022.959875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Interneuronal synaptic transmission relies on the proper spatial organization of presynaptic neurotransmitter release and its reception on the postsynaptic side by cognate neurotransmitter receptors. Neurotransmitter receptors are incorporated into and arranged within the plasma membrane with the assistance of scaffolding and adaptor proteins. At inhibitory GABAergic postsynapses, collybistin, a neuronal adaptor protein, recruits the scaffolding protein gephyrin and interacts with various neuronal factors including cell adhesion proteins of the neuroligin family, the GABA A receptor α2-subunit and the closely related small GTPases Cdc42 and TC10 (RhoQ). Most collybistin splice variants harbor an N-terminal SH3 domain and exist in an autoinhibited/closed state. Cdc42 and TC10, despite sharing 67.4% amino acid sequence identity, interact differently with collybistin. Here, we delineate the molecular basis of the collybistin conformational activation induced by TC10 with the aid of recently developed collybistin FRET sensors. Time-resolved fluorescence-based FRET measurements reveal that TC10 binds to closed/inactive collybistin leading to relief of its autoinhibition, contrary to Cdc42, which only interacts with collybistin when forced into an open state by the introduction of mutations destabilizing the closed state of collybistin. Taken together, our data describe a TC10-driven signaling mechanism in which collybistin switches from its autoinhibited closed state to an open/active state.
Collapse
Affiliation(s)
- Nasir Imam
- Institute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Susobhan Choudhury
- Molecular Microscopy, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Katrin G. Heinze
- Molecular Microscopy, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Braga MFM, Juranek J, Eiden LE, Li Z, Figueiredo TH, de Araujo Furtado M, Marini AM. GABAergic circuits of the basolateral amygdala and generation of anxiety after traumatic brain injury. Amino Acids 2022; 54:1229-1249. [PMID: 35798984 DOI: 10.1007/s00726-022-03184-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) has reached epidemic proportions around the world and is a major public health concern in the United States. Approximately 2.8 million individuals sustain a traumatic brain injury and are treated in an Emergency Department yearly in the U.S., and about 50,000 of them die. Persistent symptoms develop in 10-15% of the cases including neuropsychiatric disorders. Anxiety is the second most common neuropsychiatric disorder that develops in those with persistent neuropsychiatric symptoms after TBI. Abnormalities or atrophy in the temporal lobe has been shown in the overwhelming number of TBI cases. The basolateral amygdala (BLA), a temporal lobe structure that consolidates, stores and generates fear and anxiety-based behavioral outputs, is a critical brain region in the anxiety circuitry. In this review, we sought to capture studies that characterized the relationship between human post-traumatic anxiety and structural/functional alterations in the amygdala. We compared the human findings with results obtained with a reproducible mild TBI animal model that demonstrated a direct relationship between the alterations in the BLA and an anxiety-like phenotype. From this analysis, both preliminary insights, and gaps in knowledge, have emerged which may open new directions for the development of rational and more efficacious treatments.
Collapse
Affiliation(s)
- Maria F M Braga
- Department of Anatomy, Physiology and Genetics and Program in Neuroscience, Uniformed Services University of the Health Science School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Jenifer Juranek
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, MD, 20814, USA
| | - Zheng Li
- Section On Synapse Development and Plasticity, National Institute of Mental Health, Intramural Research Program, Bethesda, MD, 20814, USA
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology and Genetics and Program in Neuroscience, Uniformed Services University of the Health Science School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Marcio de Araujo Furtado
- Department of Anatomy, Physiology and Genetics and Program in Neuroscience, Uniformed Services University of the Health Science School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Ann M Marini
- Department of Neurology and Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
20
|
Tipton AE, Russek SJ. Regulation of Inhibitory Signaling at the Receptor and Cellular Level; Advances in Our Understanding of GABAergic Neurotransmission and the Mechanisms by Which It Is Disrupted in Epilepsy. Front Synaptic Neurosci 2022; 14:914374. [PMID: 35874848 PMCID: PMC9302637 DOI: 10.3389/fnsyn.2022.914374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Inhibitory signaling in the brain organizes the neural circuits that orchestrate how living creatures interact with the world around them and how they build representations of objects and ideas. Without tight control at multiple points of cellular engagement, the brain’s inhibitory systems would run down and the ability to extract meaningful information from excitatory events would be lost leaving behind a system vulnerable to seizures and to cognitive decline. In this review, we will cover many of the salient features that have emerged regarding the dynamic regulation of inhibitory signaling seen through the lens of cell biology with an emphasis on the major building blocks, the ligand-gated ion channel receptors that are the first transduction point when the neurotransmitter GABA is released into the synapse. Epilepsy association will be used to indicate importance of key proteins and their pathways to brain function and to introduce novel areas for therapeutic intervention.
Collapse
Affiliation(s)
- Allison E. Tipton
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Biomolecular Pharmacology Program, Boston University School of Medicine, Boston, MA, United States
- Boston University MD/PhD Training Program, Boston, MA, United States
| | - Shelley J. Russek
- Biomolecular Pharmacology Program, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Boston University MD/PhD Training Program, Boston, MA, United States
- *Correspondence: Shelley J. Russek,
| |
Collapse
|
21
|
Eichel K, Shen K. The function of the axon initial segment in neuronal polarity. Dev Biol 2022; 489:47-54. [DOI: 10.1016/j.ydbio.2022.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
|
22
|
Kramer RH, Rajappa R. Interrogating the function of GABA A receptors in the brain with optogenetic pharmacology. Curr Opin Pharmacol 2022; 63:102198. [PMID: 35276498 DOI: 10.1016/j.coph.2022.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
Abstract
To better understand neural circuits and behavior, microbial opsins have been developed as optogenetic tools for stimulating or inhibiting action potentials with high temporal and spatial precision. However, if we seek a more reductionist understanding of how neuronal circuits operate, we also need high-resolution tools for perturbing the function of synapses. By combining photochemical tools and molecular biology, a wide variety of light-regulated neurotransmitter receptors have been developed, enabling photo-control of excitatory, inhibitory, and modulatory synaptic transmission. Here we focus on photo-control of GABAA receptors, ligand-gated Cl- channels that underlie almost all synaptic inhibition in the mammalian brain. By conjugating a photoswitchable tethered ligand onto a genetically-modified subunit of the GABAA receptor, light-sensitivity can be conferred onto specific isoforms of the receptor. Through gene editing, this attachment site can be knocked into the genome, enabling photocontrol of endogenous GABAA receptors. This strategy can be employed to explore the cell biology and neurophysiology of GABAA receptors. This includes investigating how specific isoforms contribute to synaptic and tonic inhibition and understanding the roles they play in brain development, long-term synaptic plasticity, and learning and memory.
Collapse
Affiliation(s)
- Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| | - Rajit Rajappa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| |
Collapse
|
23
|
Hines DJ, Contreras A, Garcia B, Barker JS, Boren AJ, Moufawad El Achkar C, Moss SJ, Hines RM. Human ARHGEF9 intellectual disability syndrome is phenocopied by a mutation that disrupts collybistin binding to the GABA A receptor α2 subunit. Mol Psychiatry 2022; 27:1729-1741. [PMID: 35169261 PMCID: PMC9095487 DOI: 10.1038/s41380-022-01468-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/20/2022]
Abstract
Intellectual disability (ID) is a common neurodevelopmental disorder that can arise from genetic mutations ranging from trisomy to single nucleotide polymorphism. Mutations in a growing number of single genes have been identified as causative in ID, including ARHGEF9. Evaluation of 41 ARHGEF9 patient reports shows ubiquitous inclusion of ID, along with other frequently reported symptoms of epilepsy, abnormal baseline EEG activity, behavioral symptoms, and sleep disturbances. ARHGEF9 codes for the Cdc42 Guanine Nucleotide Exchange Factor 9 collybistin (Cb), a known regulator of inhibitory synapse function via direct interaction with the adhesion molecule neuroligin-2 and the α2 subunit of GABAA receptors. We mutate the Cb binding motif within the large intracellular loop of α2 replacing it with the binding motif for gephyrin from the α1 subunit (Gabra2-1). The Gabra2-1 mutation causes a strong downregulation of Cb expression, particularly at cholecystokinin basket cell inhibitory synapses. Gabra2-1 mice have deficits in working and recognition memory, as well as hyperactivity, anxiety, and reduced social preference, recapitulating the frequently reported features of ARHGEF9 patients. Gabra2-1 mice also have spontaneous seizures during postnatal development which can lead to mortality, and baseline abnormalities in low-frequency wavelengths of the EEG. EEG abnormalities are vigilance state-specific and manifest as sleep disturbance including increased time in wake and a loss of free-running rhythmicity in the absence of light as zeitgeber. Gabra2-1 mice phenocopy multiple features of human ARHGEF9 mutation, and reveal α2 subunit-containing GABAA receptors as a druggable target for treatment of this complex ID syndrome.
Collapse
Affiliation(s)
- Dustin J Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - April Contreras
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Betsua Garcia
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jeffrey S Barker
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Austin J Boren
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Rochelle M Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
24
|
The imidazodiazepine, KRM-II-81: An example of a newly emerging generation of GABAkines for neurological and psychiatric disorders. Pharmacol Biochem Behav 2022; 213:173321. [PMID: 35041859 DOI: 10.1016/j.pbb.2021.173321] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
GABAkines, or positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors, are used for the treatment of anxiety, epilepsy, sleep, and other disorders. The search for improved GABAkines, with reduced safety liabilities (e.g., dependence) or side-effect profiles (e.g., sedation) constituted multiple discovery and development campaigns that involved a multitude of strategies over the past century. Due to the general lack of success in the development of new GABAkines, there had been a decades-long draught in bringing new GABAkines to market. Recently, however, there has been a resurgence of efforts to bring GABAkines to patients, the FDA approval of the neuroactive steroid brexanolone for post-partum depression in 2019 being the first. Other neuroactive steroids are in various stages of clinical development (ganaxolone, zuranolone, LYT-300, Sage-324, PRAX 114, and ETX-155). These GABAkines and non-steroid compounds (GRX-917, a TSPO binding site ligand), darigabat (CVL-865), an α2/3/5-preferring GABAkine, SAN711, an α3-preferring GABAkine, and the α2/3-preferring GABAkine, KRM-II-81, bring new therapeutic promise to this highly utilized medicinal target in neurology and psychiatry. Herein, we also discuss possible conditions that have enabled the transition to a new age of GABAkines. We highlight the pharmacology of KRM-II-81 that has the most preclinical data reported. KRM-II-81 is the lead compound in a new series of orally bioavailable imidazodiazepines entering IND-enabling safety studies. KRM-II-81 has a preclinical profile predicting efficacy against pharmacoresistant epilepsies, traumatic brain injury, and neuropathic pain. KRM-II-81 also produces anxiolytic- and antidepressant-like effects in rodent models. Other key features of the pharmacology of this compound are its low sedation rate, lack of tolerance development, and the ability to prevent the development of seizure sensitization.
Collapse
|
25
|
Gutman-Wei AY, Brown SP. Mechanisms Underlying Target Selectivity for Cell Types and Subcellular Domains in Developing Neocortical Circuits. Front Neural Circuits 2021; 15:728832. [PMID: 34630048 PMCID: PMC8497978 DOI: 10.3389/fncir.2021.728832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
The cerebral cortex contains numerous neuronal cell types, distinguished by their molecular identity as well as their electrophysiological and morphological properties. Cortical function is reliant on stereotyped patterns of synaptic connectivity and synaptic function among these neuron types, but how these patterns are established during development remains poorly understood. Selective targeting not only of different cell types but also of distinct postsynaptic neuronal domains occurs in many brain circuits and is directed by multiple mechanisms. These mechanisms include the regulation of axonal and dendritic guidance and fine-scale morphogenesis of pre- and postsynaptic processes, lineage relationships, activity dependent mechanisms and intercellular molecular determinants such as transmembrane and secreted molecules, many of which have also been implicated in neurodevelopmental disorders. However, many studies of synaptic targeting have focused on circuits in which neuronal processes target different lamina, such that cell-type-biased connectivity may be confounded with mechanisms of laminar specificity. In the cerebral cortex, each cortical layer contains cell bodies and processes from intermingled neuronal cell types, an arrangement that presents a challenge for the development of target-selective synapse formation. Here, we address progress and future directions in the study of cell-type-biased synaptic targeting in the cerebral cortex. We highlight challenges to identifying developmental mechanisms generating stereotyped patterns of intracortical connectivity, recent developments in uncovering the determinants of synaptic target selection during cortical synapse formation, and current gaps in the understanding of cortical synapse specificity.
Collapse
Affiliation(s)
- Alan Y. Gutman-Wei
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Solange P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
26
|
Ghamkharinejad G, Marashi SH, Foolad F, Javan M, Fathollahi Y. Unconditioned and learned morphine tolerance influence hippocampal-dependent short-term memory and the subjacent expression of GABA-A receptor alpha subunits. PLoS One 2021; 16:e0253902. [PMID: 34500453 PMCID: PMC8428970 DOI: 10.1371/journal.pone.0253902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND ɣ-aminobutyric acid (GABA) facilitator valproic acid may be able to curb memory disruption induced by morphine exposure. OBJECTIVE The effects of the GABA facilitator valproic acid on the behavioral tolerance induced by morphine were investigated. Then hippocampal-dependent tasks named spatial-working and short-term memory procedures using the Y-maze apparatus were examined in morphine tolerant rats. Finally, the changes in the expression of hippocampal GABA-A receptors underlying morphine tolerance were also examined. METHODS Rats were treated with daily morphine injections, with or without distinct contextual pairing. To examine the effect of valproic acid on morphine tolerance expression, valproic acid was pretreated an hour before morphine. Spatial-working and short-term memory procedures using the Y-maze apparatus were examined in morphine tolerant rats. Afterwards the changes in the expression of hippocampal GABAα receptors using the quantitative real-time PCR and western blot techniques to detect GABArα subunits mRNAs and protein level were studied. RESULTS Our results showed that both learned and non-associative morphine tolerance influence short-term memory and the subjacent expression of GABArα mRNAs and protein level. Despite its attenuating effects on the development and expression of both learned and non-associative morphine tolerance, only associative morphine tolerance-induced memory dysfunction was ameliorated by valproic acid pretreatment. We also found that the expression of GABArα1, α2, α5 subunits mRNAs and GABAα protein level were affected heavier in associative morphine tolerant rats. CONCLUSION Our data supports the hypothesis that unconditioned and learned morphine tolerance influences short-term memory and the expression of GABArα 1, α2, α5 mRNAs and GABArα protein level differently, and adds to our understanding of the behavioral and molecular aspects of the learned tolerance to morphine effects.
Collapse
Affiliation(s)
- Ghazaleh Ghamkharinejad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Hossein Marashi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Forough Foolad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
27
|
Wilson CS, Dohare P, Orbeta S, Nalwalk JW, Huang Y, Ferland RJ, Sah R, Scimemi A, Mongin AA. Late adolescence mortality in mice with brain-specific deletion of the volume-regulated anion channel subunit LRRC8A. FASEB J 2021; 35:e21869. [PMID: 34469026 PMCID: PMC8639177 DOI: 10.1096/fj.202002745r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
The leucine-rich repeat-containing family 8 member A (LRRC8A) is an essential subunit of the volume-regulated anion channel (VRAC). VRAC is critical for cell volume control, but its broader physiological functions remain under investigation. Recent studies in the field indicate that Lrrc8a disruption in the brain astrocytes reduces neuronal excitability, impairs synaptic plasticity and memory, and protects against cerebral ischemia. In the present work, we generated brain-wide conditional LRRC8A knockout mice (LRRC8A bKO) using NestinCre -driven Lrrc8aflox/flox excision in neurons, astrocytes, and oligodendroglia. LRRC8A bKO animals were born close to the expected Mendelian ratio and developed without overt histological abnormalities, but, surprisingly, all died between 5 and 9 weeks of age with a seizure phenotype, which was confirmed by video and EEG recordings. Brain slice electrophysiology detected changes in the excitability of pyramidal cells and modified GABAergic inputs in the hippocampal CA1 region of LRRC8A bKO. LRRC8A-null hippocampi showed increased immunoreactivity of the astrocytic marker GFAP, indicating reactive astrogliosis. We also found decreased whole-brain protein levels of the GABA transporter GAT-1, the glutamate transporter GLT-1, and the astrocytic enzyme glutamine synthetase. Complementary HPLC assays identified reduction in the tissue levels of the glutamate and GABA precursor glutamine. Together, these findings suggest that VRAC provides vital control of brain excitability in mouse adolescence. VRAC deletion leads to a lethal phenotype involving progressive astrogliosis and dysregulation of astrocytic uptake and supply of amino acid neurotransmitters and their precursors.
Collapse
Affiliation(s)
- Corinne S Wilson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Preeti Dohare
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Shaina Orbeta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Julia W Nalwalk
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Yunfei Huang
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Russell J Ferland
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, Maine, USA
| | - Rajan Sah
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Annalisa Scimemi
- Department of Biology, University at Albany, State University of New York, Albany, New York, USA
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
28
|
Fujitani M, Otani Y, Miyajima H. Pathophysiological Roles of Abnormal Axon Initial Segments in Neurodevelopmental Disorders. Cells 2021; 10:2110. [PMID: 34440880 PMCID: PMC8392614 DOI: 10.3390/cells10082110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/17/2022] Open
Abstract
The 20-60 μm axon initial segment (AIS) is proximally located at the interface between the axon and cell body. AIS has characteristic molecular and structural properties regulated by the crucial protein, ankyrin-G. The AIS contains a high density of Na+ channels relative to the cell body, which allows low thresholds for the initiation of action potential (AP). Molecular and physiological studies have shown that the AIS is also a key domain for the control of neuronal excitability by homeostatic mechanisms. The AIS has high plasticity in normal developmental processes and pathological activities, such as injury, neurodegeneration, and neurodevelopmental disorders (NDDs). In the first half of this review, we provide an overview of the molecular, structural, and ion-channel characteristics of AIS, AIS regulation through axo-axonic synapses, and axo-glial interactions. In the second half, to understand the relationship between NDDs and AIS, we discuss the activity-dependent plasticity of AIS, the human mutation of AIS regulatory genes, and the pathophysiological role of an abnormal AIS in NDD model animals and patients. We propose that the AIS may provide a potentially valuable structural biomarker in response to abnormal network activity in vivo as well as a new treatment concept at the neural circuit level.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan; (Y.O.); (H.M.)
| | | | | |
Collapse
|
29
|
Falconer RJ, Schuur B, Mittermaier AK. Applications of isothermal titration calorimetry in pure and applied research from 2016 to 2020. J Mol Recognit 2021; 34:e2901. [PMID: 33975380 DOI: 10.1002/jmr.2901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
The last 5 years have seen a series of advances in the application of isothermal titration microcalorimetry (ITC) and interpretation of ITC data. ITC has played an invaluable role in understanding multiprotein complex formation including proteolysis-targeting chimeras (PROTACS), and mitochondrial autophagy receptor Nix interaction with LC3 and GABARAP. It has also helped elucidate complex allosteric communication in protein complexes like trp RNA-binding attenuation protein (TRAP) complex. Advances in kinetics analysis have enabled the calculation of kinetic rate constants from pre-existing ITC data sets. Diverse strategies have also been developed to study enzyme kinetics and enzyme-inhibitor interactions. ITC has also been applied to study small molecule solvent and solute interactions involved in extraction, separation, and purification applications including liquid-liquid separation and extractive distillation. Diverse applications of ITC have been developed from the analysis of protein instability at different temperatures, determination of enzyme kinetics in suspensions of living cells to the adsorption of uremic toxins from aqueous streams.
Collapse
Affiliation(s)
- Robert J Falconer
- School of Chemical Engineering & Advanced Materials, University of Adelaide, Adelaide, South Australia, Australia
| | - Boelo Schuur
- Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | | |
Collapse
|
30
|
Wagner S, Lee C, Rojas L, Specht CG, Rhee J, Brose N, Papadopoulos T. The α3 subunit of GABA A receptors promotes formation of inhibitory synapses in the absence of collybistin. J Biol Chem 2021; 296:100709. [PMID: 33901490 PMCID: PMC8141935 DOI: 10.1016/j.jbc.2021.100709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 01/03/2023] Open
Abstract
Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects—or synaptopathies—are at the basis of many neurological and psychiatric disorders. Collybistin (CB), a brain-specific guanine nucleotide exchange factor, is essential for the formation of γ-aminobutyric acidergic (GABAergic) postsynapses in defined regions of the mammalian forebrain, including the hippocampus and basolateral amygdala. This process depends on a direct interaction of CB with the scaffolding protein gephyrin, which leads to the redistribution of gephyrin into submembranous clusters at nascent inhibitory synapses. Strikingly, synaptic clustering of gephyrin and GABAA type A receptors (GABAARs) in several brain regions, including the cerebral cortex and certain thalamic areas, is unperturbed in CB-deficient mice, indicating that the formation of a substantial subset of inhibitory postsynapses must be controlled by gephyrin-interacting proteins other than CB. Previous studies indicated that the α3 subunit of GABAARs (GABAAR-α3) binds directly and with high affinity to gephyrin. Here, we provide evidence (i) that a homooligomeric GABAAR-α3A343W mutant induces the formation of submembranous gephyrin clusters independently of CB in COS-7 cells, (ii) that gephyrin clustering is unaltered in the neuronal subpopulations endogenously expressing the GABAAR-α3 in CB-deficient brains, and (iii) that exogenous expression of GABAAR-α3 partially rescues impaired gephyrin clustering in CB-deficient hippocampal neurons. Our results identify an important role of GABAAR-α3 in promoting gephyrin-mediated and CB-independent formation of inhibitory postsynapses.
Collapse
Affiliation(s)
- Sven Wagner
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - ChoongKu Lee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lucia Rojas
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Christian G Specht
- Diseases and Hormones of the Nervous System (DHNS), Inserm U1195, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
31
|
Molecular mechanisms of axo-axonic innervation. Curr Opin Neurobiol 2021; 69:105-112. [PMID: 33862423 DOI: 10.1016/j.conb.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
One of the most intriguing features of inhibitory synapses is the precision by which they innervate their target, not only at the cellular level but also at the subcellular level (i.e. axo-dendritic, axo-somatic, or axo-axonic innervation). In particular, in the cerebellum, cortex, and spinal cord, distinct and highly specialized GABAergic interneurons, such as basket cells, chandelier cells, and GABApre interneurons, form precise axo-axonic synapses, allowing them to directly regulate neuronal output and circuit function. In this article, we summarize our latest knowledge of the cellular and molecular mechanisms that regulate the establishment and maintenance of axo-axonic synapses in these regions of the CNS. We also detail the key roles of the L1CAM family of cell adhesion molecules in such GABAergic subcellular target recognition.
Collapse
|
32
|
Schulte C, Maric HM. Expanding GABA AR pharmacology via receptor-associated proteins. Curr Opin Pharmacol 2021; 57:98-106. [PMID: 33684670 DOI: 10.1016/j.coph.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Drugs directly targeting γ-aminobutyric acid type A receptors (GABAARs), the major mediators of fast synaptic inhibition, contribute significantly to today's neuropharmacology. Emerging evidence establishes intracellularly GABAAR-associated proteins as the central players in determining cellular and subcellular GABAergic input sites, thereby providing pharmacological opportunities to affect distinct receptor populations and address discrete neuronal dysfunctions. Here, we report on recently studied GABAAR-associated proteins and highlight challenges and newly available methods for their functional and physical mapping. We anticipate these efforts to contribute to decipher the complexity of GABAergic signalling in the brain and eventually enable therapeutic avenues for, so far, untreatable neuronal disorders and diseases.
Collapse
Affiliation(s)
- Clemens Schulte
- Department of Biotechnology and Biophysics and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, D15, 97080, Würzburg, Germany
| | - Hans Michael Maric
- Department of Biotechnology and Biophysics and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, D15, 97080, Würzburg, Germany.
| |
Collapse
|
33
|
George S, Chiou TT, Kanamalla K, De Blas AL. Recruitment of Plasma Membrane GABA-A Receptors by Submembranous Gephyrin/Collybistin Clusters. Cell Mol Neurobiol 2021; 42:1585-1604. [PMID: 33547626 DOI: 10.1007/s10571-021-01050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/23/2021] [Indexed: 11/29/2022]
Abstract
It has been shown that subunit composition is the main determinant of the synaptic or extrasynaptic localization of GABAA receptors (GABAARs). Synaptic and extrasynaptic GABAARs are involved in phasic and tonic inhibition, respectively. It has been proposed that synaptic GABAARs bind to the postsynaptic gephyrin/collybistin (Geph/CB) lattice, but not the typically extrasynaptic GABAARs. Nevertheless, there are no studies of the direct binding of various types of GABAARs with the submembranous Geph/CB lattice in the absence of other synaptic proteins, some of which are known to interact with GABAARs. We have reconstituted GABAARs of various subunit compositions, together with the Geph/CB scaffold, in HEK293 cells, and have investigated the recruitment of surface GABAARs by submembranous Geph/CB clusters. Results show that the typically synaptic α1β3γ2 GABAARs were trapped by submembranous Geph/CB clusters. The α5β3γ2 GABAARs, which are both synaptic and extrasynaptic, were also trapped by Geph/CB clusters. Extrasynaptic α4β3δ GABAARs consistently showed little or no trapping by the Geph/CB clusters. However, the extrasynaptic α6β3δ, α1β3, α6β3 (and less α4β3) GABAARs were highly trapped by the Geph/CB clusters. AMPA and NMDA glutamate receptors were not trapped. The results suggest: (I) in the absence of other synaptic molecules, the Geph/CB lattice has the capacity to trap not only synaptic but also several typically extrasynaptic GABAARs; (II) the Geph/CB lattice is important but does not play a decisive role in the synaptic localization of GABAARs; and (III) in neurons there must be mechanisms preventing the trapping of several typically extrasynaptic GABAARs by the postsynaptic Geph/CB lattice.
Collapse
Affiliation(s)
- Shanu George
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Tzu-Ting Chiou
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Karthik Kanamalla
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA.
| |
Collapse
|
34
|
Schulte C, Khayenko V, Nordblom NF, Tippel F, Peck V, Gupta AJ, Maric HM. High-throughput determination of protein affinities using unmodified peptide libraries in nanomolar scale. iScience 2021; 24:101898. [PMID: 33364586 PMCID: PMC7753147 DOI: 10.1016/j.isci.2020.101898] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/02/2022] Open
Abstract
Protein-protein interactions (PPIs) are of fundamental importance for our understanding of physiology and pathology. PPIs involving short, linear motifs play a major role in immunological recognition, signaling, and regulation and provide attractive starting points for pharmaceutical intervention. Yet, state-of-the-art protein-peptide affinity determination approaches exhibit limited throughput and sensitivity, often resulting from ligand immobilization, labeling, or synthesis. Here, we introduce a high-throughput method for in-solution analysis of protein-peptide interactions using a phenomenon called temperature related intensity change (TRIC). We use TRIC for the identification and fine-mapping of low- and high-affinity protein interaction sites and the definition of sequence binding requirements. Validation is achieved by microarray-based studies using wild-type and mutated recombinant protein and the native protein within tissue lysates. On-chip neutralization and strong correlation with structural data establish TRIC as a quasi-label-free method to determine binding affinities of unmodified peptide libraries with large dynamic range.
Collapse
Affiliation(s)
- Clemens Schulte
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Vladimir Khayenko
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Noah Frieder Nordblom
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Franziska Tippel
- Nanotemper Technologies GmbH, Flößergasse 4, 81369 Munich, Germany
| | - Violetta Peck
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Amit Jean Gupta
- Nanotemper Technologies GmbH, Flößergasse 4, 81369 Munich, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| |
Collapse
|
35
|
Contreras A, Khumnark M, Hines RM, Hines DJ. Behavioral arrest and a characteristic slow waveform are hallmark responses to selective 5-HT 2A receptor activation. Sci Rep 2021; 11:1925. [PMID: 33479368 PMCID: PMC7820508 DOI: 10.1038/s41598-021-81552-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/07/2021] [Indexed: 11/09/2022] Open
Abstract
Perception, emotion, and mood are powerfully modulated by serotonin receptor (5-HTR) agonists including hallucinogens. The 5-HT2AR subtype has been shown to be central to hallucinogen action, yet the precise mechanisms mediating the response to 5-HT2AR activation remain unclear. Hallucinogens induce the head twitch response (HTR) in rodents, which is the most commonly used behavioral readout of hallucinogen pharmacology. While the HTR provides a key behavioral signature, less is known about the meso level changes that are induced by 5-HT2AR activation. In response to administration of the potent and highly selective 5-HT2AR agonist 25I-NBOH in mice, we observe a disorganization of behavior which includes frequent episodes of behavioral arrest that consistently precede the HTR by a precise interval. By combining behavioral analysis with electroencephalogram (EEG) recordings we describe a characteristic pattern composed of two distinctive EEG waveforms, Phase 1 and Phase 2, that map onto behavioral arrest and the HTR respectively, with the same temporal separation. Phase 1, which underlies behavioral arrest, is a 3.5-4.5 Hz waveform, while Phase 2 is slower at 2.5-3.2 Hz. Nicotine pretreatment, considered an integral component of ritualistic hallucinogen practices, attenuates 25I-NBOH induced HTR and Phase 2 waveforms, yet increases behavioral arrest and Phase 1 waveforms. Our results suggest that in addition to the HTR, behavioral arrest and characteristic meso level slow waveforms are key hallmarks of the response to 5-HT2AR activation. Increased understanding of the response to serotonergic hallucinogens may provide mechanistic insights into perception and hallucinations, as well as regulation of mood.
Collapse
Affiliation(s)
- April Contreras
- University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Matthew Khumnark
- University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Rochelle M Hines
- University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Dustin J Hines
- University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154, USA.
| |
Collapse
|
36
|
George S, Bear J, Taylor MJ, Kanamalla K, Fekete CD, Chiou TT, Miralles CP, Papadopoulos T, De Blas AL. Collybistin SH3-protein isoforms are expressed in the rat brain promoting gephyrin and GABA-A receptor clustering at GABAergic synapses. J Neurochem 2021; 157:1032-1051. [PMID: 33316079 DOI: 10.1111/jnc.15270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 01/21/2023]
Abstract
Collybistin (CB) is a guanine nucleotide exchange factor (GEF) selectively localized at GABAergic and glycinergic postsynapses. Analysis of mRNA shows that several isoforms of collybistin are expressed in the brain. Some of the isoforms have a SH3 domain (CBSH3+) and some have no SH3 domain (CBSH3-). The CBSH3+ mRNAs are predominantly expressed over CBSH3-. However, in an immunoblot study of mouse brain homogenates, only CBSH3+ protein isoforms were detected, proposing that CBSH3- protein might not be expressed in the brain. The expression or lack of expression of CBSH3- protein is an important issue because CBSH3- has a strong effect in promoting the postsynaptic clustering of gephyrin and GABA-A receptors (GABAA Rs). Moreover CBSH3- is constitutively active; therefore lower expression of CBSH3- protein might play a relatively stronger functional role than the more abundant but self-inhibited CBSH3+ isoforms, which need to be activated. We are now showing that: (a) CBSH3- protein is expressed in the brain; (b) parvalbumin positive (PV+) interneurons show higher expression of CBSH3- protein than other neurons; (c) CBSH3- is associated with GABAergic synapses in various regions of the brain and (d) knocking down CBSH3- in hippocampal neurons decreases the synaptic clustering of gephyrin and GABAA Rs. The results show that CBSH3- protein is expressed in the brain and that it plays a significant role in the size regulation of the GABAergic postsynapse.
Collapse
Affiliation(s)
- Shanu George
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - John Bear
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Michael J Taylor
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Karthik Kanamalla
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Christopher D Fekete
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Tzu-Ting Chiou
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Celia P Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | | | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
37
|
Kakizaki T, Ohshiro T, Itakura M, Konno K, Watanabe M, Mushiake H, Yanagawa Y. Rats deficient in the GAD65 isoform exhibit epilepsy and premature lethality. FASEB J 2020; 35:e21224. [PMID: 33236473 DOI: 10.1096/fj.202001935r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 02/02/2023]
Abstract
GABA is synthesized by glutamate decarboxylase (GAD), which has two isoforms, namely, GAD65 and GAD67, encoded by the Gad2 and Gad1 genes, respectively. GAD65-deficient (Gad2-/- ) mice exhibit a reduction in brain GABA content after 1 month of age and show spontaneous seizures in adulthood. Approximately 25% of Gad2-/- mice died by 6 months of age. Our Western blot analysis demonstrated that the protein expression ratio of GAD65 to GAD67 in the brain was greater in rats than in mice during postnatal development, suggesting that the contribution of each GAD isoform to GABA functions differs between these two species. To evaluate whether GAD65 deficiency causes different phenotypes between rats and mice, we generated Gad2-/- rats using TALEN genome editing technology. Western blot and immunohistochemical analyses with new antibodies demonstrated that the GAD65 protein was undetectable in the Gad2-/- rat brain. Gad2-/- pups exhibited spontaneous seizures and paroxysmal discharge in EEG at postnatal weeks 3-4. More than 80% of the Gad2-/- rats died at postnatal days (PNDs) 17-23. GABA content in Gad2-/- brains was significantly lower than those in Gad2+/- and Gad2+/+ brains at PND17-19. These results suggest that the low levels of brain GABA content in Gad2-/- rats may lead to epilepsy followed by premature death, and that Gad2-/- rats are more severely affected than Gad2-/- mice. Considering that the GAD65/GAD67 ratio in human brains is more similar to that in rat brains than in mouse brains, Gad2-/- rats would be useful for further investigating the roles of GAD65 in vivo.
Collapse
Affiliation(s)
- Toshikazu Kakizaki
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomokazu Ohshiro
- Department of Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
38
|
Yu W, Hill SF, Xenakis JG, Pardo-Manuel de Villena F, Wagnon JL, Meisler MH. Gabra2 is a genetic modifier of Scn8a encephalopathy in the mouse. Epilepsia 2020; 61:2847-2856. [PMID: 33140451 PMCID: PMC7756374 DOI: 10.1111/epi.16741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
Objective SCN8A encephalopathy is a developmental epileptic encephalopathy typically caused by de novo gain‐of‐function mutations in Nav1.6. Severely affected individuals exhibit refractory seizures, developmental delay, cognitive disabilities, movement disorders, and elevated risk of sudden death. Patients with the identical SCN8A variant can differ in clinical course, suggesting a role for modifier genes in determining disease severity. The identification of genetic modifiers contributes to understanding disease pathogenesis and suggesting therapeutic interventions. Methods We generated F1 and F2 crosses between inbred mouse strains and mice carrying the human pathogenic variants SCN8A‐R1872W and SCN8A‐N1768D. Quantitative trait locus (QTL) analysis of seizure‐related phenotypes was used for chromosomal mapping of modifier loci. Results In an F2 cross between strain SJL/J and C57BL/6J mice carrying the patient mutation R1872W, we identified a major QTL on chromosome 5 containing the Gabra2 gene. Strain C57BL/6J carries a splice site mutation that reduces expression of Gabra2, encoding the α2 subunit of the aminobutyric acid type A receptor. The protective wild‐type allele of Gabra2 from strain SJL/J delays the age at seizure onset and extends life span of the Scn8a mutant mice. Additional Scn8a modifiers were observed in the F2 cross and in an F1 cross with strain C3HeB/FeJ. Significance These studies demonstrate that the SJL/J strain carries multiple modifiers with protective effects against seizures induced by gain‐of‐function mutations in Scn8a. Homozygosity for the hypomorphic variant of Gabra2 in strain C57BL/6J is associated with early seizure onset and short life span. GABRA2 is a potential therapeutic target for SCN8A encephalopathy.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Sophie F Hill
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - James G Xenakis
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | - Jacy L Wagnon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
39
|
Nakamura Y, Morrow DH, Nathanson AJ, Henley JM, Wilkinson KA, Moss SJ. Phosphorylation on Ser-359 of the α2 subunit in GABA type A receptors down-regulates their density at inhibitory synapses. J Biol Chem 2020; 295:12330-12342. [PMID: 32620552 PMCID: PMC7458806 DOI: 10.1074/jbc.ra120.014303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Indexed: 11/06/2022] Open
Abstract
GABA type A receptors (GABAARs) mediate fast synaptic inhibition and are trafficked to functionally diverse synapses. However, the precise molecular mechanisms that regulate the synaptic targeting of these receptors are unclear. Whereas it has been previously shown that phosphorylation events in α4, β, and γ subunits of GABAARs govern their function and trafficking, phosphorylation of other subunits has not yet been demonstrated. Here, we show that the α2 subunit of GABAARs is phosphorylated at Ser-359 and enables dynamic regulation of GABAAR binding to the scaffolding proteins gephyrin and collybistin. We initially identified Ser-359 phosphorylation by MS analysis, and additional experiments revealed that it is regulated by the activities of cAMP-dependent protein kinase (PKA) and the protein phosphatase 1 (PP1) and/or PP2A. GST-based pulldowns and coimmunoprecipitation experiments demonstrate preferential binding of both gephyrin and collybistin to WT and an S359A phosphonull variant, but not to an S359D phosphomimetic variant. Furthermore, the decreased capacity of the α2 S359D variant to bind collybistin and gephyrin decreased the density of synaptic α2-containing GABAAR clusters and caused an absence of α2 enrichment in the axon initial segment. These results suggest that PKA-mediated phosphorylation and PP1/PP2A-dependent dephosphorylation of the α2 subunit play a role in the dynamic regulation of GABAAR accumulation at inhibitory synapses, thereby regulating the strength of synaptic inhibition. The MS data have been deposited to ProteomeXchange, with the data set identifier PXD019597.
Collapse
Affiliation(s)
- Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, United Kingdom
| | - Danielle H. Morrow
- Department of Neuroscience, Tufts University, School of Medicine, Boston, Massachusetts, USA
| | - Anna J. Nathanson
- Department of Neuroscience, Tufts University, School of Medicine, Boston, Massachusetts, USA
| | - Jeremy M. Henley
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, United Kingdom
| | - Kevin A. Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, United Kingdom
| | - Stephen J. Moss
- Department of Neuroscience, Tufts University, School of Medicine, Boston, Massachusetts, USA,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom,For correspondence: S. J. Moss,
| |
Collapse
|
40
|
Nathanson AJ, Zhang Y, Smalley JL, Ollerhead TA, Rodriguez Santos MA, Andrews PM, Wobst HJ, Moore YE, Brandon NJ, Hines RM, Davies PA, Moss SJ. Identification of a Core Amino Acid Motif within the α Subunit of GABA ARs that Promotes Inhibitory Synaptogenesis and Resilience to Seizures. Cell Rep 2020; 28:670-681.e8. [PMID: 31315046 PMCID: PMC8283774 DOI: 10.1016/j.celrep.2019.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/08/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
SUMMARY The fidelity of inhibitory neurotransmission is dependent on the accumulation of γ-aminobutyric acid type A receptors (GABAARs) at the appropriate synaptic sites. Synaptic GABAARs are constructed from α(1–3), β(1–3), and γ2 subunits, and neurons can target these subtypes to specific synapses. Here, we identify a 15-amino acid inhibitory synapse targeting motif (ISTM) within the α2 subunit that promotes the association between GABAARs and the inhibitory scaffold proteins collybistin and gephyrin. Using mice in which the ISTM has been introduced into the α1 subunit (Gabra1–2 mice), we show that the ISTM is critical for axo-axonic synapse formation, the efficacy of GABAergic neurotransmission, and seizure sensitivity. The Gabra1–2 mutation rescues seizure-induced lethality in Gabra2–1 mice, which lack axo-axonic synapses due to the deletion of the ISTM from the α2 subunit. Taken together, our data demonstrate that the ISTM plays a critical role in promoting inhibitory synapse formation, both in the axonic and somatodendritic compartments. In Brief Molecular mechanisms regulating specific synaptic GABAAR accumulation are critical for the fidelity of inhibitory neurotransmission. Nathanson et al. show that strengthening the interaction between α1-GABAARs and collybistin via genetic manipulation results in augmented synaptic targeting of these receptors, enhanced inhibitory neurotransmission, and seizure resilience.
Collapse
Affiliation(s)
- Anna J Nathanson
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Yihui Zhang
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Joshua L Smalley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Thomas A Ollerhead
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | - Peter M Andrews
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Heike J Wobst
- AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 02451, USA
| | - Yvonne E Moore
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nicholas J Brandon
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA; AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 02451, USA
| | - Rochelle M Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA; AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA; Department of Neuroscience, Physiology and Pharmacology, University College, London WC1E 6BT, UK.
| |
Collapse
|
41
|
Gallo NB, Paul A, Van Aelst L. Shedding Light on Chandelier Cell Development, Connectivity, and Contribution to Neural Disorders. Trends Neurosci 2020; 43:565-580. [PMID: 32564887 PMCID: PMC7392791 DOI: 10.1016/j.tins.2020.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/06/2020] [Accepted: 05/07/2020] [Indexed: 02/04/2023]
Abstract
Chandelier cells (ChCs) are a unique type of GABAergic interneuron that selectively innervate the axon initial segment (AIS) of excitatory pyramidal neurons; the subcellular domain where action potentials are initiated. The proper genesis and maturation of ChCs is critical for regulating neural ensemble firing in the neocortex throughout development and adulthood. Recently, genetic and molecular studies have shed new light on the complex innerworkings of ChCs in health and disease. This review presents an overview of recent studies on the developmental origins, migratory properties, and morphology of ChCs. In addition, attention is given to newly identified molecules regulating ChC morphogenesis and connectivity as well as recent work linking ChC dysfunction to neural disorders, including schizophrenia, epilepsy, and autism spectrum disorder (ASD).
Collapse
Affiliation(s)
- Nicholas B Gallo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Anirban Paul
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA.
| |
Collapse
|
42
|
Chiu CQ, Barberis A, Higley MJ. Preserving the balance: diverse forms of long-term GABAergic synaptic plasticity. Nat Rev Neurosci 2019; 20:272-281. [PMID: 30837689 DOI: 10.1038/s41583-019-0141-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cellular mechanisms that regulate the interplay of synaptic excitation and inhibition are thought to be central to the functional stability of healthy neuronal circuits. A growing body of literature demonstrates the capacity for inhibitory GABAergic synapses to exhibit long-term plasticity in response to changes in neuronal activity. Here, we review this expanding field of research, focusing on the diversity of mechanisms that link glutamatergic signalling, postsynaptic action potentials and inhibitory synaptic strength. Several lines of evidence indicate that multiple, parallel forms of plasticity serve to regulate activity at both the input and output domains of individual neurons. Overall, these varied phenomena serve to promote both stability and flexibility over the life of the organism.
Collapse
Affiliation(s)
- Chiayu Q Chiu
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Valparaiso, Chile
| | | | - Michael J Higley
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
43
|
Maramai S, Benchekroun M, Ward SE, Atack JR. Subtype Selective γ-Aminobutyric Acid Type A Receptor (GABAAR) Modulators Acting at the Benzodiazepine Binding Site: An Update. J Med Chem 2019; 63:3425-3446. [DOI: 10.1021/acs.jmedchem.9b01312] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samuele Maramai
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
| | - Mohamed Benchekroun
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
- Équipe de Chimie Moléculaire, Laboratoire de Génomique Bioinformatique et Chimie Moléculaire, GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 rue Conté, 75003 Paris, France
| | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - John R. Atack
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
44
|
Nathanson AJ, Davies PA, Moss SJ. Inhibitory Synapse Formation at the Axon Initial Segment. Front Mol Neurosci 2019; 12:266. [PMID: 31749683 PMCID: PMC6848228 DOI: 10.3389/fnmol.2019.00266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022] Open
Abstract
The axon initial segment (AIS) is the site of action potential (AP) initiation in most neurons and is thus a critical site in the regulation of neuronal excitability. Normal function within the discrete AIS compartment requires intricate molecular machinery to ensure the proper concentration and organization of voltage-gated and ligand-gated ion channels; in humans, dysfunction at the AIS due to channel mutations is commonly associated with epileptic disorders. In this review, we will examine the molecular mechanisms underlying the formation of the only synapses found at the AIS: synapses containing γ-aminobutyric type A receptors (GABAARs). GABAARs are heteropentamers assembled from 19 possible subunits and are the primary mediators of fast synaptic inhibition in the brain. Although the total GABAAR population is incredibly heterogeneous, only one specific GABAAR subtype—the α2-containing receptor—is enriched at the AIS. These AIS synapses are innervated by GABAergic chandelier cells, and this inhibitory signaling is thought to contribute to the tight control of AP firing. Here, we will summarize the progress made in understanding the regulation of GABAAR synapse formation, concentrating on post-translational modifications of subunits and on interactions with intracellular proteins. We will then discuss subtype-specific synapse formation, with a focus on synapses found at the AIS, and how these synapses influence neuronal excitation.
Collapse
Affiliation(s)
- Anna J Nathanson
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA, United States.,Department of Neuroscience, Physiology and Pharmacology, University College, London, United Kingdom
| |
Collapse
|
45
|
Abstract
A regulator of inhibitory neurotransmission is essential for benzodiazepine actions
Collapse
Affiliation(s)
- Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience Research, Boston, MA, USA
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
46
|
Hines RM, Khumnark M, Macphail B, Hines DJ. Administration of Micronized Caffeine Using a Novel Oral Delivery Film Results in Rapid Absorption and Electroencephalogram Suppression. Front Pharmacol 2019; 10:983. [PMID: 31551785 PMCID: PMC6747905 DOI: 10.3389/fphar.2019.00983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Route of administration is well-known to impact factors ranging from absorption and distribution, up through the subjective effects of active ingredients. Different routes of administration confer specific advantages, such as more rapid absorption resulting from intravenous injection, or increased convenience with oral administration, but a combination of both rapid and convenient delivery is highly desirable. QuickStrip™ was designed as a rapidly dissolving thin film matrix that contains active ingredients, which may be promising for rapid and convenient delivery via the oral mucosa. To assess the delivery of QuickStrip™, we administered the well-characterized active ingredient caffeine to mice and compared QuickStrip™ to standard oral gavage delivery at an equivalent dose of 20 mg kg-1. Using HPLC assessment of serum concentrations of caffeine, we found that QuickStrip™ delivery resulted in higher serum levels of caffeine at 1, 10, and 30 min following administration compared to gavage. QuickStrip™ also produced greater bioavailability compared to gavage, as demonstrated by area under the curve analysis. Caffeine delivered by QuickStrip™ produced robust behavioral activation of locomotion, consistent with gavage caffeine. Electroencephalographic (EEG) assessment of central nervous system effects demonstrated that both gavage and QuickStrip™ caffeine produced suppression of delta and theta, consistent with prior literature on the effects of caffeine. In addition, QuickStrip™ produced a more rapid onset of EEG suppression, supporting the more rapid absorption demonstrated in the serum studies. Collectively, these studies suggest that QuickStrip™ may provide a balance between convenience and rapid onset, offering new options for delivery of therapeutics.
Collapse
Affiliation(s)
- Rochelle M Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Matthew Khumnark
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, United States
| | | | - Dustin J Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
47
|
Parakala ML, Zhang Y, Modgil A, Chadchankar J, Vien TN, Ackley MA, Doherty JJ, Davies PA, Moss SJ. Metabotropic, but not allosteric, effects of neurosteroids on GABAergic inhibition depend on the phosphorylation of GABA A receptors. J Biol Chem 2019; 294:12220-12230. [PMID: 31239352 PMCID: PMC6690684 DOI: 10.1074/jbc.ra119.008875] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/28/2019] [Indexed: 11/06/2022] Open
Abstract
Neuroactive steroids (NASs) are synthesized within the brain and exert profound effects on behavior. These effects are primarily believed to arise from the activities of NASs as positive allosteric modulators (PAMs) of the GABA-type A receptor (GABAAR). NASs also activate a family of G protein-coupled receptors known as membrane progesterone receptors (mPRs). Here, using surface-biotinylation assays and electrophysiology techniques, we examined mPRs' role in mediating the effects of NAS on the efficacy of GABAergic inhibition. Selective mPR activation enhanced phosphorylation of Ser-408 and Ser-409 (Ser-408/9) within the GABAAR β3 subunit, which depended on the activity of cAMP-dependent protein kinase A (PKA) and protein kinase C (PKC). mPR activation did not directly modify GABAAR activity and had no acute effects on phasic or tonic inhibition. Instead, mPR activation induced a sustained elevation in tonic current, which was blocked by PKA and PKC inhibition. Substitution of Ser-408/9 to alanine residues also prevented the effects of mPR activation on tonic current. Furthermore, this substitution abolished the effects of sustained NAS exposure on tonic inhibition. Interestingly, the allosteric effects of NAS on GABAergic inhibition were independent of Ser-408/9 in the β3 subunit. Additionally, although allosteric effects of NAS on GABAergic inhibition were sensitive to a recently developed "NAS antagonist," the sustained effects of NAS on tonic inhibition were not. We conclude that metabotropic effects of NAS on GABAergic inhibition are mediated by mPR-dependent modulation of GABAAR phosphorylation. We propose that this mechanism may contribute to the varying behavioral effects of NAS.
Collapse
Affiliation(s)
- Manasa L Parakala
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Yihui Zhang
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Amit Modgil
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Jayashree Chadchankar
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Thuy N Vien
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111; Department of Neuroscience, Physiology, and Pharmacology, University College, London WC1E 6BT, United Kingdom.
| |
Collapse
|
48
|
Contreras A, Hines DJ, Hines RM. Molecular Specialization of GABAergic Synapses on the Soma and Axon in Cortical and Hippocampal Circuit Function and Dysfunction. Front Mol Neurosci 2019; 12:154. [PMID: 31297048 PMCID: PMC6607995 DOI: 10.3389/fnmol.2019.00154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
The diversity of inhibitory interneurons allows for the coordination and modulation of excitatory principal cell firing. Interneurons that release GABA (γ-aminobutyric acid) onto the soma and axon exert powerful control by virtue of proximity to the site of action potential generation at the axon initial segment (AIS). Here, we review and examine the cellular and molecular regulation of soma and axon targeting GABAergic synapses in the cortex and hippocampus. We also describe their role in controlling network activity in normal and pathological states. Recent studies have demonstrated a specific role for postsynaptic dystroglycan in the formation and maintenance of cholecystokinin positive basket cell terminals contacting the soma, and postsynaptic collybistin in parvalbumin positive chandelier cell contacts onto the AIS. Unique presynaptic molecular contributors, LGI2 and FGF13, expressed in parvalbumin positive basket cells and chandelier cells, respectively, have also recently been identified. Mutations in the genes encoding proteins critical for somatic and AIS inhibitory synapses have been associated with human disorders of the nervous system. Dystroglycan dysfunction in some congenital muscular dystrophies is associated with developmental brain malformations, intellectual disability, and rare epilepsy. Collybistin dysfunction has been linked to hyperekplexia, epilepsy, intellectual disability, and developmental disorders. Both LGI2 and FGF13 mutations are implicated in syndromes with epilepsy as a component. Advancing our understanding of the powerful roles of somatic and axonic GABAergic contacts in controlling activity patterns in the cortex and hippocampus will provide insight into the pathogenesis of epilepsy and other nervous system disorders.
Collapse
Affiliation(s)
- April Contreras
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Dustin J Hines
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Rochelle M Hines
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
49
|
Khayenko V, Maric HM. Targeting GABA AR-Associated Proteins: New Modulators, Labels and Concepts. Front Mol Neurosci 2019; 12:162. [PMID: 31293385 PMCID: PMC6606717 DOI: 10.3389/fnmol.2019.00162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
γ-aminobutyric acid type A receptors (GABAARs) are the major mediators of synaptic inhibition in the brain. Aberrant GABAAR activity or regulation is observed in various neurodevelopmental disorders, neurodegenerative diseases and mental illnesses, including epilepsy, Alzheimer’s and schizophrenia. Benzodiazepines, anesthetics and other pharmaceutics targeting these receptors find broad clinical use, but their inherent lack of receptor subtype specificity causes unavoidable side effects, raising a need for new or adjuvant medications. In this review article, we introduce a new strategy to modulate GABAeric signaling: targeting the intracellular protein interactors of GABAARs. Of special interest are scaffolding, anchoring and supporting proteins that display high GABAAR subtype specificity. Recent efforts to target gephyrin, the major intracellular integrator of GABAergic signaling, confirm that GABAAR-associated proteins can be successfully targeted through diverse molecules, including recombinant proteins, intrabodies, peptide-based probes and small molecules. Small-molecule artemisinins and peptides derived from endogenous interactors, that specifically target the universal receptor binding site of gephyrin, acutely affect synaptic GABAAR numbers and clustering, modifying neuronal transmission. Interference with GABAAR trafficking provides another way to modulate inhibitory signaling. Peptides blocking the binding site of GABAAR to AP2 increase the surface concentration of GABAAR clusters and enhance GABAergic signaling. Engineering of gephyrin binding peptides delivered superior means to interrogate neuronal structure and function. Fluorescent peptides, designed from gephyrin binders, enable live neuronal staining and visualization of gephyrin in the post synaptic sites with submicron resolution. We anticipate that in the future, novel fluorescent probes, with improved size and binding efficiency, may find wide application in super resolution microscopy studies, enlightening the nanoscale architecture of the inhibitory synapse. Broader studies on GABAAR accessory proteins and the identification of the exact molecular binding interfaces and affinities will advance the development of novel GABAAR modulators and following in vivo studies will reveal their clinical potential as adjuvant or stand-alone drugs.
Collapse
Affiliation(s)
- Vladimir Khayenko
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany.,Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Hans Michael Maric
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany.,Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
50
|
Nomura T, Hawkins NA, Kearney JA, George AL, Contractor A. Potentiating α 2 subunit containing perisomatic GABA A receptors protects against seizures in a mouse model of Dravet syndrome. J Physiol 2019; 597:4293-4307. [PMID: 31045243 DOI: 10.1113/jp277651] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/15/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Dravet syndrome mice (Scn1a+/- ) demonstrate a marked strain dependence for the severity of seizures which is correlated with GABAA receptor α2 subunit expression. The α2 /α3 subunit selective positive allosteric modulator (PAM) AZD7325 potentiates inhibitory postsynaptic currents (IPSCs) specifically in perisomatic synapses. AZD7325 demonstrates stronger effects on IPSCs in the seizure resistant mouse strain, consistent with higher α2 subunit expression. AZD7325 demonstrates seizure protective effects in Scn1a+/- mice without apparent sedative effects in vivo. ABSTRACT GABAA receptor potentiators are commonly used for the treatment of epilepsy, but it is not clear whether targeting distinct GABAA receptor subtypes will have disproportionate benefits over adverse effects. Here we demonstrate that the α2 /α3 selective positive allosteric modulator (PAM) AZD7325 preferentially potentiates hippocampal inhibitory responses at synapses proximal to the soma of CA1 neurons. The effect of AZD7325 on synaptic responses was more prominent in mice on the 129S6/SvEvTac background strain, which have been demonstrated to be seizure resistant in the model of Dravet syndrome (Scn1a+/- ), and in which the α2 GABAA receptor subunits are expressed at higher levels relative to in the seizure prone C57BL/6J background strain. Consistent with this, treatment of Scn1a+/- mice with AZD7325 elevated the temperature threshold for hyperthermia-induced seizures without apparent sedative effects. Our results in a model system indicate that selectively targeting α2 is a potential therapeutic option for Dravet syndrome.
Collapse
Affiliation(s)
- Toshihiro Nomura
- Department of Physiology, Northwestern University, Chicago, IL, 60611, USA
| | - Nicole A Hawkins
- Department of Pharmacology Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jennifer A Kearney
- Department of Pharmacology Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Alfred L George
- Department of Pharmacology Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Anis Contractor
- Department of Physiology, Northwestern University, Chicago, IL, 60611, USA.,Department of Neurobiology Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|