1
|
Flynn JK, Ortiz AM, Vujkovic-Cvijin I, Welles HC, Simpson J, Castello Casta FM, Yee DS, Rahmberg AR, Brooks KL, De Leon M, Knodel S, Birse K, Noel-Romas L, Deewan A, Belkaid Y, Burgener A, Brenchley JM. Translocating bacteria in SIV infection are not stochastic and preferentially express cytosine methyltransferases. Mucosal Immunol 2024; 17:1089-1101. [PMID: 39089468 PMCID: PMC11471372 DOI: 10.1016/j.mucimm.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Microbial translocation is a significant contributor to chronic inflammation in people living with HIV (PLWH) and is associated with increased mortality and morbidity in individuals treated for long periods with antiretrovirals. The use of therapeutics to treat microbial translocation has yielded mixed effects, in part, because the species and mechanisms contributing to translocation in HIV remain incompletely characterized. To characterize translocating bacteria, we cultured translocators from chronically SIV-infected rhesus macaques. Proteomic profiling of these bacteria identified cytosine-specific methyltransferases as a common feature and therefore, a potential driver of translocation. Treatment of translocating bacteria with the cytosine methyltransferase inhibitor decitabine significantly impaired growth for several species in vitro. In rhesus macaques, oral treatment with decitabine led to some transient decreases in translocator taxa in the gut microbiome. These data provide mechanistic insight into bacterial translocation in lentiviral infection and explore a novel therapeutic intervention that may improve the prognosis of PLWH.
Collapse
Affiliation(s)
- Jacob K Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Ivan Vujkovic-Cvijin
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA
| | - Hugh C Welles
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA
| | - Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | | | - Debra S Yee
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Andrew R Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Kelsie L Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Marlon De Leon
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA; Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB, Canada
| | - Samantha Knodel
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA; Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB, Canada
| | - Kenzie Birse
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA; Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB, Canada
| | - Laura Noel-Romas
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA; Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB, Canada
| | - Anshu Deewan
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA; Metaorganism Unit, Immunology Department, Institut Pasteur, 75724 Paris, France
| | - Adam Burgener
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA; Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB, Canada; Department of Medicine Solna, Karolinksa Institutet, Stockholm, Sweden
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
Rahmberg AR, Markowitz TE, Mudd JC, Ortiz AM, Brenchley JM. SIV infection and ARV treatment reshape the transcriptional and epigenetic profile of naïve and memory T cells in vivo. J Virol 2024; 98:e0028324. [PMID: 38780248 PMCID: PMC11237756 DOI: 10.1128/jvi.00283-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Human and simian immunodeficiency viruses (HIV and SIV) are lentiviruses that reverse transcribe their RNA genome with subsequent integration into the genome of the target cell. How progressive infection and administration of antiretrovirals (ARVs) longitudinally influence the transcriptomic and epigenetic landscape of particular T cell subsets, and how these may influence the genetic location of integration are unclear. Here, we use RNAseq and ATACseq to study the transcriptomics and epigenetic landscape of longitudinally sampled naïve and memory CD4+ and CD8+ T cells in two species of non-human primates prior to SIV infection, during chronic SIV infection, and after administration of ARVs. We find that SIV infection leads to significant alteration to the transcriptomic profile of all T cell subsets that are only partially reversed by administration of ARVs. Epigenetic changes were more apparent in animals with longer periods of untreated SIV infection and correlated well with changes in corresponding gene expression. Known SIV integration sites did not vary due to SIV status but did contain more open chromatin in rhesus macaque memory T cells, and the expression of proteasome-related genes at the pre-SIV timepoint correlated with subsequent viremia.IMPORTANCEChronic inflammation during progressive human and simian immunodeficiency virus (HIV and SIV) infections leads to significant co-morbidities in infected individuals with significant consequences. Antiretroviral (ARV)-treated individuals also manifest increased levels of inflammation which are associated with increased mortalities. These data will help guide rational development of modalities to reduce inflammation observed in people living with HIV and suggest mechanisms underlying lentiviral integration site preferences.
Collapse
Affiliation(s)
- Andrew R. Rahmberg
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, USA
| | - Joseph C. Mudd
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Alexandra M. Ortiz
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Boulay A, Trabanelli S, Boireau S, Boyer-Clavel M, Nisole S, Romero P, Jandus C, Beignon AS, Arhel NJ. Assessing the Impact of Persistent HIV Infection on Innate Lymphoid Cells Using In Vitro Models. Immunohorizons 2023; 7:243-255. [PMID: 37000496 PMCID: PMC10563434 DOI: 10.4049/immunohorizons.2300007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 04/01/2023] Open
Abstract
Pathogens that persist in their host induce immune dysfunctions even in the absence of detectable replication. To better understand the phenotypic and functional changes that persistent infections induce in sentinel innate immune cells, we developed human PBMC-based HIV models of persistent infection. Autologous nonactivated PBMCs were cocultured with chronically infected, acutely infected, or uninfected cells and were then analyzed by unsupervised high-dimensional flow cytometry. Using this approach, we identified prevalent patterns of innate immune dysfunctions associated with persistent HIV infections that at least in part mirror immune dysfunctions observed in patients. In one or more models of chronic infection, bystander CD16+ NK cells expressing markers of activation, such as CD94, CD45RO, CD62L, CD69, CD25, and immune checkpoints PD1, Tim3, TIGIT, NKG2A and Lag3, were significantly reduced. Conversely, helper ILC subsets expressing PDL1/PDL2 were significantly enriched in chronic infection compared with either uninfected or acute infection, suggesting that chronic HIV-1 infection was associated with an inhibitory environment for bystander ILC and NK subsets. The cell-based models of persistent infection that we describe here provide versatile tools to explore the molecular mechanisms of these immune dysfunctions and unveil the contribution of innate immunity in sustaining pathogen persistence.
Collapse
Affiliation(s)
- Aude Boulay
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Sara Trabanelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Stéphanie Boireau
- Montpellier Ressources Imagerie, Biocampus, Université de Montpellier, CNRS, Montpellier, France
| | - Myriam Boyer-Clavel
- Montpellier Ressources Imagerie, Biocampus, Université de Montpellier, CNRS, Montpellier, France
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Pedro Romero
- Department of Oncology, University of Lausanne, Épalinges, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Anne-Sophie Beignon
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Nathalie J. Arhel
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
4
|
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence 2022; 13:89-121. [PMID: 34964702 PMCID: PMC9728475 DOI: 10.1080/21505594.2021.2019950] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal yeast fungus of the human oral, gastrointestinal, and genital mucosal surfaces, and skin. Antibiotic-induced dysbiosis, iatrogenic immunosuppression, and/or medical interventions that impair the integrity of the mucocutaneous barrier and/or perturb protective host defense mechanisms enable C. albicans to become an opportunistic pathogen and cause debilitating mucocutaneous disease and/or life-threatening systemic infections. In this review, we synthesize our current knowledge of the tissue-specific determinants of C. albicans pathogenicity and host immune defense mechanisms.
Collapse
Affiliation(s)
- José Pedro Lopes
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Michail S. Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| |
Collapse
|
5
|
Wu C, Liang JA, Brenchley JM, Shin T, Fan X, Mortlock RD, Abraham D, Allan DS, Thomas ML, Hong S, Dunbar CE. Barcode clonal tracking of tissue-resident immune cells in rhesus macaque highlights distinct clonal distribution pattern of tissue NK cells. Front Immunol 2022; 13:994498. [PMID: 36605190 PMCID: PMC9808525 DOI: 10.3389/fimmu.2022.994498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue resident (TR) immune cells play important roles in facilitating tissue homeostasis, coordinating immune responses against infections and tumors, and maintaining immunological memory. While studies have shown these cells are distinct phenotypically and functionally from cells found in the peripheral blood (PB), the clonal relationship between these populations across tissues has not been comprehensively studied in primates or humans. We utilized autologous transplantation of rhesus macaque hematopoietic stem and progenitor cells containing high diversity barcodes to track the clonal distribution of T, B, myeloid and natural killer (NK) cell populations across tissues, including liver, spleen, lung, and gastrointestinal (GI) tract, in comparison with PB longitudinally post-transplantation, in particular we focused on NK cells which do not contain endogenous clonal markers and have not been previously studied in this context. T cells demonstrated tissue-specific clonal expansions as expected, both overlapping and distinct from blood T cells. In contrast, B and myeloid cells showed a much more homogeneous clonal pattern across various tissues and the blood. The clonal distribution of TR NK was more heterogenous between individual animals. In some animals, as we have previously reported, we observed large PB clonal expansions in mature CD56-CD16+ NK cells. Notably, we found a separate set of highly expanded PB clones in CD16-CD56- (DN) NK subset that were also contributing to TR NK cells in all tissues examined, both in TR CD56-CD16+ and DN populations but absent in CD56+16- TR NK across all tissues analyzed. Additionally, we observed sets of TR NK clones specific to individual tissues such as lung or GI tract and sets of TR NK clones shared across liver and spleen, distinct from other tissues. Combined with prior functional data that suggests NK memory is restricted to liver or other TR NK cells, these clonally expanded TR NK cells may be of interest for future investigation into NK cell tissue immunological memory, with implications for development of NK based immunotherapies and an understanding of NK memory.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jialiu A. Liang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jason M. Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Taehoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ryland D. Mortlock
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Diana M. Abraham
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - David S.J. Allan
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Marvin L. Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, United States
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
6
|
Pandrea I, Brooks K, Desai RP, Tare M, Brenchley JM, Apetrei C. I've looked at gut from both sides now: Gastrointestinal tract involvement in the pathogenesis of SARS-CoV-2 and HIV/SIV infections. Front Immunol 2022; 13:899559. [PMID: 36032119 PMCID: PMC9411647 DOI: 10.3389/fimmu.2022.899559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
The lumen of the gastrointestinal (GI) tract contains an incredibly diverse and extensive collection of microorganisms that can directly stimulate the immune system. There are significant data to demonstrate that the spatial localization of the microbiome can impact viral disease pathogenesis. Here we discuss recent studies that have investigated causes and consequences of GI tract pathologies in HIV, SIV, and SARS-CoV-2 infections with HIV and SIV initiating GI pathology from the basal side and SARS-CoV-2 from the luminal side. Both these infections result in alterations of the intestinal barrier, leading to microbial translocation, persistent inflammation, and T-cell immune activation. GI tract damage is one of the major contributors to multisystem inflammatory syndrome in SARS-CoV-2-infected individuals and to the incomplete immune restoration in HIV-infected subjects, even in those with robust viral control with antiretroviral therapy. While the causes of GI tract pathologies differ between these virus families, therapeutic interventions to reduce microbial translocation-induced inflammation and improve the integrity of the GI tract may improve the prognoses of infected individuals.
Collapse
Affiliation(s)
- Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rahul P. Desai
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Minali Tare
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Smedley JV, Bochart RM, Fischer M, Funderburgh H, Kelly V, Crank H, Armantrout K, Shiel O, Robertson-LeVay M, Sternberger N, Schmaling B, Roberts S, Sekiguchi V, Reusz M, Schwartz T, Meyer KA, Webb G, Gilbride RM, Dambrauskas N, Andrade D, Wood M, Labriola C, Axthelm M, Derby N, Varco-Merth B, Fukazawa Y, Hansen S, Sacha JB, Sodora DL, Sather DN. Optimization and use of near infrared imaging to guide lymph node collection in rhesus macaques (Macaca mulatta). J Med Primatol 2022; 51:270-277. [PMID: 35841132 PMCID: PMC9474636 DOI: 10.1111/jmp.12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/27/2022]
Abstract
Background Identification of lymph nodes (LNs) draining a specific site or in obese macaques can be challenging. Methods Indocyanine Green (ICG) was administered intradermal (ID), intramuscular, in the oral mucosa, or subserosal in the colon followed by Near Infrared (NIR) imaging. Results After optimization to maximize LN identification, intradermal ICG was successful in identifying 50–100% of the axillary/inguinal LN at a site. Using NIR, collection of peripheral and mesenteric LNs in obese macaques was 100% successful after traditional methods failed. Additionally, guided collection of LNs draining the site of intraepithelial or intramuscular immunization demonstrated significantly increased numbers of T follicular helper (Tfh) cells in germinal centers of draining compared to nondraining LNs. Conclusion These imaging techniques optimize our ability to evaluate immune changes within LNs over time, even in obese macaques. This approach allows for targeted serial biopsies that permit confidence that draining LNs are being harvested throughout the study.
Collapse
Affiliation(s)
- Jeremy V Smedley
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Rachele M Bochart
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Miranda Fischer
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Heidi Funderburgh
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Vanessa Kelly
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Hugh Crank
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Kim Armantrout
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Oriene Shiel
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Mitchell Robertson-LeVay
- Surgical Services Unit, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Nikki Sternberger
- Surgical Services Unit, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Brian Schmaling
- Surgical Services Unit, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Sheila Roberts
- Surgical Services Unit, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Vicki Sekiguchi
- Surgical Services Unit, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Michael Reusz
- Surgical Services Unit, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Tiah Schwartz
- Surgical Services Unit, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Kimberly A Meyer
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Gabriela Webb
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Daniela Andrade
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Matthew Wood
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Caralyn Labriola
- Experimental Pathology Unit, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Michael Axthelm
- Experimental Pathology Unit, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Nina Derby
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ben Varco-Merth
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Scott Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Donald L Sodora
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Jiang S, Chan CN, Rovira-Clavé X, Chen H, Bai Y, Zhu B, McCaffrey E, Greenwald NF, Liu C, Barlow GL, Weirather JL, Oliveria JP, Nakayama T, Lee IT, Matter MS, Carlisle AE, Philips D, Vazquez G, Mukherjee N, Busman-Sahay K, Nekorchuk M, Terry M, Younger S, Bosse M, Demeter J, Rodig SJ, Tzankov A, Goltsev Y, McIlwain DR, Angelo M, Estes JD, Nolan GP. Combined protein and nucleic acid imaging reveals virus-dependent B cell and macrophage immunosuppression of tissue microenvironments. Immunity 2022; 55:1118-1134.e8. [PMID: 35447093 PMCID: PMC9220319 DOI: 10.1016/j.immuni.2022.03.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/13/2021] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Abstract
Understanding the mechanisms of HIV tissue persistence necessitates the ability to visualize tissue microenvironments where infected cells reside; however, technological barriers limit our ability to dissect the cellular components of these HIV reservoirs. Here, we developed protein and nucleic acid in situ imaging (PANINI) to simultaneously quantify DNA, RNA, and protein levels within these tissue compartments. By coupling PANINI with multiplexed ion beam imaging (MIBI), we measured over 30 parameters simultaneously across archival lymphoid tissues from healthy or simian immunodeficiency virus (SIV)-infected nonhuman primates. PANINI enabled the spatial dissection of cellular phenotypes, functional markers, and viral events resulting from infection. SIV infection induced IL-10 expression in lymphoid B cells, which correlated with local macrophage M2 polarization. This highlights a potential viral mechanism for conditioning an immunosuppressive tissue environment for virion production. The spatial multimodal framework here can be extended to decipher tissue responses in other infectious diseases and tumor biology.
Collapse
Affiliation(s)
- Sizun Jiang
- Department of Pathology, Stanford University, Stanford, CA, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Chi Ngai Chan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | | | - Han Chen
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Yunhao Bai
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Bokai Zhu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Erin McCaffrey
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Candace Liu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Graham L Barlow
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Jason L Weirather
- Center of Immuno-Oncology, Dana-Faber Cancer Institute, Boston, MA, USA
| | - John Paul Oliveria
- Department of Pathology, Stanford University, Stanford, CA, USA; Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Tsuguhisa Nakayama
- Department of Pathology, Stanford University, Stanford, CA, USA; Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Ivan T Lee
- Department of Pathology, Stanford University, Stanford, CA, USA; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthias S Matter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Anne E Carlisle
- Center of Immuno-Oncology, Dana-Faber Cancer Institute, Boston, MA, USA
| | - Darci Philips
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Gustavo Vazquez
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Margaret Terry
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Skyler Younger
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Marc Bosse
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Janos Demeter
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Yury Goltsev
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA; Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Oikonomou V, Break TJ, Gaffen SL, Moutsopoulos NM, Lionakis MS. Infections in the monogenic autoimmune syndrome APECED. Curr Opin Immunol 2021; 72:286-297. [PMID: 34418591 PMCID: PMC8578378 DOI: 10.1016/j.coi.2021.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by mutations in the Autoimmune Regulator (AIRE) gene, which impair the thymic negative selection of self-reactive T-cells and underlie the development of autoimmunity that targets multiple endocrine and non-endocrine tissues. Beyond autoimmunity, APECED features heightened susceptibility to certain specific infections, which is mediated by anti-cytokine autoantibodies and/or T-cell driven autoimmune tissue injury. These include the 'signature' APECED infection chronic mucocutaneous candidiasis (CMC), but also life-threatening coronavirus disease 2019 (COVID-19) pneumonia, bronchiectasis-associated bacterial pneumonia, and sepsis by encapsulated bacteria. Here we discuss the expanding understanding of the immunological mechanisms that contribute to infection susceptibility in this prototypic syndrome of impaired central tolerance, which provide the foundation for devising improved diagnostic and therapeutic strategies for affected patients.
Collapse
Affiliation(s)
- Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Timothy J Break
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah L Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh PA, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
10
|
Jones R, Kroll K, Broedlow C, Schifanella L, Smith S, Hueber B, Shah SV, Ram DR, Manickam C, Varner V, Klatt NR, Reeves RK. Probiotic supplementation reduces inflammatory profiles but does not prevent oral immune perturbations during SIV infection. Sci Rep 2021; 11:14507. [PMID: 34267278 PMCID: PMC8282626 DOI: 10.1038/s41598-021-93918-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
HIV/SIV infections lead to massive loss of mucosal CD4 + T cells and breakdown of the epithelial mucosa resulting in severe microbial dysbiosis and chronic immune activation that ultimately drive disease progression. Moreover, disruption of one of the most understudied mucosal environments, the oral cavity, during HIV-induced immunosuppression results in significant microbial and neoplastic co-morbidities and contributes to and predicts distal disease complications. In this study we evaluated the effects of oral probiotic supplementation (PBX), which can stimulate and augment inflammatory or anti-inflammatory pathways, on early SIV infection of rhesus macaques. Our study revealed that similar to the GI mucosae, oral CD4 + T cells were rapidly depleted, and as one of the first comprehensive analyses of the oral microflora in SIV infection, we also observed significant modulation among two genera, Porphyromonas and Actinobacillus, early after infection. Interestingly, although PBX therapy did not substantially protect against oral dysbiosis or ameliorate cell loss, it did somewhat dampen inflammation and T cell activation. Collectively, these data provide one of the most comprehensive evaluations of SIV-induced changes in oral microbiome and CD4 + T cell populations, and also suggest that oral PBX may have some anti-inflammatory properties in lentivirus infections.
Collapse
Affiliation(s)
- Rhianna Jones
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kyle Kroll
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Courtney Broedlow
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Luca Schifanella
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Scott Smith
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Brady Hueber
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Spandan V Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daniel R Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Valerie Varner
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nichole R Klatt
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, 02139, USA.
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
11
|
Flynn JK, Langner CA, Karmele EP, Baker PJ, Pei L, Gorfu EG, Bochart RM, Santiana M, Smelkinson MG, Nutman TB, Altan-Bonnet N, Bosinger SE, Kelsall BL, Brenchley JM, Ortiz AM. Luminal microvesicles uniquely influence translocating bacteria after SIV infection. Mucosal Immunol 2021; 14:937-948. [PMID: 33731830 PMCID: PMC8225551 DOI: 10.1038/s41385-021-00393-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 02/04/2023]
Abstract
Microbial translocation contributes to persistent inflammation in both treated and untreated HIV infection. Although translocation is due in part to a disintegration of the intestinal epithelial barrier, there is a bias towards the translocation of Proteobacteria. We hypothesized that intestinal epithelial microvesicle cargo differs after HIV infection and contributes to biased translocation. We isolated gastrointestinal luminal microvesicles before and after progressive simian immunodeficiency virus (SIV) infection in rhesus macaques and measured miRNA and antimicrobial peptide content. We demonstrate that these microvesicles display decreased miR-28-5p, -484, -584-3p, and -584-5p, and let-7b-3p, as well as increased beta-defensin 1 after SIV infection. We further observed dose-dependent growth sensitivity of commensal Lactobacillus salivarius upon co-culture with isolated microvesicles. Infection-associated microvesicle differences were not mirrored in non-progressively SIV-infected sooty mangabeys. Our findings describe novel alterations of antimicrobial control after progressive SIV infection that influence the growth of translocating bacterial taxa. These studies may lead to the development of novel therapeutics for treating chronic HIV infection, microbial translocation, and inflammation.
Collapse
Affiliation(s)
- Jacob K. Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Charlotte A. Langner
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Erik P. Karmele
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892
| | - Phillip J. Baker
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Luxin Pei
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Edlawit G. Gorfu
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Rachele M. Bochart
- Division of Animal Resources, Yerkes National Primate Research Center (YNPRC), Atlanta, GA 30329
| | - Marianita Santiana
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Thomas B. Nutman
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Steven E. Bosinger
- Yerkes Nonhuman Primate Genomics Core Laboratory, YNPRC, Atlanta, GA 30329,Division of Microbiology & Immunology, YNPRC, Atlanta, GA 30329,Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30329
| | - Brian L. Kelsall
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892,Corresponding author: Jason Brenchley, 4 Memorial Drive, 9000 Rockville Pike, Bethesda MD 20892, Phone: 301-496-1498, Fax: 301-480-1535,
| | - Alexandra M. Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892
| |
Collapse
|
12
|
Fang M, Richardson B, Cameron CM, Dazard JE, Cameron MJ. Drug perturbation gene set enrichment analysis (dpGSEA): a new transcriptomic drug screening approach. BMC Bioinformatics 2021; 22:22. [PMID: 33435872 PMCID: PMC7805197 DOI: 10.1186/s12859-020-03929-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/09/2020] [Indexed: 11/24/2022] Open
Abstract
Background In this study, we demonstrate that our modified Gene Set Enrichment Analysis (GSEA) method, drug perturbation GSEA (dpGSEA), can detect phenotypically relevant drug targets through a unique transcriptomic enrichment that emphasizes biological directionality of drug-derived gene sets. Results We detail our dpGSEA method and show its effectiveness in detecting specific perturbation of drugs in independent public datasets by confirming fluvastatin, paclitaxel, and rosiglitazone perturbation in gastroenteropancreatic neuroendocrine tumor cells. In drug discovery experiments, we found that dpGSEA was able to detect phenotypically relevant drug targets in previously published differentially expressed genes of CD4+T regulatory cells from immune responders and non-responders to antiviral therapy in HIV-infected individuals, such as those involved with virion replication, cell cycle dysfunction, and mitochondrial dysfunction. dpGSEA is publicly available at https://github.com/sxf296/drug_targeting. Conclusions dpGSEA is an approach that uniquely enriches on drug-defined gene sets while considering directionality of gene modulation. We recommend dpGSEA as an exploratory tool to screen for possible drug targeting molecules.
Collapse
Affiliation(s)
- Mike Fang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Wolstein Research Building, 2103 Cornell Road, Suite 1-314, Cleveland, OH, 44106-7295, USA
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Wolstein Research Building, 2103 Cornell Road, Suite 1-314, Cleveland, OH, 44106-7295, USA.,Systems Biology and Bioinformatics Program, Case Western Reserve University, Cleveland, OH, USA
| | - Cheryl M Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Systems Biology and Bioinformatics Program, Case Western Reserve University, Cleveland, OH, USA
| | - Jean-Eudes Dazard
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA. .,Systems Biology and Bioinformatics Program, Case Western Reserve University, Cleveland, OH, USA.
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Wolstein Research Building, 2103 Cornell Road, Suite 1-314, Cleveland, OH, 44106-7295, USA. .,Systems Biology and Bioinformatics Program, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
13
|
Le Hingrat Q, Sereti I, Landay AL, Pandrea I, Apetrei C. The Hitchhiker Guide to CD4 + T-Cell Depletion in Lentiviral Infection. A Critical Review of the Dynamics of the CD4 + T Cells in SIV and HIV Infection. Front Immunol 2021; 12:695674. [PMID: 34367156 PMCID: PMC8336601 DOI: 10.3389/fimmu.2021.695674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023] Open
Abstract
CD4+ T-cell depletion is pathognomonic for AIDS in both HIV and simian immunodeficiency virus (SIV) infections. It occurs early, is massive at mucosal sites, and is not entirely reverted by antiretroviral therapy (ART), particularly if initiated when T-cell functions are compromised. HIV/SIV infect and kill activated CCR5-expressing memory and effector CD4+ T-cells from the intestinal lamina propria. Acute CD4+ T-cell depletion is substantial in progressive, nonprogressive and controlled infections. Clinical outcome is predicted by the mucosal CD4+ T-cell recovery during chronic infection, with no recovery occurring in rapid progressors, and partial, transient recovery, the degree of which depends on the virus control, in normal and long-term progressors. The nonprogressive infection of African nonhuman primate SIV hosts is characterized by partial mucosal CD4+ T-cell restoration, despite high viral replication. Complete, albeit very slow, recovery of mucosal CD4+ T-cells occurs in controllers. Early ART does not prevent acute mucosal CD4+ T-cell depletion, yet it greatly improves their restoration, sometimes to preinfection levels. Comparative studies of the different models of SIV infection support a critical role of immune activation/inflammation (IA/INFL), in addition to viral replication, in CD4+ T-cell depletion, with immune restoration occurring only when these parameters are kept at bay. CD4+ T-cell depletion is persistent, and the recovery is very slow, even when both the virus and IA/INFL are completely controlled. Nevertheless, partial mucosal CD4+ T-cell recovery is sufficient for a healthy life in natural hosts. Cell death and loss of CD4+ T-cell subsets critical for gut health contribute to mucosal inflammation and enteropathy, which weaken the mucosal barrier, leading to microbial translocation, a major driver of IA/INFL. In turn, IA/INFL trigger CD4+ T-cells to become either viral targets or apoptotic, fueling their loss. CD4+ T-cell depletion also drives opportunistic infections, cancers, and comorbidities. It is thus critical to preserve CD4+ T cells (through early ART) during HIV/SIV infection. Even in early-treated subjects, residual IA/INFL can persist, preventing/delaying CD4+ T-cell restoration. New therapeutic strategies limiting mucosal pathology, microbial translocation and IA/INFL, to improve CD4+ T-cell recovery and the overall HIV prognosis are needed, and SIV models are extensively used to this goal.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Sortino O, Dias J, Anderson M, Laidlaw E, Leeansyah E, Lisco A, Sheikh V, Sandberg JK, Sereti I. Preserved Mucosal-Associated Invariant T-Cell Numbers and Function in Idiopathic CD4 Lymphocytopenia. J Infect Dis 2020; 224:715-725. [PMID: 34398238 DOI: 10.1093/infdis/jiaa782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Mucosal-associated invariant T (MAIT) cells constitute a subset of unconventional, MR1-restricted T cells involved in antimicrobial responses as well as inflammatory, allergic, and autoimmune diseases. Chronic infection and inflammatory disorders as well as immunodeficiencies are often associated with decline and/or dysfunction of MAIT cells. METHODS We investigated the MAIT cells in patients with idiopathic CD4+ lymphocytopenia (ICL), a syndrome characterized by consistently low CD4 T-cell counts (<300 cell/µL) in the absence of HIV infection or other known immunodeficiency, and by susceptibility to certain opportunistic infections. RESULTS The numbers, phenotype, and function of MAIT cells in peripheral blood were preserved in ICL patients compared to healthy controls. Administration of interleukin-7 (IL-7) to ICL patients expanded the CD8+ MAIT-cell subset, with maintained responsiveness and effector functions after IL-7 treatment. CONCLUSIONS ICL patients maintain normal levels and function of MAIT cells, preserving some antibacterial responses despite the deficiency in CD4+ T cells. CLINICAL TRIALS REGISTRATION NCT00867269.
Collapse
Affiliation(s)
- Ornella Sortino
- Clinical Research Directorate/Clinical Monitoring Leidos Research Program, Leidos Biomedical Research, Inc., National Cancer Institute Campus at Frederick, Frederick, Maryland, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joana Dias
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Megan Anderson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Laidlaw
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Andrea Lisco
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Virginia Sheikh
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Singh A, Kazer SW, Roider J, Krista KC, Millar J, Asowata OE, Ngoepe A, Ramsuran D, Fardoos R, Ardain A, Muenchhoff M, Kuhn W, Karim F, Ndung'u T, Shalek AK, Goulder P, Leslie A, Kløverpris HN. Innate Lymphoid Cell Activation and Sustained Depletion in Blood and Tissue of Children Infected with HIV from Birth Despite Antiretroviral Therapy. Cell Rep 2020; 32:108153. [PMID: 32937142 PMCID: PMC7495043 DOI: 10.1016/j.celrep.2020.108153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/14/2020] [Accepted: 08/25/2020] [Indexed: 12/04/2022] Open
Abstract
Innate lymphoid cells (ILCs) are important for response to infection and for immune development in early life. HIV infection in adults depletes circulating ILCs, but the impact on children infected from birth remains unknown. We study vertically HIV-infected children from birth to adulthood and find severe and persistent depletion of all circulating ILCs that, unlike CD4+ T cells, are not restored by long-term antiretroviral therapy unless initiated at birth. Remaining ILCs upregulate genes associated with cellular activation and metabolic perturbation. Unlike HIV-infected adults, ILCs are also profoundly depleted in tonsils of vertically infected children. Transcriptional profiling of remaining ILCs reveals ongoing cell-type-specific activity despite antiretroviral therapy. Collectively, these data suggest an important and ongoing role for ILCs in lymphoid tissue of HIV-infected children from birth, where persistent depletion and sustained transcriptional activity are likely to have long-term immune consequences that merit further investigation.
Collapse
Affiliation(s)
- Alveera Singh
- Africa Health Research Institute (AHRI), Durban 4001, South Africa
| | - Samuel W Kazer
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139
| | - Julia Roider
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; Department of Paediatrics, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4001, South Africa; Medizinische Klinik IV, Department of Infectious Diseases, Ludwig-Maximilians-University, Munich 80802, Germany
| | - Kami C Krista
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139
| | - Jane Millar
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4001, South Africa
| | | | - Abigail Ngoepe
- Africa Health Research Institute (AHRI), Durban 4001, South Africa
| | - Duran Ramsuran
- Africa Health Research Institute (AHRI), Durban 4001, South Africa
| | - Rabiah Fardoos
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen 2200N, Denmark
| | - Amanda Ardain
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Maximilian Muenchhoff
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK; Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich 81377, Germany; German Center for Infection Research (DZIF), partner site Munich 80333, Germany
| | - Warren Kuhn
- ENT Department General Justice Gizenga Mpanza Regional Hospital (Stanger Hospital), University of KwaZulu-Natal, Durban 4001, South Africa
| | - Farina Karim
- Africa Health Research Institute (AHRI), Durban 4001, South Africa
| | - Thumbi Ndung'u
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4001, South Africa; University College London, Division of Infection and Immunity, London WC1E 6AE, UK; Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Alex K Shalek
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139
| | - Philip Goulder
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; Department of Paediatrics, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; University College London, Division of Infection and Immunity, London WC1E 6AE, UK; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Henrik N Kløverpris
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen 2200N, Denmark; University College London, Division of Infection and Immunity, London WC1E 6AE, UK; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.
| |
Collapse
|
16
|
Vinton CL, Starke CE, Ortiz AM, Lai SH, Flynn JK, Sortino O, Knox K, Sereti I, Brenchley JM. Biomarkers of Cellular Stress Do Not Associate with sCD14 in Progressive HIV and SIV Infections in Vivo. Pathog Immun 2020; 5:68-88. [PMID: 32426577 PMCID: PMC7224679 DOI: 10.20411/pai.v5i1.363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background Microbial translocation occurs after damage to the structural and/or immunological barrier of the gastrointestinal (GI) tract into circulation. Microbial components that trans-locate from the lumen of the GI tract directly stimulate the immune system and contribute to inflammation. When microbial translocation becomes chronic, the inflammation has detrimental consequences. Given that microbial translocation is an important phenomenon in many diseases, defining biomarkers that reliably reflect microbial translocation is critical. Measurement of systemic microbial products is difficult since: 1) robust assays to measure microbial antigens simultaneously are lacking; 2) confounding factors influence assays used to detect microbial products; and 3) biological clearance mechanisms limit their detection in circulation. Thus, host proteins produced in response to microbial stimulation are used as surrogates for microbial translocation; however, many of these proteins are also produced in response to host proteins expressed by dying cells. Methods We measured plasma levels of biomarkers associated with GI tract damage, immune responses to microbial products, and cell-death in people living with HIV before and after antiretroviral administration, and in macaque nonhuman primates before and after SIV infection. Results Proteins secreted during cellular stress (receptor for advanced glycation endproducts-RAGE and high motility group box 1-HMGB1), which can induce sCD14 production in vitro and in vivo, do not associate with elevated levels of biomarkers associated with microbial translocation in progressively HIV-infected individuals and SIV-infected NHPs. Conclusions Bystander cell death and generalized inflammation do not contribute to elevated levels of sCD14 observed in HIV/SIV-infected individuals.
Collapse
Affiliation(s)
- Carol L Vinton
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| | - Carly E Starke
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| | - Alexandra M Ortiz
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| | - Stephen H Lai
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| | - Jacob K Flynn
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| | - Ornella Sortino
- HIV Pathogenesis Section; Laboratory of Immunoregulation; NIAID, NIH; Bethesda, Maryland
| | - Kenneth Knox
- Department of Medicine; University of Arizona; Tucson, Arizona
| | - Irini Sereti
- HIV Pathogenesis Section; Laboratory of Immunoregulation; NIAID, NIH; Bethesda, Maryland
| | - Jason M Brenchley
- Barrier Immunity Section; Laboratory of Viral Diseases; NIAID, NIH; Bethesda, Maryland
| |
Collapse
|
17
|
Ryu S, Lee EY, Kim DK, Kim YS, Chung DH, Kim JH, Lee H, Kim HY. Reduction of circulating innate lymphoid cell progenitors results in impaired cytokine production by innate lymphoid cells in patients with lupus nephritis. Arthritis Res Ther 2020; 22:63. [PMID: 32223753 PMCID: PMC7104540 DOI: 10.1186/s13075-020-2114-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background Innate lymphoid cells (ILCs) play an essential role in maintaining homeostasis; however, they can also cause chronic inflammation and autoimmune disease. This study aimed to identify the role of ILCs in the pathogenesis of lupus nephritis (LN). Methods The percentage of ILCs within the peripheral blood mononuclear cell (PBMC) population and urine of patients with LN (n = 16), healthy controls (HC; n = 8), and disease controls (ANCA-associated vasculitis (AAV; n = 6), IgA nephropathy (IgAN; n = 9), and other glomerular diseases (n = 5)) was determined by flow cytometry analysis. In addition, ILCs were sorted and cultured with plasma from LN patients or HC to elucidate whether the reduced population of CD117+ ILCs observed in LN was due to changes in the ILC progenitor population. Results The percentage of total ILCs and CD117+ ILCs in LN was significantly lower than that in HC. The percentage of cytokine-secreting ILCs was also lower in LN; however, when the disease stabilized, cytokine production was restored to levels similar to those in HC. The increase in the number of exhausted ILCs (cells unable to secrete cytokines) correlated positively with disease activity. When CD117+ ILCs were cultured with LN plasma, the number of CD117+ ILCs fell, but that of other ILC subsets increased. Conclusions The percentage of CD117+ ILCs and the capacity of ILCs to secrete cytokines fell as LN severity increased, suggesting that an inflammatory environment of LN induces persistent differentiation and exhaustion of ILCs.
Collapse
Affiliation(s)
- Seungwon Ryu
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Dong Ki Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.,Kidney Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yon Su Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.,Kidney Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hyung Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Hajeong Lee
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea. .,Kidney Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.
| |
Collapse
|
18
|
Innate Lymphoid Cells: Their Contributions to Gastrointestinal Tissue Homeostasis and HIV/SIV Disease Pathology. Curr HIV/AIDS Rep 2020; 16:181-190. [PMID: 31104270 DOI: 10.1007/s11904-019-00439-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The discovery of innate lymphoid cells (ILCs) over the past decade has reformed principles that were once thought to be exclusive to adaptive immunity. Here, we describe ILC nomenclature and function, and provide a survey of studies examining these cells in the context of HIV/SIV infections. Particular emphasis is placed on the ILC3 subset, important for proper functioning of the gastrointestinal tract barrier. RECENT FINDINGS Studies in both humans and nonhuman primates have found ILCs to be rapidly and durably depleted in untreated HIV/SIV infections. Their depletion is most likely due to a number of bystander effects induced by viral replication. Given the number of associations observed between loss of ILCs and HIV-related GI damage, their impact on the GI tract is likely important. It may be informative to examine this subset in parallel with other immune cell types when assessing overall health of the GI tract in future studies.
Collapse
|
19
|
Wang Y, Lifshitz L, Gellatly K, Vinton CL, Busman-Sahay K, McCauley S, Vangala P, Kim K, Derr A, Jaiswal S, Kucukural A, McDonel P, Hunt PW, Greenough T, Houghton J, Somsouk M, Estes JD, Brenchley JM, Garber M, Deeks SG, Luban J. HIV-1-induced cytokines deplete homeostatic innate lymphoid cells and expand TCF7-dependent memory NK cells. Nat Immunol 2020; 21:274-286. [PMID: 32066947 PMCID: PMC7044076 DOI: 10.1038/s41590-020-0593-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/28/2019] [Indexed: 01/09/2023]
Abstract
Human immunodeficiency virus 1 (HIV-1) infection is associated with heightened inflammation and excess risk of cardiovascular disease, cancer and other complications. These pathologies persist despite antiretroviral therapy. In two independent cohorts, we found that innate lymphoid cells (ILCs) were depleted in the blood and gut of people with HIV-1, even with effective antiretroviral therapy. ILC depletion was associated with neutrophil infiltration of the gut lamina propria, type 1 interferon activation, increased microbial translocation and natural killer (NK) cell skewing towards an inflammatory state, with chromatin structure and phenotype typical of WNT transcription factor TCF7-dependent memory T cells. Cytokines that are elevated during acute HIV-1 infection reproduced the ILC and NK cell abnormalities ex vivo. These results show that inflammatory cytokines associated with HIV-1 infection irreversibly disrupt ILCs. This results in loss of gut epithelial integrity, microbial translocation and memory NK cells with heightened inflammatory potential, and explains the chronic inflammation in people with HIV-1.
Collapse
Affiliation(s)
- Yetao Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lawrence Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kyle Gellatly
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Carol L Vinton
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Sean McCauley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Pranitha Vangala
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kyusik Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alan Derr
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Smita Jaiswal
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alper Kucukural
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Patrick McDonel
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter W Hunt
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Thomas Greenough
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - JeanMarie Houghton
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ma Somsouk
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Manuel Garber
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
20
|
Webb GM, Molden J, Busman-Sahay K, Abdulhaqq S, Wu HL, Weber WC, Bateman KB, Reed JS, Northrup M, Maier N, Tanaka S, Gao L, Davey B, Carpenter BL, Axthelm MK, Stanton JJ, Smedley J, Greene JM, Safrit JT, Estes JD, Skinner PJ, Sacha JB. The human IL-15 superagonist N-803 promotes migration of virus-specific CD8+ T and NK cells to B cell follicles but does not reverse latency in ART-suppressed, SHIV-infected macaques. PLoS Pathog 2020; 16:e1008339. [PMID: 32163523 PMCID: PMC7093032 DOI: 10.1371/journal.ppat.1008339] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/24/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART) to halt viral replication and slow disease progression, this treatment is not curative and there remains an urgent need to develop approaches to clear the latent HIV reservoir. The human IL-15 superagonist N-803 (formerly ALT-803) is a promising anti-cancer biologic with potent immunostimulatory properties that has been extended into the field of HIV as a potential "shock and kill" therapeutic for HIV cure. However, the ability of N-803 to reactivate latent virus and modulate anti-viral immunity in vivo under the cover of ART remains undefined. Here, we show that in ART-suppressed, simian-human immunodeficiency virus (SHIV)SF162P3-infected rhesus macaques, subcutaneous administration of N-803 activates and mobilizes both NK cells and SHIV-specific CD8+ T cells from the peripheral blood to lymph node B cell follicles, a sanctuary site for latent virus that normally excludes such effector cells. We observed minimal activation of memory CD4+ T cells and no increase in viral RNA content in lymph node resident CD4+ T cells post N-803 administration. Accordingly, we found no difference in the number or magnitude of plasma viremia timepoints between treated and untreated animals during the N-803 administration period, and no difference in the size of the viral DNA cell-associated reservoir post N-803 treatment. These results substantiate N-803 as a potent immunotherapeutic candidate capable of activating and directing effector CD8+ T and NK cells to the B cell follicle during full ART suppression, and suggest N-803 must be paired with a bona fide latency reversing agent in vivo to facilitate immune-mediated modulation of the latent viral reservoir.
Collapse
Affiliation(s)
- Gabriela M. Webb
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jhomary Molden
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Kathleen Busman-Sahay
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Shaheed Abdulhaqq
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Helen L. Wu
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Whitney C. Weber
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Katherine B. Bateman
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jason S. Reed
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Mina Northrup
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Nicholas Maier
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Shiho Tanaka
- ImmunityBio, Los Angeles, California, United States of America
| | - Lina Gao
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Brianna Davey
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Benjamin L. Carpenter
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Michael K. Axthelm
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeffrey J. Stanton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeremy Smedley
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Justin M. Greene
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | | | - Jacob D. Estes
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jonah B. Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
21
|
Hueber B, Curtis AD, Kroll K, Varner V, Jones R, Pathak S, Lifton M, Van Rompay KKA, De Paris K, Reeves RK. Functional Perturbation of Mucosal Group 3 Innate Lymphoid and Natural Killer Cells in Simian-Human Immunodeficiency Virus/Simian Immunodeficiency Virus-Infected Infant Rhesus Macaques. J Virol 2020; 94:e01644-19. [PMID: 31801861 PMCID: PMC7022363 DOI: 10.1128/jvi.01644-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022] Open
Abstract
Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) via breastfeeding is responsible for nearly half of new infections of children with HIV. Although innate lymphoid cells (ILC) and natural killer (NK) cells are found throughout the oral mucosae, the effects of HIV/simian-human immunodeficiency virus (SHIV) in these tissues are largely unknown. To better understand the mechanics of postnatal transmission, we performed a comprehensive study of simian immunodeficiency virus (SIV)/SHIV-infected infant rhesus macaques (RM) and tracked changes in frequency, trafficking, and function of group 3 ILC (ILC3) and NK cells using polychromatic flow cytometry and cell stimulation assays in colon, tonsil, and oral lymph node samples. Infection led to a 3-fold depletion of ILC3 in the colon and an increase in the levels of NK cells in tonsils and oral lymph nodes. ILC3 and NK cells exhibited alterations in their trafficking repertoires as a result of infection, with increased expression of CD103 in colon NK cells and curtailment of CXCR3, and a significant decrease in α4β7 expression in colon ILC3. SPICE analyses revealed that ILC3 and NK cells displayed distinct functional profiles by tissue in naive samples. Infection perturbed these profiles, with a nearly total loss of interleukin-22 (IL-22) production in the tonsil and colon; an increase in the levels of CD107a, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) from ILC3; and an increase in the levels of CD107a, macrophage inflammatory protein 1 beta (MIP-1β), and TNF-α from NK cells. Collectively, these data reveal that lentivirus infection alters the frequencies, receptor repertoires, and functions of innate cells in the oral and gut mucosa of infants. Further study will be required to delineate the full extent of the effect that these changes have on oral and gut homeostasis, SHIV/SIV pathogenesis, and oral opportunistic disease.IMPORTANCE Vertical transmission of HIV from mother to child accounts for many of the new cases seen worldwide. There is currently no vaccine to mitigate this transmission, and there has been limited research on the effects that lentiviral infection has on the innate immune system in oral tissues of infected children. To fill this knowledge gap, our laboratory studied infant rhesus macaques to evaluate how acute SIV/SHIV infections impacted ILC3 and NK cells, which are immune cells critical for mucosal homeostasis and antimicrobial defense. Our data revealed that SIV/SHIV infection led to a depletion of ILC3 and an increase of NK cells and to a functional shift from a homeostatic to a multifunctional proinflammatory state. Taking the results together, we describe how lentiviral infection perturbs the oral and gastrointestinal mucosae of infant macaques through alterations of resident innate immune cells giving rise to chronic inflammation and potentially exacerbating morbidity and mortality in children living with HIV.
Collapse
Affiliation(s)
- Brady Hueber
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan D Curtis
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kyle Kroll
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Valerie Varner
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rhianna Jones
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sachi Pathak
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michelle Lifton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Koen K A Van Rompay
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, USA
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
22
|
Ganal-Vonarburg SC, Duerr CU. The interaction of intestinal microbiota and innate lymphoid cells in health and disease throughout life. Immunology 2019; 159:39-51. [PMID: 31777064 PMCID: PMC6904614 DOI: 10.1111/imm.13138] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Immunity is shaped by commensal microbiota. From early life onwards, microbes colonize mucosal surfaces of the body and thereby trigger the establishment of immune homeostasis and defense mechanisms. Recent evidence reveals that the family of innate lymphoid cells (ILCs), which are mainly located in mucosal tissues, are essential in the maintenance of barrier functions as well as in the initiation of an appropriate immune response upon pathogenic infection. In this review, we summarize recent insights on the functional interaction of microbiota and ILCs at steady‐state and throughout life. Furthermore, we will discuss the interplay of ILCs and the microbiota in mucosal infections focusing on intestinal immunity.
Collapse
Affiliation(s)
- Stephanie C Ganal-Vonarburg
- Department for BioMedical Research (DBMR), Bern University Hospital, Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, University of Bern, Bern, Switzerland
| | - Claudia U Duerr
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
23
|
Henrich TJ, Hsue PY, VanBrocklin H. Seeing Is Believing: Nuclear Imaging of HIV Persistence. Front Immunol 2019; 10:2077. [PMID: 31572355 PMCID: PMC6751256 DOI: 10.3389/fimmu.2019.02077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022] Open
Abstract
A major obstacle to HIV eradication is the presence of infected cells that persist despite suppressive antiretroviral therapy (ART). HIV largely resides outside of the peripheral circulation, and thus, numerous anatomical and lymphoid compartments that have the capacity to harbor HIV are inaccessible to routine sampling. As a result, there is a limited understanding of the tissue burden of HIV infection or anatomical distribution of HIV transcriptional and translational activity. Novel, non-invasive, in vivo methods are urgently needed to address this fundamental gap in knowledge. In this review, we discuss past and current nuclear imaging approaches that have been applied to HIV infection with an emphasis on current strategies to implement positron emission tomography (PET)-based imaging to directly visualize and characterize whole-body HIV burden. These imaging approaches have various limitations, such as the potential for limited PET sensitivity and specificity in the setting of ART suppression or low viral burden. However, recent advances in high-sensitivity, total-body PET imaging platforms and development of new radiotracer technologies that may enhance anatomical penetration of target-specific tracer molecules are discussed. Potential strategies to image non-viral markers of HIV tissue burden or focal immune perturbation are also addressed. Overall, emerging nuclear imaging techniques and platforms may play an important role in the development of novel therapeutic and HIV reservoir eradication strategies.
Collapse
Affiliation(s)
- Timothy J Henrich
- Division of Experimental Medicine, Department of Medicine, University of San Francisco, San Francisco, CA, United States
| | - Priscilla Y Hsue
- Division of Cardiology, Department of Medicine, University of San Francisco, San Francisco, CA, United States
| | - Henry VanBrocklin
- Radiopharmaceutical Research Program, Center for Molecular and Functional Imaging, University of San Francisco, San Francisco, CA, United States
| |
Collapse
|
24
|
Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol 2019; 19:599-613. [PMID: 31350531 PMCID: PMC6982279 DOI: 10.1038/s41577-019-0194-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
Innate lymphoid cells (ILCs) are enriched at barrier surfaces of the mammalian body where they rapidly respond to host, microbial or environmental stimuli to promote immunity or tissue homeostasis. Furthermore, ILCs are dysregulated in multiple human diseases. Over the past decade, substantial advances have been made in identifying the heterogeneity and functional diversity of ILCs, which have revealed striking similarities to T cell subsets. However, emerging evidence indicates that ILCs also have a complex role in directly influencing the adaptive immune response in the context of development, homeostasis, infection or inflammation. In turn, adaptive immunity reciprocally regulates ILCs, which indicates that these interactions are a crucial determinant of immune responses within tissues. Here, we summarize our current understanding of functional interactions between ILCs and the adaptive immune system, discuss limitations and future areas of investigation, and consider the potential for these interactions to be therapeutically harnessed to benefit human health.
Collapse
|
25
|
Hildreth AD, O'Sullivan TE. Tissue-Resident Innate and Innate-Like Lymphocyte Responses to Viral Infection. Viruses 2019; 11:v11030272. [PMID: 30893756 PMCID: PMC6466361 DOI: 10.3390/v11030272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Infection is restrained by the concerted activation of tissue-resident and circulating immune cells. Recent discoveries have demonstrated that tissue-resident lymphocyte subsets, comprised of innate lymphoid cells (ILCs) and unconventional T cells, have vital roles in the initiation of primary antiviral responses. Via direct and indirect mechanisms, ILCs and unconventional T cell subsets play a critical role in the ability of the immune system to mount an effective antiviral response through potent early cytokine production. In this review, we will summarize the current knowledge of tissue-resident lymphocytes during initial viral infection and evaluate their redundant or nonredundant contributions to host protection or virus-induced pathology.
Collapse
Affiliation(s)
- Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| |
Collapse
|