1
|
Alhasaniah AH, Alissa M, Elsaid FG, Alsugoor MH, AlQahtani MS, Alessa A, Jambi K, Albakri GS, Albaqami FMK, Bennett E. The enigmatic role of SIRT2 in the cardiovascular system: Deciphering its protective and detrimental actions to unlock new avenues for therapeutic intervention. Curr Probl Cardiol 2025; 50:102929. [PMID: 39566866 DOI: 10.1016/j.cpcardiol.2024.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Cardiovascular diseases (CVDs) are leading causes of mortality throughout the world, and hence, there is a critical need to elucidate their molecular mechanisms. The Sirtuin (SIRT) family of NAD+-dependent enzymes has recently been shown to play a critical role in cardiovascular health and disease, and several SIRT isoforms, especially SIRT1 and SIRT3, have been amply investigated. However, the precise function of SIRT2 is only partially explored. Here, we review the current understanding of the involvement of SIRT2 in various cardiovascular pathologies, such as cardiac hypertrophy, ischemia-reperfusion injury, diabetic cardiomyopathy, and vascular dysfunction, with emphasis placed on the context-dependent protective or deleterious actions of SIRT2, including its wide array of catalytic activities which span beyond deacetylation. Furthermore, the review uncovers several unresolved research gaps for SIRT2 mechanisms by which SIRT2 modulates cardiac and vascular function during development and aging, thereby paving the way for the discovery of novel therapeutic targets as well as SIRT2-targeted interventions in the prevention and treatment of various cardiovascular diseases.
Collapse
Affiliation(s)
- Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Fahmy Gad Elsaid
- Department of Biology, College of Science, King Khalid University, PO Box 960, Asir, Abha, 61421, Saudi Arabia
| | - Mahdi H Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia
| | - Mohammed S AlQahtani
- Department of Medical Laboratory, Prince Sultan Air Base Hospital, Al-kharj, Saudi Arabia
| | - Anwer Alessa
- Department of Medical Laboratory, Al Kharj Military Industries Corporation Hospital, Al-kharj, Saudi Arabia
| | - Khalid Jambi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ghadah Shukri Albakri
- Department of Teching and Learning, College of Education and Human development, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Faisal Miqad K Albaqami
- Department of Biology, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Elizabeth Bennett
- Queen Elizabeth Hospital Birmingham (QEHB), Nuffield House, 3rd Floor Room 17/E, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB, Dudley Road, Birmingham, West Midlands, B18 7QH
| |
Collapse
|
2
|
Westerveld M, Besermenji K, Aidukas D, Ostrovitsa N, Petracca R. Cracking Lysine Crotonylation (Kcr): Enlightening a Promising Post-Translational Modification. Chembiochem 2025; 26:e202400639. [PMID: 39462860 PMCID: PMC11776371 DOI: 10.1002/cbic.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Indexed: 10/29/2024]
Abstract
Lysine crotonylation (Kcr) is a recently discovered post-translational modification (PTM). Both histone and non-histone Kcr-proteins have been associated with numerous diseases including cancer, acute kidney injury, HIV latency, and cardiovascular disease. Histone Kcr enhances gene expression to a larger extend than the extensively studied lysine acetylation (Kac), suggesting Kcr as a novel potential therapeutic target. Although numerous scientific reports on crotonylation were published in the last years, relevant knowledge gaps concerning this PTM and its regulation still remain. To date, only few selective Kcr-interacting proteins have been identified and selective methods for the enrichment of Kcr-proteins in chemical proteomics analysis are still lacking. The development of new techniques to study this underexplored PTM could then clarify its function in health and disease and hopefully accelerate the development of new therapeutics for Kcr-related disease. Herein we briefly review what is known about the regulation mechanisms of Kcr and the current methods used to identify Kcr-proteins and their interacting partners. This report aims to highlight the significant potential of Kcr as a therapeutic target and to identify the existing scientific gaps that new research must address.
Collapse
Affiliation(s)
- Marinda Westerveld
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| | - Kosta Besermenji
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| | - David Aidukas
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| | - Nikita Ostrovitsa
- Trinity Biomedical Sciences Institute (TBSI)Trinity College Dublin (TCD)152-160 Pearse St.DublinD02 R590Ireland
| | - Rita Petracca
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| |
Collapse
|
3
|
Chen X, Wu L, Zhang Y, Wang S, Wang S. Importance of benzoyltransferase GcnE and lysine benzoylation of alcohol dehydrogenase AdhB in pathogenesis and aflatoxin production in Aspergillus flavus. mBio 2025; 16:e0266524. [PMID: 39601562 PMCID: PMC11708022 DOI: 10.1128/mbio.02665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Lysine benzoylation (Kbz) is a newly identified post-translational modification associated with active transcription and metabolism in eukaryotes. However, whether Kbz exists in pathogenic fungi and its function remains unknown. Here, we demonstrated for the first time that Kbz is present in Aspergillus flavus and identified 60 benzoylated sites on 46 benzoylated proteins by global benzoylome analysis. Our data demonstrated that alcohol dehydrogenase B (AdhB) is regulated by benzoylation on lysine 321 (K321), and mutations of Kbz site in AdhB significantly reduced the alcohol dehydrogenase activity in vivo and in vitro. Both adhB deletion mutant and benzoylated site mutants (K321R and K321A) exhibited similar phenotype, including decreased conidiation and seed colonization, increased sclerotia formation and aflatoxin production, and more sensitive to cell wall damage stress. We also found that GcnE has benzoyltransferase activity in vitro and in vivo, and its repression leads to decreased Kbz level and enzymatic activity of AdhB. The catalytic site E139 is important for the benzoyltransferase function of GcnE. Our study uncovers a previously unknown mechanism by which benzoylation regulates AdhB activity to affect the development, secondary metabolism, pathogenicity, and stress response of A. flavus. Meanwhile, it points out the important role of Kbz in the pathogenicity of pathogenic fungi.IMPORTANCEAspergillus flavus is a ubiquitous opportunistic pathogen of plants and animals, which produces carcinogenic and toxic secondary metabolite aflatoxin. A. flavus and aflatoxin contamination have emerged as a global food safety concern. Currently, post-translational modification plays crucial modulatory roles in the fungal development and virulence, but the role of benzoylation in fungal pathogenicity remains undetermined, which limits the development of prevention and control technique. Here, we first identified 46 benzoylated proteins in A. flavus, and found that benzoyltransferase GcnE exerted effects on pathogenicity and aflatoxin production by regulating the benzoylation of AdhB. This finding not only provided valuable information for prevention and control of A. flavus contamination, but also offered basic knowledge for investigation of the regulation mechanism of secondary metabolism in other fungi.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lihan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuqi Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Zhang B, Schroeder FC. Mechanisms of metabolism-coupled protein modifications. Nat Chem Biol 2025:10.1038/s41589-024-01805-z. [PMID: 39775169 DOI: 10.1038/s41589-024-01805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Intricate coupling between metabolism and protein post-translational modifications (PTMs) has emerged as a fundamental aspect of cellular regulation. Recent studies demonstrate that protein modifications can originate from diverse metabolites, and that their regulation is closely tied to the cellular metabolic state. Here we explore recently uncovered PTMs, including the concept of 'modification of a modification', as well as associated feedback and feedforward regulatory mechanisms, in which modified proteins impact not only related metabolic pathways but also other signaling cascades affecting physiology and diseases. The recently uncovered role of nucleus-localized metabolic enzymes for histone modifications additionally highlights the importance of cell-compartment-specific metabolic states. We further comment on the utility of untargeted metabolomics and proteomics for previously unrecognized PTMs and associated metabolic patterns. Together, these advances have uncovered a dynamic interplay between metabolism and PTMs, offering new perspectives for understanding metabolic regulation and developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Bingsen Zhang
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Nuñez R, Sidlowski PFW, Steen EA, Wynia-Smith SL, Sprague DJ, Keyes RF, Smith BC. The TRIM33 Bromodomain Recognizes Histone Lysine Lactylation. ACS Chem Biol 2024; 19:2418-2428. [PMID: 39556662 PMCID: PMC11706526 DOI: 10.1021/acschembio.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Histone lysine lactylation (Kla) regulates inflammatory gene expression in activated macrophages and mediates the polarization of inflammatory (M1) to reparative (M2) macrophages. However, the molecular mechanisms and key protein players involved in Kla-mediated transcriptional changes are unknown. As Kla is structurally similar to lysine acetylation (Kac), which is bound by bromodomains, we hypothesized that bromodomain-containing proteins bind histone Kla. Here, we screened 28 recombinantly expressed bromodomains for binding to histone Kla peptides via AlphaScreen assays. TRIM33 was the sole bromodomain tested that bound histone Kla peptides. TRIM33 attenuates inflammatory genes during late-stage macrophage activation; thus, TRIM33 provides a potential link between histone Kla and macrophage polarization. Orthogonal biophysical techniques, including isothermal titration calorimetry and protein-detected nuclear magnetic resonance, confirmed the submicromolar binding affinity of the TRIM33 bromodomain to both Kla and Kac histone post-translational modifications. Sequence alignments of human bromodomains revealed a unique glutamic acid residue within the TRIM33 binding pocket that we found confers TRIM33 specificity for binding Kla compared with other bromodomains. Molecular modeling of interactions of Kla with the TRIM33 bromodomain binding pocket and site-directed mutagenesis of glutamic acid confirmed the critical role of this residue in the selective recognition of Kla by TRIM33. Collectively, our findings implicate TRIM33, a bromodomain-containing protein, as a novel reader of histone Kla, potentially bridging the gap between histone Kla and macrophage polarization. This study enhances our understanding of the regulatory role of histone Kla in macrophage-mediated inflammation and offers insights into the underlying structural and biophysical mechanisms.
Collapse
Affiliation(s)
- Raymundo Nuñez
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Paul F W Sidlowski
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Erica A Steen
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Daniel J Sprague
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Robert F Keyes
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brian C Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
6
|
Peng P, Lu Y, Ren X, Yan C, Guo X, Liu R, Song X, Huang H. SIRT3 differentially regulates lysine benzoylation from SIRT2 in mammalian cells. iScience 2024; 27:111176. [PMID: 39524354 PMCID: PMC11546291 DOI: 10.1016/j.isci.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Lysine benzoylation (Kbz), a new type of protein post-translational modification (PTM) we discovered, has garnered significant attention. While we initially identified SIRT2 as a debenzoylase in mammalian cells, recent findings suggest its exclusivity may be questioned. However, other debenzoylases in mammalian cells remain underexplored. Here, our study reveals SIRT3 as an additional debenzoylase. Through quantitative analysis, we identified 1,075 Kbz sites in mammalian cells, with 44 specifically mediated by SIRT3 and 66 influenced by SIRT2. Notably, SIRT3 and SIRT2 regulate distinct Kbz substrates, indicating involvement in different cellular processes. Functional investigations demonstrated SIRT3's regulation of benzoylated protein peptidyl-prolyl cis-trans isomerase F (PPIF), where K73bz and K197bz markedly diminished interactions with the tumor suppressor p53. Additionally, K978bz on ATP-citrate lyase (ACLY) notably inhibited its enzymatic activity. This study not only identifies a debenzoylase and its Kbz substrates but also enhances our understanding of Kbz's biological functions.
Collapse
Affiliation(s)
- Panpan Peng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuelian Ren
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Cong Yan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinlong Guo
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ruilong Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohan Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - He Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Yang S, Fan X, Yu W. Regulatory Mechanism of Protein Crotonylation and Its Relationship with Cancer. Cells 2024; 13:1812. [PMID: 39513918 PMCID: PMC11545499 DOI: 10.3390/cells13211812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Crotonylation is a recently discovered protein acyl modification that shares many enzymes with acetylation. However, it possesses a distinct regulatory mechanism and biological function due to its unique crotonyl structure. Since the discovery of crotonylation in 2011, numerous crotonylation sites have been identified in both histones and other proteins. In recent studies, crotonylation was found to play a role in various diseases and biological processes. This paper reviews the initial discovery and regulatory mechanisms of crotonylation, including various writer, reader, and eraser proteins. Finally, we emphasize the relationship of dysregulated protein crotonylation with eight common malignancies, including cervical, prostate, liver, and lung cancer, providing new potential therapeutic targets.
Collapse
Affiliation(s)
- Siyi Yang
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Xinyi Fan
- Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| |
Collapse
|
8
|
Schaefer Z, Iradukunda J, Lumngwena EN, Basso KB, Blackburn JM, Parker IK. Multilevel Proteomics Reveals Epigenetic Signatures in BCG-Mediated Macrophage Activation. Mol Cell Proteomics 2024; 23:100851. [PMID: 39366656 PMCID: PMC11585779 DOI: 10.1016/j.mcpro.2024.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
The bacillus Calmette-Guérin BCG vaccine (Mycobacterium bovis) is primarily used to prevent tuberculosis (TB) infections but has wide-ranging immunogenic effects. One of its most notable properties is its ability to induce trained immunity, a memory-like response in innate immune cells such as macrophages. Through targeted analyses of well-established histone marks, prior research has shown that these changes are generated through epigenetic modification. Mass spectrometry-based proteomic approaches provide a way to globally profile various aspects of the proteome, providing data to further identify unexplored mechanisms of BCG-mediated immunomodulation. Here we use multi-level proteomics (total, histone, and phospho to identify networks and potential mechanisms that mediate BCG-induced immunomodulation in macrophages. Histone-focused proteomics and total proteomics were performed at the University of Cape Town (data available via ProteomeXchange with identifier PXD051187), while phosphoproteomics data was retrieved from the ProteomeXchange Repository (identifier PXD013171). We identify several epigenetic mechanisms that may drive BCG-induced training phenotypes. Evidence across the proteomics and histone-focused proteomics data set pair 6 epigenetic effectors (NuA4, NuRD, NSL, Sin3A, SIRT2, SIRT6) and their substrates.
Collapse
Affiliation(s)
- Zoe Schaefer
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - John Iradukunda
- Division of Chemical & Systems Biology, University of Cape Town, Cape Town, South Africa
| | - Evelyn N Lumngwena
- School of Clinical Medicine, University of The Witwatersrand, Johannesburg, South Africa; Center for the Study of Emerging and Re-emerging Infections (CREMER), Institute for Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaounde, Cameroon
| | - Kari B Basso
- Mass Spectrometry Research and Education Center, Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Jonathan M Blackburn
- Division of Chemical & Systems Biology, University of Cape Town, Cape Town, South Africa
| | - Ivana K Parker
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
9
|
Bonomi RE, Riordan W, Gelovani JG. The Structures, Functions, and Roles of Class III HDACs (Sirtuins) in Neuropsychiatric Diseases. Cells 2024; 13:1644. [PMID: 39404407 PMCID: PMC11476333 DOI: 10.3390/cells13191644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Over the past two decades, epigenetic regulation has become a rapidly growing and influential field in biology and medicine. One key mechanism involves the acetylation and deacetylation of lysine residues on histone core proteins and other critical proteins that regulate gene expression and cellular signaling. Although histone deacetylases (HDACs) have received significant attention, the roles of individual HDAC isoforms in the pathogenesis of psychiatric diseases still require further research. This is particularly true with regard to the sirtuins, class III HDACs. Sirtuins have unique functional activity and significant roles in normal neurophysiology, as well as in the mechanisms of addiction, mood disorders, and other neuropsychiatric abnormalities. This review aims to elucidate the differences in catalytic structure and function of the seven sirtuins as they relate to psychiatry.
Collapse
Affiliation(s)
- Robin E. Bonomi
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA;
| | - William Riordan
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA;
| | - Juri G. Gelovani
- College of Medicine and Health Sciences, Office of the Provost, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Radiology, Division of Nuclear Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
10
|
Chen L, Huang L, Gu Y, Li C, Sun P, Xiang Y. Novel post-translational modifications of protein by metabolites with immune responses and immune-related molecules in cancer immunotherapy. Int J Biol Macromol 2024; 277:133883. [PMID: 39033895 DOI: 10.1016/j.ijbiomac.2024.133883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 06/30/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Tumour immunotherapy is an effective and essential treatment for cancer. However, the heterogeneity of tumours and the complex and changeable tumour immune microenvironment (TME) creates many uncertainties in the clinical application of immunotherapy, such as different responses to tumour immunotherapy and significant differences in individual efficacy. It makes anti-tumour immunotherapy face many challenges. Immunometabolism is a critical determinant of immune cell response to specific immune effector molecules, significantly affecting the effects of tumour immunotherapy. It is attributed mainly to the fact that metabolites can regulate the function of immune cells and immune-related molecules through the protein post-translational modifications (PTMs) pathway. This study systematically summarizes a variety of novel protein PTMs including acetylation, propionylation, butyrylation, succinylation, crotonylation, malonylation, glutarylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, benzoylation, lactylation and isonicotinylation in the field of tumour immune regulation and immunotherapy. In particular, we elaborate on how different PTMs in the TME can affect the function of immune cells and lead to immune evasion in cancer. Lastly, we highlight the potential treatment with the combined application of target-inhibited protein modification and immune checkpoint inhibitors (ICIs) for improved immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Chen Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China.
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China.
| |
Collapse
|
11
|
Shenk T, Kulp III JL, Chiang LW. Drugs Targeting Sirtuin 2 Exhibit Broad-Spectrum Anti-Infective Activity. Pharmaceuticals (Basel) 2024; 17:1298. [PMID: 39458938 PMCID: PMC11510315 DOI: 10.3390/ph17101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 10/28/2024] Open
Abstract
Direct-acting anti-infective drugs target pathogen-coded gene products and are a highly successful therapeutic paradigm. However, they generally target a single pathogen or family of pathogens, and the targeted organisms can readily evolve resistance. Host-targeted agents can overcome these limitations. One family of host-targeted, anti-infective agents modulate human sirtuin 2 (SIRT2) enzyme activity. SIRT2 is one of seven human sirtuins, a family of NAD+-dependent protein deacylases. It is the only sirtuin that is found predominantly in the cytoplasm. Multiple, structurally distinct SIRT2-targeted, small molecules have been shown to inhibit the replication of both RNA and DNA viruses, as well as intracellular bacterial pathogens, in cell culture and in animal models of disease. Biochemical and X-ray structural studies indicate that most, and probably all, of these compounds act as allosteric modulators. These compounds appear to impact the replication cycles of intracellular pathogens at multiple levels to antagonize their replication and spread. Here, we review SIRT2 modulators reported to exhibit anti-infective activity, exploring their pharmacological action as anti-infectives and identifying questions in need of additional study as this family of anti-infective agents advances to the clinic.
Collapse
Affiliation(s)
- Thomas Shenk
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - John L. Kulp III
- Conifer Point Pharmaceuticals, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
| | - Lillian W. Chiang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
| |
Collapse
|
12
|
Xie J, Yu Z, Zhu Y, Zheng M, Zhu Y. Functions of Coenzyme A and Acyl-CoA in Post-Translational Modification and Human Disease. FRONT BIOSCI-LANDMRK 2024; 29:331. [PMID: 39344325 DOI: 10.31083/j.fbl2909331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 10/01/2024]
Abstract
Coenzyme A (CoA) is synthesized from pantothenate, L-cysteine and adenosine triphosphate (ATP), and plays a vital role in diverse physiological processes. Protein acylation is a common post-translational modification (PTM) that modifies protein structure, function and interactions. It occurs via the transfer of acyl groups from acyl-CoAs to various amino acids by acyltransferase. The characteristics and effects of acylation vary according to the origin, structure, and location of the acyl group. Acetyl-CoA, formyl-CoA, lactoyl-CoA, and malonyl-CoA are typical acyl group donors. The major acyl donor, acyl-CoA, enables modifications that impart distinct biological functions to both histone and non-histone proteins. These modifications are crucial for regulating gene expression, organizing chromatin, managing metabolism, and modulating the immune response. Moreover, CoA and acyl-CoA play significant roles in the development and progression of neurodegenerative diseases, cancer, cardiovascular diseases, and other health conditions. The goal of this review was to systematically describe the types of commonly utilized acyl-CoAs, their functions in protein PTM, and their roles in the progression of human diseases.
Collapse
Affiliation(s)
- Jumin Xie
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Zhang Yu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Ying Zhu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Mei Zheng
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Yanfang Zhu
- Department of Critical Care Medicine, Huangshi Hospital of TCM (Infectious Disease Hospital), 435003 Huangshi, Hubei, China
| |
Collapse
|
13
|
Qin Z, Ren H, Zhao P, Wang K, Liu H, Miao C, Du Y, Li J, Wu L, Chen Z. Current computational tools for protein lysine acylation site prediction. Brief Bioinform 2024; 25:bbae469. [PMID: 39316944 PMCID: PMC11421846 DOI: 10.1093/bib/bbae469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
As a main subtype of post-translational modification (PTM), protein lysine acylations (PLAs) play crucial roles in regulating diverse functions of proteins. With recent advancements in proteomics technology, the identification of PTM is becoming a data-rich field. A large amount of experimentally verified data is urgently required to be translated into valuable biological insights. With computational approaches, PLA can be accurately detected across the whole proteome, even for organisms with small-scale datasets. Herein, a comprehensive summary of 166 in silico PLA prediction methods is presented, including a single type of PLA site and multiple types of PLA sites. This recapitulation covers important aspects that are critical for the development of a robust predictor, including data collection and preparation, sample selection, feature representation, classification algorithm design, model evaluation, and method availability. Notably, we discuss the application of protein language models and transfer learning to solve the small-sample learning issue. We also highlight the prediction methods developed for functionally relevant PLA sites and species/substrate/cell-type-specific PLA sites. In conclusion, this systematic review could potentially facilitate the development of novel PLA predictors and offer useful insights to researchers from various disciplines.
Collapse
Affiliation(s)
- Zhaohui Qin
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Haoran Ren
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
| | - Kaiyuan Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Huixia Liu
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Chunbo Miao
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanxiu Du
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Junzhou Li
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhen Chen
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
14
|
Zhao H, Han Y, Zhou P, Guan H, Gao S. Protein lysine crotonylation in cellular processions and disease associations. Genes Dis 2024; 11:101060. [PMID: 38957707 PMCID: PMC11217610 DOI: 10.1016/j.gendis.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/05/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2024] Open
Abstract
Protein lysine crotonylation (Kcr) is one conserved form of posttranslational modifications of proteins, which plays an important role in a series of cellular physiological and pathological processes. Lysine ε-amino groups are the primary sites of such modification, resulting in four-carbon planar lysine crotonylation that is structurally and functionally distinct from the acetylation of these residues. High levels of Kcr modifications have been identified on both histone and non-histone proteins. The present review offers an update on the research progression regarding protein Kcr modifications in biomedical contexts and provides a discussion of the mechanisms whereby Kcr modification governs a range of biological processes. In addition, given the importance of protein Kcr modification in disease onset and progression, the potential viability of Kcr regulators as therapeutic targets is elucidated.
Collapse
Affiliation(s)
- Hongling Zhao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yang Han
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Guan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shanshan Gao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
15
|
Chu S, Li XH, Letcher RJ. Covalent adduct formation of histone with organophosphorus pesticides in vitro. Chem Biol Interact 2024; 398:111095. [PMID: 38844256 DOI: 10.1016/j.cbi.2024.111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
It is established that organophosphorus pesticide (OPP) toxicity results from modification of amino acids in active sites of target proteins. OPPs can also modify unrelated target proteins such as histones and such covalent histone modifications can alter DNA-binding properties and lead to aberrant gene expression. In the present study, we report on non-enzymatic covalent modifications of calf thymus histones adducted to selected OPPs and organophosphate flame retardants (OPFRs) in vitro using a bottom-up proteomics method approach. Histones were not found to form detectable adducts with the two tested OPFRs but were avidly modified by a few of the seven OPPs that were tested in vitro. Dimethyl phosphate (or diethyl phosphate) adducts were identified on Tyr, Lys and Ser residues. Most of the dialkyl phosphate adducts were identified on Tyr residues. Methyl and ethyl modified histones were also detected. Eleven amino residues in histones showed non-enzymatic covalent methylation by exposure of dichlorvos and malathion. Our bottom-up proteomics approach showing histone-OPP adduct formation warrants future studies on the underlying mechanism of chronic illness from exposure to OPPs.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada.
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, PR China.
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada.
| |
Collapse
|
16
|
Bernasocchi T, Mostoslavsky R. Subcellular one carbon metabolism in cancer, aging and epigenetics. FRONTIERS IN EPIGENETICS AND EPIGENOMICS 2024; 2:1451971. [PMID: 39239102 PMCID: PMC11375787 DOI: 10.3389/freae.2024.1451971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The crosstalk between metabolism and epigenetics is an emerging field that is gaining importance in different areas such as cancer and aging, where changes in metabolism significantly impacts the cellular epigenome, in turn dictating changes in chromatin as an adaptive mechanism to bring back metabolic homeostasis. A key metabolic pathway influencing an organism's epigenetic state is one-carbon metabolism (OCM), which includes the folate and methionine cycles. Together, these cycles generate S-adenosylmethionine (SAM), the universal methyl donor essential for DNA and histone methylation. SAM serves as the sole methyl group donor for DNA and histone methyltransferases, making it a crucial metabolite for chromatin modifications. In this review, we will discuss how SAM and its byproduct, S-adenosylhomocysteine (SAH), along with the enzymes and cofactors involved in OCM, may function in the different cellular compartments, particularly in the nucleus, to directly regulate the epigenome in aging and cancer.
Collapse
Affiliation(s)
- Tiziano Bernasocchi
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Raul Mostoslavsky
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
17
|
Chen L, Liu L, Su H, Xu Y. KbhbXG: A Machine learning architecture based on XGBoost for prediction of lysine β-Hydroxybutyrylation (Kbhb) modification sites. Methods 2024; 227:27-34. [PMID: 38679187 DOI: 10.1016/j.ymeth.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024] Open
Abstract
Lysine β-hydroxybutyrylation is an important post-translational modification (PTM) involved in various physiological and biological processes. In this research, we introduce a novel predictor KbhbXG, which utilizes XGBoost to identify β-hydroxybutyrylation modification sites based on protein sequence information. The traditional experimental methods employed for the identification of β-hydroxybutyrylated sites using proteomic techniques are both costly and time-consuming. Thus, the development of computational methods and predictors can play a crucial role in facilitating the rapid identification of β-hydroxybutyrylation sites. Our proposed KbhbXG model first utilizes machine learning algorithm XGBoost to predict β-hydroxybutyrylation modification sites. On the independent test set, KbhbXG achieves an accuracy of 0.7457, specificity of 0.7771, and an impressive area under the curve (AUC) score of 0.8172. The high AUC score achieved by our method demonstrates its potential for effectively identifying novel β-hydroxybutyrylation sites, thereby facilitating further research and exploration of the β-hydroxybutyrylation process. Also, functional analyses have revealed that different organisms preferentially engage in distinct biological processes and pathways, which can provide valuable insights for understanding the mechanism of β-hydroxybutyrylation and guide experimental verification. To promote transparency and reproducibility, we have made both the codes and dataset of KbhbXG publicly available. Researchers interested in utilizing our proposed model can access these resources at https://github.com/Lab-Xu/KbhbXG.
Collapse
Affiliation(s)
- Leqi Chen
- Department of Statistics, University of Science and Technology Beijing, Beijing 100083, China
| | - Liwen Liu
- The Open University of China, Beijing 100039, China
| | - Haiyan Su
- School of Computing, Montclair State University, NJ 07043, USA
| | - Yan Xu
- Department of Statistics, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
18
|
Hao B, Chen K, Zhai L, Liu M, Liu B, Tan M. Substrate and Functional Diversity of Protein Lysine Post-translational Modifications. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae019. [PMID: 38862432 DOI: 10.1093/gpbjnl/qzae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 06/13/2024]
Abstract
Lysine post-translational modifications (PTMs) are widespread and versatile protein PTMs that are involved in diverse biological processes by regulating the fundamental functions of histone and non-histone proteins. Dysregulation of lysine PTMs is implicated in many diseases, and targeting lysine PTM regulatory factors, including writers, erasers, and readers, has become an effective strategy for disease therapy. The continuing development of mass spectrometry (MS) technologies coupled with antibody-based affinity enrichment technologies greatly promotes the discovery and decoding of PTMs. The global characterization of lysine PTMs is crucial for deciphering the regulatory networks, molecular functions, and mechanisms of action of lysine PTMs. In this review, we focus on lysine PTMs, and provide a summary of the regulatory enzymes of diverse lysine PTMs and the proteomics advances in lysine PTMs by MS technologies. We also discuss the types and biological functions of lysine PTM crosstalks on histone and non-histone proteins and current druggable targets of lysine PTM regulatory factors for disease therapy.
Collapse
Affiliation(s)
- Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaifeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Muyin Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
19
|
Gao J, Zhao Y, Chen C, Ning Q. MVNN-HNHC:A multi-view neural network for identification of human non-histone crotonylation sites. Anal Biochem 2024; 687:115426. [PMID: 38141798 DOI: 10.1016/j.ab.2023.115426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023]
Abstract
Crotonylation on lysine sites in human non-histone proteins plays a crucial role in biology activities. However, because traditional experimental methods for crotonylation site identification are time-consuming and labor-intensive, computational prediction methods have become increasingly popular in recent years. Despite its significance, crotonylation site prediction has received less attention in non-histone proteins than in histones. In this study, we proposed a Multi-View Neural Network for identification of Human Non-Histone Crotonylation sites, named MVNN-HNHC. MVNN-HNHC integrated multi-view encoding features and adaptive encoding features through multi-channel neural network to deeply learn about attribute differences between crotonylation sites and non-crotonylation sites from various aspects. In MVNN-HNHC, convolutional neural networks can obtain local information from these features, and bidirectional long short term memory networks were utilized to extract sequence information. Then, we employ the attention mechanism to fuse the outputs of various feature extraction modules. Finally, the fully connection network acted as the classifier to predict whether a lysine site was crotonylation site or non-crotonylation site. Performance metrics on independent test set, including sensitivity, specificity, accuracy, Matthews correlation coefficient, and area under the curve (AUC) values reach 80.06 %, 75.77 %, 77.06 %, 0.5203, and 0.7792, respectively. To verify the effectiveness of this method, we carry out a series of experiments and the results show that MVNN-HNHC is an effective tool for predicting crotonylation sites in non-histone proteins. The data and code are available on https://github.com/xbbxhbc/junjun0612.git.
Collapse
Affiliation(s)
- Jun Gao
- Department of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China
| | - Yaomiao Zhao
- Department of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China
| | - Chen Chen
- Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian, 116026, China.
| | - Qiao Ning
- Department of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
20
|
Gan Q, Fan C. Orthogonal Translation for Site-Specific Installation of Post-translational Modifications. Chem Rev 2024; 124:2805-2838. [PMID: 38373737 PMCID: PMC11230630 DOI: 10.1021/acs.chemrev.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
21
|
Shi H, Cui W, Qin Y, Chen L, Yu T, Lv J. A glimpse into novel acylations and their emerging role in regulating cancer metastasis. Cell Mol Life Sci 2024; 81:76. [PMID: 38315203 PMCID: PMC10844364 DOI: 10.1007/s00018-023-05104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Metastatic cancer is a major cause of cancer-related mortality; however, the complex regulation process remains to be further elucidated. A large amount of preliminary investigations focus on the role of epigenetic mechanisms in cancer metastasis. Notably, the posttranslational modifications were found to be critically involved in malignancy, thus attracting considerable attention. Beyond acetylation, novel forms of acylation have been recently identified following advances in mass spectrometry, proteomics technologies, and bioinformatics, such as propionylation, butyrylation, malonylation, succinylation, crotonylation, 2-hydroxyisobutyrylation, lactylation, among others. These novel acylations play pivotal roles in regulating different aspects of energy mechanism and mediating signal transduction by covalently modifying histone or nonhistone proteins. Furthermore, these acylations and their modifying enzymes show promise regarding the diagnosis and treatment of tumors, especially tumor metastasis. Here, we comprehensively review the identification and characterization of 11 novel acylations, and the corresponding modifying enzymes, highlighting their significance for tumor metastasis. We also focus on their potential application as clinical therapeutic targets and diagnostic predictors, discussing the current obstacles and future research prospects.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Weigang Cui
- Central Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Yan Qin
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Lei Chen
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Jie Lv
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China.
| |
Collapse
|
22
|
Zheng W. The (patho)physiological roles of the individual deacylase activities of a sirtuin. Chem Biol Drug Des 2024; 103:e14460. [PMID: 39556442 DOI: 10.1111/cbdd.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 11/19/2024]
Abstract
Since the discovery of the sirtuin family founding member (i.e., the yeast silent information regulator 2 (sir2) protein) in 2000, more and more sirtuin proteins have been identified and are currently known to be present in organisms from all the three kingdoms of life (i.e., bacteria, archaea, and eukarya). Seven sirtuin proteins have been identified in mammals including humans, that is, SIRT1/2/3/4/5/6/7. Sirtuin proteins are a class of enzymes with primary catalytic activity being the β-nicotinamide adenine dinucleotide (β-NAD+ or NAD+)-dependent deacylation from the Nε-acyl-lysine residues on cellular proteins. Many sirtuins (e.g., human SIRT1/2/3/4/5/6/7) have been found to each possess multiple individual deacylase activities acting on Nε-acyl-lysine substrates with different acyl groups ranging from the simple formyl and acetyl to the more complex groups like succinyl and myristoyl; however, our current knowledge on the (patho)physiological roles of these individual deacylase activities is still limited, which could be due to the currently still thin research toolbox for investigation (i.e., the deacylase-selective sirtuin mutant and inhibitor/activator). In this article, an updated account on the subject matter will be presented with biochemical and medicinal chemistry perspectives.
Collapse
Affiliation(s)
- Weiping Zheng
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
23
|
Neja S, Dashwood WM, Dashwood RH, Rajendran P. Histone Acyl Code in Precision Oncology: Mechanistic Insights from Dietary and Metabolic Factors. Nutrients 2024; 16:396. [PMID: 38337680 PMCID: PMC10857208 DOI: 10.3390/nu16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer etiology involves complex interactions between genetic and non-genetic factors, with epigenetic mechanisms serving as key regulators at multiple stages of pathogenesis. Poor dietary habits contribute to cancer predisposition by impacting DNA methylation patterns, non-coding RNA expression, and histone epigenetic landscapes. Histone post-translational modifications (PTMs), including acyl marks, act as a molecular code and play a crucial role in translating changes in cellular metabolism into enduring patterns of gene expression. As cancer cells undergo metabolic reprogramming to support rapid growth and proliferation, nuanced roles have emerged for dietary- and metabolism-derived histone acylation changes in cancer progression. Specific types and mechanisms of histone acylation, beyond the standard acetylation marks, shed light on how dietary metabolites reshape the gut microbiome, influencing the dynamics of histone acyl repertoires. Given the reversible nature of histone PTMs, the corresponding acyl readers, writers, and erasers are discussed in this review in the context of cancer prevention and treatment. The evolving 'acyl code' provides for improved biomarker assessment and clinical validation in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sultan Neja
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Antibody & Biopharmaceuticals Core, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
24
|
Li D, Zhang L, Yang P, He Y, Zhou T, Cheng X, Jiang Z, Long Y, Wan Q, Yan P, Gao C, Huang W, Xu Y. Sodium benzoate induces pancreatic inflammation and β cell apoptosis partially via benzoylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115877. [PMID: 38150747 DOI: 10.1016/j.ecoenv.2023.115877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Epigenetics, specifically histone post-translational modification (HPTM) induced by environmental factors, plays a crucial role in the development of diabetes. Sodium benzoate (NAB) is a widely used additive, however, its potential contribution to diabetes has been largely overlooked. In 2018, a novel HPTM called benzoylation (Kbz) induced by NAB was discovered. This modification can be catalyzed by ACSS2 (acyl-CoA synthetase short-chain member 2) and acyltransferase P300/CBP, and can be reversed by erase enzymes SIRT2. Studies have indicated that Kbz may regulate insulin secretion, although the exact molecular mechanism remains unclear. In our study, C57BL/6J mice were divided into two groups: the NC group and the 1g/kg NAB water feeding group. In vivo experiments were conducted using β-TC-6 cells, with 6 mM NAB or 100 μM benzoyl-CoA as stimuli, and 10 μM A485 (P300 inhibitor), 5 μM ACSS2 inhibitor (inhibiting benzoyl-CoA synthesis), or 5 μM AGK2 (SIRT2 inhibitor) as intervention factors. Our study found that, although the experimental concentration of NAB is below the maximum allowable concentration in food, it still damaged the insulin secretion function of C57BL/6J mice and induced inflammation and apoptosis of islet β cells. We observed significant differences in serum benzoyl-CoA levels between healthy individuals and patients with type 2 diabetes. Furthermore, NAB concentration-dependently increases benzoyl-CoA and Kbz levels. When Kbz is down-regulated using A485 and ACSS2 inhibitor, we observed a reduction in β cell inflammation, apoptosis, and insulin secretion damage. Conversely, up-regulating Kbz using AGK2 resulted in increased levels of β cell inflammation and apoptosis. In conclusion, our data suggest that NAB, despite being within the safe dose range, may be an overlooked environmental risk factor contributing to the pathogenesis of diabetes through its impact on Kbz.
Collapse
Affiliation(s)
- Dongze Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
| | - Li Zhang
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ping Yang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
| | - Yanqiu He
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
| | - Tingting Zhou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
| | - Xi Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
| | - Zongzhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
| | - Qin Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
| | - Pijun Yan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
| | - Chenlin Gao
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China.
| |
Collapse
|
25
|
Gong Y, Dai L. Decoding Ubiquitin Modifications by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:1-18. [PMID: 39546132 DOI: 10.1007/978-981-97-7288-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Protein ubiquitination is a critical and widely distributed post-translational modification (PTM) involved in the regulation of almost every cellular process and pathway in cells, such as proteostasis, DNA repair, trafficking, and immunity. Mass spectrometry (MS)-based proteomics is a robust tool to decode the complexity of ubiquitin networks by disclosing the proteome-wide ubiquitination sites, the length, linkage and topology of ubiquitin chains, the chemical modification of ubiquitin chains, and the crosstalk between ubiquitination and other PTMs. In this chapter, we discuss the application of MS in the interpretation of the ubiquitin code.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Betsinger CN, Justice JL, Tyl MD, Edgar JE, Budayeva HG, Abu YF, Cristea IM. Sirtuin 2 promotes human cytomegalovirus replication by regulating cell cycle progression. mSystems 2023; 8:e0051023. [PMID: 37916830 PMCID: PMC10734535 DOI: 10.1128/msystems.00510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE This study expands the growing understanding that protein acetylation is a highly regulated molecular toggle of protein function in both host anti-viral defense and viral replication. We describe a pro-viral role for the human enzyme SIRT2, showing that its deacetylase activity supports HCMV replication. By integrating quantitative proteomics, flow cytometry cell cycle assays, microscopy, and functional virology assays, we investigate the temporality of SIRT2 functions and substrates. We identify a pro-viral role for the SIRT2 deacetylase activity via regulation of CDK2 K6 acetylation and the G1-S cell cycle transition. These findings highlight a link between viral infection, protein acetylation, and cell cycle progression.
Collapse
Affiliation(s)
- Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Joshua L. Justice
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Julia E. Edgar
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Hanna G. Budayeva
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Yaa F. Abu
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| |
Collapse
|
27
|
Yang J, Nicely NI, Weiser BP. Effects of Dimerization on the Deacylase Activities of Human SIRT2. Biochemistry 2023; 62:3383-3395. [PMID: 37966275 PMCID: PMC10702427 DOI: 10.1021/acs.biochem.3c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Human sirtuin isoform 2 (SIRT2) is an NAD+-dependent enzyme that functions as a lysine deacetylase and defatty-acylase. Here, we report that SIRT2 readily dimerizes in solution and in cells and that dimerization affects its ability to remove different acyl modifications from substrates. Dimerization of recombinant SIRT2 was revealed with analytical size exclusion chromatography and chemical cross-linking. Dimerized SIRT2 dissociates into monomers upon binding long fatty acylated substrates (decanoyl-, dodecanoyl-, and myristoyl-lysine). However, we did not observe dissociation of dimeric SIRT2 in the presence of acetyl-lysine. Analysis of X-ray crystal structures led us to discover a SIRT2 double mutant (Q142A/E340A) that is impaired in its ability to dimerize, which was confirmed with chemical cross-linking and in cells with a split-GFP approach. In enzyme assays, the SIRT2(Q142A/E340A) mutant had normal defatty-acylase activity and impaired deacetylase activity compared with the wild-type protein. These results indicate that dimerization is essential for optimal SIRT2 function as a deacetylase. Moreover, we show that SIRT2 dimers can be dissociated by a deacetylase and defatty-acylase inhibitor, ascorbyl palmitate. Our finding that its oligomeric state can affect the acyl substrate selectivity of SIRT2 is a novel mode of activity regulation by the enzyme that can be altered genetically or pharmacologically.
Collapse
Affiliation(s)
- Jie Yang
- Department
of Molecular Biology, Rowan University School
of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Nathan I. Nicely
- Department
of Pharmacology, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Brian P. Weiser
- Department
of Molecular Biology, Rowan University School
of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| |
Collapse
|
28
|
Bilgin N, Türkmen VA, Hammami N, Christensen NR, Hintzen JCJ, Mecinović J. Reading and erasing of histone crotonyllysine mimics by the AF9 YEATS domain and SIRT2 deacylase. Bioorg Med Chem 2023; 95:117500. [PMID: 37839329 DOI: 10.1016/j.bmc.2023.117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Lysine acylations on histones and their recognition by chromatin-binding reader domains and removal by histone deacylases function as an important mechanism for eukaryotic gene regulation. Histone lysine crotonylation (Kcr) is an epigenetic mark associated with active transcription, and its installation and removal are dynamically regulated by cellular epigenetic enzymes. Here, we report binding studies and enzyme assays with histone H3K9 peptides bearing simplest Kcr analogs with varying hydrocarbon chain length, bulkiness, rigidity and polarity. We demonstrate that the AF9 YEATS domain displays selectivity for binding of different acylation modifications on histone H3K9 peptides and exhibits preference for bulkier cinnamoylated lysine over crotonylated lysine and its mimics. SIRT2 shows deacylase activity against most of acylated H3K9 peptides bearing different crotonyllysine mimics, however, it displays a poor ability for the removal of cinnamoyl and trifluorocrotonyl groups. These results demonstrate different substrate selectivities of epigenetic proteins acting on crotonyllysine and pave the way for rational design and development of AF9 YEATS and SIRT2 inhibitors for treatment of human diseases, including cancer.
Collapse
Affiliation(s)
- Nurgül Bilgin
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Vildan A Türkmen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Nesrin Hammami
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Nadja R Christensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jordi C J Hintzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
29
|
Balbinott N, Margis R. The many faces of lysine acylation in proteins: Phytohormones as unexplored substrates. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111866. [PMID: 37714383 DOI: 10.1016/j.plantsci.2023.111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Protein post-translational modification (PTM) is a ubiquitous process that occurs in most proteins. Lysine residues containing an ε-amino group are recognized as hotspots for the addition of different chemical groups. Lysine acetylation, extensively studied in histones, serves as an epigenetic hallmark capable of promoting changes in chromatin structure and availability. Acyl groups derived from molecules involved in carbohydrate and lipid metabolisms, such as lactate, succinate and hydroxybutyrate, were identified as lysine modifications of histones and other proteins. Lysine-acyltransferases do not exhibit significant substrate specificity concerning acyl donors. Furthermore, plant hormones harboring acyl groups often form conjugates with free amino acids to regulate their activity and function during plant physiological processes and responses, a process mediated by GH3 enzymes. Besides forming low-molecular weight conjugates, auxins have been shown to covalently modify proteins in bean seeds. Aside from auxins, other phytohormones with acyl groups are unexplored potential substrates for post-translational acylation of proteins. Using MS data searches, we revealed various proteins with lysine residues linked to auxin, abscisic acid, gibberellic acid, jasmonic acid, and salicylic acid. These findings raise compelling questions about the ability of plant hormones harboring carboxyl groups to serve as new candidates for protein acylation and acting in protein PTM and modulation.
Collapse
Affiliation(s)
- Natalia Balbinott
- Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rogerio Margis
- Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
30
|
Habazaki M, Mizumoto S, Kajino H, Kujirai T, Kurumizaka H, Kawashima SA, Yamatsugu K, Kanai M. A chemical catalyst enabling histone acylation with endogenous acyl-CoA. Nat Commun 2023; 14:5790. [PMID: 37737243 PMCID: PMC10517024 DOI: 10.1038/s41467-023-41426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
Life emerges from a network of biomolecules and chemical reactions catalyzed by enzymes. As enzyme abnormalities are often connected to various diseases, a chemical catalyst promoting physiologically important intracellular reactions in place of malfunctional endogenous enzymes would have great utility in understanding and treating diseases. However, research into such small-molecule chemical enzyme surrogates remains limited, due to difficulties in developing a reactive catalyst capable of activating inert cellular metabolites present at low concentrations. Herein, we report a small-molecule catalyst, mBnA, as a surrogate for a histone acetyltransferase. A hydroxamic acid moiety of suitable electronic characteristics at the catalytic site, paired with a thiol-thioester exchange process, enables mBnA to activate endogenous acyl-CoAs present in low concentrations and promote histone lysine acylations in living cells without the addition of exogenous acyl donors. An enzyme surrogate utilizing cellular metabolites will be a unique tool for elucidation of and synthetic intervention in the chemistry of life and disease.
Collapse
Affiliation(s)
- Misuzu Habazaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shinsuke Mizumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hidetoshi Kajino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
31
|
Scumaci D, Zheng Q. Epigenetic meets metabolism: novel vulnerabilities to fight cancer. Cell Commun Signal 2023; 21:249. [PMID: 37735413 PMCID: PMC10512595 DOI: 10.1186/s12964-023-01253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
Histones undergo a plethora of post-translational modifications (PTMs) that regulate nucleosome and chromatin dynamics and thus dictate cell fate. Several evidences suggest that the accumulation of epigenetic alterations is one of the key driving forces triggering aberrant cellular proliferation, invasion, metastasis and chemoresistance pathways. Recently a novel class of histone "non-enzymatic covalent modifications" (NECMs), correlating epigenome landscape and metabolic rewiring, have been described. These modifications are tightly related to cell metabolic fitness and are able to impair chromatin architecture. During metabolic reprogramming, the high metabolic flux induces the accumulation of metabolic intermediate and/or by-products able to react with histone tails altering epigenome homeostasis. The accumulation of histone NECMs is a damaging condition that cancer cells counteracts by overexpressing peculiar "eraser" enzymes capable of removing these modifications preserving histones architecture. In this review we explored the well-established NECMs, emphasizing the role of their corresponding eraser enzymes. Additionally, we provide a parterre of drugs aiming to target those eraser enzymes with the intent to propose novel routes of personalized medicine based on the identification of epi-biomarkers which might be selectively targeted for therapy. Video Abstract.
Collapse
Affiliation(s)
- Domenica Scumaci
- Research Center On Advanced Biochemistry and Molecular Biology, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy.
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
32
|
Kitamura N, Galligan JJ. A global view of the human post-translational modification landscape. Biochem J 2023; 480:1241-1265. [PMID: 37610048 PMCID: PMC10586784 DOI: 10.1042/bcj20220251] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Post-translational modifications (PTMs) provide a rapid response to stimuli, finely tuning metabolism and gene expression and maintain homeostasis. Advances in mass spectrometry over the past two decades have significantly expanded the list of known PTMs in biology and as instrumentation continues to improve, this list will surely grow. While many PTMs have been studied in detail (e.g. phosphorylation, acetylation), the vast majority lack defined mechanisms for their regulation and impact on cell fate. In this review, we will highlight the field of PTM research as it currently stands, discussing the mechanisms that dictate site specificity, analytical methods for their detection and study, and the chemical tools that can be leveraged to define PTM regulation. In addition, we will highlight the approaches needed to discover and validate novel PTMs. Lastly, this review will provide a starting point for those interested in PTM biology, providing a comprehensive list of PTMs and what is known regarding their regulation and metabolic origins.
Collapse
Affiliation(s)
- Naoya Kitamura
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona 85721, U.S.A
| | - James J. Galligan
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona 85721, U.S.A
| |
Collapse
|
33
|
Li J, Lu L, Liu L, Ren X, Chen J, Yin X, Xiao Y, Li J, Wei G, Huang H, Wei W, Wong J. HDAC1/2/3 are major histone desuccinylases critical for promoter desuccinylation. Cell Discov 2023; 9:85. [PMID: 37580347 PMCID: PMC10425439 DOI: 10.1038/s41421-023-00573-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/02/2023] [Indexed: 08/16/2023] Open
Abstract
Lysine succinylation is one of the major post-translational modifications occurring on histones and is believed to have significant roles in regulating chromatin structure and function. Currently, histone desuccinylation is widely believed to be catalyzed by members of the SIRT family deacetylases. Here, we report that histone desuccinylation is in fact primarily catalyzed by the class I HDAC1/2/3. Inhibition or depletion of HDAC1/2/3 resulted in a marked increase of global histone succinylation, whereas ectopic expression of HDAC1/2/3 but not their deacetylase inactive mutants downregulated global histone succinylation. We demonstrated that the class I HDAC1/2/3 complexes have robust histone desuccinylase activity in vitro. Genomic landscape analysis revealed that histone succinylation is highly enriched at gene promoters and inhibition of HDAC activity results in marked elevation of promoter histone succinylation. Furthermore, our integrated analysis revealed that promoter histone succinylation positively correlates with gene transcriptional activity. Collectively, we demonstrate that the class I HDAC1/2/3 but not the SIRT family proteins are the major histone desuccinylases particularly important for promoter histone desuccinylation. Our study thus sheds new light on the role of histone succinylation in transcriptional regulation.
Collapse
Affiliation(s)
- Jialun Li
- Wuhu Hospital, East China Normal University, Wuhu, Anhui, China
| | - Lu Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lingling Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuelian Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiwei Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xingzhi Yin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanhui Xiao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wei Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Jiemin Wong
- Wuhu Hospital, East China Normal University, Wuhu, Anhui, China.
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
34
|
Chen X, Duan Y, Ren Z, Niu T, Xu Q, Wang Z, Zheng L, Wang Y, Chen X, Huang J, Pan Y. Post-Translational Modification β-Hydroxybutyrylation Regulates Ustilaginoidea virens Virulence. Mol Cell Proteomics 2023; 22:100616. [PMID: 37442371 PMCID: PMC10423879 DOI: 10.1016/j.mcpro.2023.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Lysine β-hydroxybutyrylation (Kbhb) is an evolutionarily conserved and widespread post-translational modification that is associated with active gene transcription and cellular proliferation. However, its role in phytopathogenic fungi remains unknown. Here, we characterized Kbhb in the rice false smut fungus Ustilaginoidea virens. We identified 2204 Kbhb sites in 852 proteins, which are involved in diverse biological processes. The mitogen-activated protein kinase UvSlt2 is a Kbhb protein, and a strain harboring a point mutation at K72, the Kbhb site of this protein, had decreased UvSlt2 activity and reduced fungal virulence. Molecular dynamic simulations revealed that K72bhb increases the hydrophobic solvent-accessible surface area of UvSlt2, thereby affecting its binding to its substrates. The mutation of K298bhb in the septin UvCdc10 resulted in reduced virulence and altered the subcellular localization of this protein. Moreover, we confirmed that the NAD+-dependent histone deacetylases UvSirt2 and UvSirt5 are the major enzymes that remove Kbhb in U. virens. Collectively, our findings identify regulatory elements of the Kbhb pathway and reveal important roles for Kbhb in regulating protein localization and enzymatic activity. These findings provide insight into the regulation of virulence in phytopathogenic fungi via post-translational modifications.
Collapse
Affiliation(s)
- Xiaoyang Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Yuhang Duan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Taotao Niu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhaoyun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yaohui Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China; Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuemin Pan
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
35
|
Zhang Y, Wang X, Li XK, Lv SJ, Wang HP, Liu Y, Zhou J, Gong H, Chen XF, Ren SC, Zhang H, Dai Y, Cai H, Yan B, Chen HZ, Tang X. Sirtuin 2 deficiency aggravates ageing-induced vascular remodelling in humans and mice. Eur Heart J 2023:ehad381. [PMID: 37377116 PMCID: PMC10393077 DOI: 10.1093/eurheartj/ehad381] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
AIMS The mechanisms underlying ageing-induced vascular remodelling remain unclear. This study investigates the role and underlying mechanisms of the cytoplasmic deacetylase sirtuin 2 (SIRT2) in ageing-induced vascular remodelling. METHODS AND RESULTS Transcriptome and quantitative real-time PCR data were used to analyse sirtuin expression. Young and old wild-type and Sirt2 knockout mice were used to explore vascular function and pathological remodelling. RNA-seq, histochemical staining, and biochemical assays were used to evaluate the effects of Sirt2 knockout on the vascular transcriptome and pathological remodelling and explore the underlying biochemical mechanisms. Among the sirtuins, SIRT2 had the highest levels in human and mouse aortas. Sirtuin 2 activity was reduced in aged aortas, and loss of SIRT2 accelerated vascular ageing. In old mice, SIRT2 deficiency aggravated ageing-induced arterial stiffness and constriction-relaxation dysfunction, accompanied by aortic remodelling (thickened vascular medial layers, breakage of elastin fibres, collagen deposition, and inflammation). Transcriptome and biochemical analyses revealed that the ageing-controlling protein p66Shc and metabolism of mitochondrial reactive oxygen species (mROS) contributed to SIRT2 function in vascular ageing. Sirtuin 2 repressed p66Shc activation and mROS production by deacetylating p66Shc at lysine 81. Elimination of reactive oxygen species by MnTBAP repressed the SIRT2 deficiency-mediated aggravation of vascular remodelling and dysfunction in angiotensin II-challenged and aged mice. The SIRT2 coexpression module in aortas was reduced with ageing across species and was a significant predictor of age-related aortic diseases in humans. CONCLUSION The deacetylase SIRT2 is a response to ageing that delays vascular ageing, and the cytoplasm-mitochondria axis (SIRT2-p66Shc-mROS) is important for vascular ageing. Therefore, SIRT2 may serve as a potential therapeutic target for vascular rejuvenation.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Xiaoman Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Xun-Kai Li
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Shuang-Jie Lv
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - He-Ping Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Yang Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
- Division of Vascular Surgery, Department of General Surgery, and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
| | - Jingyue Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
- Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
| | - Hui Gong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
| | - Xiao-Feng Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Si-Chong Ren
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, 783 Xindu Avenue, Chengdu, Sichuan 610500, China
| | - Huina Zhang
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Beijing 10029, China
| | - Yuxiang Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai 200032, China
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bo Yan
- Institute of Precision Medicine, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, Shandong 272067, China
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
- Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
| |
Collapse
|
36
|
Roche KL, Remiszewski S, Todd MJ, Kulp JL, Tang L, Welsh AV, Barry AP, De C, Reiley WW, Wahl A, Garcia JV, Luftig MA, Shenk T, Tonra JR, Murphy EA, Chiang LW. An allosteric inhibitor of sirtuin 2 deacetylase activity exhibits broad-spectrum antiviral activity. J Clin Invest 2023; 133:e158978. [PMID: 37317966 PMCID: PMC10266789 DOI: 10.1172/jci158978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Most drugs used to treat viral disease target a virus-coded product. They inhibit a single virus or virus family, and the pathogen can readily evolve resistance. Host-targeted antivirals can overcome these limitations. The broad-spectrum activity achieved by host targeting can be especially useful in combating emerging viruses and for treatment of diseases caused by multiple viral pathogens, such as opportunistic agents in immunosuppressed patients. We have developed a family of compounds that modulate sirtuin 2, an NAD+-dependent deacylase, and now report the properties of a member of that family, FLS-359. Biochemical and x-ray structural studies show that the drug binds to sirtuin 2 and allosterically inhibits its deacetylase activity. FLS-359 inhibits the growth of RNA and DNA viruses, including members of the coronavirus, orthomyxovirus, flavivirus, hepadnavirus, and herpesvirus families. FLS-359 acts at multiple levels to antagonize cytomegalovirus replication in fibroblasts, causing modest reductions in viral RNAs and DNA, together with a much greater reduction in infectious progeny, and it exhibits antiviral activity in humanized mouse models of infection. Our results highlight the potential of sirtuin 2 inhibitors as broad-spectrum antivirals and set the stage for further understanding of how host epigenetic mechanisms impact the growth and spread of viral pathogens.
Collapse
Affiliation(s)
- Kathryn L. Roche
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Stacy Remiszewski
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Matthew J. Todd
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - John L. Kulp
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Liudi Tang
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Alison V. Welsh
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Ashley P. Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chandrav De
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| | | | - Angela Wahl
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| | - J. Victor Garcia
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thomas Shenk
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - James R. Tonra
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Eain A. Murphy
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
- Microbiology and Immunology Department, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Lillian W. Chiang
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| |
Collapse
|
37
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
38
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
39
|
Jacinto MP, Greenberg MM. Histone Deacetylase 1 Inhibition by Peptides Containing a DNA Damage-Induced, Nonenzymatic, Histone Covalent Modification. Biochemistry 2023; 62:1388-1393. [PMID: 36972223 PMCID: PMC10124317 DOI: 10.1021/acs.biochem.3c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Treatment of HeLa cells with the DNA damaging agent, bleomycin (BLM), results in the formation of a nonenzymatic 5-methylene-2-pyrrolone histone covalent modification on lysine residues (KMP). KMP is much more electrophilic than other N-acyllysine covalent modifications and post-translational modifications, including N-acetyllysine (KAc). Using histone peptides containing KMP, we show that this modification inhibits the class I histone deacetylase, HDAC1, by reacting with a conserved cysteine (C261) located near the active site. HDAC1 is inhibited by histone peptides whose corresponding N-acetylated sequences are known deacetylation substrates, but not one containing a scrambled sequence. The HDAC1 inhibitor, trichostatin A, competes with covalent modification by the KMP-containing peptides. HDAC1 is also covalently modified by a KMP-containing peptide in a complex milieu. These data indicate that peptides containing KMP are recognized by HDAC1 and are bound in the active site. The effects on HDAC1 indicate that KMP formation in cells may contribute to the biological effects of DNA damaging agents, such as BLM, that form this nonenzymatic covalent modification.
Collapse
Affiliation(s)
- Marco Paolo Jacinto
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
40
|
Gao J, Sheng X, Du J, Zhang D, Han C, Chen Y, Wang C, Zhao Y. Identification of 113 new histone marks by CHiMA, a tailored database search strategy. SCIENCE ADVANCES 2023; 9:eadf1416. [PMID: 37018393 PMCID: PMC10075957 DOI: 10.1126/sciadv.adf1416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Shotgun proteomics has been widely used to identify histone marks. Conventional database search methods rely on the "target-decoy" strategy to calculate the false discovery rate (FDR) and distinguish true peptide-spectrum matches (PSMs) from false ones. This strategy has a caveat of inaccurate FDR caused by the small data size of histone marks. To address this challenge, we developed a tailored database search strategy, named "Comprehensive Histone Mark Analysis (CHiMA)." Instead of target-decoy-based FDR, this method uses "50% matched fragment ions" as the key criterion to identify high-confidence PSMs. CHiMA identified twice as many histone modification sites as the conventional method in benchmark datasets. Reanalysis of our previous proteomics data using CHiMA led to the identification of 113 new histone marks for four types of lysine acylations, almost doubling the number of previously reported marks. This tool not only offers a valuable approach for identifying histone modifications but also greatly expands the repertoire of histone marks.
Collapse
Affiliation(s)
- Jinjun Gao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Xinlei Sheng
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Jianfeng Du
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Di Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking–Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chang Han
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Chu Wang
- Peking–Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
41
|
Wang X, Ding Z, Wang R, Lin X. Deepro-Glu: combination of convolutional neural network and Bi-LSTM models using ProtBert and handcrafted features to identify lysine glutarylation sites. Brief Bioinform 2023; 24:6991122. [PMID: 36653898 DOI: 10.1093/bib/bbac631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Lysine glutarylation (Kglu) is a newly discovered post-translational modification of proteins with important roles in mitochondrial functions, oxidative damage, etc. The established biological experimental methods to identify glutarylation sites are often time-consuming and costly. Therefore, there is an urgent need to develop computational methods for efficient and accurate identification of glutarylation sites. Most of the existing computational methods only utilize handcrafted features to construct the prediction model and do not consider the positive impact of the pre-trained protein language model on the prediction performance. Based on this, we develop an ensemble deep-learning predictor Deepro-Glu that combines convolutional neural network and bidirectional long short-term memory network using the deep learning features and traditional handcrafted features to predict lysine glutaryation sites. The deep learning features are generated from the pre-trained protein language model called ProtBert, and the handcrafted features consist of sequence-based features, physicochemical property-based features and evolution information-based features. Furthermore, the attention mechanism is used to efficiently integrate the deep learning features and the handcrafted features by learning the appropriate attention weights. 10-fold cross-validation and independent tests demonstrate that Deepro-Glu achieves competitive or superior performance than the state-of-the-art methods. The source codes and data are publicly available at https://github.com/xwanggroup/Deepro-Glu.
Collapse
Affiliation(s)
- Xiao Wang
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, 450002, Zhengzhou, China
| | - Zhaoyuan Ding
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, 450002, Zhengzhou, China
| | - Rong Wang
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, 450002, Zhengzhou, China
| | - Xi Lin
- Instiute of Artificial Intelligence, Xiamen University, No.4221, Xiang'an South Road, 361000, Xiamen, China
| |
Collapse
|
42
|
Chu S, Letcher RJ. Bottom-up proteomics analysis for adduction of the broad-spectrum herbicide atrazine to histone. Anal Bioanal Chem 2023; 415:1497-1504. [PMID: 36662240 PMCID: PMC9974708 DOI: 10.1007/s00216-023-04545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Histones are the major proteinaceous components of chromatin in eukaryotic cells and an important part of the epigenome. The broad-spectrum herbicide atrazine (2-chloro-4-[ethylamino]-6-[isopropylamino]-1, 3, 5-triazine) and its metabolites are known to form protein adducts, but the formation of atrazine-histone adducts has not been studied. In this study, a bottom-up proteomics analysis method was optimized and applied to identify histone adduction by atrazine in vitro. Whole histones of calf thymus or human histone H3.3 were incubated with atrazine. After solvent-based protein precipitation, the protein was digested by trypsin/Glu-C and the resulting peptides were analyzed by high-resolution mass spectrometry using an ultra-high-performance liquid chromatograph interfaced with a quadrupole Exactive-Orbitrap mass spectrometer. The resulting tryptic/Glu-C peptide of DTNLCAIHAK from calf thymus histone H3.1 or human histone H3.3 was identified with an accurate mass shift of +179.117 Da in atrazine incubated samples. It is deduced that a chemical group with an elemental composition of C8H13N5 (179.1171 Da) from atrazine adducted with calf thymus histone H3.1 or human histone H3.3. It was confirmed by MS/MS analysis that the adduction position was at its cysteine 110 residue. Time- and concentration-dependent assays also confirmed the non-enzymatic covalent modification of histone H3.3 by atrazine in vitro. Thus, the potential exists that atrazine adduction may lead to the alteration of histones that subsequently disturbs their normal function.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada.
| |
Collapse
|
43
|
Nguyen MC, Strahl BD, Kutateladze TG. Engaging with benzoyllysine through a π-π-π mechanism. Curr Opin Chem Biol 2023; 72:102252. [PMID: 36566617 PMCID: PMC9870921 DOI: 10.1016/j.cbpa.2022.102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Epigenetic modifications have been gaining in prominence as fundamental components of the chromatin regulatory machinery. In this review, we summarize the molecular and structural mechanisms of reading, writing, and erasing of lysine benzoylation, a recently discovered posttranslational modification (PTM) in histones. We highlight a unique nature of the conjugated π system of benzoyllysine that may aid in the development of benzoyllysine-specific effectors indifferent to the saturated acyllysine modifications. We also discuss transcriptional and metabolic functions associated with benzoylation of histones and implications of ingesting of sodium benzoate for human health.
Collapse
Affiliation(s)
- Minh Chau Nguyen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
44
|
Beyond metabolic waste: lysine lactylation and its potential roles in cancer progression and cell fate determination. Cell Oncol (Dordr) 2023; 46:465-480. [PMID: 36656507 DOI: 10.1007/s13402-023-00775-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/21/2022] [Accepted: 11/26/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Lactate is an important metabolite derived from glycolysis under physiological and pathological conditions. The Warburg effect reveals the vital role of lactate in cancer progression. Numerous studies have reported crucial roles for lactate in cancer progression and cell fate determination. Lactylation, a novel posttranslational modification (PTM), has provided a new opportunity to investigate metabolic epigenetic regulation, and studies of this process have been initiated in a wide range of cancer cells, cancer-associated immune cells, and embryonic stem cells. CONCLUSION Lactylation is a novel and interesting mechanism of lactate metabolism linked to metabolic rewiring and epigenetic remodeling. It is a potential and hopeful target for cancer therapy. Here, we summarize the discovery of lactylation, the mechanisms of site modification, and progress in research on nonhistone lactylation. We focus on the potential roles of lactylation in cancer progression and cell fate determination and the possible therapeutic strategies for targeting lysine lactylation. Finally, we suggest some future research topics on lactylation to inspire some interesting ideas.
Collapse
|
45
|
Characterizing crosstalk in epigenetic signaling to understand disease physiology. Biochem J 2023; 480:57-85. [PMID: 36630129 PMCID: PMC10152800 DOI: 10.1042/bcj20220550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Epigenetics, the inheritance of genomic information independent of DNA sequence, controls the interpretation of extracellular and intracellular signals in cell homeostasis, proliferation and differentiation. On the chromatin level, signal transduction leads to changes in epigenetic marks, such as histone post-translational modifications (PTMs), DNA methylation and chromatin accessibility to regulate gene expression. Crosstalk between different epigenetic mechanisms, such as that between histone PTMs and DNA methylation, leads to an intricate network of chromatin-binding proteins where pre-existing epigenetic marks promote or inhibit the writing of new marks. The recent technical advances in mass spectrometry (MS) -based proteomic methods and in genome-wide DNA sequencing approaches have broadened our understanding of epigenetic networks greatly. However, further development and wider application of these methods is vital in developing treatments for disorders and pathologies that are driven by epigenetic dysregulation.
Collapse
|
46
|
Guo AD, Chen XH. Genetically Encoded Noncanonical Amino Acids in Proteins to Investigate Lysine Benzoylation. Methods Mol Biol 2023; 2676:131-146. [PMID: 37277629 DOI: 10.1007/978-1-0716-3251-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Posttranslational modifications (PTMs) of lysine residues are major regulators of gene expression, protein-protein interactions, and protein localization and degradation. Histone lysine benzoylation is a recently identified epigenetic marker associated with active transcription, which has physiological relevance distinct from histone acetylation and can be regulated by debenzoylation of sirtuin 2 (SIRT2). Herein, we provide a protocol for the incorporation of benzoyllysine and fluorinated benzoyllysine into full-length histone proteins, which further serve as benzoylated histone probes with NMR or fluorescence signal for investigating the dynamics of SIRT2-mediated debenzoylation.
Collapse
Affiliation(s)
- An-Di Guo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Hua Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
47
|
Sun X, Zhang Y, Chen XF, Tang X. Acylations in cardiovascular biology and diseases, what's beyond acetylation. EBioMedicine 2023; 87:104418. [PMID: 36584593 PMCID: PMC9808004 DOI: 10.1016/j.ebiom.2022.104418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/29/2022] Open
Abstract
Metabolism regulates cardiovascular biology through multiple mechanisms, including epigenetic modifications. Over the past two decades, experimental and preclinical studies have highlighted the critical roles of histone modifications in cardiovascular development, homeostasis, and diseases. The widely studied histone acetylation is critical in cardiovascular biology and diseases, and inhibitors of histone deacetylases show therapeutic values. In addition to lysine acetylation, a series of novel non-acetyl lysine acylations have recently been recognized. These non-acetyl lysine acylations have been demonstrated to have physiological and pathological functions, and recent studies have analyzed the roles of these non-acetyl lysine acylations in cardiovascular biology. Herein, we review the current advances in the understanding of non-acetyl lysine acylations in cardiovascular biology and discuss open questions and translational perspectives. These new pieces of evidence provide a more extensive insight into the epigenetic mechanisms underlying cardiovascular biology and help assess the feasibility of targeting acylations to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Xin Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yang Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Xiao-Feng Chen
- Department of Biochemistry and Molecular Biology, Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
48
|
Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther 2022; 7:396. [PMID: 36577755 PMCID: PMC9797573 DOI: 10.1038/s41392-022-01245-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.
Collapse
Affiliation(s)
- Shuang Shang
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Jing Liu
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Fang Hua
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| |
Collapse
|
49
|
Tan L, Yang Y, Shang W, Hu Z, Peng H, Li S, Hu X, Rao X. Identification of Lysine Succinylome and Acetylome in the Vancomycin-Intermediate Staphylococcus aureus XN108. Microbiol Spectr 2022; 10:e0348122. [PMID: 36374118 PMCID: PMC9769639 DOI: 10.1128/spectrum.03481-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Protein posttranslational modifications (PTMs) play important roles in regulating numerous biological functions of prokaryotic and eukaryotic organisms. Lysine succinylation (Ksucc) and acetylation (Kac) are two important PTMs that have been identified in various bacterial species. However, the biological functions of Ksucc and Kac in vancomycin-intermediate S. aureus (VISA) remain unclear. In this study, we systematically identified 3,260 Ksucc sites in 799 proteins and 7,935 Kac sites across 1,710 proteins in the VISA strain XN108. Functional analyses revealed that both Ksucc and Kac sites were highly enriched in several critical metabolic pathways, including ribosomal metabolism, tricarboxylic acid cycle, and glycolysis. Furthermore, a remarkable cross talk between Ksucc and Kac modifications was observed that almost 75% of the succinylated sites were also frequently acetylated. In addition, we identified SaCobB, a Sirtuin 2-like lysine deacetylase, as a bifunctional enzyme with both deacetylation and desuccinylation activities in S. aureus. We demonstrated the first lysine succinylome and acetylome in a VISA and identified SaCobB, a functional enzyme taking part in the regulation of Ksucc and Kac in S. aureus. Our findings provide valuable information for further study on the regulatory mechanisms of PTMs in S. aureus. IMPORTANCE Lysine succinylation (Ksucc) and acetylation (Kac) are two important protein posttranslational modifications (PTMs) that regulate numerous biological functions in prokaryotes and eukaryotes. However, the functions of Ksucc and Kac in Staphylococcus aureus are seldom described. Understanding of Ksucc and Kac modifications in S. aureus will facilitate the development of new strategies to control infections. Herein, we quantified both Ksucc and Kac in a vancomycin-intermediate S. aureus (VISA) strain XN108, analyzed the interaction between these two PTMs, and identified SaCobB as a bifunctional enzyme with both deacetylation and desuccinylation activities. This study is the first description of dual PTMs, Ksucc and Kac profiles, in the VISA. The findings could provide valuable information for the following researches on the regulatory roles of PTMs in S. aureus.
Collapse
Affiliation(s)
- Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shu Li
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
50
|
Epigenetic Changes in Saccharomyces cerevisiae Alters the Aromatic Profile in Alcoholic Fermentation. Appl Environ Microbiol 2022; 88:e0152822. [PMID: 36374027 PMCID: PMC9746323 DOI: 10.1128/aem.01528-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epigenetic changes in genomics provide phenotypic modification without DNA sequence alteration. This study shows that benzoic acid, a common food additive and known histone deacetylase inhibitor (HDACi), has an epigenetic effect on Saccharomyces cerevisiae. Benzoic acid stimulated formation of epigenetic histone marks H3K4Me2, H3K27Me2, H3K18ac, and H3Ser10p in S. cerevisiae and altered their phenotypic behavior, resulting in increased production of phenylethyl alcohol and ester compounds during alcoholic fermentation using wine as a representative model system. Our study demonstrates the HDACi activity of certain dietary compounds such as sodium butyrate, curcumin and anacardic acid, suggests the potential use of these dietary compounds in altering S. cerevisiae phenotypes without altering host-cell DNA. This study highlights the potential to use common dietary compounds to exploit epigenetic modifications for various fermentation and biotechnology applications as an alternative to genetic modification. These findings indicate that benzoic acid and other food additives may have potential epigenetic effects on human gut microbiota, in which several yeast species are involved. IMPORTANCE The manuscript investigates and reports for the first time utilizing a non-GMO approach to alter the fermentation process of Pinot Noir wines. We have experimentally demonstrated that certain dietary compounds possess histone deacetylase (HDAC) inhibiting activity and can alter the wine characteristics by potentially altering yeast gene transcription, which was resulted from epigenetic effects. We have previously proposed the term "nutrifermentics" to represent this newly proposed field of research that provides insights on the effect of certain dietary compounds on microbial strains and their potential application in fermentation. This technological approach is a novel way to manipulate microorganisms for innovative food and beverage production with quality attributes catering for consumer's needs. Using a multidisciplinary approach with an emphasis on food fermentation and biotechnology, this study will be substantially useful and of broad interest to food microbiologists and biotechnologists who seek for innovative concepts with real-world application potential.
Collapse
|