1
|
Handa T, Huang CY, Li Y, Olsen N, Chica DG, Xu DD, Sturm F, McIver JW, Roy X, Zhu X. Terahertz emission from giant optical rectification in a van der Waals material. NATURE MATERIALS 2025:10.1038/s41563-025-02201-1. [PMID: 40169796 DOI: 10.1038/s41563-025-02201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 03/10/2025] [Indexed: 04/03/2025]
Abstract
The exfoliation and stacking of two-dimensional van der Waals crystals have created unprecedented opportunities in the discovery of quantum phases. A major obstacle to the advancement of this field is the limited spectroscopic access due to a mismatch in the sample sizes (10-6-10-5 m) and the wavelengths (10-4-10-3 m) of electromagnetic radiation relevant to their low-energy excitations. Here we introduce ferroelectric semiconductor NbOI2 as a two-dimensional van der Waals material capable of operating as a van der Waals terahertz emitter. We demonstrate intense and broadband terahertz generation from NbOI2 with an optical rectification efficiency that is more than one order of magnitude higher than that of ZnTe, the current standard terahertz emitter. Moreover, this NbOI2 terahertz emitter can be integrated into van der Waals heterostructures to enable on-chip near-field terahertz spectroscopy of a target van der Waals material and device. Our approach provides a general spectroscopic tool for two-dimensional van der Waals materials and quantum matter.
Collapse
Affiliation(s)
- Taketo Handa
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Chun-Ying Huang
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Yiliu Li
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Nicholas Olsen
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Daniel G Chica
- Department of Chemistry, Columbia University, New York, NY, USA
| | - David D Xu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Felix Sturm
- Department of Physics, Columbia University, New York, NY, USA
| | - James W McIver
- Department of Physics, Columbia University, New York, NY, USA
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Qiu F, Feng S, Yang Z, Yang C, Chen L, Hu M, Li H, Guo Y, Tian Z, Han J, Huang Z, Xiong Q, Wang H. Nanoscale Spatially Resolved Terahertz Response of a PbS-Graphene Heterostructure. ACS NANO 2025; 19:10943-10954. [PMID: 40065684 DOI: 10.1021/acsnano.4c16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Heterostructures have promising applications in photonics and optoelectronics, mainly due to their high electron mobility and broadband photoresponse covering visible, infrared, and terahertz (THz) ranges. However, it is challenging to detect heterostructures in high definition with conventional THz techniques. Here we demonstrate a THz nanoscopic imaging method which is capable of resolving the local THz response of PbS-graphene heterostructures based upon a sophisticated THz near-field optical microscope. The interaction between the THz near field and the heterostructure is further explored by numerical simulations. The results reveal that both the composition and structure of the layers composing the heterostructure contribute to the THz signal. Furthermore, we develop a reliably finite dipole model suitable for retrieving THz optoelectronic properties of multilayered systems from measured THz hyperspectra, and realize mapping the local effective permittivity and conductivity of the heterostructure. Our work discloses the mechanism of the THz response of heterostructures, and provides a useful method for high-definition quantifying complex THz materials and devices.
Collapse
Affiliation(s)
- Fucheng Qiu
- Center of Super-Resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Shuanglong Feng
- Center of Super-Resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhongbo Yang
- Center of Super-Resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Chan Yang
- Center of Super-Resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Ligang Chen
- Center of Super-Resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Min Hu
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hua Li
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yunchang Guo
- Yihuang (Wuxi) Spectrum Measurement & Control Co., Ltd., Wuxi 214024, China
| | - Zhen Tian
- Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering and the Key Laboratory of Optoelectronic Information and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiaguang Han
- Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering and the Key Laboratory of Optoelectronic Information and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Zhiming Huang
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Huabin Wang
- Center of Super-Resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
3
|
Lu C, Liang W. Reconfigurable Terahertz Metamaterials Based on the Refractive Index Change of Epitaxial Vanadium Dioxide Films Across the Metal-Insulator Transition. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:439. [PMID: 40137612 PMCID: PMC11945049 DOI: 10.3390/nano15060439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
The intrinsic metal-insulator transition (MIT) of VO2 films near room temperature presents significant potential for reconfigurable metamaterials in the terahertz (THz) frequency range. While previous designs primarily focused on changes in electrical conductivity across the MIT, the accompanying dielectric changes due to the mesoscopic carrier confinement effect have been largely unexplored. In this study, we integrate asymmetric split-ring resonators on 35 nm epitaxial VO2 film and identify a "dielectric window" at the early stages of the MIT. This is characterized by a redshift in the resonant frequency without a significant degradation in the resonant quality. This phenomenon is attributed to an inhomogeneous phase transition in the VO2 film, which induces a purely dielectric change at the onset of the MIT, while the electrical conductivity transition occurs later, slightly above the percolation threshold. Our findings provide deeper insights into the THz properties of VO2 films and pave the way for dielectric-based, VO2 hybrid reconfigurable metamaterials.
Collapse
Affiliation(s)
- Chang Lu
- Department of Electronic Communication and Technology, Shenzhen Institute of Information Technology, Shenzhen 518029, China;
| | - Weizheng Liang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Li Y, Ma H, Shi R, Wu Y, Feng S, Fu Y, Wei Y, Zhao X, Dong K, Jiang K, Liu K, Zhang X. Wafer-Scale Transfer and Integration of Tungsten-Doped Vanadium Dioxide Films. ACS NANO 2025; 19:6209-6220. [PMID: 39921635 DOI: 10.1021/acsnano.4c15059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Modern optoelectronic devices trend toward greater flexibility, wearability, and multifunctionality, demanding higher standards for fabrication and operation temperatures. Vanadium dioxide (VO2), with its metal-insulator transition (MIT) at 68 °C, serves as a crucial functional layer in many optoelectronic devices. However, VO2 usually needs to grow at >450 °C in an oxygen-containing atmosphere and to function across its MIT temperature, leading to low compatibility with most optoelectronic devices, especially on flexible substrates. In this work, we report a layer-by-layer transfer method of wafer-scale tungsten-doped VO2 films, which enables sequential integration of the VO2 films with low MIT temperatures (down to 40 °C) onto arbitrary substrates. Notably, by stacking multiple VO2 films with different doped levels, a quasi-gradient-doped VO2 architecture can be achieved, effectively broadening the MIT temperature window and reducing the hysteresis of VO2. These integrated VO2 films find a wide scope of applications in flexible temperature indicator strips, infrared camouflage devices, nonreciprocal ultrafast light modulators, and smart photoactuators. Our work promotes the development of more flexible and tunable optoelectronic devices integrated with VO2.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Information Photonics Technology and School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P.R. China
| | - He Ma
- Institute of Information Photonics Technology and School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P.R. China
| | - Run Shi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Shifeng Feng
- Institute of Information Photonics Technology and School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P.R. China
| | - Yulan Fu
- Institute of Information Photonics Technology and School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P.R. China
| | - Yuanqi Wei
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing 100084, P.R. China
| | - Xuzhe Zhao
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P.R. China
| | - Kaichen Dong
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P.R. China
| | - Kaili Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing 100084, P.R. China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Xinping Zhang
- Institute of Information Photonics Technology and School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P.R. China
| |
Collapse
|
5
|
Wang Y, Zhang T, Ma K, Bin Z, Zhang X, Tang F, Xu X, Yin T, Hu M. Terahertz Nanoscopy on Low-Dimensional Materials: Toward Ultrafast Physical Phenomena. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2736-2755. [PMID: 39815472 DOI: 10.1021/acsami.4c14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Low-dimensional materials (LDMs) with unique electromagnetic properties and diverse local phenomena have garnered significant interest, particularly for their low-energy responses within the terahertz (THz) range. Achieving deep subwavelength resolution, THz nanoscopy offers a promising route to investigate LDMs at the nanoscale. Steady-state THz nanoscopy has been demonstrated as a powerful tool for investigating light-matter interactions across boundaries and interfaces, enabling insights into physical phenomena such as localized collective oscillations, quantum confinement of quasiparticles, and metal-to-insulator phase transitions (MITs). However, tracking the ultrafast nonequilibrium dynamics of LDMs remains challenging. Ultrafast THz nanoscopy, with femtosecond temporal resolution, provides a direct pathway to investigate and manipulate the motion of, for example, charges, currents, and carriers at ultrashort time scales. In this review, we focus on recent advances in THz nanoscopy of LDMs, with particular emphasis on the ultrafast dynamics of light-matter interaction. We provide a concise overview of recent advances and suggest future research directions in this impactful field of interdisciplinary science.
Collapse
Affiliation(s)
- Yueying Wang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tianyu Zhang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kun Ma
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zechuan Bin
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaoqiuyan Zhang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fu Tang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xingxing Xu
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tinggui Yin
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Min Hu
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
6
|
Zhang M, Li J, Liu S, Leng N, Ren Z, Yang Z, Chen X, Kong D, Li J, Huang Z, Zhang B, Wan C, Bai M, Wu X. Ultra-broadband terahertz radar imaging with a 4-in. spintronic strong-field emitter. OPTICS LETTERS 2024; 49:7118-7121. [PMID: 39671656 DOI: 10.1364/ol.546048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 12/15/2024]
Abstract
Terahertz (THz) radar offers significant advantages, notably high-frequency and strong penetration ability, making it highly promising for applications in aerospace, non-destructive testing, and other imaging scenarios. However, existing THz radar imaging technologies face challenges in large-scale target detection due to the complexity and high costs of the system, which limits their development and commercial application. Here we establish a radar system based on a one-dimensional photonic crystal structure-enhanced 4-inch spintronic strong-field THz emitter and obtain THz radar signals and imaging with a signal-to-noise ratio of ∼58 dB and a bandwidth exceeding 5 THz. Through the precise design of the emitter structure, we ensure not only the generation of a high-quality uniform plane wave when the THz beam diameter reaches 4 in. but also the applicability of the THz field strength for radar imaging measurements within a 4-in. field of view area. The approach provides a promising platform for ultra-broadband, high-resolution, near-monostatic THz radar imaging, with broad potential applications in aerospace engineering, stealth testing, THz 3D reconstruction, and THz tomography.
Collapse
|
7
|
Tang F, Zhong Q, Zhang X, Zhuang Y, Zhang T, Xu X, Hu M. Angle-Controlled Nanospectrum Switching from Lorentzian to Fano Lineshapes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1932. [PMID: 39683320 DOI: 10.3390/nano14231932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
The tunability of spectral lineshapes, ranging from Lorentzian to Fano profiles, is essential for advancing nanoscale photonic technologies. Conventional far-field techniques are insufficient for studying nanoscale phenomena, particularly within the terahertz (THz) range. In this work, we use a U-shaped resonant ring on a waveguide substrate to achieve precise modulation of Lorentzian, Fano, and antiresonance profiles. THz scattering scanning near-field optical microscopy (s-SNOM) reveals the underlying physical mechanism of these transitions, driven by time-domain phase shifts between the background excitation from the waveguide and the resonance of the U-shaped ring. Our approach reveals a pronounced asymmetry in the near-field response, which remains undetectable in far-field systems. The ability to control spectral lineshapes at the nanoscale presents promising applications in characterizing composite nanoresonators and developing nanoscale phase sensors.
Collapse
Affiliation(s)
- Fu Tang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Qinyang Zhong
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Xiaoqiuyan Zhang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Yuxuan Zhuang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Tianyu Zhang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Xingxing Xu
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Min Hu
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| |
Collapse
|
8
|
Chu Z, Yang J, Li Y, Hwangbo K, Wen J, Bielinski AR, Zhang Q, Martinson ABF, Hruszkewycz SO, Fong DD, Xu X, Norman MR, Bhattacharya A, Wen H. Revealing subterahertz atomic vibrations in quantum paraelectrics by surface-sensitive spintronic terahertz spectroscopy. SCIENCE ADVANCES 2024; 10:eads8601. [PMID: 39612325 PMCID: PMC11606436 DOI: 10.1126/sciadv.ads8601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/29/2024] [Indexed: 12/01/2024]
Abstract
Understanding surface collective dynamics in quantum materials is crucial for advancing quantum technologies. For example, surface phonon modes in quantum paraelectrics are thought to be essential in facilitating interfacial superconductivity. However, detecting these modes, especially below 1 terahertz, is challenging because of limited sampling volumes and the need for high spectroscopic resolution. Here, we report surface soft transverse optical (TO1) phonon dynamics in KTaO3 and SrTiO3 by surface-sensitive spintronic terahertz spectroscopy that can sense the collective modes only a few nanometers deep from the surface. In KTaO3, the TO1 mode softens and sharpens with decreasing temperature, leveling off at 0.7 terahertz. In contrast, this mode in SrTiO3 broadens substantially below the quantum paraelectric crossover and coincides with the hardening of a sub-milli-electron volt phonon mode related to the antiferrodistortive transition. These observations that deviate from their bulk properties may have implications for interfacial superconductivity and ferroelectricity. The developed technique opens opportunities for sensing low-energy surface collective excitations.
Collapse
Affiliation(s)
- Zhaodong Chu
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Junyi Yang
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Yan Li
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Kyle Hwangbo
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Ashley R. Bielinski
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Qi Zhang
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | | | | | - Dillon D. Fong
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Michael R. Norman
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Anand Bhattacharya
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Haidan Wen
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
9
|
Zhang X, Zhang X, Zhang Z, Zhang T, Xu X, Tang F, Yang J, Wang J, Jiang H, Duan Z, Wei Y, Gong Y, Zhang H, Li P, Hu M. Time-Domain-Filtered Terahertz Nanoscopy of Intrinsic Light-Matter Interactions. NANO LETTERS 2024; 24:15008-15015. [PMID: 39546347 DOI: 10.1021/acs.nanolett.4c03715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Terahertz (THz) technology holds great potential across diverse applications, including biosensing and information communications, but conventional far-field techniques are limited by diffraction. Near-field optical microscopy overcomes this barrier through a sharp tip that concentrates incident THz waves into nanometric volumes, detecting scattered near-field to reveal nanoscale optical properties. However, owing to the large THz wavelengths, resonant surface waves arising on the tip and cantilever obscure the intrinsic response. Here we combine near-field microscopy with THz time-domain spectroscopy and implement time-domain filtering with an elongated cantilever to eliminate this artifact, achieving intrinsic nanospectroscopy and nanoimaging. By applying this technique, we distinguish and characterize historical pigments of an ancient sculpture, such as vermilion and red lead, on the nanoscale. We also unravel deep-subwavelength localized resonance modes in THz optical antennas, demonstrating capabilities for THz nanophotonics. Our work advances THz nanoimaging and nanospectroscopy techniques to probe intrinsic nanoscale THz light-matter interactions.
Collapse
Affiliation(s)
- Xiaoqiuyan Zhang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, 610054, China
| | - Xin Zhang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
- Hubei Optical Fundamental Research Center, Wuhan, 430074, China
| | - Zhuocheng Zhang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, 610054, China
| | - Tianyu Zhang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, 610054, China
| | - Xingxing Xu
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, 610054, China
| | - Fu Tang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, 610054, China
| | - Jing Yang
- Department of Archaeology, Cultural Heritage and Museology, School of Art and Archaeology, Zhejiang University, Hangzhou, 310028, China
- Laboratory of Art and Archaeology Image, Zhejiang University, Hangzhou, Zhejiang 310028, China
| | - Jiakun Wang
- Department of Archaeology, Cultural Heritage and Museology, School of Art and Archaeology, Zhejiang University, Hangzhou, 310028, China
- Laboratory of Art and Archaeology Image, Zhejiang University, Hangzhou, Zhejiang 310028, China
| | - Hui Jiang
- School of Computer Science and Engineering (School of Cyber Security), University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhaoyun Duan
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, 610054, China
| | - Yanyu Wei
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, 610054, China
| | - Yubin Gong
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, 610054, China
| | - Hui Zhang
- Department of Archaeology, Cultural Heritage and Museology, School of Art and Archaeology, Zhejiang University, Hangzhou, 310028, China
- Laboratory of Art and Archaeology Image, Zhejiang University, Hangzhou, Zhejiang 310028, China
| | - Peining Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
- Hubei Optical Fundamental Research Center, Wuhan, 430074, China
| | - Min Hu
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, 610054, China
| |
Collapse
|
10
|
Xu S, Li Y, Vitalone RA, Jing R, Sternbach AJ, Zhang S, Ingham J, Delor M, McIver JW, Yankowitz M, Queiroz R, Millis AJ, Fogler MM, Dean CR, Pasupathy AN, Hone J, Liu M, Basov DN. Electronic interactions in Dirac fluids visualized by nano-terahertz spacetime interference of electron-photon quasiparticles. SCIENCE ADVANCES 2024; 10:eado5553. [PMID: 39441924 PMCID: PMC11498214 DOI: 10.1126/sciadv.ado5553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Ultraclean graphene at charge neutrality hosts a quantum critical Dirac fluid of interacting electrons and holes. Interactions profoundly affect the charge dynamics of graphene, which is encoded in the properties of its electron-photon collective modes: surface plasmon polaritons (SPPs). Here, we show that polaritonic interference patterns are particularly well suited to unveil the interactions in Dirac fluids by tracking polaritonic interference in time at temporal scales commensurate with the electronic scattering. Spacetime SPP interference patterns recorded in terahertz (THz) frequency range provided unobstructed readouts of the group velocity and lifetime of polariton that can be directly mapped onto the electronic spectral weight and the relaxation rate. Our data uncovered prominent departures of the electron dynamics from the predictions of the conventional Fermi-liquid theory. The deviations are particularly strong when the densities of electrons and holes are approximately equal. The proposed spacetime imaging methodology can be broadly applied to probe the electrodynamics of quantum materials.
Collapse
Affiliation(s)
- Suheng Xu
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Yutao Li
- Department of Physics, Columbia University, New York, NY 10027, USA
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Ran Jing
- Department of Physics, Columbia University, New York, NY 10027, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Aaron J. Sternbach
- Department of Physics, Columbia University, New York, NY 10027, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Shuai Zhang
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Julian Ingham
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Milan Delor
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - James W. McIver
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Matthew Yankowitz
- Department of Physics, University of Washington, Seattle, WA 98195, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Raquel Queiroz
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Andrew J. Millis
- Department of Physics, Columbia University, New York, NY 10027, USA
- Center for Computational Quantum Physics, The Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA
| | - Michael M. Fogler
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Cory R. Dean
- Department of Physics, Columbia University, New York, NY 10027, USA
| | | | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - D. N. Basov
- Department of Physics, Columbia University, New York, NY 10027, USA
| |
Collapse
|
11
|
Li Z, Li Z, Tang W, Yao J, Dou Z, Gong J, Li Y, Zhang B, Dong Y, Xia J, Sun L, Jiang P, Cao X, Yang R, Miao X, Yang R. Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system. Nat Commun 2024; 15:7275. [PMID: 39179548 PMCID: PMC11344147 DOI: 10.1038/s41467-024-51609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
Constructing crossmodal in-sensor processing system based on high-performance flexible devices is of great significance for the development of wearable human-machine interfaces. A bio-inspired crossmodal in-sensor computing system can perform real-time energy-efficient processing of multimodal signals, alleviating data conversion and transmission between different modules in conventional chips. Here, we report a bio-inspired crossmodal spiking sensory neuron (CSSN) based on a flexible VO2 memristor, and demonstrate a crossmodal in-sensor encoding and computing system for wearable human-machine interfaces. We demonstrate excellent performance in the VO2 memristor including endurance (>1012), uniformity (0.72% for cycle-to-cycle variations and 3.73% for device-to-device variations), speed (<30 ns), and flexibility (bendable to a curvature radius of 1 mm). A flexible hardware processing system is implemented based on the CSSN, which can directly perceive and encode pressure and temperature bimodal information into spikes, and then enables the real-time haptic-feedback for human-machine interaction. We successfully construct a crossmodal in-sensor spiking reservoir computing system via the CSSNs, which can achieve dynamic objects identification with a high accuracy of 98.1% and real-time signal feedback. This work provides a feasible approach for constructing flexible bio-inspired crossmodal in-sensor computing systems for wearable human-machine interfaces.
Collapse
Affiliation(s)
- Zhiyuan Li
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, China
- Hubei Yangtze Memory Laboratories, Wuhan, China
| | - Zhongshao Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Tang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaping Yao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, China
| | - Zhipeng Dou
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Junjie Gong
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, China
| | - Yongfei Li
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, China
| | - Beining Zhang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, China
| | - Yunxiao Dong
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Xia
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Sun
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Peng Jiang
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xun Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Rui Yang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Yangtze Memory Laboratories, Wuhan, China.
| | - Xiangshui Miao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Yangtze Memory Laboratories, Wuhan, China.
| | - Ronggui Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Sheng S, Abdo M, Rolf-Pissarczyk S, Lichtenberg K, Baumann S, Burgess JAJ, Malavolti L, Loth S. Terahertz spectroscopy of collective charge density wave dynamics at the atomic scale. NATURE PHYSICS 2024; 20:1603-1608. [PMID: 39416850 PMCID: PMC11473363 DOI: 10.1038/s41567-024-02552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/17/2024] [Indexed: 10/19/2024]
Abstract
Charge density waves are wave-like modulations of a material's electron density that display collective amplitude and phase dynamics. The interaction with atomic impurities induces strong spatial heterogeneity of the charge-ordered phase. Direct real-space observation of phase excitation dynamics of such defect-induced charge modulation is absent. Here, by utilizing terahertz pump-probe spectroscopy in a scanning tunnelling microscope, we measure the ultrafast collective dynamics of the charge density wave in the transition metal dichalcogenide 2H-NbSe2 with atomic spatial resolution. The tip-enhanced electric field of the terahertz pulses excites oscillations of the charge density wave that vary in magnitude and frequency on the scale of individual atomic impurities. Overlapping phase excitations originating from the randomly distributed atomic defects in the surface create this spatially structured response of the charge density wave. This ability to observe collective charge order dynamics with local probes makes it possible to study the dynamics of correlated materials at the intrinsic length scale of their underlying interactions.
Collapse
Affiliation(s)
- Shaoxiang Sheng
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Stuttgart, Germany
| | - Mohamad Abdo
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Stuttgart, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Steffen Rolf-Pissarczyk
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Kurt Lichtenberg
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Stuttgart, Germany
| | - Susanne Baumann
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Stuttgart, Germany
| | - Jacob A. J. Burgess
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba Canada
- The Manitoba Quantum Institute, Winnipeg, Manitoba Canada
| | - Luigi Malavolti
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Stuttgart, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Sebastian Loth
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Stuttgart, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| |
Collapse
|
13
|
Krpenský J, Horák M, Kabát J, Planer J, Kepič P, Křápek V, Konečná A. Analytical electron microscopy analysis of insulating and metallic phases in nanostructured vanadium dioxide. NANOSCALE ADVANCES 2024; 6:3338-3346. [PMID: 38933858 PMCID: PMC11197434 DOI: 10.1039/d4na00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024]
Abstract
Vanadium dioxide (VO2) is a strongly correlated material that exhibits the insulator-to-metal transition (IMT) near room temperature, which makes it a promising candidate for applications in nanophotonics or optoelectronics. However, creating VO2 nanostructures with the desired functionality can be challenging due to microscopic inhomogeneities that can significantly impact the local optical and electronic properties. Thin lamellas, produced by focused ion beam milling from a homogeneous layer, provide a useful prototype for studying VO2 at the truly microscopic level using a scanning transmission electron microscope (STEM). High-resolution imaging is used to identify structural inhomogeneities while electron energy-loss spectroscopy (EELS) supported by statistical analysis helps to detect V x O y stoichiometries with a reduced oxidation number of vanadium at the areas of thickness below 70 nm. On the other hand, the thicker areas are dominated by vanadium dioxide, where the signatures of the IMT are detected in both core-loss and low-loss EELS experiments with in situ heating. The experimental results are interpreted with ab initio and semi-classical calculations. This work shows that structural inhomogeneities such as pores and cracks present no harm to the desired optical properties of VO2 samples.
Collapse
Affiliation(s)
- Jan Krpenský
- Institute of Physical Engineering, Brno University of Technology Technická 2896/2 616 69 Brno Czech Republic
| | - Michal Horák
- Central European Institute of Technology, Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Jiří Kabát
- Institute of Physical Engineering, Brno University of Technology Technická 2896/2 616 69 Brno Czech Republic
| | - Jakub Planer
- Central European Institute of Technology, Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Peter Kepič
- Central European Institute of Technology, Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Vlastimil Křápek
- Institute of Physical Engineering, Brno University of Technology Technická 2896/2 616 69 Brno Czech Republic
- Central European Institute of Technology, Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Andrea Konečná
- Institute of Physical Engineering, Brno University of Technology Technická 2896/2 616 69 Brno Czech Republic
- Central European Institute of Technology, Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| |
Collapse
|
14
|
Wang D, Gao C, Wang Y, Chang X, Hu Y, Li J, Feng T, Dey JK, Roul B, Lu X, Du L, Zhai Z, Zhu H, Huang W, Das S, Su F, Zhu LG, Shi Q. VO 2 Films Decorated with an MXene Interface for Decreased-Power-Triggered Terahertz Modulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10886-10896. [PMID: 38377567 DOI: 10.1021/acsami.3c16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
VO2, which exhibits semiconductor-metal phase transition characteristics occurring on a picosecond time scale, holds great promise for ultrafast terahertz modulation in next-generation communication. However, as of now, there is no reported prototype for an ultrafast device. The temperature effect has been proposed as one of the major obstacles. Consequently, reducing the excitation threshold for the phase transition would be highly significant. The traditional strategy typically involves chemical doping, but this approach often leads to a decrease in phase transition amplitude and a slower transition speed. In this work, we proposed a design featuring a highly conductive MXene interfacial layer between the VO2 film and the substrate. We demonstrate a significant reduction in the phase transition threshold for both temperature and laser-induced phase transition by adjusting the conductivity of the MXene layers with varying thicknesses. Our observations show that the phase transition temperature can be decreased by 9 °C, while the pump fluence for laser excitation can be reduced by as high as 36%. The ultrafast phase transition process on a picosecond scale, as revealed by the optical-pump terahertz-probe method, suggests that the MXene layers have minimal impact on the phase transition speed. Moreover, the reduced phase transition threshold can remarkably alleviate the photothermal effect and inhibit temperature rise and diffusion in VO2 triggered by laser. This study offers a blueprint for designing VO2/MXene hybrid films with reduced phase transition thresholds. It holds significant potential for the development of low-power, intelligent optical and electrical devices including, but not limited to, terahertz modulators based on phase transition phenomena.
Collapse
Affiliation(s)
- Daoyuan Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chengzhe Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunfeng Wang
- Key Lab of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Xue Chang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Yiwen Hu
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiang Li
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Tangdong Feng
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jayjit Kumar Dey
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Basanta Roul
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
- Central Research Laboratory, Bharat Electronics Limited, Bangalore 560013, India
| | - Xueguang Lu
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lianghui Du
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Zhaohui Zhai
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Hongfu Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Wanxia Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Sujit Das
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Fuhai Su
- Key Lab of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Li-Guo Zhu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Qiwu Shi
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
15
|
Kim RHJ, Pathak AK, Park JM, Imran M, Haeuser SJ, Fei Z, Mudryk Y, Koschny T, Wang J. Nano-compositional imaging of the lanthanum silicide system at THz wavelengths. OPTICS EXPRESS 2024; 32:2356-2363. [PMID: 38297768 DOI: 10.1364/oe.507414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024]
Abstract
Terahertz scattering-type scanning near-field optical microscopy (THz-sSNOM) provides a noninvasive way to probe the low frequency conductivity of materials and to characterize material compositions at the nanoscale. However, the potential capability of atomic compositional analysis with THz nanoscopy remains largely unexplored. Here, we perform THz near-field imaging and spectroscopy on a model rare-earth alloy of lanthanum silicide (La-Si) which is known to exhibit diverse compositional and structural phases. We identify subwavelength spatial variations in conductivity that is manifested as alloy microstructures down to much less than 1 μm in size and is remarkably distinct from the surface topography of the material. Signal contrasts from the near-field scattering responses enable mapping the local silicon/lanthanum content differences. These observations demonstrate that THz-sSNOM offers a new avenue to investigate the compositional heterogeneity of material phases and their related nanoscale electrical as well as optical properties.
Collapse
|
16
|
Posey VA, Turkel S, Rezaee M, Devarakonda A, Kundu AK, Ong CS, Thinel M, Chica DG, Vitalone RA, Jing R, Xu S, Needell DR, Meirzadeh E, Feuer ML, Jindal A, Cui X, Valla T, Thunström P, Yilmaz T, Vescovo E, Graf D, Zhu X, Scheie A, May AF, Eriksson O, Basov DN, Dean CR, Rubio A, Kim P, Ziebel ME, Millis AJ, Pasupathy AN, Roy X. Two-dimensional heavy fermions in the van der Waals metal CeSiI. Nature 2024; 625:483-488. [PMID: 38233620 DOI: 10.1038/s41586-023-06868-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024]
Abstract
Heavy-fermion metals are prototype systems for observing emergent quantum phases driven by electronic interactions1-6. A long-standing aspiration is the dimensional reduction of these materials to exert control over their quantum phases7-11, which remains a significant challenge because traditional intermetallic heavy-fermion compounds have three-dimensional atomic and electronic structures. Here we report comprehensive thermodynamic and spectroscopic evidence of an antiferromagnetically ordered heavy-fermion ground state in CeSiI, an intermetallic comprising two-dimensional (2D) metallic sheets held together by weak interlayer van der Waals (vdW) interactions. Owing to its vdW nature, CeSiI has a quasi-2D electronic structure, and we can control its physical dimension through exfoliation. The emergence of coherent hybridization of f and conduction electrons at low temperature is supported by the temperature evolution of angle-resolved photoemission and scanning tunnelling spectra near the Fermi level and by heat capacity measurements. Electrical transport measurements on few-layer flakes reveal heavy-fermion behaviour and magnetic order down to the ultra-thin regime. Our work establishes CeSiI and related materials as a unique platform for studying dimensionally confined heavy fermions in bulk crystals and employing 2D device fabrication techniques and vdW heterostructures12 to manipulate the interplay between Kondo screening, magnetic order and proximity effects.
Collapse
Affiliation(s)
| | - Simon Turkel
- Physics Department, Columbia University, New York, NY, USA
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Mehdi Rezaee
- Physics Department, Harvard University, Cambridge, MA, USA
| | | | - Asish K Kundu
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Chin Shen Ong
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Morgan Thinel
- Chemistry Department, Columbia University, New York, NY, USA
- Physics Department, Columbia University, New York, NY, USA
| | - Daniel G Chica
- Chemistry Department, Columbia University, New York, NY, USA
| | | | - Ran Jing
- Physics Department, Columbia University, New York, NY, USA
| | - Suheng Xu
- Physics Department, Columbia University, New York, NY, USA
| | - David R Needell
- Chemistry Department, Columbia University, New York, NY, USA
| | - Elena Meirzadeh
- Chemistry Department, Columbia University, New York, NY, USA
| | | | - Apoorv Jindal
- Physics Department, Columbia University, New York, NY, USA
| | - Xiaomeng Cui
- Physics Department, Harvard University, Cambridge, MA, USA
| | - Tonica Valla
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
- Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain
| | - Patrik Thunström
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Turgut Yilmaz
- National Synchrotron Light Source II, Brookhaven National Lab, Upton, NY, USA
| | - Elio Vescovo
- National Synchrotron Light Source II, Brookhaven National Lab, Upton, NY, USA
| | - David Graf
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Xiaoyang Zhu
- Chemistry Department, Columbia University, New York, NY, USA
| | - Allen Scheie
- Neutron Scattering Division, Oak Ridge National Lab, Oak Ridge, TN, USA
- MPA-Q, Los Alamos National Lab, Los Alamos, NM, USA
| | - Andrew F May
- Materials Science and Technology Division, Oak Ridge National Lab, Oak Ridge, TN, USA
| | - Olle Eriksson
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Uppsala University, Uppsala, Sweden
| | - D N Basov
- Physics Department, Columbia University, New York, NY, USA
| | - Cory R Dean
- Physics Department, Columbia University, New York, NY, USA
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science and Department of Physics, Hamburg, Germany.
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Departmento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco (UPV/EHU), San Sebastián, Spain.
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA.
| | - Philip Kim
- Physics Department, Harvard University, Cambridge, MA, USA
| | | | - Andrew J Millis
- Physics Department, Columbia University, New York, NY, USA.
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA.
| | - Abhay N Pasupathy
- Physics Department, Columbia University, New York, NY, USA.
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.
| | - Xavier Roy
- Chemistry Department, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Wehmeier L, Liu M, Park S, Jang H, Basov DN, Homes CC, Carr GL. Ultrabroadband Terahertz Near-Field Nanospectroscopy with a HgCdTe Detector. ACS PHOTONICS 2023; 10:4329-4339. [PMID: 38145170 PMCID: PMC10739990 DOI: 10.1021/acsphotonics.3c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
While near-field infrared nanospectroscopy provides a powerful tool for nanoscale material characterization, broadband nanospectroscopy of elementary material excitations in the single-digit terahertz (THz) range remains relatively unexplored. Here, we study liquid-Helium-cooled photoconductive Hg1-XCdXTe (MCT) for use as a fast detector in near-field nanospectroscopy. Compared to the common T = 77 K operation, liquid-Helium cooling reduces the MCT detection threshold to ∼22 meV, improves the noise performance, and yields a response bandwidth exceeding 10 MHz. These improved detector properties have a profound impact on the near-field technique, enabling unprecedented broadband nanospectroscopy across a range of 5 to >50 THz (175 to >1750 cm-1, or <6 to 57 μm), i.e., covering what is commonly known as the "THz gap". Our approach has been implemented as a user program at the National Synchrotron Light Source II, Upton, USA, where we showcase ultrabroadband synchrotron nanospectroscopy of phonons in ZnSe (∼7.8 THz) and BaF2 (∼6.7 THz), as well as hyperbolic phonon polaritons in GeS (6-8 THz).
Collapse
Affiliation(s)
- Lukas Wehmeier
- National
Synchrotron Light Source II, Brookhaven
National Laboratory; Upton, New York 11973, United States
- Department
of Physics and Astronomy, Stony Brook University; Stony Brook, New York 11794, United States
| | - Mengkun Liu
- National
Synchrotron Light Source II, Brookhaven
National Laboratory; Upton, New York 11973, United States
- Department
of Physics and Astronomy, Stony Brook University; Stony Brook, New York 11794, United States
| | - Suji Park
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Houk Jang
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - D. N. Basov
- Department
of Physics, Columbia University; New York, New York 10027, United States
| | - Christopher C. Homes
- National
Synchrotron Light Source II, Brookhaven
National Laboratory; Upton, New York 11973, United States
| | - G. Lawrence Carr
- National
Synchrotron Light Source II, Brookhaven
National Laboratory; Upton, New York 11973, United States
| |
Collapse
|
18
|
Dapolito M, Tsuneto M, Zheng W, Wehmeier L, Xu S, Chen X, Sun J, Du Z, Shao Y, Jing R, Zhang S, Bercher A, Dong Y, Halbertal D, Ravindran V, Zhou Z, Petrovic M, Gozar A, Carr GL, Li Q, Kuzmenko AB, Fogler MM, Basov DN, Du X, Liu M. Infrared nano-imaging of Dirac magnetoexcitons in graphene. NATURE NANOTECHNOLOGY 2023; 18:1409-1415. [PMID: 37605044 DOI: 10.1038/s41565-023-01488-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
Magnetic fields can have profound effects on the motion of electrons in quantum materials. Two-dimensional electron systems subject to strong magnetic fields are expected to exhibit quantized Hall conductivity, chiral edge currents and distinctive collective modes referred to as magnetoplasmons and magnetoexcitons. Generating these propagating collective modes in charge-neutral samples and imaging them at their native nanometre length scales have thus far been experimentally elusive. Here we visualize propagating magnetoexciton polaritons at their native length scales and report their magnetic-field-tunable dispersion in near-charge-neutral graphene. Imaging these collective modes and their associated nano-electro-optical responses allows us to identify polariton-modulated optical and photo-thermal electric effects at the sample edges, which are the most pronounced near charge neutrality. Our work is enabled by innovations in cryogenic near-field optical microscopy techniques that allow for the nano-imaging of the near-field responses of two-dimensional materials under magnetic fields up to 7 T. This nano-magneto-optics approach allows us to explore and manipulate magnetopolaritons in specimens with low carrier doping via harnessing high magnetic fields.
Collapse
Affiliation(s)
- Michael Dapolito
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- Department of Physics, Columbia University, New York, NY, USA
| | - Makoto Tsuneto
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Wenjun Zheng
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Lukas Wehmeier
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Suheng Xu
- Department of Physics, Columbia University, New York, NY, USA
| | - Xinzhong Chen
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- Department of Physics, Columbia University, New York, NY, USA
| | - Jiacheng Sun
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Zengyi Du
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Yinming Shao
- Department of Physics, Columbia University, New York, NY, USA
| | - Ran Jing
- Department of Physics, Columbia University, New York, NY, USA
| | - Shuai Zhang
- Department of Physics, Columbia University, New York, NY, USA
| | - Adrien Bercher
- Département de Physique de la Matière Quantique, Université de Genève, Genève 4, Switzerland
| | - Yinan Dong
- Department of Physics, Columbia University, New York, NY, USA
| | - Dorri Halbertal
- Department of Physics, Columbia University, New York, NY, USA
| | - Vibhu Ravindran
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- Department of Physics, University of California, Berkeley, CA, USA
| | - Zijian Zhou
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Mila Petrovic
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Adrian Gozar
- Department of Physics, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
| | - G L Carr
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Qiang Li
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Alexey B Kuzmenko
- Département de Physique de la Matière Quantique, Université de Genève, Genève 4, Switzerland
| | - Michael M Fogler
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, USA.
| | - Xu Du
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA.
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA.
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
19
|
Wang Z, Wang Y, Li H, Ge M, Xu D, Yao J. Narrow linewidth and wideband tunable continuous-wave terahertz generator based on difference frequency generation with DAST crystal. OPTICS EXPRESS 2023; 31:39030-39038. [PMID: 38017992 DOI: 10.1364/oe.506367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
A narrow linewidth and wideband tunable continuous-wave terahertz generator with DAST crystal has been demonstrated in this paper. Two narrow-linewidth CW fiber lasers were used as the pump sources for difference frequency generation. The terahertz wave can be continuously tunable in the range of 1.1-3 THz. The maximum output power of 2.79nW was obtained at 2.568 THz. The linewidth of the output THz wave was estimated to be 56.5 MHz by fitting transmission spectrum of CO gas at 450 Pa pressure around 80.52 cm-1 with the Vogit gas model. Furthermore, the output spectra at room temperature and pressure was in good agreement with the air absorption lines in Hitran database. Moreover, the narrower absorption characteristic spectrum of 2-Deoxy-D-Glucose sample has been obtained through the spectrum measurements. Therefore, it could promote the practical prospect of tunable CW-THz source, which will have good potential in THz high-precision spectroscopic detection and multispectral imaging.
Collapse
|
20
|
Cheng D, Song B, Kang JH, Sundahl C, Edgeton AL, Luo L, Park JM, Collantes YG, Hellstrom EE, Mootz M, Perakis IE, Eom CB, Wang J. Study of Elastic and Structural Properties of BaFe 2As 2 Ultrathin Film Using Picosecond Ultrasonics. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7031. [PMID: 37959629 PMCID: PMC10650054 DOI: 10.3390/ma16217031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
We obtain the through-thickness elastic stiffness coefficient (C33) in nominal 9 nm and 60 nm BaFe2As2 (Ba-122) thin films by using picosecond ultrasonics. Particularly, we reveal the increase in elastic stiffness as film thickness decreases from bulk value down to 9 nm, which we attribute to the increase in intrinsic strain near the film-substrate interface. Our density functional theory (DFT) calculations reproduce the observed acoustic oscillation frequencies well. In addition, temperature dependence of longitudinal acoustic (LA) phonon mode frequency for 9 nm Ba-122 thin film is reported. The frequency change is attributed to the change in Ba-122 orthorhombicity (a-b)/(a+b). This conclusion can be corroborated by our previous ultrafast ellipticity measurements in 9 nm Ba-122 thin film, which exhibit strong temperature dependence and indicate the structural phase transition temperature Ts.
Collapse
Affiliation(s)
- Di Cheng
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; (D.C.); (B.S.); (L.L.); (J.-M.P.)
- Ames National Laboratory-USDOE, Ames, IA 50011, USA
| | - Boqun Song
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; (D.C.); (B.S.); (L.L.); (J.-M.P.)
- Ames National Laboratory-USDOE, Ames, IA 50011, USA
| | - Jong-Hoon Kang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.-H.K.); (C.S.); (A.L.E.); (C.-B.E.)
| | - Chris Sundahl
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.-H.K.); (C.S.); (A.L.E.); (C.-B.E.)
| | - Anthony L. Edgeton
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.-H.K.); (C.S.); (A.L.E.); (C.-B.E.)
| | - Liang Luo
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; (D.C.); (B.S.); (L.L.); (J.-M.P.)
- Ames National Laboratory-USDOE, Ames, IA 50011, USA
| | - Joong-Mok Park
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; (D.C.); (B.S.); (L.L.); (J.-M.P.)
- Ames National Laboratory-USDOE, Ames, IA 50011, USA
| | - Yesusa G. Collantes
- Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA (E.E.H.)
| | - Eric E. Hellstrom
- Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA (E.E.H.)
| | - Martin Mootz
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA; (M.M.); (I.E.P.)
| | - Ilias E. Perakis
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA; (M.M.); (I.E.P.)
| | - Chang-Beom Eom
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.-H.K.); (C.S.); (A.L.E.); (C.-B.E.)
| | - Jigang Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; (D.C.); (B.S.); (L.L.); (J.-M.P.)
- Ames National Laboratory-USDOE, Ames, IA 50011, USA
| |
Collapse
|
21
|
Ge S, Zhang D, Peng Z, Meng J. Rough surface effect in terahertz near-field microscopy: 3D simulation analysis. APPLIED OPTICS 2023; 62:6333-6342. [PMID: 37706823 DOI: 10.1364/ao.496849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2023] [Indexed: 09/15/2023]
Abstract
Terahertz scattering-type scanning near-field optical microscopy (THz-s-SNOM) has emerged as a powerful technique for high-resolution imaging. However, most previous studies have focused on simplified smooth surface models, overlooking the realistic surface roughness induced by contamination during sample preparation. In this work, we present a novel 3D model, to the best of our knowledge, that combines the point dipole model with the finite element method to investigate the influence of sample morphology on scattered signals. We explore surfaces with a protrusion, a depression, and random roughness, characterizing the variations in scattered signals and highlighting the role of higher-order scattering in mitigating surface roughness effects. Our findings provide valuable insights into the impact of sample morphology on THz-s-SNOM imaging.
Collapse
|
22
|
Chen X, Xu S, Shabani S, Zhao Y, Fu M, Millis AJ, Fogler MM, Pasupathy AN, Liu M, Basov DN. Machine Learning for Optical Scanning Probe Nanoscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2109171. [PMID: 36333118 DOI: 10.1002/adma.202109171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/09/2022] [Indexed: 06/16/2023]
Abstract
The ability to perform nanometer-scale optical imaging and spectroscopy is key to deciphering the low-energy effects in quantum materials, as well as vibrational fingerprints in planetary and extraterrestrial particles, catalytic substances, and aqueous biological samples. These tasks can be accomplished by the scattering-type scanning near-field optical microscopy (s-SNOM) technique that has recently spread to many research fields and enabled notable discoveries. Herein, it is shown that the s-SNOM, together with scanning probe research in general, can benefit in many ways from artificial-intelligence (AI) and machine-learning (ML) algorithms. Augmented with AI- and ML-enhanced data acquisition and analysis, scanning probe optical nanoscopy is poised to become more efficient, accurate, and intelligent.
Collapse
Affiliation(s)
- Xinzhong Chen
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Suheng Xu
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Sara Shabani
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Yueqi Zhao
- Department of Physics, University of California at San Diego, La Jolla, CA, 92093-0319, USA
| | - Matthew Fu
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Michael M Fogler
- Department of Physics, University of California at San Diego, La Jolla, CA, 92093-0319, USA
| | - Abhay N Pasupathy
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
23
|
Schäffer S, Ogolla CO, Loth Y, Haeger T, Kreusel C, Runkel M, Riedl T, Butz B, Wigger AK, Bolívar PH. Imaging the Terahertz Nanoscale Conductivity of Polycrystalline CsPbBr 3 Perovskite Thin Films. NANO LETTERS 2023; 23:2074-2080. [PMID: 36862532 DOI: 10.1021/acs.nanolett.2c03214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Terahertz (THz) radiation is a valuable tool to investigate the electronic properties of lead halide perovskites (LHPs). However, attaining high-resolution information remains elusive, as the diffraction-limited spatial resolution (∼300 μm) of conventional THz methods prevents a direct analysis of microscopic effects. Here, we employ THz scattering scanning near-field optical microscopy (THz-sSNOM) for nanoscale imaging of cesium lead bromide (CsPbBr3) thin films down to the single grain level at 600 GHz. Adopting a scattering model, we are able to derive the local THz nanoscale conductivity in a contact-free fashion. Increased THz near-field signals at CsPbBr3 grain boundaries complemented by correlative transmission electron microscopy-energy-dispersive X-ray spectroscopy elemental analysis point to the formation of halide vacancies (VBr) and Pb-Pb bonds, which induce charge carrier trapping and can lead to nonradiative recombination. Our study establishes THz-sSNOM as a powerful THz nanoscale analysis platform for thin-film semiconductors such as LHPs.
Collapse
Affiliation(s)
- Stephan Schäffer
- Institute for High Frequency and Quantum Electronics, University of Siegen, 57076 Siegen, Germany
| | | | - Yannik Loth
- Institute for High Frequency and Quantum Electronics, University of Siegen, 57076 Siegen, Germany
| | - Tobias Haeger
- Institute of Electronic Devices, University of Wuppertal, 42119 Wuppertal, Germany
| | - Cedric Kreusel
- Institute of Electronic Devices, University of Wuppertal, 42119 Wuppertal, Germany
| | - Manuel Runkel
- Institute of Electronic Devices, University of Wuppertal, 42119 Wuppertal, Germany
| | - Thomas Riedl
- Institute of Electronic Devices, University of Wuppertal, 42119 Wuppertal, Germany
| | - Benjamin Butz
- Micro-and Nanoanalytics Group, University of Siegen, 57076 Siegen, Germany
| | - Anna Katharina Wigger
- Institute for High Frequency and Quantum Electronics, University of Siegen, 57076 Siegen, Germany
| | - Peter Haring Bolívar
- Institute for High Frequency and Quantum Electronics, University of Siegen, 57076 Siegen, Germany
| |
Collapse
|
24
|
Yoshida T, Takaishi S, Guérin L, Kojima T, Ohtsu H, Kawano M, Miyamoto T, Okamoto H, Kato K, Takata M, Hosomi Y, Yoshida S, Shigekawa H, Tanaka H, Kuroda SI, Iguchi H, Breedlove BK, Li ZY, Yamashita M. Hydrogen Bonding Propagated Phase Separation in Quasi-Epitaxial Single Crystals: A Pd-Br Molecular Insulator. Inorg Chem 2022; 61:14067-14074. [PMID: 36006962 DOI: 10.1021/acs.inorgchem.2c02078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In condensed matter, phase separation is strongly related to ferroelasticity, ferroelectricity, ferromagnetism, electron correlation, and crystallography. These ferroics are important for nano-electronic devices such as non-volatile memory. However, the quantitative information regarding the lattice (atomic) structure at the border of phase separation is unclear in many cases. Thus, to design electronic devices at the molecular level, a quantitative electron-lattice relationship must be established. Herein, we elucidated a PdII-PdIV/PdIII-PdIII phase transition and phase separation mechanism for [Pd(cptn)2Br]Br2 (cptn = 1R,2R-diaminocyclopentane), propagated through a hydrogen-bonding network. Although the Pd···Pd distance was used to determine the electronic state, the differences in the Pd···Pd distance and the optical gap between Mott-Hubbard (MH) and charge-density-wave (CDW) states were only 0.012 Å and 0.17 eV, respectively. The N-H···Br···H-N hydrogen-bonding network functioned as a jack, adjusting the structural difference dynamically, and allowing visible ferroelastic phase transition/separation in a fluctuating N2 gas flow. Additionally, the effect of the phase separation on the spin susceptibility and electrical conductivity were clarified to represent the quasi-epitaxial crystals among CDW-MH states. These results indicate that the phase transitions and separations could be controlled via atomic and molecular level modifications, such as the addition of hydrogen bonding.
Collapse
Affiliation(s)
- Takefumi Yoshida
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza- Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza- Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Laurent Guérin
- Institut de Physique de Rennes, Université de Rennes 1, 263 Av. du Général Leclerc, Rennes Cedex 35042, France
| | - Tatsuhiro Kojima
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyoshi Ohtsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masaki Kawano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tatsuya Miyamoto
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Hiroshi Okamoto
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Kenichi Kato
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Masaki Takata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yuka Hosomi
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Shoji Yoshida
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Hidemi Shigekawa
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Hisaaki Tanaka
- Department of Applied Physics, Graduate School of Engineering, Nagoya, University, Furocho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shin-Ichi Kuroda
- Department of Applied Physics, Graduate School of Engineering, Nagoya, University, Furocho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroaki Iguchi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza- Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Brian K Breedlove
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza- Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza- Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
25
|
Thomas L, Hannotte T, Santos CN, Walter B, Lavancier M, Eliet S, Faucher M, Lampin JF, Peretti R. Imaging of THz Photonic Modes by Scattering Scanning Near-Field Optical Microscopy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32608-32617. [PMID: 35802070 DOI: 10.1021/acsami.2c01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We investigated the near-field distribution associated to the photonic mode of terahertz photonic micro-resonators by scattering scanning near-field optical microscopy. Probing individual THz micro-resonators concentrating electric fields is important for high-sensitivity chemical and biochemical sensing and fundamental light-matter interactions studies at the nanoscale. We imaged both electric field concentration predicted by numerical simulations and unexpected patterns that deviate from intuitive assumptions. We propose a scenario based on the combination of the near-field with the far-field pattern of the probe/resonator ensemble that is in excellent agreement with the experimental data and propose an image analysis procedure to recover the near-field of such structures.
Collapse
Affiliation(s)
- Louis Thomas
- Institut d'Electronique, de Microélectronique et de Nanotechnologie, CNRS, Univ. Lille, Villeneuve d'Ascq, 59652 France
| | - Théo Hannotte
- Institut d'Electronique, de Microélectronique et de Nanotechnologie, CNRS, Univ. Lille, Villeneuve d'Ascq, 59652 France
| | - Cristiane N Santos
- Institut d'Electronique, de Microélectronique et de Nanotechnologie, CNRS, Univ. Lille, Villeneuve d'Ascq, 59652 France
| | | | - Mélanie Lavancier
- Institut d'Electronique, de Microélectronique et de Nanotechnologie, CNRS, Univ. Lille, Villeneuve d'Ascq, 59652 France
| | - Sophie Eliet
- Institut d'Electronique, de Microélectronique et de Nanotechnologie, CNRS, Univ. Lille, Villeneuve d'Ascq, 59652 France
| | - Marc Faucher
- Institut d'Electronique, de Microélectronique et de Nanotechnologie, CNRS, Univ. Lille, Villeneuve d'Ascq, 59652 France
| | - Jean-François Lampin
- Institut d'Electronique, de Microélectronique et de Nanotechnologie, CNRS, Univ. Lille, Villeneuve d'Ascq, 59652 France
| | - Romain Peretti
- Institut d'Electronique, de Microélectronique et de Nanotechnologie, CNRS, Univ. Lille, Villeneuve d'Ascq, 59652 France
| |
Collapse
|
26
|
Chen M, de Oliveira TVAG, Ilyakov I, Nörenberg T, Kuschewski F, Deinert JC, Awari N, Ponomaryov A, Kuntzsch M, Kehr SC, Eng LM, Gensch M, Kovalev S. Terahertz-slicing - an all-optical synchronization for 4 th generation light sources. OPTICS EXPRESS 2022; 30:26955-26966. [PMID: 36236877 DOI: 10.1364/oe.454908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/01/2022] [Indexed: 06/16/2023]
Abstract
A conceptually new approach to synchronizing accelerator-based light sources and external laser systems is presented. The concept is based on utilizing a sufficiently intense accelerator-based single-cycle terahertz pulse to slice a thereby intrinsically synchronized femtosecond-level part of a longer picosecond laser pulse in an electro-optic crystal. A precise synchronization of the order of 10 fs is demonstrated, allowing for real-time lock-in amplifier signal demodulation. We demonstrate successful operation of the concept with three benchmark experiments using a 4th generation accelerator-based terahertz light source, i.e. (i) far-field terahertz time-domain spectroscopy, (ii) terahertz high harmonic generation spectroscopy, and (iii) terahertz scattering-type scanning near-field optical microscopy.
Collapse
|
27
|
Ahn Y, Cherukara MJ, Cai Z, Bartlein M, Zhou T, DiChiara A, Walko DA, Holt M, Fullerton EE, Evans PG, Wen H. X-ray nanodiffraction imaging reveals distinct nanoscopic dynamics of an ultrafast phase transition. Proc Natl Acad Sci U S A 2022; 119:e2118597119. [PMID: 35522708 PMCID: PMC9171639 DOI: 10.1073/pnas.2118597119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
SignificancePhase transitions, the changes between states of matter with distinct electronic, magnetic, or structural properties, are at the center of condensed matter physics and underlie valuable technologies. First-order phase transitions are intrinsically heterogeneous. When driven by ultrashort excitation, nanoscale phase regions evolve rapidly, which has posed a significant experimental challenge to characterize. The newly developed laser-pumped X-ray nanodiffraction imaging technique reported here has simultaneous 100-ps temporal and 25-nm spatial resolutions. This approach reveals pathways of the nanoscale structural rearrangement upon ultrafast optical excitation, different from those transitions under slowly varying parameters. The spatiotemporally resolved structural characterization provides crucial nanoscopic insights into ultrafast phase transitions and opens opportunities for controlling nanoscale phases on ultrafast time scales.
Collapse
Affiliation(s)
- Youngjun Ahn
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706
| | - Mathew J. Cherukara
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439
| | - Zhonghou Cai
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439
| | - Michael Bartlein
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439
| | - Tao Zhou
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439
| | - Anthony DiChiara
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439
| | - Donald A. Walko
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439
| | - Martin Holt
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439
| | - Eric E. Fullerton
- Center for Magnetic Recording Research, University of California San Diego, La Jolla, CA 92903
| | - Paul G. Evans
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706
| | - Haidan Wen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439
| |
Collapse
|
28
|
Xia Q, Qin Y, Qiu P, Zheng A, Zhang X. Bio‑inspired Tactile Nociceptor Constructed by Integrating Wearable Sensing Paper and VO2 Threshold Switching Memristor. J Mater Chem B 2022; 10:1991-2000. [DOI: 10.1039/d1tb02578c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sensations of touch and pain are fundamental components of our daily life, which can transport vital information about the surroundings and provide protection to our bodies. In this study,...
Collapse
|
29
|
Mansourzadeh S, Vogel T, Shalaby M, Wulf F, Saraceno CJ. Milliwatt average power, MHz-repetition rate, broadband THz generation in organic crystal BNA with diamond substrate. OPTICS EXPRESS 2021; 29:38946-38957. [PMID: 34809267 DOI: 10.1364/oe.435344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate a 13.3 MHz repetition rate, broadband THz source with milliwatt- average power, obtained by collinear optical rectification of a high-power Yb-doped thin-disk laser in the organic crystal BNA (N-benzyl-2-methyl-4-nitroaniline). Our source reaches a maximum THz average power of 0.95 mW with an optical-to-THz efficiency of 4×10-4 and a spectral bandwidth spanning up to 6 THz at -50 dB, driven by 2.4 W average power (after an optical chopper with duty cycle of 10%), 85 fs-pulses. This high average power excitation was possible without damaging the crystal by using a diamond-heatsinked crystal with significantly improved thermal properties. To the best of our knowledge, this result represents the highest THz average power reported so far using the commercially available organic crystal BNA, showing the potential of these crystals for high average power, high repetition rate femtosecond excitation. The combination of high power, high dynamic range, high repetition rate and broadband spectrum makes the demonstrated THz source highly attractive to improve various time-domain spectroscopy applications. Furthermore, we present a first exploration of the thermal behavior of BNA in this excitation regime, showing that thermal effects are the main limitation in average power scaling in these crystals.
Collapse
|
30
|
Sternbach AJ, Ruta FL, Shi Y, Slusar T, Schalch J, Duan G, McLeod AS, Zhang X, Liu M, Millis AJ, Kim HT, Chen LQ, Averitt RD, Basov DN. Nanotextured Dynamics of a Light-Induced Phase Transition in VO 2. NANO LETTERS 2021; 21:9052-9060. [PMID: 34724612 DOI: 10.1021/acs.nanolett.1c02638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigate transient nanotextured heterogeneity in vanadium dioxide (VO2) thin films during a light-induced insulator-to-metal transition (IMT). Time-resolved scanning near-field optical microscopy (Tr-SNOM) is used to study VO2 across a wide parameter space of infrared frequencies, picosecond time scales, and elevated steady-state temperatures with nanoscale spatial resolution. Room temperature, steady-state, phonon enhanced nano-optical contrast reveals preexisting "hidden" disorder. The observed contrast is associated with inequivalent twin domain structures. Upon thermal or optical initiation of the IMT, coexisting metallic and insulating regions are observed. Correlations between the transient and steady-state nano-optical textures reveal that heterogeneous nucleation is partially anchored to twin domain interfaces and grain boundaries. Ultrafast nanoscopic dynamics enable quantification of the growth rate and bound the nucleation rate. Finally, we deterministically anchor photoinduced nucleation to predefined nanoscopic regions by locally enhancing the electric field of pump radiation using nanoantennas and monitor the on-demand emergent metallicity in space and time.
Collapse
Affiliation(s)
- Aaron J Sternbach
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Francesco L Ruta
- Department of Physics, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Yin Shi
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, Pennsylvania 16801,United States
| | - Tetiana Slusar
- Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
| | - Jacob Schalch
- Department of Physics, University of California San Diego, San Diego, California 92093, United States
| | - Guangwu Duan
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Alexander S McLeod
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Xin Zhang
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Mengkun Liu
- Department of Physics, Stony Brook University, Stony Brook, New York 11790, United States
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Hyun-Tak Kim
- Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
| | - Long-Qing Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, Pennsylvania 16801,United States
| | - Richard D Averitt
- Department of Physics, University of California San Diego, San Diego, California 92093, United States
| | - D N Basov
- Department of Physics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
31
|
Jing R, Shao Y, Fei Z, Lo CFB, Vitalone RA, Ruta FL, Staunton J, Zheng WJC, Mcleod AS, Sun Z, Jiang BY, Chen X, Fogler MM, Millis AJ, Liu M, Cobden DH, Xu X, Basov DN. Terahertz response of monolayer and few-layer WTe 2 at the nanoscale. Nat Commun 2021; 12:5594. [PMID: 34552072 PMCID: PMC8458490 DOI: 10.1038/s41467-021-23933-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/17/2021] [Indexed: 02/08/2023] Open
Abstract
Tungsten ditelluride (WTe2) is an atomically layered transition metal dichalcogenide whose physical properties change systematically from monolayer to bilayer and few-layer versions. In this report, we use apertureless scattering-type near-field optical microscopy operating at Terahertz (THz) frequencies and cryogenic temperatures to study the distinct THz range electromagnetic responses of mono-, bi- and trilayer WTe2 in the same multi-terraced micro-crystal. THz nano-images of monolayer terraces uncovered weakly insulating behavior that is consistent with transport measurements. The near-field signal on bilayer regions shows moderate metallicity with negligible temperature dependence. Subdiffractional THz imaging data together with theoretical calculations involving thermally activated carriers favor the semimetal scenario with [Formula: see text] over the semiconductor scenario for bilayer WTe2. Also, we observed clear metallic behavior of the near-field signal on trilayer regions. Our data are consistent with the existence of surface plasmon polaritons in the THz range confined to trilayer terraces in our specimens. Finally, data for microcrystals up to 12 layers thick reveal how the response of a few-layer WTe2 asymptotically approaches the bulk limit.
Collapse
Affiliation(s)
- Ran Jing
- Department of Physics, Columbia University, New York, NY, USA.
| | - Yinming Shao
- Department of Physics, Columbia University, New York, NY, USA
| | - Zaiyao Fei
- Department of Physics, University of Washington, Seattle, WA, USA
| | | | | | - Francesco L Ruta
- Department of Physics, Columbia University, New York, NY, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
| | - John Staunton
- Department of Physics, Columbia University, New York, NY, USA
| | | | | | - Zhiyuan Sun
- Department of Physics, Columbia University, New York, NY, USA
| | - Bor-Yuan Jiang
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Xinzhong Chen
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Michael M Fogler
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, NY, USA
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - David H Cobden
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, WA, USA
- Department of Material Science and Engineering, University of Washington, Seattle, WA, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, USA
| |
Collapse
|
32
|
Mooshammer F, Plankl M, Siday T, Zizlsperger M, Sandner F, Vitalone R, Jing R, Huber MA, Basov DN, Huber R. Quantitative terahertz emission nanoscopy with multiresonant near-field probes. OPTICS LETTERS 2021; 46:3572-3575. [PMID: 34329227 DOI: 10.1364/ol.430400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
By sampling terahertz waveforms emitted from InAs surfaces, we reveal how the entire, realistic geometry of typical near-field probes drastically impacts the broadband electromagnetic fields. In the time domain, these modifications manifest as a shift in the carrier-envelope phase and emergence of a replica pulse with a time delay dictated by the length of the cantilever. This interpretation is fully corroborated by quantitative simulations of terahertz emission nanoscopy based on the finite element method. Our approach provides a solid theoretical framework for quantitative nanospectroscopy and sets the stage for a reliable description of subcycle, near-field microscopy at terahertz frequencies.
Collapse
|
33
|
Vanadium Dioxide–Iridium Composite Development: Specific Near Infrared Surface Plasmon Resonance. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5070193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work serves as a roadmap for the development of a Vanadium dioxide (VO2)–Iridium composite based on the self-assembly of closely packed colloidal polystyrene microspheres (P-spheres) coupled with a Pulsed Laser Deposition (PLD) process. The self-assembly of a monolayer of PS is performed on an Al2O3-c substrate, using an adapted Langmuir–Blodgett (LB) process. Then, on the substrate covered with P-spheres, a 50-nanometer Iridium layer is deposited by PLD. The Iridium deposition is followed by the removal of PS with acetone, revealing an array of triangular shaped metallic elements formed on the underlaying substrate. In a last deposition step, 50-, 100- and 200-nanometer thin films of VO2 are deposited by PLD on top of the substrates covered with the Iridium quasi-triangles, forming a composite. Adapting the size of the P-spheres leads to control of both the size of the Iridium micro-triangle and, consequently, the optical transmittance of the composite. Owing to their shape and size the Iridium micro-triangles exhibit localized surface plasmon resonance (LSPR) characterized by a selective absorption of light. Due to the temperature dependent properties of VO2, the LSPR properties of the composite can be changeable and tunable.
Collapse
|
34
|
Valušis G, Lisauskas A, Yuan H, Knap W, Roskos HG. Roadmap of Terahertz Imaging 2021. SENSORS (BASEL, SWITZERLAND) 2021; 21:4092. [PMID: 34198603 PMCID: PMC8232131 DOI: 10.3390/s21124092] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023]
Abstract
In this roadmap article, we have focused on the most recent advances in terahertz (THz) imaging with particular attention paid to the optimization and miniaturization of the THz imaging systems. Such systems entail enhanced functionality, reduced power consumption, and increased convenience, thus being geared toward the implementation of THz imaging systems in real operational conditions. The article will touch upon the advanced solid-state-based THz imaging systems, including room temperature THz sensors and arrays, as well as their on-chip integration with diffractive THz optical components. We will cover the current-state of compact room temperature THz emission sources, both optolectronic and electrically driven; particular emphasis is attributed to the beam-forming role in THz imaging, THz holography and spatial filtering, THz nano-imaging, and computational imaging. A number of advanced THz techniques, such as light-field THz imaging, homodyne spectroscopy, and phase sensitive spectrometry, THz modulated continuous wave imaging, room temperature THz frequency combs, and passive THz imaging, as well as the use of artificial intelligence in THz data processing and optics development, will be reviewed. This roadmap presents a structured snapshot of current advances in THz imaging as of 2021 and provides an opinion on contemporary scientific and technological challenges in this field, as well as extrapolations of possible further evolution in THz imaging.
Collapse
Affiliation(s)
- Gintaras Valušis
- Center for Physical Sciences and Technology (FTMC), Department of Optoelectronics, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Institute of Photonics and Nanotechnology, Department of Physics, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Alvydas Lisauskas
- Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania;
- CENTERA Laboratories, Institute of High Pressure Physics PAS, Sokolowska 29/37, 01-142 Warsaw, Poland;
| | - Hui Yuan
- Physikalisches Institut, Goethe-Universität, Max-von-Laue Straße 1, D-60438 Frankfurt am Main, Germany; (H.Y.); (H.G.R.)
| | - Wojciech Knap
- CENTERA Laboratories, Institute of High Pressure Physics PAS, Sokolowska 29/37, 01-142 Warsaw, Poland;
| | - Hartmut G. Roskos
- Physikalisches Institut, Goethe-Universität, Max-von-Laue Straße 1, D-60438 Frankfurt am Main, Germany; (H.Y.); (H.G.R.)
| |
Collapse
|
35
|
Chen HW, Li CI, Ma CH, Chu YH, Liu HL. Strain engineering of optical properties in transparent VO 2/muscovite heterostructures. Phys Chem Chem Phys 2021; 23:8908-8915. [PMID: 33876050 DOI: 10.1039/d1cp00642h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transparent VO2/muscovite heterostructures have attracted considerable attention because of their unique chemical and physical properties and potential practical applications. In this paper, we investigated the influence of uniaxial mechanical strain on the optical properties of VO2/muscovite heterostructures through Raman scattering and optical transmittance measurements. Under applied strain, linear shifts in peak positions of Raman-active phonon modes at approximately 340, 309, and 391 cm-1 were observed. The extracted Grüneisen parameter values were approximately between 0.44 and 0.57. Furthermore, a pronounced strain-induced change in the metal-insulator transition (MIT) temperature was observed, which decreased under compressive strain and increased under tensile strain. The rates of MIT temperature variation reached 4.5 °C per % and 7.1 °C per % at a wavelength of 1200 nm during heating and cooling processes, respectively. These results demonstrate that the modulation of the optical properties of VO2/muscovite heterostructures is controllable and reversible through strain engineering, opening up new opportunities for applications in flexible and tunable photonic devices.
Collapse
Affiliation(s)
- Hsaio-Wen Chen
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan.
| | | | | | | | | |
Collapse
|
36
|
Wiecha MM, Kapoor R, Chernyadiev AV, Ikamas K, Lisauskas A, Roskos HG. Antenna-coupled field-effect transistors as detectors for terahertz near-field microscopy. NANOSCALE ADVANCES 2021; 3:1717-1724. [PMID: 36132567 PMCID: PMC9417835 DOI: 10.1039/d0na00928h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/29/2021] [Indexed: 06/15/2023]
Abstract
We report the successful implementation of antenna-coupled terahertz field-effect transistors (TeraFETs) as homodyne detectors in a scattering-type scanning near-field optical microscope (s-SNOM) operating with radiation at 246.5 GHz. The devices were fabricated in Si CMOS foundry technology with two different technologies, a 90 nm process, which provides a better device performance, and a less expensive 180 nm one. The high sensitivity enables s-SNOM demodulation at up to the 10th harmonic of the cantilever's oscillation frequency. While we demonstrate application of TeraFETs at a fixed radiation frequency, this type of detector device is able to cover the entire THz frequency range.
Collapse
Affiliation(s)
- Matthias M Wiecha
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Max-von-Laue-Straße 1 60438 Frankfurt am Main Germany
| | - Rohit Kapoor
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Max-von-Laue-Straße 1 60438 Frankfurt am Main Germany
| | | | - Kęstutis Ikamas
- Institute of Applied Electrodynamics and Telecommunications, Vilnius University 10257 Vilnius Lithuania
- The General Jonas Žemaitis Military Academy of Lithuania 10322 Vilnius Lithuania
| | - Alvydas Lisauskas
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Max-von-Laue-Straße 1 60438 Frankfurt am Main Germany
- CENTERA Laboratories, Institute of High Pressure Physics PAS 01-142 Warsaw Poland
- Institute of Applied Electrodynamics and Telecommunications, Vilnius University 10257 Vilnius Lithuania
| | - Hartmut G Roskos
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Max-von-Laue-Straße 1 60438 Frankfurt am Main Germany
| |
Collapse
|
37
|
Yang Z, Tang D, Hu J, Tang M, Zhang M, Cui HL, Wang L, Chang C, Fan C, Li J, Wang H. Near-Field Nanoscopic Terahertz Imaging of Single Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005814. [PMID: 33306275 DOI: 10.1002/smll.202005814] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/22/2020] [Indexed: 05/26/2023]
Abstract
Terahertz (THz) biological imaging has attracted intense attention due to its capability of acquiring physicochemical information in a label-free, noninvasive, and nonionizing manner. However, extending THz imaging to the single-molecule level remains a challenge, partly due to the weak THz reflectivity of biomolecules with low dielectric constants. Here, the development of graphene-mediated THz scattering-type scanning near-field optical microscope for direct imaging of single proteins is reported. Importantly, it is found that a graphene substrate with high THz reflectivity and atomic flatness can provide high THz contrast against the protein molecules. In addition, a platinum probe with an optimized shaft length is found enabling the enhancement of the amplitude of the scattered THz near-field signals. By coupling these effects, the topographical and THz scattering images of individual immunoglobulin G (IgG) and ferritin molecules with the size of a few nanometers are obtained, simultaneously. The demonstrated strategy thus opens new routes to imaging single biomolecules with THz.
Collapse
Affiliation(s)
- Zhongbo Yang
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Dongyun Tang
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jiao Hu
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Mingjie Tang
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Mingkun Zhang
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hong-Liang Cui
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714, China
| | - Lihua Wang
- Bioimaging Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Chao Chang
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiang Li
- Bioimaging Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Huabin Wang
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| |
Collapse
|
38
|
Duan X, White ST, Cui Y, Neubrech F, Gao Y, Haglund RF, Liu N. Reconfigurable Multistate Optical Systems Enabled by VO 2 Phase Transitions. ACS PHOTONICS 2020; 7:2958-2965. [PMID: 33241075 PMCID: PMC7678723 DOI: 10.1021/acsphotonics.0c01241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 05/14/2023]
Abstract
Reconfigurable optical systems are the object of continuing, intensive research activities, as they hold great promise for realizing a new generation of compact, miniaturized, and flexible optical devices. However, current reconfigurable systems often tune only a single state variable triggered by an external stimulus, thus, leaving out many potential applications. Here we demonstrate a reconfigurable multistate optical system enabled by phase transitions in vanadium dioxide (VO2). By controlling the phase-transition characteristics of VO2 with simultaneous stimuli, the responses of the optical system can be reconfigured among multiple states. In particular, we show a quadruple-state dynamic plasmonic display that responds to both temperature tuning and hydrogen-doping. Furthermore, we introduce an electron-doping scheme to locally control the phase-transition behavior of VO2, enabling an optical encryption device encoded by multiple keys. Our work points the way toward advanced multistate reconfigurable optical systems, which substantially outperform current optical devices in both breadth of capabilities and functionalities.
Collapse
Affiliation(s)
- Xiaoyang Duan
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Samuel T. White
- Department
of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Yuanyuan Cui
- School
of Materials Science and Engineering, Shanghai
University, Shanghai 200444, China
| | - Frank Neubrech
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Yanfeng Gao
- School
of Materials Science and Engineering, Shanghai
University, Shanghai 200444, China
- E-mail:
| | - Richard F. Haglund
- Department
of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37212, United States
- Interdisciplinary
Materials Science Program, Vanderbilt University, Nashville, Tennessee 37212, United States
- E-mail:
| | - Na Liu
- Second
Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- E-mail:
| |
Collapse
|
39
|
Ren Z, Cheng L, Hu L, Liu C, Jiang C, Yang S, Ma Z, Zhou C, Wang H, Zhu X, Sun Y, Sheng Z. Photoinduced Broad-band Tunable Terahertz Absorber Based on a VO 2 Thin Film. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48811-48819. [PMID: 32975107 DOI: 10.1021/acsami.0c15297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The demand for terahertz (THz) communication and detection fuels continuous research for high performance of THz absorption materials. In addition to varying the materials and their structure passively, an alternative approach is to modulate a THz wave actively by tuning an external stimulus. Correlated oxides are ideal materials for this because the effects of a small external control parameter can be amplified by inner electronic correlations. Here, by utilizing an unpatterned strongly correlated electron oxide VO2 thin film, a photoinduced broad-band tunable THz absorber is realized first. The absorption, transmission, reflection, and phase of THz waves can all be actively controlled by an external pump laser above room temperature. By varying the laser fluence, the average broad-band absorption can be tuned from 18.9 to 74.7% and the average transmission can be tuned from 9.2 to 69.2%. Meanwhile, a broad-band antireflection is obtained at 5.6 mJ/cm2, and a π-phase shift of a reflected THz wave is achieved when the fluence increases greater than 5.7 mJ/cm2. Apart from other modulators, the photoexcitation-assisted dual-phase competition is identified as the origin of this active THz multifunctional modulation. Our work suggests that advantages of controllable phase separation in strongly correlated electron systems could provide viable routes in the creation of active optical components for THz waves.
Collapse
Affiliation(s)
- Zhuang Ren
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Long Cheng
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Ling Hu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Caixing Liu
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chengxin Jiang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shige Yang
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zongwei Ma
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
| | - Chun Zhou
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
| | - Haomin Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuping Sun
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhigao Sheng
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
40
|
Muller AA, Moldoveanu A, Asavei V, Khadar RA, Sanabria-Codesal E, Krammer A, Fernandez-Bolaños M, Cavalieri M, Zhang J, Casu E, Schuler A, Ionescu AM. 3D Smith charts scattering parameters frequency-dependent orientation analysis and complex-scalar multi-parameter characterization applied to Peano reconfigurable vanadium dioxide inductors. Sci Rep 2019; 9:18346. [PMID: 31797967 PMCID: PMC6892935 DOI: 10.1038/s41598-019-54600-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022] Open
Abstract
Recently, the field of Metal-Insulator-Transition (MIT) materials has emerged as an unconventional solution for novel energy efficient electronic functions, such as steep slope subthermionic switches, neuromorphic hardware, reconfigurable radiofrequency functions, new types of sensors, terahertz and optoelectronic devices. Employing radiofrequency (RF) electronic circuits with a MIT material like vanadium Dioxide, VO2, requires appropriate characterization tools and fabrication processes. In this work, we develop and use 3D Smith charts for devices and circuits having complex frequency dependences, like the ones resulting using MIT materials. The novel foundation of a 3D Smith chart involves here the geometrical fundamental notions of oriented curvature and variable homothety in order to clarify first theoretical inconsistencies in Foster and Non Foster circuits, where the driving point impedances exhibit mixed clockwise and counter-clockwise frequency dependent (oriented) paths on the Smith chart as frequency increases. We show here the unique visualization capability of a 3D Smith chart, which allows to quantify orientation over variable frequency. The new 3D Smith chart is applied as a joint complex-scalar 3D multi-parameter modelling and characterization environment for reconfigurable RF design exploiting Metal-Insulator-Transition (MIT) materials. We report fabricated inductors with record quality factors using VO2 phase transition to program multiple tuning states, operating in the range 4 GHz to 10 GHz.
Collapse
Affiliation(s)
- Andrei A Muller
- Nanoelectronic Devices Laboratory (NanoLab), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Alin Moldoveanu
- Department of Computer Science and Engineering, Faculty of Automatic Control and Computers, University Politehnica of Bucharest, 060042, Bucharest, Romania
| | - Victor Asavei
- Department of Computer Science and Engineering, Faculty of Automatic Control and Computers, University Politehnica of Bucharest, 060042, Bucharest, Romania
| | - Riyaz A Khadar
- Powerlab, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Esther Sanabria-Codesal
- Departamento de Matemática Aplicada, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Anna Krammer
- Solar Energy and Building Physics Laboratory (LESO-PB), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Montserrat Fernandez-Bolaños
- Nanoelectronic Devices Laboratory (NanoLab), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Matteo Cavalieri
- Nanoelectronic Devices Laboratory (NanoLab), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Junrui Zhang
- Nanoelectronic Devices Laboratory (NanoLab), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Emanuele Casu
- Nanoelectronic Devices Laboratory (NanoLab), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Andreas Schuler
- Solar Energy and Building Physics Laboratory (LESO-PB), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Adrian M Ionescu
- Nanoelectronic Devices Laboratory (NanoLab), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
41
|
Lee JH, Trier F, Cornelissen T, Preziosi D, Bouzehouane K, Fusil S, Valencia S, Bibes M. Imaging and Harnessing Percolation at the Metal-Insulator Transition of NdNiO 3 Nanogaps. NANO LETTERS 2019; 19:7801-7805. [PMID: 31584282 DOI: 10.1021/acs.nanolett.9b02815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Competition between coexisting electronic phases in first-order phase transitions can lead to a sharp change in the resistivity as the material is subjected to small variations in the driving parameter, for example, the temperature. One example of this phenomenon is the metal-insulator transition (MIT) in perovskite rare-earth nickelates. In such systems, reducing the transport measurement area to dimensions comparable to the domain size of insulating and metallic phases around the MIT should strongly influence the shape of the resistance-temperature curve. Here we measure the temperature dependence of the local resistance and the nanoscale domain distribution of NdNiO3 areas between Au contacts gapped by 40-260 nm. We find that a sharp resistance drop appears below the bulk MIT temperature at ∼105 K, with an amplitude inversely scaling with the nanogap width. By using X-ray photoemission electron microscopy, we directly correlate the resistance drop to the emergence and distribution of individual metallic domains at the nanogap. Our observation provides useful insight into percolation at the MIT of rare-earth nickelates.
Collapse
Affiliation(s)
- Jin Hong Lee
- Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay , 91767 Palaiseau , France
| | - Felix Trier
- Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay , 91767 Palaiseau , France
| | - Tom Cornelissen
- Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay , 91767 Palaiseau , France
| | - Daniele Preziosi
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS , 67000 Strasbourg , France
| | - Karim Bouzehouane
- Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay , 91767 Palaiseau , France
| | - Stéphane Fusil
- Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay , 91767 Palaiseau , France
| | - Sergio Valencia
- Helmholtz-Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , D-12489 Berlin , Germany
| | - Manuel Bibes
- Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay , 91767 Palaiseau , France
| |
Collapse
|
42
|
Aghamiri NA, Huth F, Huber AJ, Fali A, Hillenbrand R, Abate Y. Hyperspectral time-domain terahertz nano-imaging. OPTICS EXPRESS 2019; 27:24231-24242. [PMID: 31510316 DOI: 10.1364/oe.27.024231] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/12/2019] [Indexed: 05/28/2023]
Abstract
Terahertz (THz) near-field microscopy has wide and unprecedented application potential for nanoscale materials and photonic-device characterization. Here, we introduce hyperspectral THz nano-imaging by combining scattering-type scanning near-field optical microscopy (s-SNOM) with THz time-domain spectroscopy (TDS). We describe the technical implementations that enabled this achievement and demonstrate its performance with a heterogeneously doped Si semiconductor sample. Specifically, we recorded a hyperspectral image of 40 by 20 pixels in 180 minutes and with a spatial resolution of about ~170 nm by measuring at each pixel with a time domain spectrum covering the range from 0.4 to 1.8 THz. Fitting the spectra with a Drude model allows for measuring-noninvasively and without the need for Ohmic contacts-the local mobile carrier concentration of the differently doped Si areas. We envision wide application potential for THz hyperspectral nano-imaging, including nanoscale carrier profiling of industrial semiconductor structures or characterizing complex and correlated electron matter, as well as low dimensional (1D or 2D) materials.
Collapse
|
43
|
Chen X, Hu D, Mescall R, You G, Basov DN, Dai Q, Liu M. Modern Scattering-Type Scanning Near-Field Optical Microscopy for Advanced Material Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804774. [PMID: 30932221 DOI: 10.1002/adma.201804774] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/27/2019] [Indexed: 05/27/2023]
Abstract
Infrared and optical spectroscopy represents one of the most informative methods in advanced materials research. As an important branch of modern optical techniques that has blossomed in the past decade, scattering-type scanning near-field optical microscopy (s-SNOM) promises deterministic characterization of optical properties over a broad spectral range at the nanoscale. It allows ultrabroadband optical (0.5-3000 µm) nanoimaging, and nanospectroscopy with fine spatial (<10 nm), spectral (<1 cm-1 ), and temporal (<10 fs) resolution. The history of s-SNOM is briefly introduced and recent advances which broaden the horizons of this technique in novel material research are summarized. In particular, this includes the pioneering efforts to study the nanoscale electrodynamic properties of plasmonic metamaterials, strongly correlated quantum materials, and polaritonic systems at room or cryogenic temperatures. Technical details, theoretical modeling, and new experimental methods are also discussed extensively, aiming to identify clear technology trends and unsolved challenges in this exciting field of research.
Collapse
Affiliation(s)
- Xinzhong Chen
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Debo Hu
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ryan Mescall
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Guanjun You
- Shanghai Key Lab of Modern Optical Systems and Engineering Research Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Qing Dai
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
44
|
Yao Z, Semenenko V, Zhang J, Mills S, Zhao X, Chen X, Hu H, Mescall R, Ciavatti T, March S, Bank SR, Tao TH, Zhang X, Perebeinos V, Dai Q, Du X, Liu M. Photo-induced terahertz near-field dynamics of graphene/InAs heterostructures. OPTICS EXPRESS 2019; 27:13611-13623. [PMID: 31163822 DOI: 10.1364/oe.27.013611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
In this letter, we report optical pump terahertz (THz) near-field probe (n-OPTP) and optical pump THz near-field emission (n-OPTE) experiments of graphene/InAs heterostructures. Near-field imaging contrasts between graphene and InAs using these newly developed techniques as well as spectrally integrated THz nano-imaging (THz s-SNOM) are systematically studied. We demonstrate that in the near-field regime (λ/6000), a single layer of graphene is transparent to near-IR (800 nm) optical excitation and completely "screens" the photo-induced far-infrared (THz) dynamics in its substrate (InAs). Our work reveals unique frequency-selective ultrafast dynamics probed at the near field. It also provides strong evidence that n-OPTE nanoscopy yields contrast that distinguishes single-layer graphene from its substrate.
Collapse
|
45
|
Huang Y, Yao Z, He C, Zhu L, Zhang L, Bai J, Xu X. Terahertz surface and interface emission spectroscopy for advanced materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:153001. [PMID: 30669133 DOI: 10.1088/1361-648x/ab00c0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surfaces and interfaces are of particular importance for optoelectronic and photonic materials as they are involved in many physical and chemical processes such as carrier dynamics, charge transfer, chemical bonding, transformation reactions and so on. Terahertz (THz) emission spectroscopy provides a sensitive and nondestructive method for surface or interface analysis of advanced materials ranging from graphene to transition metal dichalcogenides, topological insulators, hybrid perovskites, and mixed-dimensional heterostructures based on 2D materials. In this review paper, we start with the THz radiation mechanisms under ultrafast laser excitation. Then we concentrate on the recent progresses of THz emission spectroscopy on the surface and interface properties of advanced materials, including transient surface photocurrents, surface nonlinear polarization, surface states, interface potential, and gas molecule adsorption/desorption processes. This novel spectroscopic method can not only promote the development of new and compact THz sources, but also provide a nondestructive optical method for surface and interface characterization of photocurrent and nonlinear polarization dynamics of materials.
Collapse
Affiliation(s)
- Yuanyuan Huang
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|