1
|
Alhajahjeh A, Bewersdorf JP, Bystrom RP, Zeidan AM, Shimony S, Stahl M. Acute myeloid leukemia (AML) with chromosome 3 inversion: biology, management, and clinical outcome. Leuk Lymphoma 2024; 65:1541-1551. [PMID: 38962996 DOI: 10.1080/10428194.2024.2367040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024]
Abstract
Acute myeloid leukemia (AML) is a complex hematological malignancy characterized by diverse genetic alterations, each with distinct clinical implications. Chromosome 3 inversion (inv(3)) is a rare genetic anomaly found in approximately 1.4-1.6% of AML cases, which profoundly affects prognosis. This review explores the pathophysiology of inv(3) AML, focusing on fusion genes like GATA2::EVI1 or GATA2::MECOM. These genetic rearrangements disrupt critical cellular processes and lead to leukemia development. Current treatment modalities, including intensive chemotherapy (IC), hypomethylating agents (HMAs) combined with venetoclax, and allogeneic stem cell transplantation are discussed, highlighting outcomes achieved and their limitations. The review also addresses subgroups of inv(3) AML, describing additional mutations and their impact on treatment response. The poor prognosis associated with inv(3) AML underscores the urgent need to develop more potent therapies for this AML subtype. This comprehensive overview aims to contribute to a deeper understanding of inv(3) AML and guide future research and treatment strategies.
Collapse
Affiliation(s)
- Abdulrahman Alhajahjeh
- Department Internal Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA
| | - Rebecca P Bystrom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA
- Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT, USA
| | - Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Rabin Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
2
|
Castillo H, Hanna P, Sachs LM, Buisine N, Godoy F, Gilbert C, Aguilera F, Muñoz D, Boisvert C, Debiais-Thibaud M, Wan J, Spicuglia S, Marcellini S. Xenopus tropicalis osteoblast-specific open chromatin regions reveal promoters and enhancers involved in human skeletal phenotypes and shed light on early vertebrate evolution. Cells Dev 2024; 179:203924. [PMID: 38692409 DOI: 10.1016/j.cdev.2024.203924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
While understanding the genetic underpinnings of osteogenesis has far-reaching implications for skeletal diseases and evolution, a comprehensive characterization of the osteoblastic regulatory landscape in non-mammalian vertebrates is still lacking. Here, we compared the ATAC-Seq profile of Xenopus tropicalis (Xt) osteoblasts to a variety of non mineralizing control tissues, and identified osteoblast-specific nucleosome free regions (NFRs) at 527 promoters and 6747 distal regions. Sequence analyses, Gene Ontology, RNA-Seq and ChIP-Seq against four key histone marks confirmed that the distal regions correspond to bona fide osteogenic transcriptional enhancers exhibiting a shared regulatory logic with mammals. We report 425 regulatory regions conserved with human and globally associated to skeletogenic genes. Of these, 35 regions have been shown to impact human skeletal phenotypes by GWAS, including one trps1 enhancer and the runx2 promoter, two genes which are respectively involved in trichorhinophalangeal syndrome type I and cleidocranial dysplasia. Intriguingly, 60 osteoblastic NFRs also align to the genome of the elephant shark, a species lacking osteoblasts and bone tissue. To tackle this paradox, we chose to focus on dlx5 because its conserved promoter, known to integrate regulatory inputs during mammalian osteogenesis, harbours an osteoblast-specific NFR in both frog and human. Hence, we show that dlx5 is expressed in Xt and elephant shark odontoblasts, supporting a common cellular and genetic origin of bone and dentine. Taken together, our work (i) unravels the Xt osteogenic regulatory landscape, (ii) illustrates how cross-species comparisons harvest data relevant to human biology and (iii) reveals that a set of genes including bnc2, dlx5, ebf3, mir199a, nfia, runx2 and zfhx4 drove the development of a primitive form of mineralized skeletal tissue deep in the vertebrate lineage.
Collapse
Affiliation(s)
- Héctor Castillo
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile.
| | - Patricia Hanna
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile
| | - Laurent M Sachs
- UMR7221, Physiologie Moléculaire et Adaptation, CNRS, MNHN, Paris Cedex 05, France
| | - Nicolas Buisine
- UMR7221, Physiologie Moléculaire et Adaptation, CNRS, MNHN, Paris Cedex 05, France
| | - Francisco Godoy
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 12 route 128, 91190 Gif-sur-Yvette, France
| | - Felipe Aguilera
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile
| | - David Muñoz
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile
| | - Catherine Boisvert
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Jing Wan
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France; Equipe Labelisée LIGUE contre le Cancer, Marseille, France
| | - Salvatore Spicuglia
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France; Equipe Labelisée LIGUE contre le Cancer, Marseille, France
| | - Sylvain Marcellini
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile.
| |
Collapse
|
3
|
Schultheis H, Bentsen M, Heger V, Looso M. Uncovering uncharacterized binding of transcription factors from ATAC-seq footprinting data. Sci Rep 2024; 14:9275. [PMID: 38654130 DOI: 10.1038/s41598-024-59989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Transcription factors (TFs) are crucial epigenetic regulators, which enable cells to dynamically adjust gene expression in response to environmental signals. Computational procedures like digital genomic footprinting on chromatin accessibility assays such as ATACseq can be used to identify bound TFs in a genome-wide scale. This method utilizes short regions of low accessibility signals due to steric hindrance of DNA bound proteins, called footprints (FPs), which are combined with motif databases for TF identification. However, while over 1600 TFs have been described in the human genome, only ~ 700 of these have a known binding motif. Thus, a substantial number of FPs without overlap to a known DNA motif are normally discarded from FP analysis. In addition, the FP method is restricted to organisms with a substantial number of known TF motifs. Here we present DENIS (DE Novo motIf diScovery), a framework to generate and systematically investigate the potential of de novo TF motif discovery from FPs. DENIS includes functionality (1) to isolate FPs without binding motifs, (2) to perform de novo motif generation and (3) to characterize novel motifs. Here, we show that the framework rediscovers artificially removed TF motifs, quantifies de novo motif usage during an early embryonic development example dataset, and is able to analyze and uncover TF activity in organisms lacking canonical motifs. The latter task is exemplified by an investigation of a scATAC-seq dataset in zebrafish which covers different cell types during hematopoiesis.
Collapse
Affiliation(s)
- Hendrik Schultheis
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mette Bentsen
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Vanessa Heger
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
4
|
Zhao LZ, Liang Y, Yin T, Liao HL, Liang B. Identification of Potential Crucial Biomarkers in STEMI Through Integrated Bioinformatic Analysis. Arq Bras Cardiol 2024; 121:e20230462. [PMID: 38597542 DOI: 10.36660/abc.20230462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/14/2023] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND ST-segment elevation myocardial infarction (STEMI) is one of the leading causes of fatal cardiovascular diseases, which have been the prime cause of mortality worldwide. Diagnosis in the early phase would benefit clinical intervention and prognosis, but the exploration of the biomarkers of STEMI is still lacking. OBJECTIVES In this study, we conducted a bioinformatics analysis to identify potential crucial biomarkers in the progress of STEMI. METHODS We obtained GSE59867 for STEMI and stable coronary artery disease (SCAD) patients. Differentially expressed genes (DEGs) were screened with the threshold of |log2fold change| > 0.5 and p <0.05. Based on these genes, we conducted enrichment analysis to explore the potential relevance between genes and to screen hub genes. Subsequently, hub genes were analyzed to detect related miRNAs and DAVID to detect transcription factors for further analysis. Finally, GSE62646 was utilized to assess DEGs specificity, with genes demonstrating AUC results exceeding 75%, indicating their potential as candidate biomarkers. RESULTS 133 DEGs between SCAD and STEMI were obtained. Then, the PPI network of DEGs was constructed using String and Cytoscape, and further analysis determined hub genes and 6 molecular complexes. Functional enrichment analysis of the DEGs suggests that pathways related to inflammation, metabolism, and immunity play a pivotal role in the progression from SCAD to STEMI. Besides, related-miRNAs were predicted, has-miR-124, has-miR-130a/b, and has-miR-301a/b regulated the expression of the largest number of genes. Meanwhile, Transcription factors analysis indicate that EVI1, AML1, GATA1, and PPARG are the most enriched gene. Finally, ROC curves demonstrate that MS4A3, KLRC4, KLRD1, AQP9, and CD14 exhibit both high sensitivity and specificity in predicting STEMI. CONCLUSIONS This study revealed that immunity, metabolism, and inflammation are involved in the development of STEMI derived from SCAD, and 6 genes, including MS4A3, KLRC4, KLRD1, AQP9, CD14, and CCR1, could be employed as candidate biomarkers to STEMI.
Collapse
Affiliation(s)
- Li-Zhi Zhao
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou - China
- College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou - China
| | - Yi Liang
- Department of Geriatrics, Sichuan Second Hospital of T.C.M., Chengdu - China
| | - Ting Yin
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou - China
| | - Hui-Ling Liao
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou - China
- College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou - China
| | - Bo Liang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing - China
| |
Collapse
|
5
|
Birdwell CE, Fiskus W, Kadia TM, Mill CP, Sasaki K, Daver N, DiNardo CD, Pemmaraju N, Borthakur G, Davis JA, Das K, Sharma S, Horrigan S, Ruan X, Su X, Khoury JD, Kantarjian H, Bhalla KN. Preclinical efficacy of targeting epigenetic mechanisms in AML with 3q26 lesions and EVI1 overexpression. Leukemia 2024; 38:545-556. [PMID: 38086946 DOI: 10.1038/s41375-023-02108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 03/06/2024]
Abstract
AML with chromosomal alterations involving 3q26 overexpresses the transcription factor (TF) EVI1, associated with therapy refractoriness and inferior overall survival in AML. Consistent with a CRISPR screen highlighting BRD4 dependency, treatment with BET inhibitor (BETi) repressed EVI1, LEF1, c-Myc, c-Myb, CDK4/6, and MCL1, and induced apoptosis of AML cells with 3q26 lesions. Tegavivint (TV, BC-2059), known to disrupt the binding of nuclear β-catenin and TCF7L2/LEF1 with TBL1, also inhibited co-localization of EVI1 with TBL1 and dose-dependently induced apoptosis in AML cell lines and patient-derived (PD) AML cells with 3q26.2 lesions. TV treatment repressed EVI1, attenuated enhancer activity at ERG, TCF7L2, GATA2 and MECOM loci, abolished interactions between MYC enhancers, repressing AML stemness while upregulating mRNA gene-sets of interferon/inflammatory response, TGF-β signaling and apoptosis-regulation. Co-treatment with TV and BETi or venetoclax induced synergistic in vitro lethality and reduced AML burden, improving survival of NSG mice harboring xenografts of AML with 3q26.2 lesions.
Collapse
Affiliation(s)
| | - Warren Fiskus
- M.D. Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Tapan M Kadia
- M.D. Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Christopher P Mill
- M.D. Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Koji Sasaki
- M.D. Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Naval Daver
- M.D. Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Courtney D DiNardo
- M.D. Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Naveen Pemmaraju
- M.D. Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Gautam Borthakur
- M.D. Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - John A Davis
- M.D. Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Kaberi Das
- M.D. Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | | | | | - Xinjia Ruan
- M.D. Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Xiaoping Su
- M.D. Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Joseph D Khoury
- University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hagop Kantarjian
- M.D. Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Kapil N Bhalla
- M.D. Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Maytum A, Edginton-White B, Keane P, Cockerill PN, Cazier JB, Bonifer C. Chromatin priming elements direct tissue-specific gene activity before hematopoietic specification. Life Sci Alliance 2024; 7:e202302363. [PMID: 37989524 PMCID: PMC10663361 DOI: 10.26508/lsa.202302363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Tissue-specific gene regulation during development involves the interplay between transcription factors and epigenetic regulators binding to enhancer and promoter elements. The pattern of active enhancers defines the cellular differentiation state. However, developmental gene activation involves a previous step called chromatin priming which is not fully understood. We recently developed a genome-wide functional assay that allowed us to functionally identify enhancer elements integrated in chromatin regulating five stages spanning the in vitro differentiation of embryonic stem cells to blood. We also measured global chromatin accessibility, histone modifications, and transcription factor binding. The integration of these data identified and characterised cis-regulatory elements which become activated before the onset of gene expression, some of which are primed in a signalling-dependent fashion. Deletion of such a priming element leads to a delay in the up-regulation of its associated gene in development. Our work uncovers the details of a complex network of regulatory interactions with the dynamics of early chromatin opening being at the heart of dynamic tissue-specific gene expression control.
Collapse
Affiliation(s)
- Alexander Maytum
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Benjamin Edginton-White
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jean-Baptiste Cazier
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Auger N, Douet-Guilbert N, Quessada J, Theisen O, Lafage-Pochitaloff M, Troadec MB. Cytogenetics in the management of myelodysplastic neoplasms (myelodysplastic syndromes, MDS): Guidelines from the groupe francophone de cytogénétique hématologique (GFCH). Curr Res Transl Med 2023; 71:103409. [PMID: 38091642 DOI: 10.1016/j.retram.2023.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 12/26/2023]
Abstract
Myelodysplastic neoplasms (MDS) are clonal hematopoietic neoplasms. Chromosomal abnormalities (CAs) are detected in 40-45% of de novo MDS and up to 80% of post-cytotoxic therapy MDS (MDS-pCT). Lately, several changes appeared in World Health Organization (WHO) classification and International Consensus Classification (ICC). The novel 'biallelic TP53 inactivation' (also called 'multi-hit TP53') MDS entity requires systematic investigation of TP53 locus (17p13.1). The ICC maintains CA allowing the diagnosis of MDS without dysplasia (del(5q), del(7q), -7 and complex karyotype). Deletion 5q is the only CA, still representing a low blast class of its own, if isolated or associated with one additional CA other than -7 or del(7q) and without multi-hit TP53. It represents one of the most frequent aberrations in adults' MDS, with chromosome 7 aberrations, and trisomy 8. Conversely, translocations are rarer in MDS. In children, del(5q) is very rare while -7 and del(7q) are predominant. Identification of a germline predisposition is key in childhood MDS. Aberrations of chromosomes 5, 7 and 17 are the most frequent in MDS-pCT, grouped in complex karyotypes. Despite the ever-increasing importance of molecular features, cytogenetics remains a major part of diagnosis and prognosis. In 2022, a molecular international prognostic score (IPSS-M) was proposed, combining the prognostic value of mutated genes to the previous scoring parameters (IPSS-R) including cytogenetics, still essential. A karyotype on bone marrow remains mandatory at diagnosis of MDS with complementary molecular analyses now required. Analyses with FISH or other technologies providing similar information can be necessary to complete and help in case of karyotype failure, for doubtful CA, for clonality assessment, and for detection of TP53 deletion to assess TP53 biallelic alterations.
Collapse
Affiliation(s)
- Nathalie Auger
- Gustave Roussy, Génétique des tumeurs, 144 rue Edouard Vaillant, Villejuif 94805, France
| | - Nathalie Douet-Guilbert
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest F-29200, France; CHRU Brest, Laboratoire de Génétique Chromosomique, Service de génétique, Brest, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, CHU Timone Aix Marseille University, Marseille, France
| | - Olivier Theisen
- Hematology Biology, Nantes University Hospital, Nantes, France
| | | | - Marie-Bérengère Troadec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest F-29200, France; CHRU Brest, Laboratoire de Génétique Chromosomique, Service de génétique, Brest, France.
| |
Collapse
|
8
|
Lux S, Milsom MD. EVI1-mediated Programming of Normal and Malignant Hematopoiesis. Hemasphere 2023; 7:e959. [PMID: 37810550 PMCID: PMC10553128 DOI: 10.1097/hs9.0000000000000959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Ecotropic viral integration site 1 (EVI1), encoded at the MECOM locus, is an oncogenic zinc finger transcription factor with diverse roles in normal and malignant cells, most extensively studied in the context of hematopoiesis. EVI1 interacts with other transcription factors in a context-dependent manner and regulates transcription and chromatin remodeling, thereby influencing the proliferation, differentiation, and survival of cells. Interestingly, it can act both as a transcriptional activator as well as a transcriptional repressor. EVI1 is expressed, and fulfills important functions, during the development of different tissues, including the nervous system and hematopoiesis, demonstrating a rigid spatial and temporal expression pattern. However, EVI1 is regularly overexpressed in a variety of cancer entities, including epithelial cancers such as ovarian and pancreatic cancer, as well as in hematologic malignancies like myeloid leukemias. Importantly, EVI1 overexpression is generally associated with a very poor clinical outcome and therapy-resistance. Thus, EVI1 is an interesting candidate to study to improve the prognosis and treatment of high-risk patients with "EVI1high" hematopoietic malignancies.
Collapse
Affiliation(s)
- Susanne Lux
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael D. Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
9
|
Richard-Carpentier G, Rausch CR, Sasaki K, Hammond D, Morita K, Takahashi K, Tang G, Kanagal-Shamanna R, Bhalla K, Dinardo CD, Borthakur G, Pemmaraju N, Shpall EJ, Alousi A, Daver NG, Garcia-Manero G, Konopleva MY, Ravandi F, Kantarjian HM, Kadia TM. Characteristics and clinical outcomes of patients with acute myeloid leukemia with inv(3)(q21q26.2) or t(3;3)(q21;q26.2). Haematologica 2023; 108:2331-2342. [PMID: 36951163 PMCID: PMC10483357 DOI: 10.3324/haematol.2022.282030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Acute myeloid leukemia (AML) with inv(3)(q21q26.2)/t(3;3)(q21;q26.2) has a very poor prognosis. Determinants of clinical outcomes and optimal treatment remain uncertain. We retrospectively reviewed 108 cases of AML with inv(3)/t(3;3) and evaluated clinicopathological characteristics and clinical outcomes: 53 newly diagnosed (ND) AML and 55 relapsed/refractory (R/R) AML. Median age was 55 years. White blood cell (WBC) count ≥20x109/L and platelet count ≥140x109/L was observed in 25% and 32% of ND patients, respectively. Anomalies involving chromosome 7 were identified in 56% of patients. The most frequently mutated genes were SF3B1, PTPN11, NRAS, KRAS and ASXL1. In ND patients, the composite complete remission (CRc) rate was 46% overall; 46% with high-intensity treatments and 47% with lowintensity treatments. The 30-day mortality was 14% and 0%, with high- and low-intensity treatment, respectively. In R/R patients, the CRc rate was 14%. Venetoclax based-regimens were associated with a CRc rate of 33%. The 3-year overall survival (OS) was 8.8% and 7.1% in ND and R/R patients, respectively. The 3-year cumulative incidence of relapse was 81.7% overall. Older age, high WBC, high peripheral blast count, secondary AML and KRAS, ASXL1, DNMT3A mutations were associated with worse OS in univariable analyses. The 5-year OS rates were 44% and 6% with or without hematopoietic stem cell transplantation in CR1, respectively. AML with inv(3)/t(3;3) is associated with low CR rates, very high risk of relapse and dismal long-term survival. Intensive chemotherapy and hy pomethylating agents provide similar rates of remission and patients achieving CR benefit from hematopoietic stem cell transplantation in first CR.
Collapse
Affiliation(s)
- Guillaume Richard-Carpentier
- Department of Medicine, Division of Medical Oncology and Hematology, University of Toronto, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Leukemia, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas.
| | - Caitlin R Rausch
- Division of Pharmacy, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Koji Sasaki
- Department of Leukemia, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Danielle Hammond
- Department of Leukemia, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Kiyomi Morita
- Department of Leukemia, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Koichi Takahashi
- Department of Leukemia, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Guilin Tang
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Kapil Bhalla
- Department of Leukemia, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Courtney D Dinardo
- Department of Leukemia, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Gautam Borthakur
- Department of Leukemia, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Naveen Pemmaraju
- Department of Leukemia, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Amin Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Naval G Daver
- Department of Leukemia, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Guillermo Garcia-Manero
- Department of Leukemia, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Marina Y Konopleva
- Department of Leukemia, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Hagop M Kantarjian
- Department of Leukemia, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Tapan M Kadia
- Department of Leukemia, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
10
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Nabil R, Abdellateif MS, Gamal H, Hassan NM, Badawy RH, Ghareeb M, El Ashry MS. Clinical significance of EVI-1 gene expression and aberrations in patient with de-novo acute myeloid and acute lymphoid leukemia. Leuk Res 2023; 126:107019. [PMID: 36657369 DOI: 10.1016/j.leukres.2023.107019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Acute leukemia is a common health problem in adults and children, however its exact molecular etiology is still unclear. METHODS The expression of EVI-1 was assessed in the bone marrow of 178 de-novo acute leukemia patients (101 AML, 71 ALL and 6 MPAL), compared to 40 control subjects. EVI-1 gene aberrations were also assessed in 69 AML patients using Fluorescence in situ hybridization (FISH) technique. RESULTS The expression of EVI-1 was significantly lower in ALL patients compared to control [0.177 (0.002-15.189) vs 0.953 (0.179-1.68); respectively, P = 0.009]. There was no significant difference between AML patients and control group [0.150 (0.0-641) vs 0.953 (0.179-1.68); respectively, P = 0.082]. The sensitivity, specificity, AUC of EVI-1 in ALL were (80.3 %, 60 % and 0.778; respectively, P = 0.009), and (67.3 %, 60 %, 0.667; respectively P = 0.082) in AML patients. One patient showed EVI-1 gene rearrangement in a complex karyotype and four patients showed EVI-1 amplification in hyperdiploid karyotypes. All patients with BCR-ABL fusion were EVI-1 over-expressers (P = 0.010). AML patients with EVI-1 low expression were positively associated with t(8;21)(q22;q22)RUNX1:RUNX1T1 fusion, favorable recurrent translocation, and low genetic risk (P = 0.037, P = 0.023, and P = 0.013; respectively). There was a significant association between low EVI-1 expression and prolonged overall survival (OS) in AML patients, while there was no significant association with the disease-free survival (DFS) (P = 0.048 and P = 0.419). There was no significant impact of EVI-1 expression on OS and DFS rates in ALL patients. CONCLUSION EVI-1 expression could be a helpful diagnostic, prognostic, and predictive biomarker for acute leukemia especially in AML.
Collapse
Affiliation(s)
- Reem Nabil
- Clinical Pathology Department, National Cancer Institute, Cairo University, Egypt
| | - Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Egypt.
| | - Hend Gamal
- Clinical Pathology Department, National Cancer Institute, Cairo University, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Egypt
| | - Ragia H Badawy
- Clinical Pathology Department, National Cancer Institute, Cairo University, Egypt
| | - Mohamed Ghareeb
- Medical Oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Mona S El Ashry
- Clinical Pathology Department, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
12
|
EVI1 drives leukemogenesis through aberrant ERG activation. Blood 2023; 141:453-466. [PMID: 36095844 DOI: 10.1182/blood.2022016592] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 02/07/2023] Open
Abstract
Chromosomal rearrangements involving the MDS1 and EVI1 complex locus (MECOM) on chromosome 3q26 define an aggressive subtype of acute myeloid leukemia (AML) that is associated with chemotherapy resistance and dismal prognosis. Established treatment regimens commonly fail in these patients, therefore, there is an urgent need for new therapeutic concepts that will require a better understanding of the molecular and cellular functions of the ecotropic viral integration site 1 (EVI1) oncogene. To characterize gene regulatory functions of EVI1 and associated dependencies in AML, we developed experimentally tractable human and murine disease models, investigated the transcriptional consequences of EVI1 withdrawal in vitro and in vivo, and performed the first genome-wide CRISPR screens in EVI1-dependent AML. By integrating conserved transcriptional targets with genetic dependency data, we identified and characterized the ETS transcription factor ERG as a direct transcriptional target of EVI1 that is aberrantly expressed and selectively required in both human and murine EVI1-driven AML. EVI1 controls the expression of ERG and occupies a conserved intragenic enhancer region in AML cell lines and samples from patients with primary AML. Suppression of ERG induces terminal differentiation of EVI1-driven AML cells, whereas ectopic expression of ERG abrogates their dependence on EVI1, indicating that the major oncogenic functions of EVI1 are mediated through aberrant transcriptional activation of ERG. Interfering with this regulatory axis may provide entry points for the development of rational targeted therapies.
Collapse
|
13
|
Tang Z, Wang W, Yang S, El Achi H, Fang H, Nahmod KA, Toruner GA, Xu J, Thakral B, Ayoub E, Issa GC, Yin CC, You MJ, Miranda RN, Khoury JD, Medeiros LJ, Tang G. 3q26.2/ MECOM Rearrangements by Pericentric Inv(3): Diagnostic Challenges and Clinicopathologic Features. Cancers (Basel) 2023; 15:458. [PMID: 36672407 PMCID: PMC9856433 DOI: 10.3390/cancers15020458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
MECOM rearrangement (MECOM-R) resulting from 3q26.2 aberrations is often associated with myeloid neoplasms and inferior prognosis in affected patients. Uncommonly, certain 3q26.2/MECOM-R can be subtle/cryptic and consequently overlooked by karyotyping. We identified 17 acute myeloid leukemia (AML) patients (male/female: 13/4 with a median age of 67 years, range 42 to 85 years) with a pericentric inv(3) leading to MECOM-R, with breakpoints at 3p23 (n = 11), 3p25 (n = 3), 3p21 (n = 2) and 3p13 (n = 1) on 3p and 3q26.2 on 3q. These pericentric inv(3)s were overlooked by karyotyping initially in 16 of 17 cases and later detected by metaphase FISH analysis. Similar to the patients with classic/paracentric inv(3)(q21q26.2), patients with pericentric inv(3) exhibited frequent cytopenia, morphological dysplasia (especially megakaryocytes), -7/del(7q), frequent NRAS (n = 6), RUNX1 (n = 5) and FLT-3 (n = 4) mutations and dismal outcomes (median overall survival: 14 months). However, patients with pericentric inv(3) more frequently had AML with thrombocytopenia (n = 15, 88%), relative monocytosis in peripheral blood (n = 15, 88%), decreased megakaryocytes (n = 11, 65%), and lower SF3B1 mutation. We conclude that AML with pericentric inv(3) shares some similarities with AML associated with classic/paracentric inv(3)/GATA2::MECOM but also shows certain unique features. Pericentric inv(3)s are often subtle/cryptic by chromosomal analysis. A reflex FISH analysis for MECOM-R is recommended in myeloid neoplasms showing -7/del(7q).
Collapse
Affiliation(s)
- Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Su Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hanadi El Achi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen Amelia Nahmod
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gokce A. Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edward Ayoub
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ghayas C. Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roberto N. Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
14
|
Voit RA, Tao L, Yu F, Cato LD, Cohen B, Fleming TJ, Antoszewski M, Liao X, Fiorini C, Nandakumar SK, Wahlster L, Teichert K, Regev A, Sankaran VG. A genetic disorder reveals a hematopoietic stem cell regulatory network co-opted in leukemia. Nat Immunol 2023; 24:69-83. [PMID: 36522544 PMCID: PMC9810535 DOI: 10.1038/s41590-022-01370-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022]
Abstract
The molecular regulation of human hematopoietic stem cell (HSC) maintenance is therapeutically important, but limitations in experimental systems and interspecies variation have constrained our knowledge of this process. Here, we have studied a rare genetic disorder due to MECOM haploinsufficiency, characterized by an early-onset absence of HSCs in vivo. By generating a faithful model of this disorder in primary human HSCs and coupling functional studies with integrative single-cell genomic analyses, we uncover a key transcriptional network involving hundreds of genes that is required for HSC maintenance. Through our analyses, we nominate cooperating transcriptional regulators and identify how MECOM prevents the CTCF-dependent genome reorganization that occurs as HSCs differentiate. We show that this transcriptional network is co-opted in high-risk leukemias, thereby enabling these cancers to acquire stem cell properties. Collectively, we illuminate a regulatory network necessary for HSC self-renewal through the study of a rare experiment of nature.
Collapse
Affiliation(s)
- Richard A Voit
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Liming Tao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Liam D Cato
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Blake Cohen
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Travis J Fleming
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaotian Liao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claudia Fiorini
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Satish K Nandakumar
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Albert Einstein Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Bronx, NY, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kristian Teichert
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
15
|
Ma Y, Kang B, Li S, Xie G, Bi J, Li F, An G, Liu B, Li J, Shen Y, Xu X, Yang H, Yang Y, Gu Y, Wu N. CRISPR-mediated MECOM depletion retards tumor growth by reducing cancer stem cell properties in lung squamous cell carcinoma. Mol Ther 2022; 30:3341-3357. [PMID: 35733338 PMCID: PMC9637721 DOI: 10.1016/j.ymthe.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/22/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022] Open
Abstract
Targeted therapy for lung squamous cell carcinoma (LUSC) remains a challenge due to the lack of robust targets. Here, we identified MECOM as a candidate of therapeutic target for LUSC by screening 38 genes that were commonly amplified in three pairs of primary tumors and patient-derived xenografts (PDXs) using a clustered regularly interspaced short palindromic repeats (CRISPR)-mediated approach. High MECOM expression levels were associated with poor prognosis. Forced expression of MECOM in LUSC cell lines promoted cancer stem cell (CSC) properties, and its knockout inhibited CSC phenotypes. Furthermore, systemic delivery of CRISPR-mediated MECOM depletion cassette using adenovirus with an adaptor, which is composed of a single-chain fragment variable (scFv) against epithelial cell adhesion molecules (EpCAM) fused to the ectodomain of coxsackievirus and adenovirus receptor, and a protector, which consists of the scFv connected to the hexon symmetry of the adenovirus, could specifically target subcutaneous and orthotopic LUSC and retard tumor growth. This study could provide a novel therapeutic strategy for LUSC with high efficacy and specificity.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Bin Kang
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Shaolei Li
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Guoyun Xie
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Jiwang Bi
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Fuqiang Li
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Guo An
- Department of Laboratory Animals, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Bing Liu
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jing Li
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Yue Yang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China.
| | - Nan Wu
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China.
| |
Collapse
|
16
|
Thibord F, Klarin D, Brody JA, Chen MH, Levin MG, Chasman DI, Goode EL, Hveem K, Teder-Laving M, Martinez-Perez A, Aïssi D, Daian-Bacq D, Ito K, Natarajan P, Lutsey PL, Nadkarni GN, de Vries PS, Cuellar-Partida G, Wolford BN, Pattee JW, Kooperberg C, Braekkan SK, Li-Gao R, Saut N, Sept C, Germain M, Judy RL, Wiggins KL, Ko D, O’Donnell CJ, Taylor KD, Giulianini F, De Andrade M, Nøst TH, Boland A, Empana JP, Koyama S, Gilliland T, Do R, Huffman JE, Wang X, Zhou W, Soria JM, Souto JC, Pankratz N, Haessler J, Hindberg K, Rosendaal FR, Turman C, Olaso R, Kember RL, Bartz TM, Lynch JA, Heckbert SR, Armasu SM, Brumpton B, Smadja DM, Jouven X, Komuro I, Clapham KR, Loos RJ, Willer CJ, Sabater-Lleal M, Pankow JS, Reiner AP, Morelli VM, Ridker PM, van Hylckama Vlieg A, Deleuze JF, Kraft P, Rader DJ, Lee KM, Psaty BM, Skogholt AH, Emmerich J, Suchon P, Rich SS, Vy HMT, Tang W, Jackson RD, Hansen JB, Morange PE, Kabrhel C, Trégouët DA, Damrauer SM, Johnson AD, Smith NL. Cross-Ancestry Investigation of Venous Thromboembolism Genomic Predictors. Circulation 2022; 146:1225-1242. [PMID: 36154123 PMCID: PMC10152894 DOI: 10.1161/circulationaha.122.059675] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Venous thromboembolism (VTE) is a life-threatening vascular event with environmental and genetic determinants. Recent VTE genome-wide association studies (GWAS) meta-analyses involved nearly 30 000 VTE cases and identified up to 40 genetic loci associated with VTE risk, including loci not previously suspected to play a role in hemostasis. The aim of our research was to expand discovery of new genetic loci associated with VTE by using cross-ancestry genomic resources. METHODS We present new cross-ancestry meta-analyzed GWAS results involving up to 81 669 VTE cases from 30 studies, with replication of novel loci in independent populations and loci characterization through in silico genomic interrogations. RESULTS In our genetic discovery effort that included 55 330 participants with VTE (47 822 European, 6320 African, and 1188 Hispanic ancestry), we identified 48 novel associations, of which 34 were replicated after correction for multiple testing. In our combined discovery-replication analysis (81 669 VTE participants) and ancestry-stratified meta-analyses (European, African, and Hispanic), we identified another 44 novel associations, which are new candidate VTE-associated loci requiring replication. In total, across all GWAS meta-analyses, we identified 135 independent genomic loci significantly associated with VTE risk. A genetic risk score of the significantly associated loci in Europeans identified a 6-fold increase in risk for those in the top 1% of scores compared with those with average scores. We also identified 31 novel transcript associations in transcriptome-wide association studies and 8 novel candidate genes with protein quantitative-trait locus Mendelian randomization analyses. In silico interrogations of hemostasis and hematology traits and a large phenome-wide association analysis of the 135 GWAS loci provided insights to biological pathways contributing to VTE, with some loci contributing to VTE through well-characterized coagulation pathways and others providing new data on the role of hematology traits, particularly platelet function. Many of the replicated loci are outside of known or currently hypothesized pathways to thrombosis. CONCLUSIONS Our cross-ancestry GWAS meta-analyses identified new loci associated with VTE. These findings highlight new pathways to thrombosis and provide novel molecules that may be useful in the development of improved antithrombosis treatments.
Collapse
Affiliation(s)
- Florian Thibord
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
- The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
| | - Derek Klarin
- Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, 94550, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
- The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
| | - Michael G. Levin
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, 900 Commonwealth Ave, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Ellen L. Goode
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kristian Hveem
- HUNT Research Center, Department of Public Health and Nursing, Norwegian University of Science and Technology, Forskningsvegen 2, Levanger, 7600, Norway
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Håkon Jarls gate 11, Trondheim, 7030, Norway
| | - Maris Teder-Laving
- Institute of Genomics, University of Tartu, Riia 23b, Tartu, Tartu, 51010, Estonia
| | - Angel Martinez-Perez
- Genomics of Complex Disease Unit, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), St Quinti 77-79, Barcelona, 8041, Spain
| | - Dylan Aïssi
- Bordeaux Population Health Research Center, University of Bordeaux, 146 rue Léo Saignat, Bordeaux, 33076, France
- UMR1219, INSERM, 146 rue Léo Saignat, Bordeaux, 33076, France
| | - Delphine Daian-Bacq
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02446, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard & MIT, 75 Ames St, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Shattuck St, Boston, MA, 02115, USA
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, 1300 South Second Street, Minneapolis, MN, 55454, USA
| | - Girish N. Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gu stave L. Levy Pl, New York, NY, 10029, USA
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, 1200 Pressler St, Houston, TX, 77030, USA
| | | | - Brooke N. Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jack W. Pattee
- Division of Biostatistics, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Center for Innovative Design & Analysis and Department of Biostatistics & Informatics, Colorado School of Public Health, 13001 East 17th Place, Aurora, CO, 80045, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Sigrid K. Braekkan
- Thrombosis Research Center (TREC), UiT - The Arctic University of Norway, Universitetsvegen 57, Tromsø, 9037, Norway
- Division of internal medicine, University Hospital of North Norway, Tromsø, 9038, Norway
| | - Ruifang Li-Gao
- Clinical Epidemiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Noemie Saut
- Hematology Laboratory, La Timone University Hospital of Marseille, 264 Rue Saint-Pierre, Marseille, 13385, France
| | - Corriene Sept
- Department of Epidemiology, Harvard TH Chan Harvard School of Public Health, 655 Huntington Ave., Building II, Boston, MA, 02115, USA
| | - Marine Germain
- Bordeaux Population Health Research Center, University of Bordeaux, 146 rue Léo Saignat, Bordeaux, 33076, France
- UMR1219, INSERM, 146 rue Léo Saignat, Bordeaux, 33076, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
| | - Renae L. Judy
- Surgery, University of Pennsylvania, 3401 Walnut Street, Philadelphia, PA, 19104, USA
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Darae Ko
- The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
- Section of Cardiovascular Medicine, Boston University School of Medicine, 85 East Newton Street, Boston, MA, 02118, USA
| | - Christopher J. O’Donnell
- Cardiology Section, Department of Medicine, VA Boston Healthcare System, Boston, MA, 02132, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation, 1124 W Carson St., Torrance, CA, 90502, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women’s Hospital, 900 Commonwealth Ave, Boston, MA, 02215, USA
| | - Mariza De Andrade
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Therese H. Nøst
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Håkon Jarls gate 11, Trondheim, 7030, Norway
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
| | - Jean-Philippe Empana
- Integrative Epidemiology of cardiovascular diseases, Université Paris Cité, Paris Cardiovascular Research Center (PARCC), 56 rue Leblanc, Paris, 75015, France
- Department of Cardiology, APHP, Hopital Européen Georges Pompidou, 20 rue Leblanc, Paris, 75015, France
| | - Satoshi Koyama
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02446, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard & MIT, 75 Ames St, Cambridge, MA, 02142, USA
| | - Thomas Gilliland
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02446, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard & MIT, 75 Ames St, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Shattuck St, Boston, MA, 02115, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gu stave L. Levy Pl, New York, NY, 10029, USA
- BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Jennifer E. Huffman
- MAVERIC, VA Boston Heathcare System, 2 Avenue de Lafayette, Boston, MA, 02111, USA
| | - Xin Wang
- 23andMe, Inc., 223 N Mathilda Ave, Sunnyvale, CA, 94086, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jose Manuel Soria
- Genomics of Complex Disease Unit, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), St Quinti 77-79, Barcelona, 8041, Spain
| | - Juan Carlos Souto
- Genomics of Complex Disease Unit, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), St Quinti 77-79, Barcelona, 8041, Spain
- Unit of Thrombosis and Hemostasis, Hospital de la Santa Creu i Sant Pau, St Quinti 89, Barcelona, 8041, Spain
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Jeffery Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Kristian Hindberg
- Thrombosis Research Center (TREC), UiT - The Arctic University of Norway, Universitetsvegen 57, Tromsø, 9037, Norway
| | - Frits R. Rosendaal
- Clinical Epidemiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Constance Turman
- Department of Epidemiology, Harvard TH Chan Harvard School of Public Health, 655 Huntington Ave., Building II, Boston, MA, 02115, USA
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
| | - Rachel L. Kember
- Psychiatry, University of Pennsylvania, 3401 Walnut Street, Philadelphia, PA, 19104, USA
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics and Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Julie A. Lynch
- VA Informatics & Computing Infrastructure, VA Salt Lake City Healthcare System, 500 Foothills Drive, Salt Lake City, UT, 84148, USA
- Epidemiology, University of Utah, 500 Foothills Drive, Salt Lake City, UT, 84148, USA
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Sebastian M. Armasu
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ben Brumpton
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Håkon Jarls gate 11, Trondheim, 7030, Norway
| | - David M. Smadja
- Hematology Department and Biosurgical Research Lab (Carpentier Foundation), European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, 20 rue Leblanc, Paris, 75015, France
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, 4 avenue de l’Observatoire, Paris, 75270, France
| | - Xavier Jouven
- Integrative Epidemiology of cardiovascular diseases, Université Paris Descartes, Sorbonne Paris Cité, 56 rue Leblanc, Paris, 75015, France
- Paris Cardiovascular Research Center, Inserm U970, Université Paris Descartes, Sorbonne Paris Cité, 20 rue Leblanc, Paris, 75015, France
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Tokyo, 113-8655, Japan
| | - Katharine R. Clapham
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard & MIT, 75 Ames St, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Shattuck St, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, 900 Commonwealth Ave, Boston, MA, 02215, USA
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Cristen J. Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Sabater-Lleal
- Genomics of Complex Disease Unit, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), St Quinti 77-79, Barcelona, 8041, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, 17176, Sweden
| | - James S. Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, 1300 South Second Street, Minneapolis, MN, 55454, USA
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Vania M. Morelli
- Thrombosis Research Center (TREC), UiT - The Arctic University of Norway, Universitetsvegen 57, Tromsø, 9037, Norway
- Division of internal medicine, University Hospital of North Norway, Tromsø, 9038, Norway
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital, 900 Commonwealth Ave, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Astrid van Hylckama Vlieg
- Clinical Epidemiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
- Centre D’Etude du Polymorphisme Humain, Fondation Jean Dausset, 27 rue Juliette Dodu, Paris, 75010, France
| | - Peter Kraft
- Department of Epidemiology, Harvard TH Chan Harvard School of Public Health, 655 Huntington Ave., Building II, Boston, MA, 02115, USA
| | - Daniel J. Rader
- Departments of Medicine and Genetics and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | | | | | | | | | | | - Kyung Min Lee
- VA Informatics & Computing Infrastructure, VA Salt Lake City Healthcare System, 500 Foothills Drive, Salt Lake City, UT, 84148, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
- Department of Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
- Department of Health Systems and Population Heath, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
| | - Anne Heidi Skogholt
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Håkon Jarls gate 11, Trondheim, 7030, Norway
| | - Joseph Emmerich
- Department of vascular medicine, Paris Saint-Joseph Hospital Group, University of Paris, 185 rue Raymond Losserand, Paris, 75674, France
- UMR1153, INSERM CRESS, 185 rue Raymond Losserand, Paris, 75674, France
| | - Pierre Suchon
- Hematology Laboratory, La Timone University Hospital of Marseille, 264 Rue Saint-Pierre, Marseille, 13385, France
- C2VN, INSERM, INRAE, Aix-Marseille University, 27, bd Jean Moulin, Marseille, 13385, France
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, 3242 West Complex, Charlottesville, VA, 22908-0717, USA
| | - Ha My T. Vy
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gu stave L. Levy Pl, New York, NY, 10029, USA
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, 1300 South Second Street, Minneapolis, MN, 55454, USA
| | - Rebecca D. Jackson
- College of Medicine, Ohio State University, 376 W. 10th Ave, Columbus, OH, 43210, USA
| | - John-Bjarne Hansen
- Thrombosis Research Center (TREC), UiT - The Arctic University of Norway, Universitetsvegen 57, Tromsø, 9037, Norway
- Division of internal medicine, University Hospital of North Norway, Tromsø, 9038, Norway
| | - Pierre-Emmanuel Morange
- Hematology Laboratory, La Timone University Hospital of Marseille, 264 Rue Saint-Pierre, Marseille, 13385, France
- C2VN, INSERM, INRAE, Aix-Marseille University, 27, bd Jean Moulin, Marseille, 13385, France
| | - Christopher Kabrhel
- Emergency Medicine, Massachusetts General Hospital, Zero Emerson Place, Suite 3B, Boston, MA, 02114, USA
- Emergency Medicine, Harvard Medical School, Zero Emerson Place, Suite 3B, Boston, MA, 02114, USA
| | - David-Alexandre Trégouët
- Bordeaux Population Health Research Center, University of Bordeaux, 146 rue Léo Saignat, Bordeaux, 33076, France
- UMR1219, INSERM, 146 rue Léo Saignat, Bordeaux, 33076, France
- Laboratory of Excellence on Medical Genomics, GenMed, France
| | - Scott M. Damrauer
- Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Ave, Philadelphia, PA, 19104, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew D. Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
- The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA, 01702, USA
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, 98101, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, 98108, USA
| |
Collapse
|
17
|
Szewczyk MM, Luciani GM, Vu V, Murison A, Dilworth D, Barghout SH, Lupien M, Arrowsmith CH, Minden MD, Barsyte-Lovejoy D. PRMT5 regulates ATF4 transcript splicing and oxidative stress response. Redox Biol 2022; 51:102282. [PMID: 35305370 PMCID: PMC8933703 DOI: 10.1016/j.redox.2022.102282] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Protein methyltransferase 5 (PRMT5) symmetrically dimethylates arginine residues leading to regulation of transcription and splicing programs. Although PRMT5 has emerged as an attractive oncology target, the molecular determinants of PRMT5 dependency in cancer remain incompletely understood. Our transcriptomic analysis identified PRMT5 regulation of the activating transcription factor 4 (ATF4) pathway in acute myelogenous leukemia (AML). PRMT5 inhibition resulted in the expression of unstable, intron-retaining ATF4 mRNA that is detained in the nucleus. Concurrently, the decrease in the spliced cytoplasmic transcript of ATF4 led to lower levels of ATF4 protein and downregulation of ATF4 target genes. Upon loss of functional PRMT5, cells with low ATF4 displayed increased oxidative stress, growth arrest, and cellular senescence. Interestingly, leukemia cells with EVI1 oncogene overexpression demonstrated dependence on PRMT5 function. EVI1 and ATF4 regulated gene signatures were inversely correlated. We show that EVI1-high AML cells have reduced ATF4 levels, elevated baseline reactive oxygen species and increased sensitivity to PRMT5 inhibition. Thus, EVI1-high cells demonstrate dependence on PRMT5 function and regulation of oxidative stress response. Overall, our findings identify the PRMT5-ATF4 axis to be safeguarding the cellular redox balance that is especially important in high oxidative stress states, such as those that occur with EVI1 overexpression.
Collapse
Affiliation(s)
| | - Genna M Luciani
- Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Samir H Barghout
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
18
|
Paredes R, Doleschall N, Connors K, Geary B, Meyer S. EVI1 protein interaction dynamics: targetable for therapeutic intervention? Exp Hematol 2021; 107:1-8. [PMID: 34958895 DOI: 10.1016/j.exphem.2021.12.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022]
Abstract
High expression of the transcriptional regulator EVI1 encoded at the MECOM locus at 3q26 is one of the most aggressive oncogenic drivers in acute myeloid leukaemia (AML) and carries a very poor prognosis. How EVI1 confers leukaemic transformation and chemotherapy resistance in AML is subject to important ongoing clinical and experimental studies. Recent discoveries have revealed critical details about genetic mechanisms of the activation of EVI1 overexpression and downstream events of aberrantly high EVI1 expression. Here we review and discuss aspects concerning the protein interactions of EVI1 and the related proteins MDS-EVI1 and ΔEVI1 from the perspective of their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Roberto Paredes
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Nora Doleschall
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Kathleen Connors
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Bethany Geary
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester; Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital; Young Oncology Unit, The Christie NHS Foundation Trust.
| |
Collapse
|
19
|
Grasedieck S, Cabantog A, MacPhee L, Im J, Ruess C, Demir B, Sperb N, Rücker FG, Döhner K, Herold T, Pollack JR, Bullinger L, Rouhi A, Kuchenbauer F. The retinoic acid receptor co-factor NRIP1 is uniquely upregulated and represents a therapeutic target in acute myeloid leukemia with chromosome 3q rearrangements. Haematologica 2021; 107. [PMID: 34854277 PMCID: PMC9335095 DOI: 10.3324/haematol.2020.276048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Aberrant expression of Ecotropic Viral Integration Site 1 (EVI1) is a hallmark of acute myeloid leukemia (AML) with inv(3) or t(3;3), which is a disease subtype with especially poor outcome. In studying transcriptomes from AML patients with chromosome 3q rearrangements, we identified a significant upregulation of the Nuclear Receptor Interacting Protein 1 (NRIP1) as well as its adjacent non-coding RNA LOC101927745. Utilizing transcriptomic and epigenomic data from over 900 primary samples from patients as well as genetic and transcriptional engineering approaches, we have identified several mechanisms that can lead to upregulation of NRIP1 in AML. We hypothesize that the LOC101927745 transcription start site harbors a context-dependent enhancer that is bound by EVI1, causing upregulation of NRIP1 in AML with chromosome 3 abnormalities. Furthermore, we showed that NRIP1 knockdown negatively affects the proliferation and survival of 3qrearranged AML cells and increases their sensitivity to all-trans retinoic acid, suggesting that NRIP1 is relevant for the pathogenesis of inv(3)/t(3;3) AML and could serve as a novel therapeutic target in myeloid malignancies with 3q abnormalities.
Collapse
Affiliation(s)
- Sarah Grasedieck
- University of British Columbia, Department of Microbiology & Immunology, Vancouver, British Columbia, Canada
| | - Ariene Cabantog
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Liam MacPhee
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Junbum Im
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Christoph Ruess
- Ulm University Hospital, Department of Internal Medicine III, Ulm, Germany
| | - Burcu Demir
- Ulm University Hospital, Department of Internal Medicine III, Ulm, Germany
| | - Nadine Sperb
- Ulm University Hospital, Department of Internal Medicine III, Ulm, Germany
| | - Frank G. Rücker
- Ulm University Hospital, Department of Internal Medicine III, Ulm, Germany
| | - Konstanze Döhner
- Ulm University Hospital, Department of Internal Medicine III, Ulm, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Jonathan R. Pollack
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Arefeh Rouhi
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada,AR and FK contributed equally as co-senior authors
| | - Florian Kuchenbauer
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada,AR and FK contributed equally as co-senior authors
| |
Collapse
|
20
|
Wang F, He J, Liu S, Gao A, Yang L, Sun G, Ding W, Li CY, Gou F, He M, Wang F, Wang X, Zhao X, Zhu P, Hao S, Ma Y, Cheng H, Yu J, Cheng T. A comprehensive RNA editome reveals that edited Azin1 partners with DDX1 to enable hematopoietic stem cell differentiation. Blood 2021; 138:1939-1952. [PMID: 34388251 PMCID: PMC8602937 DOI: 10.1182/blood.2021011314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Adenosine-to-inosine RNA editing and the catalyzing enzyme adenosine deaminase are both essential for hematopoietic development and differentiation. However, the RNA editome during hematopoiesis and the underlying mechanisms are poorly defined. Here, we sorted 12 murine adult hematopoietic cell populations at different stages and identified 30 796 editing sites through RNA sequencing. The dynamic landscape of the RNA editome comprises stage- and group-specific and stable editing patterns, but undergoes significant changes during lineage commitment. Notably, we found that antizyme inhibitor 1 (Azin1) was highly edited in hematopoietic stem and progenitor cells (HSPCs). Azin1 editing results in an amino acid change to induce Azin1 protein (AZI) translocation to the nucleus, enhanced AZI binding affinity for DEAD box polypeptide 1 to alter the chromatin distribution of the latter, and altered expression of multiple hematopoietic regulators that ultimately promote HSPC differentiation. Our findings have delineated an essential role for Azin1 RNA editing in hematopoietic cells, and our data set is a valuable resource for studying RNA editing on a more general basis.
Collapse
Affiliation(s)
- Fengjiao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
| | - Jiahuan He
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Siqi Liu
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Ai Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
| | - Liu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
| | - Wanqiu Ding
- Institute of Molecular Medicine, Peking University, Beijing, China; and
| | - Chuan-Yun Li
- Institute of Molecular Medicine, Peking University, Beijing, China; and
| | - Fanglin Gou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
| | - Manman He
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, CAMS and Peking Union Medical College, Tianjin, China
| | - Sha Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, CAMS and Peking Union Medical College, Tianjin, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, CAMS and Peking Union Medical College, Tianjin, China
| | - Jia Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, CAMS and Peking Union Medical College, Tianjin, China
| |
Collapse
|
21
|
Wang Z, Li Y, Wang N, Li P, Kong B, Liu Z. EVI1 overexpression promotes ovarian cancer progression by regulating estrogen signaling. Mol Cell Endocrinol 2021; 534:111367. [PMID: 34146645 DOI: 10.1016/j.mce.2021.111367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) is characterized by TP53 mutation and somatic copy number alterations (SCNAs). Here we show that the oncogenic transcription factor EVI1 (ecotropic viral integration site-1) is amplified and overexpressed up to 30% of 1640 HGSOC cases in The Cancer Genome Atlas (TCGA). Functionally, EVI1 promotes proliferation/invasion in vitro and tumor growth of xenograft model in vivo. Importantly, we discover that EVI1 regulates estrogen signaling by directly activating ESR1 (estrogen receptor 1) transcription determined by the ChIP and luciferase assay. Interestingly, EVI1 and ESR1 share common regulatory targets as indicated by the analysis of ChIP-Seq data. EVI1 and ESR1 collaborate in the regulation of some estrogen receptor-regulated genes. Furthermore, EVI1 drives tumor aggressiveness partially by regulating estrogen signaling. Estrogen enhances the proliferation, invasion and xenograft growth of ovarian cancer cells. Importantly, estrogen can rescue the inhibition of proliferation, invasion and xenograft growth induced by silencing EVI1. These findings suggest that EVI1 functions as a novel regulator of the estrogen signaling network in ovarian cancer.
Collapse
Affiliation(s)
- Zixiang Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care and Fynn Biotechnologies Ltd, Jinan, Shandong, 250012, China
| | - Peng Li
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Beihua Kong
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Zhaojian Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
22
|
Mizuno H, Koya J, Masamoto Y, Kagoya Y, Kurokawa M. Evi1 upregulates Fbp1 and supports progression of acute myeloid leukemia through pentose phosphate pathway activation. Cancer Sci 2021; 112:4112-4126. [PMID: 34363719 PMCID: PMC8486204 DOI: 10.1111/cas.15098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/17/2021] [Accepted: 08/03/2021] [Indexed: 01/14/2023] Open
Abstract
Evi1 is a transcription factor essential for the development as well as progression of acute myeloid leukemia (AML) and high Evi1 AML is associated with extremely poor clinical outcome. Since targeting metabolic vulnerability is the emerging therapeutic strategy of cancer, we herein investigated a novel therapeutic target of Evi1 by analyzing transcriptomic, epigenetic, and metabolomic profiling of mouse high Evi1 leukemia cells. We revealed that Evi1 overexpression and Evi1‐driven leukemic transformation upregulate transcription of gluconeogenesis enzyme Fbp1 and other pentose phosphate enzymes with interaction between Evi1 and the enhancer region of these genes. Metabolome analysis using Evi1‐overexpressing leukemia cells uncovered pentose phosphate pathway upregulation by Evi1 overexpression. Suppression of Fbp1 as well as pentose phosphate pathway enzymes by shRNA‐mediated knockdown selectively decreased Evi1‐driven leukemogenesis in vitro. Moreover, pharmacological or shRNA‐mediated Fbp1 inhibition in secondarily transplanted Evi1‐overexpressing leukemia mouse significantly decreased leukemia cell burden. Collectively, targeting FBP1 is a promising therapeutic strategy of high Evi1 AML.
Collapse
Affiliation(s)
- Hideaki Mizuno
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junji Koya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Masamoto
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Kagoya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Kim HR, Yim J, Yoo HB, Lee SE, Oh S, Jung S, Hwang CI, Shin DM, Kim T, Yoo KH, Kim YS, Lee HW, Roe JS. EVI1 activates tumor-promoting transcriptional enhancers in pancreatic cancer. NAR Cancer 2021; 3:zcab023. [PMID: 34316710 PMCID: PMC8210884 DOI: 10.1093/narcan/zcab023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer cells utilize epigenetic alterations to acquire autonomous capabilities for tumor maintenance. Here, we show that pancreatic ductal adenocarcinoma (PDA) cells utilize super-enhancers (SEs) to activate the transcription factor EVI1 (ecotropic viral integration site 1) gene, resulting in activation of an EVI1-dependent transcription program conferring PDA tumorigenesis. Our data indicate that SE is the vital cis-acting element to maintain aberrant EVI1 transcription in PDA cells. Consistent with disease progression and inferior survival outcomes of PDA patients, we further show that EVI1 upregulation is a major cause of aggressive tumor phenotypes. Specifically, EVI1 promotes anchorage-independent growth and motility in vitro and enhances tumor propagation in vivo. Mechanistically, EVI1-dependent activation of tumor-promoting gene expression programs through the stepwise configuration of the active enhancer chromatin attributes to these phenotypes. In sum, our findings support the premise that EVI1 is a crucial driver of oncogenic transcription programs in PDA cells. Further, we emphasize the instructive role of epigenetic aberrancy in establishing PDA tumorigenesis.
Collapse
Affiliation(s)
- Hwa-Ryeon Kim
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| | - Juhye Yim
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| | - Hye-Been Yoo
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| | - Seung Eon Lee
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| | - Sumin Oh
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, South Korea
| | - Sungju Jung
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, South Korea
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Dong-Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - TaeSoo Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, South Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, South Korea
| | - You-Sun Kim
- Department of Biochemistry, School of Medicine, Ajou University, Suwon 16499, South Korea
| | - Han-Woong Lee
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| | - Jae-Seok Roe
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
24
|
Kellaway SG, Keane P, Kennett E, Bonifer C. RUNX1-EVI1 disrupts lineage determination and the cell cycle by interfering with RUNX1 and EVI1 driven gene regulatory networks. Haematologica 2021; 106:1569-1580. [PMID: 32299907 PMCID: PMC8168488 DOI: 10.3324/haematol.2019.241885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 11/15/2022] Open
Abstract
Hematological malignancies are characterized by a block in differentiation, which in many cases is caused by recurrent mutations affecting the activity of hematopoietic transcription factors. RUNX1-EVI1 is a fusion protein encoded by the t(3;21) translocation linking two transcription factors required for normal hematopoiesis. RUNX1-EVI1 expression is found in myelodysplastic syndrome, secondary acute my eloid leukemia, and blast crisis of chronic myeloid leukemia; with clinical outcomes being worse than in patients with RUNX1-ETO, RUNX1 or EVI1 mutations alone. RUNX1-EVI1 is usually found as a secondary mutation, therefore the molecular mechanisms underlying how RUNX1-EVI1 alone contributes to poor prognosis are unknown. In order to address this question, we induced expression of RUNX1-EVI1 in hematopoietic cells derived from an embryonic stem cell d i fferentiation model. Induction resulte d in disruption of t he RUNX1-dependent endothelial-hematopoietic transition, blocked the cell cycle and undermined cell fate decisions in multipotent hematopoietic progenitor cells. Integrative analyses of gene expression with chromatin and transcription factor binding data demonstrated that RUNX1- EVI1 binding caused a re-distribution of endogenous RUNX1 within the genome and interfered with both RUNX1 and EVI1 regulated gene expression programs. In summary, RUNX1-EVI1 expression alone leads to extensive epigenetic reprogramming which is incompatible with healthy blood production.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Ella Kennett
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Nagel S, Pommerenke C, Meyer C, Drexler HG. NKL Homeobox Gene VENTX Is Part of a Regulatory Network in Human Conventional Dendritic Cells. Int J Mol Sci 2021; 22:ijms22115902. [PMID: 34072771 PMCID: PMC8198381 DOI: 10.3390/ijms22115902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Recently, we documented a hematopoietic NKL-code mapping physiological expression patterns of NKL homeobox genes in human myelopoiesis including monocytes and their derived dendritic cells (DCs). Here, we enlarge this map to include normal NKL homeobox gene expressions in progenitor-derived DCs. Analysis of public gene expression profiling and RNA-seq datasets containing plasmacytoid and conventional dendritic cells (pDC and cDC) demonstrated HHEX activity in both entities while cDCs additionally expressed VENTX. The consequent aim of our study was to examine regulation and function of VENTX in DCs. We compared profiling data of VENTX-positive cDC and monocytes with VENTX-negative pDC and common myeloid progenitor entities and revealed several differentially expressed genes encoding transcription factors and pathway components, representing potential VENTX regulators. Screening of RNA-seq data for 100 leukemia/lymphoma cell lines identified prominent VENTX expression in an acute myelomonocytic leukemia cell line, MUTZ-3 containing inv(3)(q21q26) and t(12;22)(p13;q11) and representing a model for DC differentiation studies. Furthermore, extended gene analyses indicated that MUTZ-3 is associated with the subtype cDC2. In addition to analysis of public chromatin immune-precipitation data, subsequent knockdown experiments and modulations of signaling pathways in MUTZ-3 and control cell lines confirmed identified candidate transcription factors CEBPB, ETV6, EVI1, GATA2, IRF2, MN1, SPIB, and SPI1 and the CSF-, NOTCH-, and TNFa-pathways as VENTX regulators. Live-cell imaging analyses of MUTZ-3 cells treated for VENTX knockdown excluded impacts on apoptosis or induced alteration of differentiation-associated cell morphology. In contrast, target gene analysis performed by expression profiling of knockdown-treated MUTZ-3 cells revealed VENTX-mediated activation of several cDC-specific genes including CSFR1, EGR2, and MIR10A and inhibition of pDC-specific genes like RUNX2. Taken together, we added NKL homeobox gene activities for progenitor-derived DCs to the NKL-code, showing that VENTX is expressed in cDCs but not in pDCs and forms part of a cDC-specific gene regulatory network operating in DC differentiation and function.
Collapse
|
26
|
EVI1 and GATA2 misexpression induced by inv(3)(q21q26) contribute to megakaryocyte-lineage skewing and leukemogenesis. Blood Adv 2021; 4:1722-1736. [PMID: 32330245 DOI: 10.1182/bloodadvances.2019000978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/25/2020] [Indexed: 02/04/2023] Open
Abstract
Chromosomal rearrangements between 3q21 and 3q26 elicit high-risk acute myeloid leukemia (AML), which is often associated with elevated platelet and megakaryocyte (Mk) numbers. The 3q rearrangements reposition a GATA2 enhancer near the EVI1 (or MECOM) locus, which results in both EVI1 overexpression and GATA2 haploinsufficiency. However, the mechanisms explaining how the misexpression of these 2 genes individually contribute to leukemogenesis are unknown. To clarify the characteristics of differentiation defects caused by EVI1 and GATA2 misexpression and to identify the cellular origin of leukemic cells, we generated a system to monitor both inv(3) allele-driven EVI1 and Gata2 expression in 3q-rearranged AML model mice. A cell population in which both EVI1 and Gata2 were highly induced appeared in the bone marrows before the onset of frank leukemia. This population had acquired serial colony-forming potential. Because hematopoietic stem/progenitor cells (HSPCs) and Mks were enriched in this peculiar population, we analyzed the independent EVI1 and GATA2 contributions to HSPC and Mk. We found that inv(3)-driven EVI1 promotes accumulation of Mk-biased and myeloid-biased progenitors, Mks, and platelets, and that Gata2 heterozygous deletion enhanced Mk-lineage skewing of EVI1-expressing progenitors. Notably, inv(3)-directed EVI1 expression and Gata2 haploinsufficient expression cooperatively provoke a leukemia characterized by abundant Mks and platelets. These hematological features of the mouse model phenocopy those observed in human 3q AML. On the basis of these results, we conclude that inv(3)-driven EVI1 expression in HSPCs and Mks collaborates with Gata2 haploinsufficiency to provoke Mk-lineage skewing and leukemogenesis with excessive platelets, thus mimicking an important feature of human AML.
Collapse
|
27
|
Ortiz-Melo MT, Garcia-Murillo MJ, Salazar-Rojas VM, Campos JE, Castro-Muñozledo F. Transcriptional profiles along cell programming into corneal epithelial differentiation. Exp Eye Res 2020; 202:108302. [PMID: 33098888 DOI: 10.1016/j.exer.2020.108302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
Using the rabbit corneal epithelial cell line RCE1(5T5) as a model, we analyzed three differentiation stages, distinguished on basis to the growth state of cultured cells and after studying the expression of transcription factors such as Oct4, Pax6 and ΔNp63α, selected differentiation markers, and signaling or epigenetic markers such as Notch receptors and Prdm3. Namely, proliferative non-differentiated cells, committed cells, and cells that constitute a stratified epithelium with a limbal epithelial-like structure. RNAseq based transcriptome analysis showed that 4891 genes were differentially expressed among these stages displaying distinctive gene signatures: proliferative cells had 1278 genes as gene signature, and seem to be early epithelial progenitors with an Oct4+, KLF4+, Myc+, ΔNp63α+, ABCG2+, Vimentin+, Zeb1+, VANGL1+, Krt3-, Krt12- phenotype. Committed cells had a gene signature with 417 genes and displayed markers indicative of the beginning of corneal differentiation, and genes characteristic of proliferative cells; we found the possible participation of Six3 and Six4 transcription factors along this stage. The third stage matches with a stratified corneal epithelium (gene signature comprising 979 genes) and is typified by an increase in the expression of WNT10A and NOTCH 2 and 3 signaling and Cux1 transcription factor, besides Pax6, KLF4 or Sox9. The differentiated cells express about 50% of the genes that belong to the Epidermal Differentiation Complex (EDC). Analysis of the differences between corneal epithelium and epidermis could be crucial to understand the regulatory mechanisms that lead to the expression of the differentiated phenotype.
Collapse
Affiliation(s)
- María Teresa Ortiz-Melo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740. México City, 07000, Mexico; Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ap. Postal 314, 54000, Tlalnepantla, Edo. de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - Maria Jimena Garcia-Murillo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740. México City, 07000, Mexico
| | - Víctor Manuel Salazar-Rojas
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ap. Postal 314, 54000, Tlalnepantla, Edo. de México, Mexico
| | - Jorge E Campos
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ap. Postal 314, 54000, Tlalnepantla, Edo. de México, Mexico
| | - Federico Castro-Muñozledo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740. México City, 07000, Mexico.
| |
Collapse
|
28
|
Paredes R, Kelly JR, Geary B, Almarzouq B, Schneider M, Pearson S, Narayanan P, Williamson A, Lovell SC, Wiseman DH, Chadwick JA, Jones NJ, Kustikova O, Schambach A, Garner T, Amaral FMR, Pierce A, Stevens A, Somervaille TCP, Whetton AD, Meyer S. EVI1 phosphorylation at S436 regulates interactions with CtBP1 and DNMT3A and promotes self-renewal. Cell Death Dis 2020; 11:878. [PMID: 33082307 PMCID: PMC7576810 DOI: 10.1038/s41419-020-03099-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022]
Abstract
The transcriptional regulator EVI1 has an essential role in early development and haematopoiesis. However, acute myeloid leukaemia (AML) driven by aberrantly high EVI1 expression has very poor prognosis. To investigate the effects of post-translational modifications on EVI1 function, we carried out a mass spectrometry (MS) analysis of EVI1 in AML and detected dynamic phosphorylation at serine 436 (S436). Wild-type EVI1 (EVI1-WT) with S436 available for phosphorylation, but not non-phosphorylatable EVI1-S436A, conferred haematopoietic progenitor cell self-renewal and was associated with significantly higher organised transcriptional patterns. In silico modelling of EVI1-S436 phosphorylation showed reduced affinity to CtBP1, and CtBP1 showed reduced interaction with EVI1-WT compared with EVI1-S436A. The motif harbouring S436 is a target of CDK2 and CDK3 kinases, which interacted with EVI1-WT. The methyltransferase DNMT3A bound preferentially to EVI1-WT compared with EVI1-S436A, and a hypomethylated cell population associated by EVI1-WT expression in murine haematopoietic progenitors is not maintained with EVI1-S436A. These data point to EVI1-S436 phosphorylation directing functional protein interactions for haematopoietic self-renewal. Targeting EVI1-S436 phosphorylation may be of therapeutic benefit when treating EVI1-driven leukaemia.
Collapse
Affiliation(s)
- Roberto Paredes
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - James R Kelly
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Bethany Geary
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Batool Almarzouq
- Department of Biochemistry, Institute of Integrative Biology/School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Marion Schneider
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Stella Pearson
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Prakrithi Narayanan
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Andrew Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Simon C Lovell
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Daniel H Wiseman
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - John A Chadwick
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Leukaemia Biology Laboratory, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Nigel J Jones
- Department of Biochemistry, Institute of Integrative Biology/School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Olga Kustikova
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Terence Garner
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fabio M R Amaral
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Leukaemia Biology Laboratory, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Adam Stevens
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tim C P Somervaille
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Leukaemia Biology Laboratory, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester, UK
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK.
- Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital, Manchester, UK.
- Young Oncology Unit, The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
29
|
Harris DA, Mina A, Cabarkapa D, Heshmati K, Subramaniam R, Banks AS, Tavakkoli A, Sheu EG. Sleeve gastrectomy enhances glucose utilization and remodels adipose tissue independent of weight loss. Am J Physiol Endocrinol Metab 2020; 318:E678-E688. [PMID: 32069072 PMCID: PMC7395476 DOI: 10.1152/ajpendo.00441.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sleeve gastrectomy (SG) induces weight loss-independent improvements in glucose homeostasis by unknown mechanisms. We sought to identify the metabolic adaptations responsible for these improvements. Nonobese C57BL/6J mice on standard chow underwent SG or sham surgery. Functional testing and indirect calorimetry were used to capture metabolic phenotypes. Tissue-specific glucose uptake was assessed by 18-fluorodeoxyglucose (18-FDG) PET/computed tomography, and RNA sequencing was used for gene-expression analysis. In this model, SG induced durable improvements in glucose tolerance in the absence of changes in weight, body composition, or food intake. Indirect calorimetry revealed that SG increased the average respiratory exchange ratio toward 1.0, indicating a weight-independent, systemic shift to carbohydrate utilization. Following SG, orally administered 18-FDG preferentially localized to white adipose depots, showing tissue-specific increases in glucose utilization induced by surgery. Transcriptional analysis with RNA sequencing demonstrated that increased glucose uptake in the visceral adipose tissue was associated with upregulation in transcriptional pathways involved in energy metabolism, adipocyte maturation, and adaptive and innate immune cell chemotaxis and differentiation. SG induces a rapid, weight loss-independent shift toward glucose utilization and transcriptional remodeling of metabolic and immune pathways in visceral adipose tissue. Continued study of this early post-SG physiology may lead to a better understanding of the anti-diabetic mechanisms of bariatric surgery.
Collapse
Affiliation(s)
- David A Harris
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amir Mina
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Dimitrije Cabarkapa
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Keyvan Heshmati
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Renuka Subramaniam
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexander S Banks
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ali Tavakkoli
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eric G Sheu
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Casamassimi A, Rienzo M, Di Zazzo E, Sorrentino A, Fiore D, Proto MC, Moncharmont B, Gazzerro P, Bifulco M, Abbondanza C. Multifaceted Role of PRDM Proteins in Human Cancer. Int J Mol Sci 2020; 21:ijms21072648. [PMID: 32290321 PMCID: PMC7177584 DOI: 10.3390/ijms21072648] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| |
Collapse
|
31
|
Summerer I, Haferlach C, Meggendorfer M, Kern W, Haferlach T, Stengel A. Prognosis of MECOM ( EVI1)-rearranged MDS and AML patients rather depends on accompanying molecular mutations than on blast count. Leuk Lymphoma 2020; 61:1756-1759. [PMID: 32189545 DOI: 10.1080/10428194.2020.1737689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Nguyen CH, Bauer K, Hackl H, Schlerka A, Koller E, Hladik A, Stoiber D, Zuber J, Staber PB, Hoelbl-Kovacic A, Purton LE, Grebien F, Wieser R. All-trans retinoic acid enhances, and a pan-RAR antagonist counteracts, the stem cell promoting activity of EVI1 in acute myeloid leukemia. Cell Death Dis 2019; 10:944. [PMID: 31822659 PMCID: PMC6904467 DOI: 10.1038/s41419-019-2172-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
Ecotropic virus integration site 1 (EVI1), whose overexpression characterizes a particularly aggressive subtype of acute myeloid leukemia (AML), enhanced anti-leukemic activities of all-trans retinoic acid (atRA) in cell lines and patient samples. However, the drivers of leukemia formation, therapy resistance, and relapse are leukemic stem cells (LSCs), whose properties were hardly reflected in these experimental setups. The present study was designed to address the effects of, and interactions between, EVI1 and retinoids in AML LSCs. We report that Evi1 reduced the maturation of leukemic cells and promoted the abundance, quiescence, and activity of LSCs in an MLL-AF9-driven mouse model of AML. atRA further augmented these effects in an Evi1 dependent manner. EVI1 also strongly enhanced atRA regulated gene transcription in LSC enriched cells. One of their jointly regulated targets, Notch4, was an important mediator of their effects on leukemic stemness. In vitro exposure of leukemic cells to a pan-RAR antagonist caused effects opposite to those of atRA. In vivo antagonist treatment delayed leukemogenesis and reduced LSC abundance, quiescence, and activity in Evi1high AML. Key results were confirmed in human myeloid cell lines retaining some stem cell characteristics as well as in primary human AML samples. In summary, our study is the first to report the importance of EVI1 for key properties of AML LSCs. Furthermore, it shows that atRA enhances, and a pan-RAR antagonist counteracts, the effects of EVI1 on AML stemness, thus raising the possibility of using RAR antagonists in the therapy of EVI1high AML.
Collapse
Affiliation(s)
- Chi Huu Nguyen
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria
| | - Katharina Bauer
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Angela Schlerka
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria
| | - Elisabeth Koller
- Medical Department for Leukemia Research and Hematology, Hanusch Hospital, Vienna, Austria
| | - Anastasiya Hladik
- Research Laboratory of Infection Biology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Philipp B Staber
- Division of Hematology and Hemostaseology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research and Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Rotraud Wieser
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria. .,Comprehensive Cancer Center, Vienna, Austria.
| |
Collapse
|
33
|
Suzuki M, Katayama S, Yamamoto M. Two effects of GATA2 enhancer repositioning by 3q chromosomal rearrangements. IUBMB Life 2019; 72:159-169. [PMID: 31820561 DOI: 10.1002/iub.2191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023]
Abstract
Chromosomal inversion and translocation between 3q21 and 3q26 [inv (3)(q21.3q26.2) and t(3;3)(q21.3;q26.2), respectively] give rise to acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), which have poor prognoses. The chromosomal rearrangements reposition a GATA2 distal hematopoietic enhancer from the original 3q21 locus to the EVI1 (also known as MECOM) locus on 3q26. Therefore, the GATA2 enhancer from one of two GATA2 alleles drives EVI1 gene expression in hematopoietic stem and progenitor cells, which promotes the accumulation of abnormal progenitors and induces leukemogenesis. On the other hand, one allele of the GATA2 gene loses its enhancer, which results in reduced GATA2 expression. The GATA2 gene encodes a transcription factor critical for the generation and maintenance of hematopoietic stem and progenitor cells. GATA2 haploinsufficiency has been known to cause immunodeficiency and myeloid leukemia. Notably, reduced GATA2 expression suppresses the differentiation but promotes the proliferation of EVI1-expressing leukemic cells, which accelerates EVI1-driven leukemogenesis. A series of studies have shown that the GATA2 enhancer repositioning caused by the chromosomal rearrangements between 3q21 and 3q26 provokes misexpression of both the EVI1 and GATA2 genes and that these two effects coordinately elicit high-risk leukemia.
Collapse
Affiliation(s)
- Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Katayama
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
34
|
Expression Pattern and Prognostic Significance of EVI1 Gene in Adult Acute Myeloid Leukemia Patients with Normal Karyotype. Indian J Hematol Blood Transfus 2019; 36:292-299. [PMID: 32425380 DOI: 10.1007/s12288-019-01227-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022] Open
Abstract
According to current criteria, patients with acute myeloid leukemia with normal karyotype (AML-NK) are classified as intermediate risk patients. There is a constant need for additional molecular markers that will help in substratification into more precise prognostic groups. One of the potential new markers is Ecotropic viral integration 1 site (EVI1) transcriptional factor, whose expression is dissregulated in abnormal hematopoietic process. The purpose of this study was to examine EVI1 gene expression in 104 adult AML-NK patients and on 10 healthy bone marrow donors using real-time polymerase chain reaction method, and to evaluate association between EVI1 expression level and other molecular and clinical features, and to examine its potential influence on the prognosis of the disease. Overexpression of EVI1 gene (EVI1 + status) was present in 17% of patients. Increased EVI1 expression was predominantly found in patients with lower WBC count (P = 0.003) and lower bone marrow blast percentage (P = 0.005). EVI1 + patients had lower WT1 expression level (P = 0.041), and were negative for FLT3-ITD and NPM1 mutations (P = 0.036 and P = 0.003). Patients with EVI1 + status had higher complete remission rate (P = 0.047), but EVI1 expression didn't influence overall and disease free survival. EVI1 expression status alone, cannot be used as a new marker for more precise substratification of AML-NK patients. Further investigations conducted on larger number of patients may indicate how EVI1 expression could influence the prognosis and outcome of AML-NK patients, by itself, or in the context of other molecular and clinical parameters.
Collapse
|
35
|
Almosailleakh M, Schwaller J. Murine Models of Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20:E453. [PMID: 30669675 PMCID: PMC6358780 DOI: 10.3390/ijms20020453] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a rare but severe form of human cancer that results from a limited number of functionally cooperating genetic abnormalities leading to uncontrolled proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Before the identification of genetic driver lesions, chemically, irradiation or viral infection-induced mouse leukaemia models provided platforms to test novel chemotherapeutics. Later, transgenic mouse models were established to test the in vivo transforming potential of newly cloned fusion genes and genetic aberrations detected in patients' genomes. Hereby researchers constitutively or conditionally expressed the respective gene in the germline of the mouse or reconstituted the hematopoietic system of lethally irradiated mice with bone marrow virally expressing the mutation of interest. More recently, immune deficient mice have been explored to study patient-derived human AML cells in vivo. Unfortunately, although complementary to each other, none of the currently available strategies faithfully model the initiation and progression of the human disease. Nevertheless, fast advances in the fields of next generation sequencing, molecular technology and bioengineering are continuously contributing to the generation of better mouse models. Here we review the most important AML mouse models of each category, briefly describe their advantages and limitations and show how they have contributed to our understanding of the biology and to the development of novel therapies.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Carcinogens/administration & dosage
- Cell Transformation, Viral
- Disease Models, Animal
- Gene Editing
- Heterografts
- Humans
- Immunocompromised Host
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Radiation, Ionizing
Collapse
Affiliation(s)
- Marwa Almosailleakh
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|