1
|
Chen L, Liu H, Zhan W, Long C, Xu F, Li X, Tian XL, Chen S. Alteration of N-glycosylation of CDON promotes H 2O 2-induced DNA damage in H9c2 cardiomyocytes. Int J Biochem Cell Biol 2024; 176:106671. [PMID: 39389454 DOI: 10.1016/j.biocel.2024.106671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Protein glycosylation is involved in DNA damage. Recently, DNA damage has been connected with the pathogenesis of heart failure. Cell adhesion associated, oncogene regulated (CDON), considered as an N-linked glycoprotein, is a transmembrane receptor for modulating cardiac function. But the role of CDON and its glycosylation in DNA damage remains unknown. In this study, we found that the knockdown of CDON caused DNA double-strand breaks as indicated by an increase in phosphorylated histone H2AX (γH2AX) protein level, immunofluorescent intensity of γH2AX and tail DNA moment in H9c2 cardiomyocytes. Conversely, overexpression of CDON led to decreasing DNA damage induced by hydrogen peroxide (H2O2) and upregulating the expression of genes related to DNA repair pathways-homologous recombination (HR) and non-homologous end joining (NHEJ). Moreover, we expressed nine predicted N-glycosylation site mutants in H9c2 cells prior to treatment with H2O2. The results showed that mutation of N-glycosylation sites (N99Q, N179Q, and N870Q) increased the accumulation of DNA damage and downregulated the expression of HR-related genes, demonstrating that CDON N-glycosylation on DNA damage is site-specific and these specific N-glycan sites may regulate HR repair-related transcript abundance of genes. Our data highlight that N-glycosylation of CDON is critical to cardiomyocyte DNA lesion. It may uncover the potential strategies targeting DNA damage pathway in heart disease.
Collapse
Affiliation(s)
- Liping Chen
- Vascular Function Laboratory, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Hongfei Liu
- Vascular Function Laboratory, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Wenxing Zhan
- Vascular Function Laboratory, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Changkun Long
- Vascular Function Laboratory, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Fang Xu
- Epigenetic regulation and Aging, Human Aging Research Institute, School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang 330031, China.
| | - Xueer Li
- Aging and Vascular Diseases, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Shenghan Chen
- Vascular Function Laboratory, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| |
Collapse
|
2
|
Ravindran S, Rau CD. The multifaceted role of mitochondria in cardiac function: insights and approaches. Cell Commun Signal 2024; 22:525. [PMID: 39472951 PMCID: PMC11523909 DOI: 10.1186/s12964-024-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Cardiovascular disease (CVD) remains a global economic burden even in the 21st century with 85% of deaths resulting from heart attacks. Despite efforts in reducing the risk factors, and enhancing pharmacotherapeutic strategies, challenges persist in early identification of disease progression and functional recovery of damaged hearts. Targeting mitochondrial dysfunction, a key player in the pathogenesis of CVD has been less successful due to its role in other coexisting diseases. Additionally, it is the only organelle with an agathokakological function that is a remedy and a poison for the cell. In this review, we describe the origins of cardiac mitochondria and the role of heteroplasmy and mitochondrial subpopulations namely the interfibrillar, subsarcolemmal, perinuclear, and intranuclear mitochondria in maintaining cardiac function and in disease-associated remodeling. The cumulative evidence of mitochondrial retrograde communication with the nucleus is addressed, highlighting the need to study the genotype-phenotype relationships of specific organelle functions with CVD by using approaches like genome-wide association study (GWAS). Finally, we discuss the practicality of computational methods combined with single-cell sequencing technologies to address the challenges of genetic screening in the identification of heteroplasmy and contributory genes towards CVD.
Collapse
Affiliation(s)
- Sriram Ravindran
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA
| | - Christoph D Rau
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA.
| |
Collapse
|
3
|
Fan D, Feng H, Song M, Tan P. Gene expression profiles, potential targets and treatments of cardiac remodeling. Mol Cell Biochem 2024:10.1007/s11010-024-05126-6. [PMID: 39367915 DOI: 10.1007/s11010-024-05126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Hypertensive and ischemic heart diseases have high morbidity all over the world, and they primarily contribute to heart failure associated with high mortality. Cardiac remodeling, as a basic pathological process in heart diseases, is mainly comprised of cardiac hypertrophy and fibrosis, as well as cell death which occurs especially in the ischemic cardiomyopathy. Myocardial remodeling has been widely investigated by a variety of animal models, including pressure overload, angiotensin II stimulation, and myocardial infarction. Pressure overload can cause compensatory cardiac hypertrophy at the early stage, followed by decompensatory hypertrophy and heart failure at the end. Recently, RNA sequencing and differentially expressed gene (DEG) analyses have been extensively employed to elucidate the molecular mechanisms of cardiac remodeling and related heart failure, which also provide potential targets for high-throughput drug screenings. In this review, we summarize recent advancements in gene expression profiling, related gene functions, and signaling pathways pertinent to myocardial remodeling induced by pressure overload at distinct stages, ischemia-reperfusion, myocardial infarction, and diabetes. We also discuss the effects of sex differences and inflammation on DEGs and their transcriptional regulatory mechanisms in cardiac remodeling. Additionally, we summarize emerging therapeutic agents and strategies aimed at modulating gene expression profiles during myocardial remodeling.
Collapse
Affiliation(s)
- Dong Fan
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China.
| | - Han Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Mengyu Song
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Penglin Tan
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| |
Collapse
|
4
|
Zhang D, Wen Q, Zhang R, Kou K, Lin M, Zhang S, Yang J, Shi H, Yang Y, Tan X, Yin S, Ou X. From Cell to Gene: Deciphering the Mechanism of Heart Failure With Single-Cell Sequencing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308900. [PMID: 39159065 PMCID: PMC11497092 DOI: 10.1002/advs.202308900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Heart failure (HF) is a prevalent cardiovascular disease with significant morbidity and mortality rates worldwide. Due to the intricate structure of the heart, diverse cell types, and the complex pathogenesis of HF, further in-depth investigation into the underlying mechanisms is required. The elucidation of the heterogeneity of cardiomyocytes and the intercellular communication network is particularly important. Traditional high-throughput sequencing methods provide an average measure of gene expression, failing to capture the "heterogeneity" between cells and impacting the accuracy of gene function knowledge. In contrast, single-cell sequencing techniques allow for the amplification of the entire genome or transcriptome at the individual cell level, facilitating the examination of gene structure and expression with unparalleled precision. This approach offers valuable insights into disease mechanisms, enabling the identification of changes in cellular components and gene expressions during hypertrophy associated with HF. Moreover, it reveals distinct cell populations and their unique roles in the HF microenvironment, providing a comprehensive understanding of the cellular landscape that underpins HF pathogenesis. This review focuses on the insights provided by single-cell sequencing techniques into the mechanisms underlying HF and discusses the challenges encountered in current cardiovascular research.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
- Department of Rehabilitation MedicineSouthwest Medical UniversityLuzhouSichuan646000China
| | - Qiang Wen
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang RdWuhanHubei430022China
| | - Rui Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Kun Kou
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Miao Lin
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Shiyu Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Jun Yang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Hangchuan Shi
- Department of Clinical & Translational ResearchUniversity of Rochester Medical Center265 Crittenden BlvdRochesterNY14642USA
- Department of Pathology and Laboratory MedicineUniversity of Rochester Medical Center601 Elmwood AveRochesterNY14642USA
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
- Department of PhysiologySchool of Basic Medical SciencesSouthwest Medical UniversityLuzhouSichuan646000China
| | - Shigang Yin
- Luzhou Key Laboratory of Nervous system disease and Brain FunctionSouthwest Medical UniversityLuzhouSichuan646000China
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesGuangxi Normal UniversityGuilinGuangxi541004China
| |
Collapse
|
5
|
Wang L, Jin B. Single-Cell RNA Sequencing and Combinatorial Approaches for Understanding Heart Biology and Disease. BIOLOGY 2024; 13:783. [PMID: 39452092 PMCID: PMC11504358 DOI: 10.3390/biology13100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
By directly measuring multiple molecular features in hundreds to millions of single cells, single-cell techniques allow for comprehensive characterization of the diversity of cells in the heart. These single-cell transcriptome and multi-omic studies are transforming our understanding of heart development and disease. Compared with single-dimensional inspections, the combination of transcriptomes with spatial dimensions and other omics can provide a comprehensive understanding of single-cell functions, microenvironment, dynamic processes, and their interrelationships. In this review, we will introduce the latest advances in cardiac health and disease at single-cell resolution; single-cell detection methods that can be used for transcriptome, genome, epigenome, and proteome analysis; single-cell multi-omics; as well as their future application prospects.
Collapse
Affiliation(s)
| | - Bo Jin
- Department of Clinical Laboratory, Peking University First Hospital, Beijing 100034, China;
| |
Collapse
|
6
|
Wu X, Yang X, Dai Y, Zhao Z, Zhu J, Guo H, Yang R. Single-cell sequencing to multi-omics: technologies and applications. Biomark Res 2024; 12:110. [PMID: 39334490 PMCID: PMC11438019 DOI: 10.1186/s40364-024-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Cells, as the fundamental units of life, contain multidimensional spatiotemporal information. Single-cell RNA sequencing (scRNA-seq) is revolutionizing biomedical science by analyzing cellular state and intercellular heterogeneity. Undoubtedly, single-cell transcriptomics has emerged as one of the most vibrant research fields today. With the optimization and innovation of single-cell sequencing technologies, the intricate multidimensional details concealed within cells are gradually unveiled. The combination of scRNA-seq and other multi-omics is at the forefront of the single-cell field. This involves simultaneously measuring various omics data within individual cells, expanding our understanding across a broader spectrum of dimensions. Single-cell multi-omics precisely captures the multidimensional aspects of single-cell transcriptomes, immune repertoire, spatial information, temporal information, epitopes, and other omics in diverse spatiotemporal contexts. In addition to depicting the cell atlas of normal or diseased tissues, it also provides a cornerstone for studying cell differentiation and development patterns, disease heterogeneity, drug resistance mechanisms, and treatment strategies. Herein, we review traditional single-cell sequencing technologies and outline the latest advancements in single-cell multi-omics. We summarize the current status and challenges of applying single-cell multi-omics technologies to biological research and clinical applications. Finally, we discuss the limitations and challenges of single-cell multi-omics and potential strategies to address them.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yunhan Dai
- Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Junmeng Zhu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
7
|
Spanos M, Gokulnath P, Li G, Hutchins E, Meechoovet B, Sheng Q, Chatterjee E, Sharma R, Carnel-Amar N, Lin C, Azzam C, Ghaeli I, Amancherla KV, Victorino JF, Garcia-Mansfield K, Pfeffer R, Sahu P, Lindman BR, Elmariah S, Gamazon ER, Betti MJ, Bledsoe X, Lance ML, Absi T, Su YR, Do N, Contreras MG, Varrias D, Kladas M, Radulovic M, Tsiachris D, Spanos A, Tsioufis K, Ellinor PT, Tucker NR, Januzzi JL, Pirrotte P, Jovanovic-Talisman T, Van Keuren-Jensen K, Shah R, Das S. Cardiomyocyte-derived circulating extracellular vesicles allow a non-invasive liquid biopsy of myocardium in health and disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.19.24314009. [PMID: 39371135 PMCID: PMC11451713 DOI: 10.1101/2024.09.19.24314009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The ability to track disease without tissue biopsy in patients is a major goal in biology and medicine. Here, we identify and characterize cardiomyocyte-derived extracellular vesicles in circulation (EVs; "cardiovesicles") through comprehensive studies of induced pluripotent stem cell-derived cardiomyocytes, genetic mouse models, and state-of-the-art mass spectrometry and low-input transcriptomics. These studies identified two markers (POPDC2, CHRNE) enriched on cardiovesicles for biotinylated antibody-based immunocapture. Captured cardiovesicles were enriched in canonical cardiomyocyte transcripts/pathways with distinct profiles based on human disease type (heart failure, myocardial infarction). In paired myocardial tissue-plasma from patients, highly expressed genes in cardiovesicles were largely cardiac-enriched (vs. "bulk" EVs, which were more organ non-specific) with high expression in myocardial tissue by single nuclear RNA-seq, largely in cardiomyocytes. These results demonstrate the first "liquid" biopsy discovery platform to interrogate cardiomyocyte states noninvasively in model systems and in human disease, allowing non-invasive characterization of cardiomyocyte biology for discovery and therapeutic applications.
Collapse
Affiliation(s)
- Michail Spanos
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Albert Einstein College of Medicine/ North Central Bronx/Jacobi Medical Center, New York City Health and Hospitals, The Bronx, NY, USA
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth Hutchins
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Bessie Meechoovet
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Quanhu Sheng
- Department of Biostatistics (Q.S.), Vanderbilt University Medical Center, Nashville, TN
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ritin Sharma
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Natacha Carnel-Amar
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Claire Lin
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher Azzam
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ima Ghaeli
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Kaushik V Amancherla
- Vanderbilt Translational and Clinical Research Center (R.S.), Vanderbilt University Medical Center, Nashville, TN, USA
| | - José Fabian Victorino
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Krystine Garcia-Mansfield
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Ryan Pfeffer
- Masonic Medical Research Institute, Utica, NY, USA 13501
| | - Parul Sahu
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian R. Lindman
- Vanderbilt Translational and Clinical Research Center (R.S.), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sammy Elmariah
- Department of Medicine, Cardiovascular Division, University of California-San Francisco, San Francisco, CA, USA
| | - Eric R. Gamazon
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Michael J. Betti
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Xavier Bledsoe
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | | | - Tarek Absi
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yan Ru Su
- Vanderbilt Translational and Clinical Research Center (R.S.), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ngoc Do
- Spectradyne LLC, Signal Hill, CA, USA
| | - Marta Garcia Contreras
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dimitrios Varrias
- Albert Einstein College of Medicine/ Jacobi Medical Center, The Bronx, NY, USA
| | - Michail Kladas
- Albert Einstein College of Medicine/ North Central Bronx/Jacobi Medical Center, New York City Health and Hospitals, The Bronx, NY, USA
| | - Miroslav Radulovic
- Albert Einstein College of Medicine/ North Central Bronx/Jacobi Medical Center, New York City Health and Hospitals, The Bronx, NY, USA
| | - Dimitris Tsiachris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | | | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - James L. Januzzi
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Baim Institute for Clinical Research, Boston, Massachusetts, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Tijana Jovanovic-Talisman
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Ravi Shah
- Vanderbilt Translational and Clinical Research Center (R.S.), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Meng C, Su H, Shu M, Shen F, Lu Y, Wu S, Su Z, Yu M, Yang D. The functional role of m6A demethylase ALKBH5 in cardiomyocyte hypertrophy. Cell Death Dis 2024; 15:683. [PMID: 39294131 PMCID: PMC11410975 DOI: 10.1038/s41419-024-07053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cardiomyocyte hypertrophy is a major outcome of pathological cardiac hypertrophy. The m6A demethylase ALKBH5 is reported to be associated with cardiovascular diseases, whereas the functional role of ALKBH5 in cardiomyocyte hypertrophy remains confused. We engineered Alkbh5 siRNA (siAlkbh5) and Alkbh5 overexpressing plasmid (Alkbh5 OE) to transfect cardiomyocytes. Subsequently, RNA immunoprecipitation (RIP)-qPCR, MeRIP-qPCR analysis and the dual-luciferase reporter assays were applied to elucidate the regulatory mechanism of ALKBH5 on cardiomyocyte hypertrophy. Our study identified ALKBH5 as a new contributor of cardiomyocyte hypertrophy. ALKBH5 showed upregulation in both phenylephrine (PE)-induced cardiomyocyte hypertrophic responses in vitro and transverse aortic constriction (TAC)/high fat diet (HFD)-induced pathological cardiac hypertrophy in vivo. Knockdown or overexpression of ALKBH5 regulated the occurrence of hypertrophic responses, including the increased cardiomyocyte surface areas and elevation of the hypertrophic marker levels, such as brain natriuretic peptide (BNP) and atrial natriuretic peptide (ANP). Mechanically, we indicated that ALKBH5 activated JAK2/STAT3 signaling pathway and mediated m6A demethylation on Stat3 mRNA, but not Jak2 mRNA, resulting in the phosphorylation and nuclear translocation of STAT3, which enhances the transcription of hypertrophic genes (e.g., Nppa) and ultimately leads to the emergence of cardiomyocytes hypertrophic growth. Our work highlights the functional role of ALKBH5 in regulating the onset of cardiomyocyte hypertrophy and provides a potential target for hypertrophic heart diseases prevention and treatment. ALKBH5 activated JAK2/STAT3 signaling pathway and mediated m6A demethylation on Stat3 mRNA, but not Jak2 mRNA, resulting in the phosphorylation and nuclear translocation of STAT3, which enhances the transcription of hypertrophic genes (e.g., Nppa) and ultimately leads to the emergence of cardiomyocytes hypertrophic growth.
Collapse
Affiliation(s)
- Chen Meng
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Haibi Su
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Meiling Shu
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Feng Shen
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Yijie Lu
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Shishi Wu
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Zhenghua Su
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Mengyao Yu
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China.
| | - Di Yang
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Li Q, Muhib UR, Ma X, Liu Z, Gao F, Wang Z. Potential Mechanisms of Epicardial Adipose Tissue Influencing Heart Failure with Preserved Ejection Fraction. Rev Cardiovasc Med 2024; 25:311. [PMID: 39355598 PMCID: PMC11440401 DOI: 10.31083/j.rcm2509311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 10/03/2024] Open
Abstract
Heart failure (HF) is the predominant terminal stage and the leading cause of mortality in cardiac disease. Heart failure with preserved ejection fraction (HFpEF) affects roughly 50% of HF patients globally. Due to the global aging population, the prevalence, morbidity, and mortality of HFpEF have gradually increased. Epicardial adipose tissue (EAT), as a key visceral adipose tissue around the heart, affects cardiac diastolic function and exercise reserve capacity. EAT closely adheres to the myocardium and can produce inflammatory factors, neurotransmitters, and other factors through autocrine or paracrine mechanisms, affecting the heart function by inflammatory response, cardiac metabolism and energy supply, cardiomyocyte structure and electrical activity, and pericardial vascular function. Currently, research on the mechanism and treatment methods of HFpEF is constantly improving. EAT may play a multi-level impact on the occurrence and development of HFpEF. This review also summarizes the potential impact of EAT on the heart in HFpEF combined with other metabolism-related diseases such as obesity or diabetes over other obesity-related measures, such as body mass index (BMI) or other adipose tissue. Above all, this review comprehensively summarizes the potential mechanisms by which EAT may affect HFpEF. The objective is to enhance our comprehension and management of HFpEF. Future research should delve into the mechanistic relationship between EAT and HFpEF, and investigate interventions aimed at EAT to improve the prognosis of patients with HFpEF.
Collapse
Affiliation(s)
- Qiuxuan Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| | - Ur Rehman Muhib
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| | - Xiaoteng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| | - Zaiqiang Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| | - Zhijian Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| |
Collapse
|
10
|
Fleischer S, Nash TR, Tamargo MA, Lock RI, Venturini G, Morsink M, Graney PL, Li V, Lamberti MJ, Liberman M, Kim Y, Tavakol DN, Zhuang RZ, Whitehead J, Friedman RA, Soni RK, Seidman JG, Seidman CE, Geraldino-Pardilla L, Winchester R, Vunjak-Novakovic G. An engineered human cardiac tissue model reveals contributions of systemic lupus erythematosus autoantibodies to myocardial injury. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1123-1139. [PMID: 39195859 PMCID: PMC11399098 DOI: 10.1038/s44161-024-00525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Systemic lupus erythematosus (SLE) is a heterogenous autoimmune disease that affects multiple organs, including the heart. The mechanisms of myocardial injury in SLE remain poorly understood. In this study, we engineered human cardiac tissues and cultured them with IgG from patients with SLE, with and without myocardial involvement. IgG from patients with elevated myocardial inflammation exhibited increased binding to apoptotic cells within cardiac tissues subjected to stress, whereas IgG from patients with systolic dysfunction exhibited enhanced binding to the surface of live cardiomyocytes. Functional assays and RNA sequencing revealed that, in the absence of immune cells, IgG from patients with systolic dysfunction altered cellular composition, respiration and calcium handling. Phage immunoprecipitation sequencing (PhIP-seq) confirmed distinctive IgG profiles between patient subgroups. Coupling IgG profiling with cell surfaceome analysis identified four potential pathogenic autoantibodies that may directly affect the myocardium. Overall, these insights may improve patient risk stratification and inform the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Roberta I Lock
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Vanessa Li
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Morgan J Lamberti
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Martin Liberman
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Daniel N Tavakol
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard Z Zhuang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jaron Whitehead
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Robert Winchester
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Medicine, Columbia University, New York, NY, USA.
- College of Dental Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Zhao J, Huang H. Extracellular Vesicle-Derived Non-Coding RNAs: Key Mediators in Remodelling Heart Failure. Curr Issues Mol Biol 2024; 46:9430-9448. [PMID: 39329911 PMCID: PMC11430706 DOI: 10.3390/cimb46090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Heart failure (HF), a syndrome of persistent development of cardiac insufficiency due to various heart diseases, is a serious and lethal disease for which specific curative therapies are lacking and poses a severe burden on all aspects of global public health. Extracellular vesicles (EVs) are essential mediators of intercellular and interorgan communication, and are enclosed nanoscale vesicles carrying biomolecules such as RNA, DNA, and proteins. Recent studies have showed, among other things, that non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), long ncRNAs (lncRNA), and circular RNAs (circRNAs) can be selectively sorted into EVs and modulate the pathophysiological processes of HF in recipient cells, acting on both healthy and diseased hearts, which makes them promising targets for the diagnosis and therapy of HF. This review aims to explore the mechanism of action of EV-ncRNAs in heart failure, with emphasis on the potential use of differentially expressed miRNAs and circRNAs as biomarkers of cardiovascular disease, and recent research advances in the diagnosis and treatment of heart failure. Finally, we focus on summarising the latest advances and challenges in engineering EVs for HF, providing novel concepts for the diagnosis and treatment of heart failure.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China;
- Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China;
- Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
12
|
Ali A, Manzoor S, Ali T, Asim M, Muhammad G, Ahmad A, Jamaludin MI, Devaraj S, Munawar N. Innovative aspects and applications of single cell technology for different diseases. Am J Cancer Res 2024; 14:4028-4048. [PMID: 39267684 PMCID: PMC11387862 DOI: 10.62347/vufu1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Recent developments in single-cell technologies have provided valuable insights from cancer genomics to complex microbial communities. Single-cell technologies including the RNA-seq, next-generation sequencing (NGS), epigenomics, genomics, and transcriptomics can be used to uncover the single cell nature and molecular characterization of individual cells. These technologies also reveal the cellular transition states, evolutionary relationships between genes, the complex structure of single-cell populations, cell-to-cell interaction leading to biological discoveries and more reliable than traditional bulk technologies. These technologies are becoming the first choice for the early detection of inflammatory biomarkers affecting the proliferation and progression of tumor cells in the tumor microenvironment and improving the clinical efficacy of patients undergoing immunotherapy. These technologies also hold a central position in the detection of checkpoint inhibitors and thus determining the signaling pathways evoked by tumor invasion. This review addressed the emerging approaches of single cell-based technologies in cancer immunotherapies and different human diseases at cellular and molecular levels and the emerging role of sequencing technologies leading to drug discovery. Advancements in these technologies paved for discovering novel diagnostic markers for better understanding the pathological and biochemical mechanisms also for controlling the rate of different diseases.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College Shantou 515041, Guangdong, China
| | - Saba Manzoor
- Department of Zoology, University of Sialkot Sialkot 51310, Pakistan
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture Faisalabad 38000, Pakistan
| | - Muhammad Asim
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture Faisalabad 38000, Pakistan
| | - Ghulam Muhammad
- Jinnah Burn and Reconstructive Surgery Centre, Jinnah Hospital, Allama Iqbal Medical College Lahore 54000, Pakistan
| | - Aftab Ahmad
- Biochemistry/Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad 38040, Pakistan
| | - Mohamad Ikhwan Jamaludin
- BioInspired Device and Tissue Engineering Research Group (BioInspira), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia Johor Bahru 81310, Johor, Malaysia
| | - Sutha Devaraj
- Graduate School of Medicine, Perdana University Wisma Chase Perdana, Changkat Semantan, Damansara Heights, Kuala Lumpur 50490, Malaysia
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University Al-Ain 15551, United Arab Emirates
| |
Collapse
|
13
|
Katoh M, Nomura S, Yamada S, Ito M, Hayashi H, Katagiri M, Heryed T, Fujiwara T, Takeda N, Nishida M, Sugaya M, Kato M, Osawa T, Abe H, Sakurai Y, Ko T, Fujita K, Zhang B, Hatsuse S, Yamada T, Inoue S, Dai Z, Kubota M, Sawami K, Ono M, Morita H, Kubota Y, Mizuno S, Takahashi S, Nakanishi M, Ushiku T, Nakagami H, Aburatani H, Komuro I. Vaccine Therapy for Heart Failure Targeting the Inflammatory Cytokine Igfbp7. Circulation 2024; 150:374-389. [PMID: 38991046 DOI: 10.1161/circulationaha.123.064719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/29/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND The heart comprises many types of cells such as cardiomyocytes, endothelial cells (ECs), fibroblasts, smooth muscle cells, pericytes, and blood cells. Every cell type responds to various stressors (eg, hemodynamic overload and ischemia) and changes its properties and interrelationships among cells. To date, heart failure research has focused mainly on cardiomyocytes; however, other types of cells and their cell-to-cell interactions might also be important in the pathogenesis of heart failure. METHODS Pressure overload was imposed on mice by transverse aortic constriction and the vascular structure of the heart was examined using a tissue transparency technique. Functional and molecular analyses including single-cell RNA sequencing were performed on the hearts of wild-type mice and EC-specific gene knockout mice. Metabolites in heart tissue were measured by capillary electrophoresis-time of flight-mass spectrometry system. The vaccine was prepared by conjugating the synthesized epitope peptides with keyhole limpet hemocyanin and administered to mice with aluminum hydroxide as an adjuvant. Tissue samples from heart failure patients were used for single-nucleus RNA sequencing to examine gene expression in ECs and perform pathway analysis in cardiomyocytes. RESULTS Pressure overload induced the development of intricately entwined blood vessels in murine hearts, leading to the accumulation of replication stress and DNA damage in cardiac ECs. Inhibition of cell proliferation by a cyclin-dependent kinase inhibitor reduced DNA damage in ECs and ameliorated transverse aortic constriction-induced cardiac dysfunction. Single-cell RNA sequencing analysis revealed upregulation of Igfbp7 (insulin-like growth factor-binding protein 7) expression in the senescent ECs and downregulation of insulin signaling and oxidative phosphorylation in cardiomyocytes of murine and human failing hearts. Overexpression of Igfbp7 in the murine heart using AAV9 (adeno-associated virus serotype 9) exacerbated cardiac dysfunction, while EC-specific deletion of Igfbp7 and the vaccine targeting Igfbp7 ameliorated cardiac dysfunction with increased oxidative phosphorylation in cardiomyocytes under pressure overload. CONCLUSIONS Igfbp7 produced by senescent ECs causes cardiac dysfunction and vaccine therapy targeting Igfbp7 may be useful to prevent the development of heart failure.
Collapse
Affiliation(s)
- Manami Katoh
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
- Genome Science Division (M.Katoh, S.N., H. Aburatani), The University of Tokyo, Japan
| | - Seitaro Nomura
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
- Genome Science Division (M.Katoh, S.N., H. Aburatani), The University of Tokyo, Japan
| | - Shintaro Yamada
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Masamichi Ito
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Suita, Japan (H.H., H.N.)
| | - Mikako Katagiri
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Tuolisi Heryed
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Takayuki Fujiwara
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Norifumi Takeda
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Miyuki Nishida
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Maki Sugaya
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Miki Kato
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Tsuyoshi Osawa
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Hiroyuki Abe
- Pathology (H. Abe, T.U.), The University of Tokyo, Japan
| | - Yoshitaka Sakurai
- Diabetes and Metabolic Diseases, Graduate School of Medicine (Y.S.), The University of Tokyo, Japan
| | - Toshiyuki Ko
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
| | - Kanna Fujita
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Bo Zhang
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Satoshi Hatsuse
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Takanobu Yamada
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Shunsuke Inoue
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
| | - Zhehao Dai
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Masayuki Kubota
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Kousuke Sawami
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Minoru Ono
- Cardiothoracic Surgery (M.O.), The University of Tokyo, Japan
| | - Hiroyuki Morita
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan (Y.K.)
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, Japan (S.M., S.T.)
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, Japan (S.M., S.T.)
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science (M. Nakanishi), The University of Tokyo, Japan
| | - Tetsuo Ushiku
- Pathology (H. Abe, T.U.), The University of Tokyo, Japan
| | - Hironori Nakagami
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division (M.Katoh, S.N., H. Aburatani), The University of Tokyo, Japan
| | - Issei Komuro
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, Japan (S.M., S.T.)
| |
Collapse
|
14
|
Chang X, Zheng Y, Xu K. Single-Cell RNA Sequencing: Technological Progress and Biomedical Application in Cancer Research. Mol Biotechnol 2024; 66:1497-1519. [PMID: 37322261 PMCID: PMC11217094 DOI: 10.1007/s12033-023-00777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Single-cell RNA-seq (scRNA-seq) is a revolutionary technology that allows for the genomic investigation of individual cells in a population, allowing for the discovery of unusual cells associated with cancer and metastasis. ScRNA-seq has been used to discover different types of cancers with poor prognosis and medication resistance such as lung cancer, breast cancer, ovarian cancer, and gastric cancer. Besides, scRNA-seq is a promising method that helps us comprehend the biological features and dynamics of cell development, as well as other disorders. This review gives a concise summary of current scRNA-seq technology. We also explain the main technological steps involved in implementing the technology. We highlight the present applications of scRNA-seq in cancer research, including tumor heterogeneity analysis in lung cancer, breast cancer, and ovarian cancer. In addition, this review elucidates potential applications of scRNA-seq in lineage tracing, personalized medicine, illness prediction, and disease diagnosis, which reveals that scRNA-seq facilitates these events by producing genetic variations on the single-cell level.
Collapse
Affiliation(s)
- Xu Chang
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yunxi Zheng
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
15
|
Jurida L, Werner S, Knapp F, Niemann B, Li L, Grün D, Wirth S, Weber A, Beuerlein K, Liebetrau C, Wiedenroth CB, Guth S, Kojonazarov B, Jafari L, Weissmann N, Günther S, Braun T, Bartkuhn M, Schermuly RT, Dorfmüller P, Yin X, Mayr M, Schmitz ML, Czech L, Schlüter KD, Schulz R, Rohrbach S, Kracht M. A common gene signature of the right ventricle in failing rat and human hearts. NATURE CARDIOVASCULAR RESEARCH 2024; 3:819-840. [PMID: 39196177 PMCID: PMC11358011 DOI: 10.1038/s44161-024-00485-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/02/2024] [Indexed: 08/29/2024]
Abstract
The molecular mechanisms of progressive right heart failure are incompletely understood. In this study, we systematically examined transcriptomic changes occurring over months in isolated cardiomyocytes or whole heart tissues from failing right and left ventricles in rat models of pulmonary artery banding (PAB) or aortic banding (AOB). Detailed bioinformatics analyses resulted in the identification of gene signature, protein and transcription factor networks specific to ventricles and compensated or decompensated disease states. Proteomic and RNA-FISH analyses confirmed PAB-mediated regulation of key genes and revealed spatially heterogeneous mRNA expression in the heart. Intersection of rat PAB-specific gene sets with transcriptome datasets from human patients with chronic thromboembolic pulmonary hypertension (CTEPH) led to the identification of more than 50 genes whose expression levels correlated with the severity of right heart disease, including multiple matrix-regulating and secreted factors. These data define a conserved, differentially regulated genetic network associated with right heart failure in rats and humans.
Collapse
Affiliation(s)
- Liane Jurida
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Sebastian Werner
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Fabienne Knapp
- Department of Physiology, Justus Liebig University, Giessen, Germany
| | - Bernd Niemann
- Department of Cardiac and Vascular Surgery, Justus Liebig University, Giessen, Germany
| | - Ling Li
- Department of Physiology, Justus Liebig University, Giessen, Germany
| | - Dimitri Grün
- Department of Cardiology and Angiology, Justus Liebig University, Giessen, Germany
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Stefanie Wirth
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Axel Weber
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Knut Beuerlein
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Christoph Liebetrau
- Department of Cardiology and Angiology, Justus Liebig University, Giessen, Germany
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | | | - Stefan Guth
- Department of Thoracic Surgery, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Baktybek Kojonazarov
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
- Medical Clinic II, Justus Liebig University, Giessen, Germany
- Cardio-Pulmonary Institute, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Leili Jafari
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Norbert Weissmann
- Medical Clinic II, Justus Liebig University, Giessen, Germany
- Cardio-Pulmonary Institute, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Cardio-Pulmonary Institute, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marek Bartkuhn
- Cardio-Pulmonary Institute, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Science Unit for Basic and Clinical Medicine, Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
| | - Ralph T Schermuly
- Medical Clinic II, Justus Liebig University, Giessen, Germany
- Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Peter Dorfmüller
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- Department of Internal Medicine, Justus Liebig University Giessen, Giessen, Germany
- Institute of Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Xiaoke Yin
- National Heart and Lung Institute, Faculty of Medicine,Imperial College London, London, UK
| | - Manuel Mayr
- National Heart and Lung Institute, Faculty of Medicine,Imperial College London, London, UK
| | - M Lienhard Schmitz
- German Center for Lung Research (DZL), Giessen, Germany
- Institute of Biochemistry, Justus Liebig University, Giessen, Germany
| | - Laureen Czech
- Department of Physiology, Justus Liebig University, Giessen, Germany
| | | | - Rainer Schulz
- Department of Physiology, Justus Liebig University, Giessen, Germany
| | - Susanne Rohrbach
- Department of Physiology, Justus Liebig University, Giessen, Germany.
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany.
- Cardio-Pulmonary Institute, Giessen, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.
- German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
16
|
Palmer JA, Rosenthal N, Teichmann SA, Litvinukova M. Revisiting Cardiac Biology in the Era of Single Cell and Spatial Omics. Circ Res 2024; 134:1681-1702. [PMID: 38843288 PMCID: PMC11149945 DOI: 10.1161/circresaha.124.323672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Throughout our lifetime, each beat of the heart requires the coordinated action of multiple cardiac cell types. Understanding cardiac cell biology, its intricate microenvironments, and the mechanisms that govern their function in health and disease are crucial to designing novel therapeutical and behavioral interventions. Recent advances in single-cell and spatial omics technologies have significantly propelled this understanding, offering novel insights into the cellular diversity and function and the complex interactions of cardiac tissue. This review provides a comprehensive overview of the cellular landscape of the heart, bridging the gap between suspension-based and emerging in situ approaches, focusing on the experimental and computational challenges, comparative analyses of mouse and human cardiac systems, and the rising contextualization of cardiac cells within their niches. As we explore the heart at this unprecedented resolution, integrating insights from both mouse and human studies will pave the way for novel diagnostic tools and therapeutic interventions, ultimately improving outcomes for patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jack A. Palmer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
| | - Nadia Rosenthal
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME (N.R.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.R.)
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory (S.A.T.), University of Cambridge, United Kingdom
| | - Monika Litvinukova
- University Hospital Würzburg, Germany (M.L.)
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Germany (M.L.)
- Helmholtz Pioneer Campus, Helmholtz Munich, Germany (M.L.)
| |
Collapse
|
17
|
Bao YN, Yang Q, Shen XL, Yu WK, Zhou L, Zhu QR, Shan QY, Wang ZC, Cao G. Targeting tumor suppressor p53 for organ fibrosis therapy. Cell Death Dis 2024; 15:336. [PMID: 38744865 PMCID: PMC11094089 DOI: 10.1038/s41419-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.
Collapse
Affiliation(s)
- Yi-Ni Bao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Xin-Lei Shen
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Wen-Kai Yu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Li Zhou
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qing-Ru Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qi-Yuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
18
|
Lee S, Vander Roest AS, Blair CA, Kao K, Bremner SB, Childers MC, Pathak D, Heinrich P, Lee D, Chirikian O, Mohran SE, Roberts B, Smith JE, Jahng JW, Paik DT, Wu JC, Gunawardane RN, Ruppel KM, Mack DL, Pruitt BL, Regnier M, Wu SM, Spudich JA, Bernstein D. Incomplete-penetrant hypertrophic cardiomyopathy MYH7 G256E mutation causes hypercontractility and elevated mitochondrial respiration. Proc Natl Acad Sci U S A 2024; 121:e2318413121. [PMID: 38683993 PMCID: PMC11087781 DOI: 10.1073/pnas.2318413121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/05/2024] [Indexed: 05/02/2024] Open
Abstract
Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the β-myosin heavy chain (MYH7) can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant MYH7 G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited MYH7WT/G256E human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the MYH7 G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.
Collapse
Affiliation(s)
- Soah Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Biopharmaceutical Convergence, Sungkyunkwan University School of Pharmacy, Suwon, Gyeonggi-do16419South Korea
- School of Pharmacy, Sungkyunkwan University School of Pharmacy, Suwon, Gyeonggi-do16419, South Korea
| | - Alison S. Vander Roest
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA94305
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Cheavar A. Blair
- Biological Engineering, University of California, Santa Barbara, CA93106
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY40536
| | - Kerry Kao
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | - Samantha B. Bremner
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | - Matthew C. Childers
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | - Divya Pathak
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Paul Heinrich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Daniel Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Orlando Chirikian
- Biological Engineering, University of California, Santa Barbara, CA93106
| | - Saffie E. Mohran
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | | | | | - James W. Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
| | - David T. Paik
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | | | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - David L. Mack
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | - Beth L. Pruitt
- Biological Engineering, University of California, Santa Barbara, CA93106
| | - Michael Regnier
- Department of Bioengineering, University of Washington School of Medicine and College of Engineering, Seattle, WA98195
| | - Sean M. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Daniel Bernstein
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
19
|
Dai Z, Ko T, Fujita K, Nomura S, Uemura Y, Onoue K, Hamano M, Katoh M, Yamada S, Katagiri M, Zhang B, Hatsuse S, Yamada T, Inoue S, Kubota M, Sawami K, Heryed T, Ito M, Amiya E, Hatano M, Takeda N, Morita H, Yamanishi Y, Saito Y, Komuro I. Myocardial DNA Damage Predicts Heart Failure Outcome in Various Underlying Diseases. JACC. HEART FAILURE 2024; 12:648-661. [PMID: 37930291 DOI: 10.1016/j.jchf.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Reliable predictors of treatment efficacy in heart failure have been long awaited. DNA damage has been implicated as a cause of heart failure. OBJECTIVES The purpose of this study was to investigate the association of DNA damage in myocardial tissue with treatment response and prognosis of heart failure. METHODS The authors performed immunostaining of DNA damage markers poly(ADP-ribose) (PAR) and γ-H2A.X in endomyocardial biopsy specimens from 175 patients with heart failure with reduced ejection fraction (HFrEF) of various underlying etiologies. They calculated the percentage of nuclei positive for each DNA damage marker (%PAR and %γ-H2A.X). The primary outcome was left ventricular reverse remodeling (LVRR) at 1 year, and the secondary outcome was a composite of cardiovascular death, heart transplantation, and ventricular assist device implantation. RESULTS Patients who did not achieve LVRR after the optimization of medical therapies presented with significantly higher %PAR and %γ-H2A.X. The ROC analysis demonstrated good performance of both %PAR and %γ-H2A.X for predicting LVRR (AUCs: 0.867 and 0.855, respectively). There was a negative correlation between the mean proportion of DNA damage marker-positive nuclei and the probability of LVRR across different underlying diseases. In addition, patients with higher %PAR or %γ-H2A.X had more long-term clinical events (PAR HR: 1.63 [95% CI: 1.31-2.01]; P < 0.001; γ-H2A.X HR: 1.48 [95% CI: 1.27-1.72]; P < 0.001). CONCLUSIONS DNA damage determines the consequences of human heart failure. Assessment of DNA damage is useful to predict treatment efficacy and prognosis of heart failure patients with various underlying etiologies.
Collapse
Affiliation(s)
- Zhehao Dai
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan. https://twitter.com/ZhehaoDai_Cards
| | - Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Therapeutic Strategy for Heart Failure, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kanna Fujita
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Frontier Cardiovascular Science, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | - Yukari Uemura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kenji Onoue
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan
| | - Momoko Hamano
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - Manami Katoh
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shintaro Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mikako Katagiri
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Bo Zhang
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Satoshi Hatsuse
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takanobu Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shunsuke Inoue
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masayuki Kubota
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kosuke Sawami
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tuolisi Heryed
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masamichi Ito
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Eisuke Amiya
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Therapeutic Strategy for Heart Failure, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masaru Hatano
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Advanced Medical Center for Heart Failure, University of Tokyo Hospital, Tokyo, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan; Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan; Nara Prefectural Seiwa Medical Center, Nara Prefectural Hospital Organization, Nara, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Frontier Cardiovascular Science, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; International University of Health and Welfare, Tokyo, Japan.
| |
Collapse
|
20
|
Fleischer S, Nash TR, Tamargo MA, Lock RI, Venturini G, Morsink M, Li V, Lamberti MJ, Graney PL, Liberman M, Kim Y, Zhuang RZ, Whitehead J, Friedman RA, Soni RK, Seidman JG, Seidman CE, Geraldino-Pardilla L, Winchester R, Vunjak-Novakovic G. An engineered human cardiac tissue model reveals contributions of systemic lupus erythematosus autoantibodies to myocardial injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583787. [PMID: 38559188 PMCID: PMC10979865 DOI: 10.1101/2024.03.07.583787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Systemic lupus erythematosus (SLE) is a highly heterogenous autoimmune disease that affects multiple organs, including the heart. The mechanisms by which myocardial injury develops in SLE, however, remain poorly understood. Here we engineered human cardiac tissues and cultured them with IgG fractions containing autoantibodies from SLE patients with and without myocardial involvement. We observed unique binding patterns of IgG from two patient subgroups: (i) patients with severe myocardial inflammation exhibited enhanced binding to apoptotic cells within cardiac tissues subjected to stress, and (ii) patients with systolic dysfunction exhibited enhanced binding to the surfaces of viable cardiomyocytes. Functional assays and RNA sequencing (RNA-seq) revealed that IgGs from patients with systolic dysfunction exerted direct effects on engineered tissues in the absence of immune cells, altering tissue cellular composition, respiration and calcium handling. Autoantibody target characterization by phage immunoprecipitation sequencing (PhIP-seq) confirmed distinctive IgG profiles between patient subgroups. By coupling IgG profiling with cell surface protein analyses, we identified four pathogenic autoantibody candidates that may directly alter the function of cells within the myocardium. Taken together, these observations provide insights into the cellular processes of myocardial injury in SLE that have the potential to improve patient risk stratification and inform the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Roberta I Lock
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Vanessa Li
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Morgan J Lamberti
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Martin Liberman
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard Z Zhuang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jaron Whitehead
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Robert Winchester
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
- College of Dental Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
21
|
Li D, Hong H, Li M, Xu X, Wang S, Xiao Y, Zheng S, Wang Z, Yan Y, Chen H, Zhou C, Zhang H, Sun Q, Ye L. A surgical mouse model of neonatal right ventricular outflow tract obstruction by pulmonary artery banding. J Heart Lung Transplant 2024; 43:496-507. [PMID: 37839791 DOI: 10.1016/j.healun.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUD Diseased animal models play an extremely important role in preclinical research. Lacking the corresponding animal models, many basic research studies cannot be carried out, and the conclusions obtained are incomplete or even incorrect. Right ventricular (RV) outflow tract (RVOT) obstruction leads to RV pressure overload (PO) and reduced pulmonary blood flow (RPF), which are 2 of the most important pathophysiological characteristics in pediatric cardiovascular diseases and seriously affect the survival rate and long-term quality of life of many children. Due to the lack of a neonatal mouse model for RVOT obstruction, it is largely unknown how RV PO and RPF regulate postnatal RV and pulmonary development. The aim of this study was to construct a neonatal RVOT obstruction mouse model. METHODS AND RESULTS Here, we first introduced a neonatal mouse model of RVOT obstruction by pulmonary artery banding (PAB) on postnatal day 1. PAB induced neonatal RVOT obstruction, RV PO, and RPF. Neonatal RV PO induced cardiomyocyte proliferation, and neonatal RPF induced pulmonary dysplasia, the 2 features that are not observed in adult RVOT obstruction. As a result, PAB neonates exhibited overall developmental dysplasia, a sign similar to that of children with RVOT obstruction. CONCLUSIONS Because many pediatric cardiovascular diseases are associated with RV PO and RPF, the introduction of a neonatal mouse model of RVOT obstruction may greatly enhance our understanding of these diseases and eventually improve or save the lives of many children.
Collapse
Affiliation(s)
- Debao Li
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Haifa Hong
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minghui Li
- Department of Cardiovascular Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuxia Xu
- Department of Radiology, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shoubao Wang
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Xiao
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sixie Zheng
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yan
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Research Center for Pediatric Cardiovascular Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxia Zhou
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Zhang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Research Center for Pediatric Cardiovascular Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qi Sun
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
22
|
Khan SU, Huang Y, Ali H, Ali I, Ahmad S, Khan SU, Hussain T, Ullah M, Lu K. Single-cell RNA Sequencing (scRNA-seq): Advances and Challenges for Cardiovascular Diseases (CVDs). Curr Probl Cardiol 2024; 49:102202. [PMID: 37967800 DOI: 10.1016/j.cpcardiol.2023.102202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Implementing Single-cell RNA sequencing (scRNA-seq) has significantly enhanced our comprehension of cardiovascular diseases (CVDs), providing new opportunities to strengthen the prevention of CVDs progression. Cardiovascular diseases continue to be the primary cause of death worldwide. Improving treatment strategies and patient risk assessment requires a deeper understanding of the fundamental mechanisms underlying these disorders. The advanced and widespread use of Single-cell RNA sequencing enables a comprehensive investigation of the complex cellular makeup of the heart, surpassing essential descriptive aspects. This enhances our understanding of disease causes and directs functional research. The significant advancement in understanding cellular phenotypes has enhanced the study of fundamental cardiovascular science. scRNA-seq enables the identification of discrete cellular subgroups, unveiling previously unknown cell types in the heart and vascular systems that may have relevance to different disease pathologies. Moreover, scRNA-seq has revealed significant heterogeneity in phenotypes among distinct cell subtypes. Finally, we will examine current and upcoming scRNA-seq studies about various aspects of the cardiovascular system, assessing their potential impact on our understanding of the cardiovascular system and offering insight into how these technologies may revolutionise the diagnosis and treatment of cardiac conditions.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan
| | - Yuqing Huang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad-44000
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans 70112 LA, USA
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Talib Hussain
- Women Dental College Abbottabad, KPK, 22020, Pakistan
| | - Muneeb Ullah
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
23
|
Ramos-Medina MJ, Echeverría-Garcés G, Kyriakidis NC, León Cáceres Á, Ortiz-Prado E, Bautista J, Pérez-Meza ÁA, Abad-Sojos A, Nieto-Jaramillo K, Espinoza-Ferrao S, Ocaña-Paredes B, López-Cortés A. CardiOmics signatures reveal therapeutically actionable targets and drugs for cardiovascular diseases. Heliyon 2024; 10:e23682. [PMID: 38187312 PMCID: PMC10770621 DOI: 10.1016/j.heliyon.2023.e23682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, with heart failure being a complex condition that affects millions of individuals. Single-nucleus RNA sequencing has recently emerged as a powerful tool for unraveling the molecular mechanisms behind cardiovascular diseases. This cutting-edge technology enables the identification of molecular signatures, intracellular networks, and spatial relationships among cardiac cells, including cardiomyocytes, mast cells, lymphocytes, macrophages, lymphatic endothelial cells, endocardial cells, endothelial cells, epicardial cells, adipocytes, fibroblasts, neuronal cells, pericytes, and vascular smooth muscle cells. Despite these advancements, the discovery of essential therapeutic targets and drugs for precision cardiology remains a challenge. To bridge this gap, we conducted comprehensive in silico analyses of single-nucleus RNA sequencing data, functional enrichment, protein interactome network, and identification of the shortest pathways to physiological phenotypes. This integrated multi-omics analysis generated CardiOmics signatures, which allowed us to pinpoint three therapeutically actionable targets (ADRA1A1, PPARG, and ROCK2) and 15 effective drugs, including adrenergic receptor agonists, adrenergic receptor antagonists, norepinephrine precursors, PPAR receptor agonists, and Rho-associated kinase inhibitors, involved in late-stage cardiovascular disease clinical trials.
Collapse
Affiliation(s)
- María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | - Nikolaos C. Kyriakidis
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Ángela León Cáceres
- Heidelberg Institute of Global Health, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
- Instituto de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Esteban Ortiz-Prado
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Jhommara Bautista
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Álvaro A. Pérez-Meza
- Escuela de Medicina, Colegio de Ciencias de La Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | | | - Karol Nieto-Jaramillo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuqui, Ecuador
| | | | - Belén Ocaña-Paredes
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
24
|
Friedman CE, Cheetham SW, Negi S, Mills RJ, Ogawa M, Redd MA, Chiu HS, Shen S, Sun Y, Mizikovsky D, Bouveret R, Chen X, Voges HK, Paterson S, De Angelis JE, Andersen SB, Cao Y, Wu Y, Jafrani YMA, Yoon S, Faulkner GJ, Smith KA, Porrello E, Harvey RP, Hogan BM, Nguyen Q, Zeng J, Kikuchi K, Hudson JE, Palpant NJ. HOPX-associated molecular programs control cardiomyocyte cell states underpinning cardiac structure and function. Dev Cell 2024; 59:91-107.e6. [PMID: 38091997 DOI: 10.1016/j.devcel.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/09/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
Genomic regulation of cardiomyocyte differentiation is central to heart development and function. This study uses genetic loss-of-function human-induced pluripotent stem cell-derived cardiomyocytes to evaluate the genomic regulatory basis of the non-DNA-binding homeodomain protein HOPX. We show that HOPX interacts with and controls cardiac genes and enhancer networks associated with diverse aspects of heart development. Using perturbation studies in vitro, we define how upstream cell growth and proliferation control HOPX transcription to regulate cardiac gene programs. We then use cell, organoid, and zebrafish regeneration models to demonstrate that HOPX-regulated gene programs control cardiomyocyte function in development and disease. Collectively, this study mechanistically links cell signaling pathways as upstream regulators of HOPX transcription to control gene programs underpinning cardiomyocyte identity and function.
Collapse
Affiliation(s)
- Clayton E Friedman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sumedha Negi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Masahito Ogawa
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine and School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, Sydney, NSW 2052, Australia
| | - Meredith A Redd
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Han Sheng Chiu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sophie Shen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuliangzi Sun
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Romaric Bouveret
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine and School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, Sydney, NSW 2052, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Holly K Voges
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Scott Paterson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jessica E De Angelis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stacey B Andersen
- Genome Innovation Hub, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuanzhao Cao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yang Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yohaann M A Jafrani
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sohye Yoon
- Genome Innovation Hub, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Kelly A Smith
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Enzo Porrello
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine and School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, Sydney, NSW 2052, Australia
| | - Benjamin M Hogan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kazu Kikuchi
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine and School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, Sydney, NSW 2052, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
25
|
Dobreva G, Heineke J. Inter- and Intracellular Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:271-294. [PMID: 38884717 DOI: 10.1007/978-3-031-44087-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiovascular diseases, both congenital and acquired, are the leading cause of death worldwide, associated with significant health consequences and economic burden. Due to major advances in surgical procedures, most patients with congenital heart disease (CHD) survive into adulthood but suffer from previously unrecognized long-term consequences, such as early-onset heart failure. Therefore, understanding the molecular mechanisms resulting in heart defects and the lifelong complications due to hemodynamic overload are of utmost importance. Congenital heart disease arises in the first trimester of pregnancy, due to defects in the complex morphogenetic patterning of the heart. This process is coordinated through a complicated web of intercellular communication between the epicardium, the endocardium, and the myocardium. In the postnatal heart, similar crosstalk between cardiomyocytes, endothelial cells, and fibroblasts exists during pathological hemodynamic overload that emerges as a consequence of a congenital heart defect. Ultimately, communication between cells triggers the activation of intracellular signaling circuits, which allow fine coordination of cardiac development and function. Here, we review the inter- and intracellular signaling mechanisms in the heart as they were discovered mainly in genetically modified mice.
Collapse
Affiliation(s)
- Gergana Dobreva
- ECAS (European Center for Angioscience), Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, Mannheim, Germany.
- German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany.
| | - Joerg Heineke
- German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany.
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
26
|
Chen S, Wang K, Wang J, Chen X, Tao M, Shan D, Hua X, Hu S, Song J. Profiling cardiomyocytes at single cell resolution reveals COX7B could be a potential target for attenuating heart failure in cardiac hypertrophy. J Mol Cell Cardiol 2024; 186:45-56. [PMID: 37979444 DOI: 10.1016/j.yjmcc.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Cardiac hypertrophy can develop to end-stage heart failure (HF), which inevitably leading to heart transplantation or death. Preserving cardiac function in cardiomyocytes (CMs) is essential for improving prognosis in hypertrophic cardiomyopathy (HCM) patients. Therefore, understanding transcriptomic heterogeneity of CMs in HCM would be indispensable to aid potential therapeutic targets investigation. We isolated primary CM from HCM patients who had extended septal myectomy, and obtained transcriptomes in 338 human primary CM with single-cell tagged reverse transcription (STRT-seq) approach. Our results revealed that CMs could be categorized into three subsets in nonfailing HCM heart: high energy synthesis cluster, high cellular metabolism cluster and intermediate cluster. The expression of electron transport chain (ETC) was up-regulated in larger-sized CMs from high energy synthesis cluster. Of note, we found the expression of Cytochrome c oxidase subunit 7B (COX7B), a subunit of Complex IV in ETC had trends of positively correlation with CMs size. Further, by assessing COX7B expression in HCM patients, we speculated that COX7B was compensatory up-regulated at early-stage but down-regulated in failing HCM heart. To test the hypothesis that COX7B might participate both in hypertrophy and HF progression, we used adeno associated virus 9 (AAV9) to mediate the expression of Cox7b in pressure overload-induced mice. Mice in vivo data supported that knockdown of Cox7b would accelerate HF and Cox7b overexpression could restore partial cardiac function in hypertrophy. Our result highlights targeting COX7B and preserving energy synthesis in hypertrophic CMs could be a promising translational direction for HF therapeutic strategy.
Collapse
Affiliation(s)
- Shi Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kui Wang
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Jingyu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Menghao Tao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Shan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiumeng Hua
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
27
|
Shi J, Yang C, Zhang J, Zhao K, Li P, Kong C, Wu X, Sun H, Zheng R, Sun W, Chen L, Kong X. NAT10 Is Involved in Cardiac Remodeling Through ac4C-Mediated Transcriptomic Regulation. Circ Res 2023; 133:989-1002. [PMID: 37955115 DOI: 10.1161/circresaha.122.322244] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Heart failure, characterized by cardiac remodeling, is associated with abnormal epigenetic processes and aberrant gene expression. Here, we aimed to elucidate the effects and mechanisms of NAT10 (N-acetyltransferase 10)-mediated N4-acetylcytidine (ac4C) acetylation during cardiac remodeling. METHODS NAT10 and ac4C expression were detected in both human and mouse subjects with cardiac remodeling through multiple assays. Subsequently, acetylated RNA immunoprecipitation and sequencing, thiol-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), and ribosome sequencing (Ribo-seq) were employed to elucidate the role of ac4C-modified posttranscriptional regulation in cardiac remodeling. Additionally, functional experiments involving the overexpression or knockdown of NAT10 were conducted in mice models challenged with Ang II (angiotensin II) and transverse aortic constriction. RESULTS NAT10 expression and RNA ac4C levels were increased in in vitro and in vivo cardiac remodeling models, as well as in patients with cardiac hypertrophy. Silencing and inhibiting NAT10 attenuated Ang II-induced cardiomyocyte hypertrophy and cardiofibroblast activation. Next-generation sequencing revealed ac4C changes in both mice and humans with cardiac hypertrophy were associated with changes in global mRNA abundance, stability, and translation efficiency. Mechanistically, NAT10 could enhance the stability and translation efficiency of CD47 and ROCK2 transcripts by upregulating their mRNA ac4C modification, thereby resulting in an increase in their protein expression during cardiac remodeling. Furthermore, the administration of Remodelin, a NAT10 inhibitor, has been shown to prevent cardiac functional impairments in mice subjected to transverse aortic constriction by suppressing cardiac fibrosis, hypertrophy, and inflammatory responses, while also regulating the expression levels of CD47 and ROCK2 (Rho associated coiled-coil containing protein kinase 2). CONCLUSIONS Therefore, our data suggest that modulating epitranscriptomic processes, such as ac4C acetylation through NAT10, may be a promising therapeutic target against cardiac remodeling.
Collapse
Affiliation(s)
- Jing Shi
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China (C.Y.)
| | - Jing Zhang
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Kun Zhao
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Peng Li
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Chuiyu Kong
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Jiangsu, China (C.K.)
| | - Xiaoguang Wu
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Haoliang Sun
- Department of Cardiovascular Surgery (H.S., R.Z.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Rui Zheng
- Department of Cardiovascular Surgery (H.S., R.Z.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Wei Sun
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Lianmin Chen
- Changzhou Medical Center of the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University and Department of Cardiology of the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China (L.C.)
| | - Xiangqing Kong
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China (X.K.)
| |
Collapse
|
28
|
Guo L, Wang L, Qin G, Zhang J, Peng J, Li L, Chen X, Wang D, Qiu J, Wang E. M-type pyruvate kinase 2 (PKM2) tetramerization alleviates the progression of right ventricle failure by regulating oxidative stress and mitochondrial dynamics. J Transl Med 2023; 21:888. [PMID: 38062516 PMCID: PMC10702013 DOI: 10.1186/s12967-023-04780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Right ventricle failure (RVF) is a progressive heart disease that has yet to be fully understood at the molecular level. Elevated M-type pyruvate kinase 2 (PKM2) tetramerization alleviates heart failure, but detailed molecular mechanisms remain unclear. OBJECTIVE We observed changes in PKM2 tetramerization levels during the progression of right heart failure and in vitro cardiomyocyte hypertrophy and explored the causal relationship between altered PKM2 tetramerization and the imbalance of redox homeostasis in cardiomyocytes, as well as its underlying mechanisms. Ultimately, our goal was to propose rational intervention strategies for the treatment of RVF. METHOD We established RVF in Sprague Dawley (SD) rats by intraperitoneal injection of monocrotaline (MCT). The pulmonary artery pressure and right heart function of rats were assessed using transthoracic echocardiography combined with right heart catheterization. TEPP-46 was used both in vivo and in vitro to promote PKM2 tetramerization. RESULTS We observed that oxidative stress and mitochondrial disorganization were associated with increased apoptosis in the right ventricular tissue of RVF rats. Quantitative proteomics revealed that PKM2 was upregulated during RVF and negatively correlated with the cardiac function. Facilitating PKM2 tetramerization promoted mitochondrial network formation and alleviated oxidative stress and apoptosis during cardiomyocyte hypertrophy. Moreover, enhancing PKM2 tetramer formation improved cardiac mitochondrial morphology, mitigated oxidative stress and alleviated heart failure. CONCLUSION Disruption of PKM2 tetramerization contributed to RVF by inducing mitochondrial fragmentation, accumulating ROS, and finally promoted the progression of cardiomyocyte apoptosis. Facilitating PKM2 tetramerization holds potential as a promising therapeutic approach for RVF.
Collapse
Affiliation(s)
- Lizhe Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Gang Qin
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jin Peng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Longyan Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Dandan Wang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Jian Qiu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China.
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China.
| |
Collapse
|
29
|
Baldwin TA, Teuber JP, Kuwabara Y, Subramani A, Lin SCJ, Kanisicak O, Vagnozzi RJ, Zhang W, Brody MJ, Molkentin JD. Palmitoylation-dependent regulation of cardiomyocyte Rac1 signaling activity and minor effects on cardiac hypertrophy. J Biol Chem 2023; 299:105426. [PMID: 37926281 PMCID: PMC10716590 DOI: 10.1016/j.jbc.2023.105426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
S-palmitoylation is a reversible lipid modification catalyzed by 23 S-acyltransferases with a conserved zinc finger aspartate-histidine-histidine-cysteine (zDHHC) domain that facilitates targeting of proteins to specific intracellular membranes. Here we performed a gain-of-function screen in the mouse and identified the Golgi-localized enzymes zDHHC3 and zDHHC7 as regulators of cardiac hypertrophy. Cardiomyocyte-specific transgenic mice overexpressing zDHHC3 show cardiac disease, and S-acyl proteomics identified the small GTPase Rac1 as a novel substrate of zDHHC3. Notably, cardiomyopathy and congestive heart failure in zDHHC3 transgenic mice is preceded by enhanced Rac1 S-palmitoylation, membrane localization, activity, downstream hypertrophic signaling, and concomitant induction of all Rho family small GTPases whereas mice overexpressing an enzymatically dead zDHHC3 mutant show no discernible effect. However, loss of Rac1 or other identified zDHHC3 targets Gαq/11 or galectin-1 does not diminish zDHHC3-induced cardiomyopathy, suggesting multiple effectors and pathways promoting decompensation with sustained zDHHC3 activity. Genetic deletion of Zdhhc3 in combination with Zdhhc7 reduces cardiac hypertrophy during the early response to pressure overload stimulation but not over longer time periods. Indeed, cardiac hypertrophy in response to 2 weeks of angiotensin-II infusion is not diminished by Zdhhc3/7 deletion, again suggesting other S-acyltransferases or signaling mechanisms compensate to promote hypertrophic signaling. Taken together, these data indicate that the activity of zDHHC3 and zDHHC7 at the cardiomyocyte Golgi promote Rac1 signaling and maladaptive cardiac remodeling, but redundant signaling effectors compensate to maintain cardiac hypertrophy with sustained pathological stimulation in the absence of zDHHC3/7.
Collapse
Affiliation(s)
- Tanya A Baldwin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James P Teuber
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yasuhide Kuwabara
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Araskumar Subramani
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Suh-Chin J Lin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Onur Kanisicak
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ronald J Vagnozzi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Cardiology, Department of Medicine, Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Weiqi Zhang
- Laboratory of Molecular Psychiatry, Department of Mental Health, University of Münster, Münster, Germany
| | - Matthew J Brody
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
30
|
Lei PJ, Ruscic KJ, Roh K, Rajotte JJ, O'Melia MJ, Bouta EM, Marquez M, Pereira ER, Kumar AS, Arroyo-Ataz G, Razavi MS, Zhou H, Menzel L, Kumra H, Duquette M, Huang P, Baish JW, Munn LL, Ubellacker JM, Jones D, Padera TP. Lymphatic muscle cells are unique cells that undergo aging induced changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567621. [PMID: 38014141 PMCID: PMC10680808 DOI: 10.1101/2023.11.18.567621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing. We have generated a comprehensive transcriptional single-cell atlas-including LMCs-of collecting lymphatic vessels in mouse dermis at various ages. We identified genes that distinguish LMCs from other types of muscle cells, characterized the phenotypical and transcriptomic changes in LMCs in aged vessels, and uncovered a pro-inflammatory microenvironment that suppresses the contractile apparatus in advanced-aged LMCs. Our findings provide a valuable resource to accelerate future research for the identification of potential drug targets on LMCs to preserve lymphatic vessel function as well as supporting studies to identify genetic causes of primary lymphedema currently with unknown molecular explanation.
Collapse
|
31
|
Martins-Marques T, Girão H. The good, the bad and the ugly: the impact of extracellular vesicles on the cardiovascular system. J Physiol 2023; 601:4837-4852. [PMID: 35348208 DOI: 10.1113/jp282048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2023] Open
Abstract
Cardiovascular diseases (CVDs), which encompass a myriad of pathological conditions that affect the heart and/or the blood vessels, remain the major cause of morbidity and mortality worldwide. By transferring a wide variety of bioactive molecules, including proteins and microRNAs (miRNAs), extracellular vesicles (EVs) are recognized as key players in long-range communication across the cardiovascular system. It has been demonstrated that these highly heterogeneous nanosized vesicles participate both in the maintenance of homeostasis of the heart and vessels, and contribute to the pathophysiology of CVDs, thus emerging as promising tools for diagnosis, prognosis and treatment of multiple CVDs. In this review, we highlight the beneficial roles of EV-mediated communication in regulating vascular homeostasis, and inter-organ crosstalk as a potential mechanism controlling systemic metabolic fitness. In addition, the impact of EV secretion in disease development is described, particularly focusing on cardiac remodelling following ischaemia, atherogenesis and atrial fibrillation progression. Finally, we discuss the potential of endogenous and bioengineered EVs as therapeutic tools for CVDs, as well as the suitability of assessing the molecular signature of circulating EVs as a non-invasive predictive marker of CVD onset and progression. This rapidly expanding field of research has established the role of EVs as key conveyors of both cardioprotective and detrimental signals, which might be of relevance in uncovering novel therapeutic targets and biomarkers of CVDs.
Collapse
Affiliation(s)
- Tânia Martins-Marques
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Henrique Girão
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
32
|
Kuprytė M, Lesauskaitė V, Keturakis V, Bunevičienė V, Utkienė L, Jusienė L, Pangonytė D. Remodeling of Cardiomyocytes: Study of Morphological Cellular Changes Preceding Symptomatic Ischemic Heart Failure. Int J Mol Sci 2023; 24:14557. [PMID: 37834000 PMCID: PMC10572236 DOI: 10.3390/ijms241914557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Although major pathogenesis mechanisms of heart failure (HF) are well established, the significance of early (mal)adaptive structural changes of cardiomyocytes preceding symptomatic ischemic HF remains ambiguous. The aim of this study is to present the morphological characterization of changes in cardiomyocytes and their reorganization of intermediate filaments during remodeling preceding symptomatic ischemic HF in an adult human heart. A total of 84 myocardial tissue samples from middle-left heart ventricular segments were analyzed histomorphometrically and immunohistochemically, observing the cardiomyocyte's size, shape, and desmin expression changes in the remodeling process: Stage A of HF, Stage B of HF, and Stages C/D of HF groups (ACC/AHA classification). Values p < 0.05 were considered significant. The cellular length, diameter, and volume of Stage A of HF increased predominantly by the diameter vs. the control group (p < 0.001) and continued to increase in Stage B of HF in a similar pattern (p < 0.001), increasing even more in the C/D Stages of HF predominantly by length (p < 0.001). Desmin expression was increased in Stage A of HF vs. the control group (p < 0.001), whereas it was similar in Stages A and B of HF (p > 0.05), and most intense in Stages C/D of HF (p < 0.001). Significant morphological changes of cardiomyocytes and their cytoskeletal reorganization were observed during the earliest remodeling events preceding symptomatic ischemic HF.
Collapse
Affiliation(s)
- Milda Kuprytė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (M.K.); (V.K.)
| | - Vaiva Lesauskaitė
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Vytenis Keturakis
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (M.K.); (V.K.)
| | - Vitalija Bunevičienė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (M.K.); (V.K.)
| | - Lina Utkienė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (M.K.); (V.K.)
| | - Lina Jusienė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (M.K.); (V.K.)
| | - Dalia Pangonytė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (M.K.); (V.K.)
| |
Collapse
|
33
|
Toyosaki E, Mochizuki Y, Den H, Ichikawa S, Miyazaki H, Chino S, Hachiya R, Fukuoka H, Kokaze A, Matsuyama T, Shinke T. Relationship Between Results of Pathological Evaluation of Endomyocardial Biopsy and Echocardiographic Indices in Patients With Non-Ischemic Cardiomyopathy. Circ Rep 2023; 5:331-337. [PMID: 37564876 PMCID: PMC10411993 DOI: 10.1253/circrep.cr-23-0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Background: Endomyocardial biopsy (EMB) is a useful modality in diagnosing the origin of cardiomyopathy and the condition of the impaired myocardium. However, the usefulness of obtaining an EMB from the right and left ventricles (RV and LV, respectively), and its associations with echocardiographic parameters, have not been explored. Methods and Results: Ninety-five consecutive patients with non-ischemic cardiomyopathy excluding myocarditis who underwent EMB between July 2017 and May 2019 were studied. Seventy-nine RV and 93 LV biopsy specimens were pathologically analyzed. The relationships among echocardiographic data before EMB and pathologically measured cardiomyocyte diameter (CMD) and interstitial fibrosis (IF) were evaluated. CMD in both LV and RV specimens correlated with echocardiographic LV morphology, but only CMD in the LV was significantly correlated with cardiac function evaluation, including LV ejection fraction, E' and E/E'. In contrast, there were no significant correlations between IF in either the LV or RV and any echocardiographic parameters measured. Furthermore, CMD of both ventricles was significantly correlated with B-type natriuretic peptide (BNP) concentration at EMB, whereas IF of the LV was barely related and IF of the RV was not significantly correlated with BNP concentrations. Conclusions: Pathologically evaluated CMD of EMB specimens of the LV may be more related to functional parameters for heart failure status and LV geometry on echocardiographic examination, than IF.
Collapse
Affiliation(s)
- Eiji Toyosaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Yasuhide Mochizuki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Hiroki Den
- Department of Hygiene, Public Health and Preventive Medicine, Showa University Tokyo Japan
| | - Saaya Ichikawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Haruka Miyazaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Saori Chino
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Rumi Hachiya
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Hiroto Fukuoka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Akatsuki Kokaze
- Department of Hygiene, Public Health and Preventive Medicine, Showa University Tokyo Japan
| | | | - Toshiro Shinke
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| |
Collapse
|
34
|
Berkeley B, Tang MNH, Brittan M. Mechanisms regulating vascular and lymphatic regeneration in the heart after myocardial infarction. J Pathol 2023; 260:666-678. [PMID: 37272582 PMCID: PMC10953458 DOI: 10.1002/path.6093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Myocardial infarction, caused by a thrombus or coronary vascular occlusion, leads to irreversible ischaemic injury. Advances in early reperfusion strategies have significantly reduced short-term mortality after myocardial infarction. However, survivors have an increased risk of developing heart failure, which confers a high risk of death at 1 year. The capacity of the injured neonatal mammalian heart to regenerate has stimulated extensive research into whether recapitulation of developmental regeneration programmes may be beneficial in adult cardiovascular disease. Restoration of functional blood and lymphatic vascular networks in the infarct and border regions via neovascularisation and lymphangiogenesis, respectively, is a key requirement to facilitate myocardial regeneration. An improved understanding of the endogenous mechanisms regulating coronary vascular and lymphatic expansion and function in development and in adult patients after myocardial infarction may inform future therapeutic strategies and improve translation from pre-clinical studies. In this review, we explore the underpinning research and key findings in the field of cardiovascular regeneration, with a focus on neovascularisation and lymphangiogenesis, and discuss the outcomes of therapeutic strategies employed to date. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Bronwyn Berkeley
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Michelle Nga Huen Tang
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
35
|
Dhaibar HA, Kamberov L, Carroll NG, Amatya S, Cosic D, Gomez-Torres O, Vital S, Sivandzade F, Bhalerao A, Mancuso S, Shen X, Nam H, Orr AW, Dudenbostel T, Bailey SR, Kevil CG, Cucullo L, Cruz-Topete D. Exposure to Stress Alters Cardiac Gene Expression and Exacerbates Myocardial Ischemic Injury in the Female Murine Heart. Int J Mol Sci 2023; 24:10994. [PMID: 37446174 PMCID: PMC10341935 DOI: 10.3390/ijms241310994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Mental stress is a risk factor for myocardial infarction in women. The central hypothesis of this study is that restraint stress induces sex-specific changes in gene expression in the heart, which leads to an intensified response to ischemia/reperfusion injury due to the development of a pro-oxidative environment in female hearts. We challenged male and female C57BL/6 mice in a restraint stress model to mimic the effects of mental stress. Exposure to restraint stress led to sex differences in the expression of genes involved in cardiac hypertrophy, inflammation, and iron-dependent cell death (ferroptosis). Among those genes, we identified tumor protein p53 and cyclin-dependent kinase inhibitor 1A (p21), which have established controversial roles in ferroptosis. The exacerbated response to I/R injury in restraint-stressed females correlated with downregulation of p53 and nuclear factor erythroid 2-related factor 2 (Nrf2, a master regulator of the antioxidant response system-ARE). S-female hearts also showed increased superoxide levels, lipid peroxidation, and prostaglandin-endoperoxide synthase 2 (Ptgs2) expression (a hallmark of ferroptosis) compared with those of their male counterparts. Our study is the first to test the sex-specific impact of restraint stress on the heart in the setting of I/R and its outcome.
Collapse
Affiliation(s)
- Hemangini A. Dhaibar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
| | - Lilly Kamberov
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
| | - Natalie G. Carroll
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
| | - Shripa Amatya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
| | - Dario Cosic
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
| | - Oscar Gomez-Torres
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo 45004, Spain
| | - Shantel Vital
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
| | - Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (F.S.); (A.B.); (S.M.)
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Aditya Bhalerao
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (F.S.); (A.B.); (S.M.)
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Salvatore Mancuso
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (F.S.); (A.B.); (S.M.)
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Xinggui Shen
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Hyung Nam
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
- Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - A. Wayne Orr
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Tanja Dudenbostel
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
- LSU Health Sciences Center, Department of Internal Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Steven R. Bailey
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
- LSU Health Sciences Center, Department of Internal Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Christopher G. Kevil
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Luca Cucullo
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (F.S.); (A.B.); (S.M.)
| | - Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
| |
Collapse
|
36
|
Lee S, Roest ASV, Blair CA, Kao K, Bremner SB, Childers MC, Pathak D, Heinrich P, Lee D, Chirikian O, Mohran S, Roberts B, Smith JE, Jahng JW, Paik DT, Wu JC, Gunawardane RN, Spudich JA, Ruppel K, Mack D, Pruitt BL, Regnier M, Wu SM, Bernstein D. Multi-scale models reveal hypertrophic cardiomyopathy MYH7 G256E mutation drives hypercontractility and elevated mitochondrial respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544276. [PMID: 37333118 PMCID: PMC10274883 DOI: 10.1101/2023.06.08.544276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Rationale Over 200 mutations in the sarcomeric protein β-myosin heavy chain (MYH7) have been linked to hypertrophic cardiomyopathy (HCM). However, different mutations in MYH7 lead to variable penetrance and clinical severity, and alter myosin function to varying degrees, making it difficult to determine genotype-phenotype relationships, especially when caused by rare gene variants such as the G256E mutation. Objective This study aims to determine the effects of low penetrant MYH7 G256E mutation on myosin function. We hypothesize that the G256E mutation would alter myosin function, precipitating compensatory responses in cellular functions. Methods We developed a collaborative pipeline to characterize myosin function at multiple scales (protein to myofibril to cell to tissue). We also used our previously published data on other mutations to compare the degree to which myosin function was altered. Results At the protein level, the G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 50.9%, suggesting more myosins available for contraction. Myofibrils isolated from hiPSC-CMs CRISPR-edited with G256E (MYH7 WT/G256E ) generated greater tension, had faster tension development and slower early phase relaxation, suggesting altered myosin-actin crossbridge cycling kinetics. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. Single-cell transcriptomic and metabolic profiling demonstrated upregulation of mitochondrial genes and increased mitochondrial respiration, suggesting altered bioenergetics as an early feature of HCM. Conclusions MYH7 G256E mutation causes structural instability in the transducer region, leading to hypercontractility across scales, perhaps from increased myosin recruitment and altered crossbridge cycling. Hypercontractile function of the mutant myosin was accompanied by increased mitochondrial respiration, while cellular hypertrophy was modest in the physiological stiffness environment. We believe that this multi-scale platform will be useful to elucidate genotype-phenotype relationships underlying other genetic cardiovascular diseases.
Collapse
|
37
|
Zhang Q, Song C, Zhang M, Liu Y, Wang L, Xie Y, Qi H, Ba L, Shi P, Cao Y, Sun H. Super-enhancer-driven lncRNA Snhg7 aggravates cardiac hypertrophy via Tbx5/GLS2/ferroptosis axis. Eur J Pharmacol 2023:175822. [PMID: 37277029 DOI: 10.1016/j.ejphar.2023.175822] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) are expressed aberrantly in cardiac disease, but their roles in cardiac hypertrophy are still unknown. Here we sought to identify a specific lncRNA and explore the mechanisms underlying lncRNA functions. Our results revealed that lncRNA Snhg7 was a super-enhancer-driven gene in cardiac hypertrophy by using chromatin immunoprecipitation sequencing (ChIP-Seq). We next found that lncRNA Snhg7 induced ferroptosis by interacting with T-box transcription factor 5 (Tbx5), a cardiac transcription factor. Moreover, Tbx5 bound to the promoter of glutaminase 2 (GLS2) and regulated cardiomyocyte ferroptosis activity in cardiac hypertrophy. Importantly, extra-terminal domain inhibitor JQ1 could suppress super-enhancers in cardiac hypertrophy. Inhibition of lncRNA Snhg7 could block the expressions of Tbx5, GLS2 and levels of ferroptosis in cardiomyocytes. Furthermore, we verified that Nkx2-5 as a core transcription factor, directly bound the super-enhancer of itself and lncRNA Snhg7, increasing both of their activation. Collectively, we are the first to identify lncRNA Snhg7 as a novel functional lncRNA in cardiac hypertrophy, might regulate cardiac hypertrophy via ferroptosis. Mechanistically, lncRNA Snhg7 could transcriptionally regulate Tbx5/GLS2/ferroptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Qianhui Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Chao Song
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meitian Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Yongsheng Liu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Lixin Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Yawen Xie
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Hanping Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Lina Ba
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Pilong Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China.
| |
Collapse
|
38
|
Yamada S, Ko T, Katagiri M, Morita H, Komuro I. Recent Advances in Translational Research for Heart Failure in Japan. J Card Fail 2023; 29:931-938. [PMID: 37321698 DOI: 10.1016/j.cardfail.2022.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Despite decades of intensive research and therapeutic development, heart failure remains a leading cause of death worldwide. However, recent advances in several basic and translational research fields, such as genomic analysis and single-cell analysis, have increased the possibility of developing novel diagnostic approaches to heart failure. Most cardiovascular diseases that predispose individuals to heart failure are caused by genetic and environmental factors. It follows that genomic analysis can contribute to the diagnosis and prognostic stratification of patients with heart failure. In addition, single-cell analysis has shown great potential for unveiling the pathogenesis and/or pathophysiology and for discovering novel therapeutic targets for heart failure. Here, we summarize the recent advances in translational research on heart failure in Japan, based mainly on our studies.
Collapse
Affiliation(s)
- Shintaro Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mikako Katagiri
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, International University of Health and Welfare, Tokyo, Japan.
| |
Collapse
|
39
|
Huang Y, Zhou B. Mitochondrial Dysfunction in Cardiac Diseases and Therapeutic Strategies. Biomedicines 2023; 11:biomedicines11051500. [PMID: 37239170 DOI: 10.3390/biomedicines11051500] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria are the main site of intracellular synthesis of ATP, which provides energy for various physiological activities of the cell. Cardiomyocytes have a high density of mitochondria and mitochondrial damage is present in a variety of cardiovascular diseases. In this paper, we describe mitochondrial damage in mitochondrial cardiomyopathy, congenital heart disease, coronary heart disease, myocardial ischemia-reperfusion injury, heart failure, and drug-induced cardiotoxicity, in the context of the key roles of mitochondria in cardiac development and homeostasis. Finally, we discuss the main current therapeutic strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction, including pharmacological strategies, gene therapy, mitochondrial replacement therapy, and mitochondrial transplantation. It is hoped that this will provide new ideas for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| |
Collapse
|
40
|
Lv Y, Zhang J, Li C, Wang L, Lei L, Huang X. Network pharmacological analysis to reveal the mechanism governing the effect of Qin Xi Tong on osteoarthritis and rheumatoid arthritis. Clin Rheumatol 2023:10.1007/s10067-023-06625-5. [PMID: 37162694 DOI: 10.1007/s10067-023-06625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023]
Abstract
INTRODUCTION Qin Xi Tong (QXT), produced by water extracts of Caulis Sinomenii, is clinically effective in the therapy of rheumatoid arthritis (RA). It is also a complementary agent for osteoarthritis (OA). This study aimed to screen the candidate targets and identify the potential mechanisms of QXT against RA and OA. METHOD The active ingredients contained in QXT were queried from the TCMSP database. Their predicted targets were obtained through web-based databases, including TCMSP, BATMAN-TCM, CTD, and PharmMapper. The OA and RA targets were collected from the Genecards database and the GSE55235 dataset. Based on the DAVID database, GO and KEGG enrichment analyses of disease-drug common targets predicted potential signaling pathways for QXT. In addition, core targets were identified by mapping component-target-disease interaction networks with Cytoscape 3.9.1 and STRING. The Swissdock and Pymol tools further validate the predicted results. RESULTS A total of 161 genes were put forward as potential targets for treating RA and OA. These genes might be involved in joint inflammation, including the IL-17 signaling pathway, MAPK signaling pathway, and TNF signaling pathway. They also regulated the progression of joint injuries, such as apoptosis, Th17 cell differentiation, and osteoclast differentiation. In addition, we identified 12 core targets of QXT. Molecular docking results showed that QXT has a high affinity with these core targets. CONCLUSIONS This study reveals the mechanism governing the effect of QXT on RA and OA, predicts the direct target, and provides new ideas for clinical treatment. Key Points • Our study reveals the underlying mechanism of QXT in the treatment of RA and OA. • Further research into the effects of compounds in QXT alone would be of interest.
Collapse
Affiliation(s)
- Yanyan Lv
- Department of Rheumatology and Immunology, Xi'an No. 5 Hospital, No. 112 Xi Guan Zheng Jie, Xi'an, China
| | - Jie Zhang
- Department of Rheumatology and Immunology, Xi'an No. 5 Hospital, No. 112 Xi Guan Zheng Jie, Xi'an, China
| | - Chao Li
- Department of Rheumatology and Immunology, Xi'an No. 5 Hospital, No. 112 Xi Guan Zheng Jie, Xi'an, China
| | - Li Wang
- Department of Rheumatology and Immunology, Xi'an No. 5 Hospital, No. 112 Xi Guan Zheng Jie, Xi'an, China
| | - Lei Lei
- School of Life Sciences and Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, China
| | - Xiaoqiang Huang
- Department of Orthopedics, Xi'an No.5 Hospital, No. 112 Xi Guan Zheng Jie, Xi'an, China.
| |
Collapse
|
41
|
Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison-Hughes GM, Tchkonia T, Kirkland JL. Senescent Cells: A Therapeutic Target in Cardiovascular Diseases. Cells 2023; 12:1296. [PMID: 37174697 PMCID: PMC10177324 DOI: 10.3390/cells12091296] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. Some senolytic clinical trials have already been completed or are underway for a number of diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts, immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senotherapeutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and clinical potential of senotherapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Karl H. Paul
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jordan D. Miller
- Division of Cardiovascular Surgery, Mayo Clinic College of Medicine, 200 First St., S.W., Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| |
Collapse
|
42
|
Safabakhsh S, Ma WF, Miller CL, Laksman Z. Cardiovascular utility of single cell RNA-Seq. Curr Opin Cardiol 2023; 38:193-200. [PMID: 36728943 DOI: 10.1097/hco.0000000000001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular diseases remain the leading causes of morbidity and mortality globally. Single-cell RNA sequencing has the potential to improve diagnostics, risk stratification, and provide novel therapeutic targets that have the potential to improve patient outcomes. RECENT FINDINGS Here, we provide an overview of the basic processes underlying single-cell RNA sequencing, including library preparation, data processing, and downstream analyses. We briefly discuss how the technique has been adapted to related medical disciplines, including hematology and oncology, with short term translational impact. We discuss potential applications of this technology within cardiology as well as recent innovative research within the field. We also discuss future directions to translate this technology to other high impact clinical areas. SUMMARY The use of single-cell RNA sequencing technology has made significant advancements in the field of cardiology, with ongoing growth in terms of applications and uptake. Most of the current research has focused on structural or atherosclerotic heart disease. Future areas that stand to benefit from this technology include cardiac electrophysiology and cardio-oncology.
Collapse
Affiliation(s)
- Sina Safabakhsh
- Division of Cardiology
- Centre for Heart Lung Innovation
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Wei Feng Ma
- Center for Public Health Genomics, Department of Public Health Sciences
- Medical Scientist Training Program, University of Virginia, Charlottesville, Virginia, USA
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences
| | - Zachary Laksman
- Division of Cardiology
- Centre for Heart Lung Innovation
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
43
|
Miranda AMA, Janbandhu V, Maatz H, Kanemaru K, Cranley J, Teichmann SA, Hübner N, Schneider MD, Harvey RP, Noseda M. Single-cell transcriptomics for the assessment of cardiac disease. Nat Rev Cardiol 2023; 20:289-308. [PMID: 36539452 DOI: 10.1038/s41569-022-00805-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease is the leading cause of death globally. An advanced understanding of cardiovascular disease mechanisms is required to improve therapeutic strategies and patient risk stratification. State-of-the-art, large-scale, single-cell and single-nucleus transcriptomics facilitate the exploration of the cardiac cellular landscape at an unprecedented level, beyond its descriptive features, and can further our understanding of the mechanisms of disease and guide functional studies. In this Review, we provide an overview of the technical challenges in the experimental design of single-cell and single-nucleus transcriptomics studies, as well as a discussion of the type of inferences that can be made from the data derived from these studies. Furthermore, we describe novel findings derived from transcriptomics studies for each major cardiac cell type in both health and disease, and from development to adulthood. This Review also provides a guide to interpreting the exhaustive list of newly identified cardiac cell types and states, and highlights the consensus and discordances in annotation, indicating an urgent need for standardization. We describe advanced applications such as integration of single-cell data with spatial transcriptomics to map genes and cells on tissue and define cellular microenvironments that regulate homeostasis and disease progression. Finally, we discuss current and future translational and clinical implications of novel transcriptomics approaches, and provide an outlook of how these technologies will change the way we diagnose and treat heart disease.
Collapse
Affiliation(s)
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Henrike Maatz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kazumasa Kanemaru
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - James Cranley
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sarah A Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Deptartment of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | | | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
44
|
Kannan S, Miyamoto M, Zhu R, Lynott M, Guo J, Chen EZ, Colas AR, Lin BL, Kwon C. Trajectory reconstruction identifies dysregulation of perinatal maturation programs in pluripotent stem cell-derived cardiomyocytes. Cell Rep 2023; 42:112330. [PMID: 37014753 PMCID: PMC10545814 DOI: 10.1016/j.celrep.2023.112330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
A limitation in the application of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) is the failure of these cells to achieve full functional maturity. The mechanisms by which directed differentiation differs from endogenous development, leading to consequent PSC-CM maturation arrest, remain unclear. Here, we generate a single-cell RNA sequencing (scRNA-seq) reference of mouse in vivo CM maturation with extensive sampling of previously difficult-to-isolate perinatal time periods. We subsequently generate isogenic embryonic stem cells to create an in vitro scRNA-seq reference of PSC-CM-directed differentiation. Through trajectory reconstruction, we identify an endogenous perinatal maturation program that is poorly recapitulated in vitro. By comparison with published human datasets, we identify a network of nine transcription factors (TFs) whose targets are consistently dysregulated in PSC-CMs across species. Notably, these TFs are only partially activated in common ex vivo approaches to engineer PSC-CM maturation. Our study can be leveraged toward improving the clinical viability of PSC-CMs.
Collapse
Affiliation(s)
- Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Renjun Zhu
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michaela Lynott
- Sanford Burham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Jason Guo
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elaine Zhelan Chen
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexandre R Colas
- Sanford Burham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Brian Leei Lin
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
45
|
Yamada S, Ko T, Ito M, Sassa T, Nomura S, Okuma H, Sato M, Imasaki T, Kikkawa S, Zhang B, Yamada T, Seki Y, Fujita K, Katoh M, Kubota M, Hatsuse S, Katagiri M, Hayashi H, Hamano M, Takeda N, Morita H, Takada S, Toyoda M, Uchiyama M, Ikeuchi M, Toyooka K, Umezawa A, Yamanishi Y, Nitta R, Aburatani H, Komuro I. TEAD1 trapping by the Q353R-Lamin A/C causes dilated cardiomyopathy. SCIENCE ADVANCES 2023; 9:eade7047. [PMID: 37058558 PMCID: PMC10104473 DOI: 10.1126/sciadv.ade7047] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Mutations in the LMNA gene encoding Lamin A and C (Lamin A/C), major components of the nuclear lamina, cause laminopathies including dilated cardiomyopathy (DCM), but the underlying molecular mechanisms have not been fully elucidated. Here, by leveraging single-cell RNA sequencing (RNA-seq), assay for transposase-accessible chromatin using sequencing (ATAC-seq), protein array, and electron microscopy analysis, we show that insufficient structural maturation of cardiomyocytes owing to trapping of transcription factor TEA domain transcription factor 1 (TEAD1) by mutant Lamin A/C at the nuclear membrane underlies the pathogenesis of Q353R-LMNA-related DCM. Inhibition of the Hippo pathway rescued the dysregulation of cardiac developmental genes by TEAD1 in LMNA mutant cardiomyocytes. Single-cell RNA-seq of cardiac tissues from patients with DCM with the LMNA mutation confirmed the dysregulated expression of TEAD1 target genes. Our results propose an intervention for transcriptional dysregulation as a potential treatment of LMNA-related DCM.
Collapse
Affiliation(s)
- Shintaro Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masamichi Ito
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuro Sassa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiromichi Okuma
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Satoshi Kikkawa
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Bo Zhang
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Takanobu Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Yuka Seki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kanna Fujita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Manami Katoh
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Masayuki Kubota
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Hatsuse
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mikako Katagiri
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiromu Hayashi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Momoko Hamano
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Center for Child Health and Development Research Institute, Setagaya-ku, Tokyo 157-8535, Japan
| | - Masashi Toyoda
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Setagaya-ku, Tokyo 157-8535, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masashi Ikeuchi
- Division of Biofunctional Restoration, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
46
|
Long X, Yuan X, Du J. Single-cell and spatial transcriptomics: Advances in heart development and disease applications. Comput Struct Biotechnol J 2023; 21:2717-2731. [PMID: 37181659 PMCID: PMC10173363 DOI: 10.1016/j.csbj.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Current transcriptomics technologies, including bulk RNA-seq, single-cell RNA sequencing (scRNA-seq), single-nucleus RNA-sequencing (snRNA-seq), and spatial transcriptomics (ST), provide novel insights into the spatial and temporal dynamics of gene expression during cardiac development and disease processes. Cardiac development is a highly sophisticated process involving the regulation of numerous key genes and signaling pathways at specific anatomical sites and developmental stages. Exploring the cell biological mechanisms involved in cardiogenesis also contributes to congenital heart disease research. Meanwhile, the severity of distinct heart diseases, such as coronary heart disease, valvular disease, cardiomyopathy, and heart failure, is associated with cellular transcriptional heterogeneity and phenotypic alteration. Integrating transcriptomic technologies in the clinical diagnosis and treatment of heart diseases will aid in advancing precision medicine. In this review, we summarize applications of scRNA-seq and ST in the cardiac field, including organogenesis and clinical diseases, and provide insights into the promise of single-cell and spatial transcriptomics in translational research and precision medicine.
Collapse
Affiliation(s)
- Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
47
|
Anatskaya OV, Runov AL, Ponomartsev SV, Vonsky MS, Elmuratov AU, Vinogradov AE. Long-Term Transcriptomic Changes and Cardiomyocyte Hyperpolyploidy after Lactose Intolerance in Neonatal Rats. Int J Mol Sci 2023; 24:7063. [PMID: 37108224 PMCID: PMC10138443 DOI: 10.3390/ijms24087063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Many cardiovascular diseases originate from growth retardation, inflammation, and malnutrition during early postnatal development. The nature of this phenomenon is not completely understood. Here we aimed to verify the hypothesis that systemic inflammation triggered by neonatal lactose intolerance (NLI) may exert long-term pathologic effects on cardiac developmental programs and cardiomyocyte transcriptome regulation. Using the rat model of NLI triggered by lactase overloading with lactose and the methods of cytophotometry, image analysis, and mRNA-seq, we evaluated cardiomyocyte ploidy, signs of DNA damage, and NLI-associated long-term transcriptomic changes of genes and gene modules that differed qualitatively (i.e., were switched on or switched off) in the experiment vs. the control. Our data indicated that NLI triggers the long-term animal growth retardation, cardiomyocyte hyperpolyploidy, and extensive transcriptomic rearrangements. Many of these rearrangements are known as manifestations of heart pathologies, including DNA and telomere instability, inflammation, fibrosis, and reactivation of fetal gene program. Moreover, bioinformatic analysis identified possible causes of these pathologic traits, including the impaired signaling via thyroid hormone, calcium, and glutathione. We also found transcriptomic manifestations of increased cardiomyocyte polyploidy, such as the induction of gene modules related to open chromatin, e.g., "negative regulation of chromosome organization", "transcription" and "ribosome biogenesis". These findings suggest that ploidy-related epigenetic alterations acquired in the neonatal period permanently rewire gene regulatory networks and alter cardiomyocyte transcriptome. Here we provided first evidence indicating that NLI can be an important trigger of developmental programming of adult cardiovascular disease. The obtained results can help to develop preventive strategies for reducing the NLI-associated adverse effects of inflammation on the developing cardiovascular system.
Collapse
Affiliation(s)
| | - Andrey L. Runov
- The D.I. Mendeleev All-Russian Institute for Metrology (VNIIM), Moskovsky ave 19, Saint Petersburg 190005, Russia
- Almazov Medical Research Centre, Akkuratova Street 2, Saint Petersburg 197341, Russia
| | | | - Maxim S. Vonsky
- The D.I. Mendeleev All-Russian Institute for Metrology (VNIIM), Moskovsky ave 19, Saint Petersburg 190005, Russia
- Almazov Medical Research Centre, Akkuratova Street 2, Saint Petersburg 197341, Russia
| | - Artem U. Elmuratov
- Medical Genetics Centre Genotek, Nastavnichesky Alley 17-1-15, Moscow 105120, Russia
| | | |
Collapse
|
48
|
Wang K, Sun X, Sun Y, Jiao B, Yao J, Hu Y, Deng Q, Dong J, Wang W, Wang Y, Li C. Transcriptional regulation of macrophages in heart failure. Front Cardiovasc Med 2023; 10:1148041. [PMID: 37063966 PMCID: PMC10097991 DOI: 10.3389/fcvm.2023.1148041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Adverse cardiac remodeling after acute myocardial infarction is the most important pathological mechanism of heart failure and remains a major problem in clinical practice. Cardiac macrophages, derived from tissue resident macrophages and circulating monocyte, undergo significant phenotypic and functional changes following cardiac injury and play crucial roles in inflammatory response and tissue repair response. Currently, numerous studies indicate that epigenetic regulatory factors and transcription factors can regulate the transcription of inflammatory and reparative genes and timely conversion of inflammatory macrophages into reparative macrophages and then alleviate cardiac remodeling. Accordingly, targeting transcriptional regulation of macrophages may be a promising option for heart failure treatment. In this review, we not only summarize the origin and function of cardiac macrophages, but more importantly, describe the transcriptional regulation of macrophages in heart failure, aiming to provide a potential therapeutic target for heart failure.
Collapse
Affiliation(s)
- Keyan Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Boyang Jiao
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Junkai Yao
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyao Hu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiong Deng
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianteng Dong
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
- Correspondence: Wei Wang Yong Wang Chun Li
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Wei Wang Yong Wang Chun Li
| | - Chun Li
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine (TCM), Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Wei Wang Yong Wang Chun Li
| |
Collapse
|
49
|
Zhou J, Tian G, Quan Y, Kong Q, Huang F, Li J, Wu W, Tang Y, Zhou Z, Liu X. The long noncoding RNA THBS1-AS1 promotes cardiac fibroblast activation in cardiac fibrosis by regulating TGFBR1. JCI Insight 2023; 8:160745. [PMID: 36787190 PMCID: PMC10070117 DOI: 10.1172/jci.insight.160745] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Cardiac fibrosis is associated with an adverse prognosis in cardiovascular disease that results in a decreased cardiac compliance and, ultimately, heart failure. Recent studies have identified the role of long noncoding RNA (lncRNA) in cardiac fibrosis. However, the functions of many lncRNAs in cardiac fibrosis remain to be characterized. Through a whole-transcriptome sequencing and bioinformatics analysis on a mouse model of pressure overload-induced cardiac fibrosis, we screened a key lncRNA termed thrombospondin 1 antisense 1 (THBS1-AS1), which was positively associated with cardiac fibrosis. In vitro functional studies demonstrated that the silencing of THBS1-AS1 ameliorated TGF-β1 effects on cardiac fibroblast (CF) activation, and the overexpression of THBS1-AS1 displayed the opposite effect. A mechanistic study revealed that THBS1-AS1 could sponge miR-221/222 to regulate the expression of TGFBR1. Moreover, under TGF-β1 stimulation, the forced expression of miR-221/222 or the knockdown TGFBR1 significantly reversed the THBS1-AS1 overexpression induced by further CF activation. In vivo, specific knockdown of THBS1-AS1 in activated CFs significantly alleviated transverse aorta constriction-induced (TAC-induced) cardiac fibrosis in mice. Finally, we demonstrated that the human THBS1-AS1 can also affect the activation of CFs by regulating TGFBR1. In conclusion, this study reveals that lncRNA THBS1-AS1 is a potentially novel regulator of cardiac fibrosis and may serve as a target for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Junteng Zhou
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center
- Health Management Center, General Practice Medical Center, and
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Geer Tian
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center
| | - Yue Quan
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center
| | - Qihang Kong
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center
| | - Fangyang Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center
| | - Yong Tang
- International Joint Research Centre on Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Wirth J, Huber N, Yin K, Brood S, Chang S, Martinez-Jimenez CP, Meier M. Spatial transcriptomics using multiplexed deterministic barcoding in tissue. Nat Commun 2023; 14:1523. [PMID: 36934108 PMCID: PMC10024691 DOI: 10.1038/s41467-023-37111-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/02/2023] [Indexed: 03/20/2023] Open
Abstract
Spatially resolved transcriptomics of tissue sections enables advances in fundamental and applied biomedical research. Here, we present Multiplexed Deterministic Barcoding in Tissue (xDBiT) to acquire spatially resolved transcriptomes of nine tissue sections in parallel. New microfluidic chips were developed to spatially encode mRNAs over a total tissue area of 1.17 cm2 with a 50 µm resolution. Optimization of the biochemical protocol increased read and gene counts per spot by one order of magnitude compared to previous reports. Furthermore, the introduction of alignment markers allowed seamless registration of images and spatial transcriptomic spots. Together with technological advances, we provide an open-source computational pipeline to prepare raw sequencing data for downstream analysis. The functionality of xDBiT was demonstrated by acquiring 16 spatially resolved transcriptomic datasets from five different murine organs, including the cerebellum, liver, kidney, spleen, and heart. Factor analysis and deconvolution of spatial transcriptomes allowed for in-depth characterization of the murine kidney.
Collapse
Affiliation(s)
- Johannes Wirth
- Helmholtz Pioneer Campus, Helmholtz Munich, Munich, Germany
| | - Nina Huber
- Helmholtz Pioneer Campus, Helmholtz Munich, Munich, Germany
| | - Kelvin Yin
- Helmholtz Pioneer Campus, Helmholtz Munich, Munich, Germany
| | - Sophie Brood
- Helmholtz Pioneer Campus, Helmholtz Munich, Munich, Germany
| | - Simon Chang
- Helmholtz Pioneer Campus, Helmholtz Munich, Munich, Germany
| | - Celia P Martinez-Jimenez
- Helmholtz Pioneer Campus, Helmholtz Munich, Munich, Germany.
- TUM School of Medicine, Technical University of Munich, Munich, Germany.
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Munich, Munich, Germany.
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|