1
|
Wang X, Wang Y, Xie M, Ma S, Zhang Y, Wang L, Ge Y, Li G, Zhao M, Chen S, Yan C, Zhang H, Sun W. Hypermethylation of CDKN2A CpG island drives resistance to PRC2 inhibitors in SWI/SNF loss-of-function tumors. Cell Death Dis 2024; 15:794. [PMID: 39500892 PMCID: PMC11538500 DOI: 10.1038/s41419-024-07109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Polycomb repressive complex 2 (PRC2) catalyzes the writing of the tri-methylated histone H3 at Lys27 (H3K27me3) epigenetic marker and suppresses the expression of genes, including tumor suppressors. The function of the complex can be partially antagonized by the SWI/SNF chromatin-remodeling complex. Previous studies have suggested that PRC2 is important for the proliferation of tumors with SWI/SNF loss-of-function mutations. In the present study, we have developed an EED-directed allosteric inhibitor of PRC2 termed BR0063, which exhibits anti-proliferative properties in a subset of solid tumor cell lines harboring mutations of the SWI/SNF subunits, SMARCA4 or ARID1A. Tumor cells sensitive to BR0063 exhibited several distinct phenotypes, including cell senescence, which was mediated by the up-regulation of CDKN2A/p16. Further experiments revealed that the expression of p16 was suppressed in the BR0063-resistant cells via DNA hypermethylation in the CpG island (CGI) promoter region, rather than via PRC2 occupancy. The expression of TET1, which is required for DNA demethylation, was found to be inversely correlated with p16 CGI methylation, and this may serve as a biomarker for the prediction of resistance to PRC2 inhibitors in SWI/SNF LOF tumors.
Collapse
Affiliation(s)
- Xinghao Wang
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | | | - Min Xie
- Blueray Biopharma Inc., Shanghai, China
| | | | | | - Lele Wang
- Blueray Biopharma Inc., Shanghai, China
| | | | - Guobin Li
- Blueray Biopharma Inc., Shanghai, China
| | | | | | - Chenxi Yan
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | | | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Abu Sailik F, Emerald BS, Ansari SA. Opening and changing: mammalian SWI/SNF complexes in organ development and carcinogenesis. Open Biol 2024; 14:240039. [PMID: 39471843 PMCID: PMC11521604 DOI: 10.1098/rsob.240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) subfamily are evolutionarily conserved, ATP-dependent chromatin-remodelling complexes that alter nucleosome position and regulate a spectrum of nuclear processes, including gene expression, DNA replication, DNA damage repair, genome stability and tumour suppression. These complexes, through their ATP-dependent chromatin remodelling, contribute to the dynamic regulation of genetic information and the maintenance of cellular processes essential for normal cellular function and overall genomic integrity. Mutations in SWI/SNF subunits are detected in 25% of human malignancies, indicating that efficient functioning of this complex is required to prevent tumourigenesis in diverse tissues. During development, SWI/SNF subunits help establish and maintain gene expression patterns essential for proper cellular identity and function, including maintenance of lineage-specific enhancers. Moreover, specific molecular signatures associated with SWI/SNF mutations, including disruption of SWI/SNF activity at enhancers, evasion of G0 cell cycle arrest, induction of cellular plasticity through pro-oncogene activation and Polycomb group (PcG) complex antagonism, are linked to the initiation and progression of carcinogenesis. Here, we review the molecular insights into the aetiology of human malignancies driven by disruption of the SWI/SNF complex and correlate these mechanisms to their developmental functions. Finally, we discuss the therapeutic potential of targeting SWI/SNF subunits in cancer.
Collapse
Affiliation(s)
- Fadia Abu Sailik
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
3
|
Honer MA, Ferman BI, Gray ZH, Bondarenko EA, Whetstine JR. Epigenetic modulators provide a path to understanding disease and therapeutic opportunity. Genes Dev 2024; 38:473-503. [PMID: 38914477 PMCID: PMC11293403 DOI: 10.1101/gad.351444.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The discovery of epigenetic modulators (writers, erasers, readers, and remodelers) has shed light on previously underappreciated biological mechanisms that promote diseases. With these insights, novel biomarkers and innovative combination therapies can be used to address challenging and difficult to treat disease states. This review highlights key mechanisms that epigenetic writers, erasers, readers, and remodelers control, as well as their connection with disease states and recent advances in associated epigenetic therapies.
Collapse
Affiliation(s)
- Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Benjamin I Ferman
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Elena A Bondarenko
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
4
|
Chen Y, Zhu H, Luo Y, Tong S, Liu Y. EZH2: The roles in targeted therapy and mechanisms of resistance in breast cancer. Biomed Pharmacother 2024; 175:116624. [PMID: 38670045 DOI: 10.1016/j.biopha.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Drug resistance presents a formidable challenge in the realm of breast cancer therapy. Accumulating evidence suggests that enhancer of zeste homolog 2 (EZH2), a component of the polycomb repressive complex 2 (PRC2), may serve as a key regulator in controlling drug resistance. EZH2 overexpression has been observed in breast cancer and many other malignancies, showing a strong correlation with poor outcomes. This review aims to summarize the mechanisms by which EZH2 regulates drug resistance, with a specific focus on breast cancer, in order to provide a comprehensive understanding of the underlying molecular processes. Additionally, we will discuss the current strategies and outcomes of targeting EZH2 using both single agents and combination therapies, with the goal of offering improved guidance for the clinical treatment of breast cancer patients who have developed drug resistance.
Collapse
Affiliation(s)
- Yun Chen
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hongyan Zhu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Yi Luo
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Biotheus Inc., Guangdong Province, Zhuhai 519080, PR China.
| | - Shuangmei Tong
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
5
|
Zhang X, Zhang Y, Zhang Q, Lu M, Chen Y, Zhang X, Zhang P. Role of AT-rich interaction domain 1A in gastric cancer immunotherapy: Preclinical and clinical perspectives. J Cell Mol Med 2024; 28:e18063. [PMID: 38041544 PMCID: PMC10902580 DOI: 10.1111/jcmm.18063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
The application of immune checkpoint inhibitor (ICI) using monoclonal antibodies has brought about a profound transformation in the clinical outcomes for patients grappling with advanced gastric cancer (GC). Nonetheless, despite these achievements, the quest for effective functional biomarkers for ICI therapy remains constrained. Recent research endeavours have shed light on the critical involvement of modified epigenetic regulators in the pathogenesis of gastric tumorigenesis, thus providing a glimpse into potential biomarkers. Among these regulatory factors, AT-rich interaction domain 1A (ARID1A), a pivotal constituent of the switch/sucrose non-fermentable (SWI/SNF) complex, has emerged as a promising candidate. Investigations have unveiled the pivotal role of ARID1A in bridging the gap between genome instability and the reconfiguration of the tumour immune microenvironment, culminating in an enhanced response to ICI within the landscape of gastric cancer treatment. This all-encompassing review aims to dissect the potential of ARID1A as a valuable biomarker for immunotherapeutic approaches in gastric cancer, drawing from insights garnered from both preclinical experimentation and clinical observations.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Youzhi Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of PharmacyHubei University of Science and TechnologyXianningChina
| | - Qiaoyun Zhang
- School of PharmacyHubei University of Science and TechnologyXianningChina
| | - Mengyao Lu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuan Chen
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Huai'an Second People's Hospitalthe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuaianChina
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
6
|
Scholl S, Roufai DB, Chérif LL, Kamal M. RAIDS atlas of significant genetic and protein biomarkers in cervical cancer. J Gynecol Oncol 2023; 34:e74. [PMID: 37668079 PMCID: PMC10482580 DOI: 10.3802/jgo.2023.34.e74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 09/06/2023] Open
Abstract
Loss of function in epigenetic acting genes together with driver alterations in the PIK3CA pathway have been shown significantly associated with poor outcome in cervical squamous cell cancer. More recently, a CoxBoost analysis identified 16 gene alterations and 30 high level activated proteins to be of high interest, due to their association with either good or bad outcome, in the context of treatment received by chemoradiation. The objectives here were to review and confirm the significance of these molecular alterations as suggested by literature reports and to pinpoint alternate treatments options for poor-responders to chemoradiation.
Collapse
Affiliation(s)
- Suzy Scholl
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- Department of Drug Development and Innovation (D3i), Institut Curie, Saint-Cloud, France.
| | | | - Linda Larbi Chérif
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- Department of Drug Development and Innovation (D3i), Institut Curie, Saint-Cloud, France
| | - Maud Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- Department of Drug Development and Innovation (D3i), Institut Curie, Saint-Cloud, France
| |
Collapse
|
7
|
Reddy D, Bhattacharya S, Workman JL. (mis)-Targeting of SWI/SNF complex(es) in cancer. Cancer Metastasis Rev 2023; 42:455-470. [PMID: 37093326 PMCID: PMC10349013 DOI: 10.1007/s10555-023-10102-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
The ATP-dependent chromatin remodeling complex SWI/SNF (also called BAF) is critical for the regulation of gene expression. During the evolution from yeast to mammals, the BAF complex has evolved an enormous complexity that contains a high number of subunits encoded by various genes. Emerging studies highlight the frequent involvement of altered mammalian SWI/SNF chromatin-remodeling complexes in human cancers. Here, we discuss the recent advances in determining the structure of SWI/SNF complexes, highlight the mechanisms by which mutations affecting these complexes promote cancer, and describe the promising emerging opportunities for targeted therapies.
Collapse
Affiliation(s)
- Divya Reddy
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
| |
Collapse
|
8
|
Jiang J, Chen Z, Gong J, Han N, Lu H. Thoracic SMARCA4-deficient undifferentiated tumor. Discov Oncol 2023; 14:51. [PMID: 37115343 PMCID: PMC10147882 DOI: 10.1007/s12672-023-00639-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Thoracic SMARCA4-deficient undifferentiated tumor (SMARCA4-UT) is a recently described smoking-related malignancy. The pathogenesis of SMARCA4-UT is the mutational inactivation and loss of expression of a subunit encoding the mammalian switch/sucrose nonfermenting ATPase-dependent chromatin remodeling complex (which can be mobilized using adenosine triphosphate hydrolysis nucleosomes and regulate other cellular processes including development, differentiation, proliferation, and apoptosis), in particular SMARCA4 and SMARCA2. The dynamic activity of this complex plays an important role in regulating the activation and repression of gene expression programs. SMARCA4-UT exhibits morphological features similar to the malignant rhabdoid tumor (MRT), small cell carcinoma of the ovary of the hypercalcemic type (SCCOHT), and INI1-deficient tumor, but SMARCA4-UT differs from SCCOHT and MRT from a genomic perspective. SMARCA4-UT mainly involves the mediastinum and lung parenchyma, and appears as a large infiltrative mass that easily compresses surrounding tissues. At present, chemotherapy is a common treatment, but its efficacy is not clear. Moreover, the inhibitor of the enhancer of zeste homolog 2 showed promising efficacy in some patients with SMARCA4-UT. This study aimed to review the clinical characteristics, diagnosis, treatment, and prognosis of SMARCA4-UT.
Collapse
Affiliation(s)
- Jiapeng Jiang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Zhixin Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jiali Gong
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Na Han
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Hongyang Lu
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
9
|
Li Z, Zhao J, Tang Y. Advances in the role of SWI/SNF complexes in tumours. J Cell Mol Med 2023; 27:1023-1031. [PMID: 36883311 PMCID: PMC10098296 DOI: 10.1111/jcmm.17709] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer development is a complex process involving both genetic and epigenetic changes. The SWI/SNF (switch/sucrose non-fermentable) chromatin remodelling complex, one of the most studied ATP-dependent complexes, plays an important role in coordinating chromatin structural stability, gene expression and post-translational modifications. The SWI/SNF complex can be classified into BAF, PBAF and GBAF according to their constituent subunits. Cancer genome sequencing studies have shown a high incidence of mutations in genes encoding subunits of the SWI/SNF chromatin remodelling complex, with abnormalities in one or more of these genes present in nearly 25% of all cancers, which indicating that stabilizing normal expression of genes encoding subunits in the SWI/SNF complex may prevent tumorigenesis. In this paper, we will review the relationship between the SWI/SNF complex and some clinical tumours and its mechanism of action. The aim is to provide a theoretical basis to guide the diagnosis and treatment of tumours caused by mutations or inactivation of one or more genes encoding subunits of the SWI/SNF complex in the clinical setting.
Collapse
Affiliation(s)
- Ziwei Li
- Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiumei Zhao
- Chongqing Nanchuan District People's Hospital, Chongqing, China
| | - Yu Tang
- The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China.,Department of Genetics, Zunyi Medical University, Guizhou, China
| |
Collapse
|
10
|
BRG1: Promoter or Suppressor of Cancer? The Outcome of BRG1's Interaction with Specific Cellular Pathways. Int J Mol Sci 2023; 24:ijms24032869. [PMID: 36769189 PMCID: PMC9917617 DOI: 10.3390/ijms24032869] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
BRG1 is one of two catalytic subunits of the SWI/SNF ATP-dependent chromatin-remodeling complex. In cancer, it has been hypothesized that BRG1 acts as a tumor suppressor. Further study has shown that, under certain circumstances, BRG1 acts as an oncogene. Targeted knockout of BRG1 has proven successful in most cancers in suppressing tumor growth and proliferation. Furthermore, BRG1 effects cancer proliferation in oncogenic KRAS mutated cancers, with varying directionality. Thus, dissecting BRG1's interaction with various cellular pathways can highlight possible intermediates that can facilitate the design of different treatment methods, including BRG1 inhibition. Autophagy and apoptosis are two important cellular responses to stress. BRG1 plays a direct role in autophagy and apoptosis and likely promotes autophagy and suppresses apoptosis, supporting unfettered cancer growth. PRMT5 inhibits transcription by interacting with ATP-dependent chromatin remodeling complexes, such as SWI/SNF. When PRMT5 associates with the SWI/SNF complex, including BRG1, it represses tumor suppressor genes. The Ras/Raf/MAPK/ERK1/2 pathway in cancers is a signal transduction pathway involved in the transcription of genes related to cancer survival. BRG1 has been shown to effect KRAS-driven cancer growth. BRG1 associates with several proteins within the signal transduction pathway. In this review, we analyze BRG1 as a promising target for cancer inhibition and possible synergy with other cancer treatments.
Collapse
|
11
|
Sanders BE, Wolsky R, Doughty ES, Wells KL, Ghosh D, Ku L, Pressey JG, Bitler BB, Brubaker LW. Small cell carcinoma of the ovary hypercalcemic type (SCCOHT): A review and novel case with dual germline SMARCA4 and BRCA2 mutations. Gynecol Oncol Rep 2022; 44:101077. [PMID: 36249907 PMCID: PMC9554814 DOI: 10.1016/j.gore.2022.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Small cell carcinoma of the ovary hypercalcemic type (SCCOHT) is a rare and aggressive disease. While classically linked to mutations in SMARCA4, we describe a case in a patient with both SMARCA4 and BRCA2 germline mutations. We describe her disease presentation, histopathology and treatment with adjuvant systemic chemotherapy, interval hyperthermic intraperitoneal chemotherapy, high dose chemotherapy with stem cell rescue, and maintenance with a poly-ADP-ribose polymerase inhibitor (PARPi). Additionally, we share spatial transcriptomics completed on original tumor.
Collapse
Affiliation(s)
- Brooke E. Sanders
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Corresponding author at: Academic Office 1, 12631 E 17th Avenue, B198-6, Aurora, CO 80045, USA.
| | - Rebecca Wolsky
- Department of Obstetrics & Gynecology, Department of Pathology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elizabeth S. Doughty
- Department of Obstetrics & Gynecology, Department of Pathology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristen L. Wells
- Barbara Davis Center for Diabetes and RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Lisa Ku
- Division of Oncology, Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph G. Pressey
- Division of Oncology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Benjamin B. Bitler
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lindsay W. Brubaker
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Navitski A, Al-Rawi DH, Makker V, Weigelt B, Zamarin D, Liu Y, Arnold AG, Chui MH, Mandelker DL, Walsh M, DeLair DF, Cadoo KA, O'Cearbhaill RE. Germline SMARCA4 Deletion as a Driver of Uterine Cancer: An Atypical Presentation. JCO Precis Oncol 2022; 6:e2200349. [PMID: 36265117 PMCID: PMC9616641 DOI: 10.1200/po.22.00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Anastasia Navitski
- Department of Obstetrics and Gynecology, Augusta University, Augusta, GA
| | - Duaa H. Al-Rawi
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vicky Makker
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dmitriy Zamarin
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Ying Liu
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Angela G. Arnold
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - M. Herman Chui
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Diana L. Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Walsh
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Karen A. Cadoo
- St James's Hospital, Trinity College Dublin, Trinity St James's Cancer Institute, Dublin, Ireland
| | - Roisin E. O'Cearbhaill
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
13
|
Rehman H, Chandrashekar DS, Balabhadrapatruni C, Nepal S, Balasubramanya SAH, Shelton AK, Skinner KR, Ma AH, Rao T, Eich ML, Robinson AD, Naik G, Manne U, Netto GJ, Miller CR, Pan CX, Sonpavde G, Varambally S, Ferguson III JE. ARID1A-deficient bladder cancer is dependent on PI3K signaling and sensitive to EZH2 and PI3K inhibitors. JCI Insight 2022; 7:155899. [PMID: 35852858 PMCID: PMC9462490 DOI: 10.1172/jci.insight.155899] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Metastatic urothelial carcinoma is generally incurable with current systemic therapies. Chromatin modifiers are frequently mutated in bladder cancer, with ARID1A-inactivating mutations present in about 20% of tumors. EZH2, a histone methyltransferase, acts as an oncogene that functionally opposes ARID1A. In addition, PI3K signaling is activated in more than 20% of bladder cancers. Using a combination of in vitro and in vivo data, including patient-derived xenografts, we show that ARID1A-mutant tumors were more sensitive to EZH2 inhibition than ARID1A WT tumors. Mechanistic studies revealed that (a) ARID1A deficiency results in a dependency on PI3K/AKT/mTOR signaling via upregulation of a noncanonical PI3K regulatory subunit, PIK3R3, and downregulation of MAPK signaling and (b) EZH2 inhibitor sensitivity is due to upregulation of PIK3IP1, a protein inhibitor of PI3K signaling. We show that PIK3IP1 inhibited PI3K signaling by inducing proteasomal degradation of PIK3R3. Furthermore, ARID1A-deficient bladder cancer was sensitive to combination therapies with EZH2 and PI3K inhibitors in a synergistic manner. Thus, our studies suggest that bladder cancers with ARID1A mutations can be treated with inhibitors of EZH2 and/or PI3K and revealed mechanistic insights into the role of noncanonical PI3K constituents in bladder cancer biology.
Collapse
|
14
|
Wilson MR, Reske JJ, Koeman J, Adams M, Joshi NR, Fazleabas AT, Chandler RL. SWI/SNF Antagonism of PRC2 Mediates Estrogen-Induced Progesterone Receptor Expression. Cells 2022; 11:1000. [PMID: 35326450 PMCID: PMC8946988 DOI: 10.3390/cells11061000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022] Open
Abstract
Endometrial cancer (EC) is characterized by high estrogen levels unopposed by progesterone. Treatment with progestins is standard for early EC, but the response to progestins is dependent on progesterone receptor (PGR) expression. Here, we show that the expression of PGR in endometrial epithelial cells is dependent on ARID1A, a DNA-binding subunit of the SWI/SNF chromatin-remodeling complex that is commonly mutated in EC. In endometrial epithelial cells with estrogen receptor overexpression, we find that ARID1A promotes estrogen signaling and regulates common gene expression programs. Normally, endometrial epithelial cells expressing estrogen receptors respond to estrogen by upregulating the PGR. However, when ARID1A expression is lost, upregulation of PGR expression is significantly reduced. This phenomenon can also occur following the loss of the SWI/SNF subunit BRG1, suggesting a role for ARID1A- and BRG1-containing complexes in PGR regulation. We find that PGR is regulated by a bivalent promoter, which harbors both H3K4me3 and H3K27me3 histone tail modifications. H3K27me3 is deposited by EZH2, and inhibition of EZH2 in the context of ARID1A loss results in restoration of estrogen-induced PGR expression. Our results suggest a role for ARID1A deficiency in the loss of PGR in late-stage EC and a therapeutic utility for EZH2 inhibitors in this disease.
Collapse
Affiliation(s)
- Mike R. Wilson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.R.W.); (J.J.R.); (N.R.J.); (A.T.F.)
| | - Jake J. Reske
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.R.W.); (J.J.R.); (N.R.J.); (A.T.F.)
| | - Julie Koeman
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (J.K.); (M.A.)
| | - Marie Adams
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (J.K.); (M.A.)
| | - Niraj R. Joshi
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.R.W.); (J.J.R.); (N.R.J.); (A.T.F.)
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.R.W.); (J.J.R.); (N.R.J.); (A.T.F.)
- Department of Women’s Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| | - Ronald L. Chandler
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.R.W.); (J.J.R.); (N.R.J.); (A.T.F.)
- Department of Women’s Health, Spectrum Health System, Grand Rapids, MI 49341, USA
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
15
|
Peerapen P, Sueksakit K, Boonmark W, Yoodee S, Thongboonkerd V. ARID1A knockdown enhances carcinogenesis features and aggressiveness of Caco-2 colon cancer cells: An in vitro cellular mechanism study. J Cancer 2022; 13:373-384. [PMID: 35069887 PMCID: PMC8771531 DOI: 10.7150/jca.65511] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/30/2021] [Indexed: 01/05/2023] Open
Abstract
Loss of ARID1A, a tumor suppressor gene, is associated with the higher grade of colorectal cancer (CRC). However, molecular and cellular mechanisms underlying the progression and aggressiveness of CRC induced by the loss of ARID1A remain poorly understood. Herein, we evaluated cellular mechanisms underlying the effects of ARID1A knockdown on the carcinogenesis features and aggressiveness of CRC cells. A human CRC cell line (Caco-2) was transfected with small interfering RNA (siRNA) specific to ARID1A (siARID1A) or scrambled (non-specific) siRNA (siControl). Cell death, proliferation, senescence, chemoresistance and invasion were then evaluated. In addition, formation of polyploid giant cancer cells (PGCCs), self-aggregation (multicellular spheroid) and secretion of an angiogenic factor, vascular endothelial growth factor (VEGF), were examined. The results showed that ARID1A knockdown led to significant decreases in cell death and senescence. On the other hand, ARID1A knockdown enhanced cell proliferation, chemoresistance and invasion. The siARID1A-transfected cells also had greater number of PGCCs and larger spheroid size and secreted greater level of VEGF compared with the siControl-transfected cells. These data, at least in part, explain the cellular mechanisms of ARID1A deficiency in carcinogenesis and aggressiveness features of CRC.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
16
|
Inhibition of the deubiquitinating enzyme USP47 as a novel targeted therapy for hematologic malignancies expressing mutant EZH2. Leukemia 2022; 36:1048-1057. [PMID: 35034955 DOI: 10.1038/s41375-021-01494-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022]
Abstract
Activating mutations in EZH2, the catalytic component of PRC2, promote cell proliferation, tumorigenesis, and metastasis through enzymatic or non-enzymatic activity. The EZH2-Y641 gain-of-function mutation is one of the most significant in diffuse large B-cell lymphoma (DLBCL). Although EZH2 kinase inhibitors, such as EPZ-6438, provide clinical benefit, certain cancer cells are resistant to the enzymatic inhibition of EZH2 because of the inability to functionally target mutant EZH2, or because of cells' dependence on the non-histone methyltransferase activity of EZH2. Consequently, destroying mutant EZH2 protein may be more effective in targeting EZH2 mutant cancers that are dependent on the non-catalytic activity of EZH2. Here, using extensive selectivity profiling, combined with genetic and animal model studies, we identified USP47 as a novel regulator of mutant EZH2. Inhibition of USP47 would be anticipated to block the function of mutated EZH2 through induction of EZH2 degradation by promoting its ubiquitination. Moreover, targeting of USP47 leads to death of mutant EZH2-positive cells in vitro and in vivo. Taken together, we propose targeting USP47 with a small molecule inhibitor as a novel potential therapy for DLBCL and other hematologic malignancies characterized by mutant EZH2 expression.
Collapse
|
17
|
The BAF chromatin remodeling complexes: structure, function, and synthetic lethalities. Biochem Soc Trans 2021; 49:1489-1503. [PMID: 34431497 DOI: 10.1042/bst20190960] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
BAF complexes are multi-subunit chromatin remodelers, which have a fundamental role in genomic regulation. Large-scale sequencing efforts have revealed frequent BAF complex mutations in many human diseases, particularly in cancer and neurological disorders. These findings not only underscore the importance of the BAF chromatin remodelers in cellular physiological processes, but urge a more detailed understanding of their structure and molecular action to enable the development of targeted therapeutic approaches for diseases with BAF complex alterations. Here, we review recent progress in understanding the composition, assembly, structure, and function of BAF complexes, and the consequences of their disease-associated mutations. Furthermore, we highlight intra-complex subunit dependencies and synthetic lethal interactions, which have emerged as promising treatment modalities for BAF-related diseases.
Collapse
|
18
|
Pickering OJ, Breininger SP, Underwood TJ, Walters ZS. Histone Modifying Enzymes as Targets for Therapeutic Intervention in Oesophageal Adenocarcinoma. Cancers (Basel) 2021; 13:4084. [PMID: 34439236 PMCID: PMC8392153 DOI: 10.3390/cancers13164084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
Oesophageal adenocarcinoma (OAC) has a dismal prognosis, where curable disease occurs in less than 40% of patients, and many of those with incurable disease survive for less than a year from diagnosis. Despite the widespread use of systematic chemotherapy in OAC treatment, many patients receive no benefit. New treatments are urgently needed for OAC patients. There is an emerging interest in epigenetic regulators in cancer pathogenesis, which are now translating into novel cancer therapeutic strategies. Histone-modifying enzymes (HMEs) are key epigenetic regulators responsible for dynamic covalent histone modifications that play roles in both normal and dysregulated cellular processes including tumorigenesis. Several HME inhibitors are in clinical use for haematological malignancies and sarcomas, with numerous on-going clinical trials for their use in solid tumours. This review discusses the current literature surrounding HMEs in OAC pathogenesis and their potential use in targeted therapies for this disease.
Collapse
Affiliation(s)
| | | | | | - Zoë S. Walters
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (O.J.P.); (S.P.B.); (T.J.U.)
| |
Collapse
|
19
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6:201. [PMID: 34054126 PMCID: PMC8165101 DOI: 10.1038/s41392-021-00572-w] [Citation(s) in RCA: 646] [Impact Index Per Article: 215.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the advantages in efficacy and safety compared with traditional chemotherapy drugs, targeted therapeutic drugs have become mainstream cancer treatments. Since the first tyrosine kinase inhibitor imatinib was approved to enter the market by the US Food and Drug Administration (FDA) in 2001, an increasing number of small-molecule targeted drugs have been developed for the treatment of malignancies. By December 2020, 89 small-molecule targeted antitumor drugs have been approved by the US FDA and the National Medical Products Administration (NMPA) of China. Despite great progress, small-molecule targeted anti-cancer drugs still face many challenges, such as a low response rate and drug resistance. To better promote the development of targeted anti-cancer drugs, we conducted a comprehensive review of small-molecule targeted anti-cancer drugs according to the target classification. We present all the approved drugs as well as important drug candidates in clinical trials for each target, discuss the current challenges, and provide insights and perspectives for the research and development of anti-cancer drugs.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chenyu Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
20
|
Anžič N, Krasniqi F, Eberhardt AL, Tzankov A, Haslbauer JD. Ipilimumab and Pembrolizumab Mixed Response in a 41-Year-Old Patient with SMARCA4-Deficient Thoracic Sarcoma: An Interdisciplinary Case Study. Case Rep Oncol 2021; 14:706-715. [PMID: 34177520 PMCID: PMC8215992 DOI: 10.1159/000515416] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
SMARCA4-deficient thoracic sarcoma is a newly described entity of thoracic sarcomas with a poor prognosis, defined by poorly differentiated epithelioid to rhabdoid histomorphology and SMARCA4 gene inactivation. We present a case of a SMARCA4-deficient thoracic sarcoma in a 41-year-old male with a smoking history who presented with an upper anterior mediastinal mass, after seeking medical evaluation for increasing thoracic pain, odynophagia, and dizziness. The biopsy confirmed a large cell tumor with an epithelioid to rhabdoid histomorphology, positive for EMA, CD99, vimentin, TLE1, INI1, PAS-positive cytoplasmic granules, and PD-L1 (100% of tumor cells). High TMB and HRD scores were displayed in the tumor. The histology and immunophenotype of the mass were in line with the diagnosis of SMARCA4-deficient thoracic sarcoma. In the course of his treatment, the patient showcased a partial response to pembrolizumab and the combination of pembrolizumab and ipilimumab. This case report highlights the importance of recognizing SMARCA4-deficient thoracic sarcoma as an individual entity and supports the importance of checkpoint inhibition therapy for SMARCA4-deficient thoracic sarcomas, particularly in cases with a high TMB and PD-L1 expression.
Collapse
Affiliation(s)
- Nina Anžič
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Fatime Krasniqi
- Centre of Oncology, University Hospital Basel, Basel, Switzerland
| | | | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
21
|
Tsuda M, Fukuda A, Kawai M, Araki O, Seno H. The role of the SWI/SNF chromatin remodeling complex in pancreatic ductal adenocarcinoma. Cancer Sci 2021; 112:490-497. [PMID: 33301642 PMCID: PMC7894000 DOI: 10.1111/cas.14768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
ATP-dependent chromatin remodeling complexes are a group of epigenetic regulators that can alter the assembly of nucleosomes and regulate the accessibility of transcription factors to DNA in order to modulate gene expression. One of these complexes, the SWI/SNF chromatin remodeling complex is mutated in more than 20% of human cancers. We have investigated the roles of the SWI/SNF complex in pancreatic ductal adenocarcinoma (PDA), which is the most lethal type of cancer. Here, we reviewed the recent literature regarding the role of the SWI/SNF complex in pancreatic tumorigenesis and current knowledge about therapeutic strategies targeting the SWI/SNF complex in PDA. The subunits of the SWI/SNF complex are mutated in 14% of human PDA. Recent studies have shown that they have context-dependent oncogenic or tumor-suppressive roles in pancreatic carcinogenesis. To target its tumor-suppressive properties, synthetic lethal strategies have recently been developed. In addition, their oncogenic properties could be novel therapeutic targets. The SWI/SNF subunits are potential therapeutic targets for PDA, and further understanding of the precise role of the SWI/SNF complex subunits in PDA is required for further development of novel strategies targeting SWI/SNF subunits against PDA.
Collapse
Affiliation(s)
- Motoyuki Tsuda
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
- Department of Gastroenterology and HepatologyKindai University Faculty of MedicineOsaka‐sayama CityJapan
| | - Akihisa Fukuda
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| | - Munenori Kawai
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| | - Osamu Araki
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| | - Hiroshi Seno
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| |
Collapse
|
22
|
Wu S, Fukumoto T, Lin J, Nacarelli T, Wang Y, Ong D, Liu H, Fatkhutdinov N, Zundell JA, Karakashev S, Zhou W, Schwartz LE, Tang HY, Drapkin R, Liu Q, Huntsman DG, Kossenkov AV, Speicher DW, Schug ZT, Van Dang C, Zhang R. Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. NATURE CANCER 2021; 2:189-200. [PMID: 34085048 PMCID: PMC8168620 DOI: 10.1038/s43018-020-00160-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alterations in components of the SWI/SNF chromatin-remodeling complex occur in ~20% of all human cancers. For example, ARID1A is mutated in up to 62% of clear cell ovarian carcinoma (OCCC), a disease currently lacking effective therapies. Here we show that ARID1A mutation creates a dependence on glutamine metabolism. SWI/SNF represses glutaminase (GLS1) and ARID1A inactivation upregulates GLS1. ARID1A inactivation increases glutamine utilization and metabolism through the tricarboxylic acid cycle to support aspartate synthesis. Indeed, glutaminase inhibitor CB-839 suppresses the growth of ARID1A mutant, but not wildtype, OCCCs in both orthotopic and patient-derived xenografts. In addition, glutaminase inhibitor CB-839 synergizes with immune checkpoint blockade anti-PDL1 antibody in a genetic OCCC mouse model driven by conditional Arid1a inactivation. Our data indicate that pharmacological inhibition of glutaminase alone or in combination with immune checkpoint blockade represents an effective therapeutic strategy for cancers involving alterations in the SWI/SNF complex such as ARID1A mutations.
Collapse
Affiliation(s)
- Shuai Wu
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Takeshi Fukumoto
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Jianhuang Lin
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Timothy Nacarelli
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Dionzie Ong
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heng Liu
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Nail Fatkhutdinov
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Joseph A. Zundell
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Sergey Karakashev
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Wei Zhou
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Lauren E. Schwartz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew V. Kossenkov
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - David W. Speicher
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, USA,Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Zachary T. Schug
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Chi Van Dang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA,Ludwig Institute for Cancer Research, New York, NY, USA
| | - Rugang Zhang
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Guo SW. Cancer-associated mutations in endometriosis: shedding light on the pathogenesis and pathophysiology. Hum Reprod Update 2020; 26:423-449. [PMID: 32154564 DOI: 10.1093/humupd/dmz047] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Endometriosis is a benign gynaecological disease. Thus, it came as a complete surprise when it was reported recently that the majority of deep endometriosis lesions harbour somatic mutations and a sizeable portion of them contain known cancer-associated mutations (CAMs). Four more studies have since been published, all demonstrating the existence of CAMs in different subtypes of endometriosis. While the field is still evolving, the confirmation of CAMs has raised many questions that were previously overlooked. OBJECTIVE AND RATIONALE A comprehensive overview of CAMs in endometriosis has been produced. In addition, with the recently emerged understanding of the natural history of endometriotic lesions as well as CAMs in normal and apparently healthy tissues, this review attempts to address the following questions: Why has there been such a wild discrepancy in reported mutation frequencies? Why does ectopic endometrium have a higher mutation rate than that of eutopic endometrium? Would the presence of CAMs in endometriotic lesions increase the risk of cancer to the bearers? Why do endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart? What clinical implications, if any, do the CAMs have for the bearers? Do these CAMs tell us anything about the pathogenesis and/or pathophysiology of endometriosis? SEARCH METHODS The PubMed database was searched, from its inception to September 2019, for all papers in English using the term 'endometriosis and CAM', 'endometriosis and cancer-driver mutation', 'somatic mutations', 'fibrosis', 'fibrosis and epigenetic', 'CAMs and tumorigenesis', 'somatic mutation and normal tissues', 'oestrogen receptor and fibrosis', 'oxidative stress and fibrosis', 'ARID1A mutation', and 'Kirsten rat sarcoma mutation and therapeutics'. All retrieved papers were read and, when relevant, incorporated into the review results. OUTCOMES Seven papers that identified CAMs in endometriosis using various sequencing methods were retrieved, and their results were somewhat different. Yet, it is apparent that those using microdissection techniques and more accurate sequencing methods found more CAMs, echoing recent discoveries that apparently healthy tissues also harbour CAMs as a result of the replicative aging process. Hence endometriotic lesions, irrespective of subtype, if left intact, would generate CAMs as part of replicative aging, oxidative stress and perhaps other factors yet to be identified and, in some rare cases, develop cancer. The published data still are unable to paint a clear picture on pathogenesis of endometriosis. However, since endometriotic epithelial cells have a higher turnover than their stromal counterpart due to cyclic bleeding, and since the endometriotic stromal component can be formed by refresh influx of mesenchymal cells through epithelial-mesenchymal transition, endothelial-mesenchymal transition, mesothelial-mesenchymal transition and other processes as well as recruitment of bone-marrow-derived stem cells and outflow due to smooth muscle metaplasia, endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart. The epithelial and stromal cellular components develop in a dependent and co-evolving manner. Genes involved in CAMs are likely to be active players in lesional fibrogenesis, and hyperestrogenism and oxidative stress are likely drivers of both CAMs and fibrogenesis. Finally, endometriotic lesions harbouring CAMs would conceivably be more refractory to medical treatment, due, in no small part, to their high fibrotic content and reduced vascularity and cellularity. WIDER IMPLICATIONS The accumulating data on CAMs in endometriosis have shed new light on the pathogenesis and pathophysiology of endometriosis. They also suggest new challenges in management. The distinct yet co-evolving developmental trajectories of endometriotic stroma and epithelium underscore the importance of the lesional microenvironment and ever-changing cellular identity. Mutational profiling of normal endometrium from women of different ages and reproductive history is needed in order to gain a deeper understanding of the pathogenesis. Moreover, one area that has conspicuously received scant attention is the epigenetic landscape of ectopic, eutopic and normal endometrium.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| |
Collapse
|
24
|
Mammalian SWI/SNF Chromatin Remodeling Complexes: Emerging Mechanisms and Therapeutic Strategies. Trends Genet 2020; 36:936-950. [PMID: 32873422 DOI: 10.1016/j.tig.2020.07.011] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
Small molecule-based targeting of chromatin regulatory factors has emerged as a promising therapeutic strategy in recent years. The development and ongoing clinical evaluation of novel agents targeting a range of chromatin regulatory processes, including DNA or histone modifiers, histone readers, and chromatin regulatory protein complexes, has inspired the field to identify and act upon the full compendium of therapeutic opportunities. Emerging studies highlight the frequent involvement of altered mammalian Switch/Sucrose-Nonfermentable (mSWI/SNF) chromatin-remodeling complexes (also called BAF complexes) in both human cancer and neurological disorders, suggesting new mechanisms and accompanying routes toward therapeutic intervention. Here, we review current approaches for direct targeting of mSWI/SNF complex structure and function and discuss settings in which aberrant mSWI/SNF biology is implicated in oncology and other diseases.
Collapse
|
25
|
Wang L, Qu J, Zhou N, Hou H, Jiang M, Zhang X. Effect and biomarker of immune checkpoint blockade therapy for ARID1A deficiency cancers. Biomed Pharmacother 2020; 130:110626. [PMID: 32791396 DOI: 10.1016/j.biopha.2020.110626] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
The AT-rich interaction domain 1A (ARID1A) are frequently mutates across a broad spectrum of cancers. The majority of ARID1A mutations are inactivating mutations and lead to loss expression of the ARID1A protein. To date, clinical applicable targeted cancer therapy based on ARID1A mutational status has not been described. With increasing number of studies reported that the ARID1A deficiency may be a novel predictive biomarker for immune checkpoint blockade (ICB) treatment. ARID1A deficiency would compromise mismatch repair pathway and increase the number of tumor-infiltrating lymphocytes, tumor mutation burden and expression of programmed cell death ligand 1 (PD-L1) in some cancers, which would suggested cooperate with ICB treatment. In this review, we summarize the relationship between ARID1A deficiency and ICB treatment including potential mechanisms, potential therapeutic combination, and the biomarker value of ARID1A deficiency.
Collapse
Affiliation(s)
- Li Wang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Jialin Qu
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Helei Hou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Man Jiang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
26
|
Park H, Cho B, Kim J. Rad50 mediates DNA demethylation to establish pluripotent reprogramming. Exp Mol Med 2020; 52:1116-1127. [PMID: 32665583 PMCID: PMC8080709 DOI: 10.1038/s12276-020-0467-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022] Open
Abstract
DNA demethylation is characterized by the loss of methyl groups from 5-methylcytosine, and this activity is involved in various biological processes in mammalian cell development and differentiation. In particular, dynamic DNA demethylation in the process of somatic cell reprogramming is required for successful iPSC generation. In the present study, we reported the role of Rad50 in the DNA demethylation process during somatic cell reprogramming. We found that Rad50 was highly expressed in pluripotent stem cells and that Rad50 regulated global DNA demethylation levels. Importantly, the overexpression of Rad50 resulted in the enhanced efficiency of iPSC generation via increased DNA demethylation, whereas Rad50 knockdown led to DNA hypermethylation, which suppressed somatic cell reprogramming into iPSCs. Moreover, we found that Rad50 associated with Tet1 to facilitate the DNA demethylation process in pluripotent reprogramming. Therefore, our findings highlight the novel role of Rad50 in the DNA demethylation process during somatic cell reprogramming. Heightened expression of a DNA repair protein improves efficiency when generating induced pluripotent stem cells (iPSCs) for use in regenerative medicine. DNA demethylation – the removal of methyl groups from one of the DNA bases, cytosine – is required for effective reprogramming of cells other than sperm and egg cells to create iPSCs. Ineffective demethylation has been a key challenge for scientists to overcome in generating iPSCs efficiently. Now, Jongpil Kim and co-workers at Dongguk University in Seoul, South Korea, have demonstrated that the DNA repair protein Rad50 plays a regulatory role in DNA demethylation during cell reprogramming. Rad50 interacts with a key enzyme involved in demethylation, boosting the efficiency of the process. The team found that overexpressing Rad50 increased DNA demethylation during reprogramming, enhancing the efficiency of iPSC generation. Blocking Rad50 had the opposite effect.
Collapse
Affiliation(s)
- Hanseul Park
- Laboratory of Stem Cells & Gene Editing, Department of Biomedical Engineering, Dongguk University, Seoul, 100-715, Republic of Korea.,Department of Chemistry, Dongguk University, Seoul, 04620, Republic of Korea
| | - Byounggook Cho
- Laboratory of Stem Cells & Gene Editing, Department of Biomedical Engineering, Dongguk University, Seoul, 100-715, Republic of Korea.,Department of Chemistry, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jongpil Kim
- Laboratory of Stem Cells & Gene Editing, Department of Biomedical Engineering, Dongguk University, Seoul, 100-715, Republic of Korea. .,Department of Chemistry, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
27
|
Richart L, Margueron R. Drugging histone methyltransferases in cancer. Curr Opin Chem Biol 2020; 56:51-62. [DOI: 10.1016/j.cbpa.2019.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
|
28
|
Kovács T, Szabó-Meleg E, Ábrahám IM. Estradiol-Induced Epigenetically Mediated Mechanisms and Regulation of Gene Expression. Int J Mol Sci 2020; 21:ijms21093177. [PMID: 32365920 PMCID: PMC7246826 DOI: 10.3390/ijms21093177] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Gonadal hormone 17β-estradiol (E2) and its receptors are key regulators of gene transcription by binding to estrogen responsive elements in the genome. Besides the classical genomic action, E2 regulates gene transcription via the modification of epigenetic marks on DNA and histone proteins. Depending on the reaction partner, liganded estrogen receptor (ER) promotes DNA methylation at the promoter or enhancer regions. In addition, ERs are important regulators of passive and active DNA demethylation. Furthermore, ERs cooperating with different histone modifying enzymes and chromatin remodeling complexes alter gene transcription. In this review, we survey the basic mechanisms and interactions between estrogen receptors and DNA methylation, demethylation and histone modification processes as well as chromatin remodeling complexes. The particular relevance of these mechanisms to physiological processes in memory formation, embryonic development, spermatogenesis and aging as well as in pathophysiological changes in carcinogenesis is also discussed.
Collapse
Affiliation(s)
- Tamás Kovács
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pécs, Hungary;
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary;
| | - István M. Ábrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pécs, Hungary;
- Correspondence:
| |
Collapse
|
29
|
Khalique S, Lord CJ, Banerjee S, Natrajan R. Translational genomics of ovarian clear cell carcinoma. Semin Cancer Biol 2020; 61:121-131. [PMID: 31698086 DOI: 10.1016/j.semcancer.2019.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/19/2023]
Abstract
Ovarian clear cell carcinomas (OCCC) are rare aggressive, chemo-resistant tumours comprising approximately 13% of all epithelial ovarian cancers, which have distinct clinical and molecular features, when compared to other gynaecological malignancies. At present, there are no specific licensed targeted therapies for OCCC, although a number of candidate targets have been identified. This review focuses on recent knowledge underpinning our understanding of the pathogenesis of OCCC including direct and synthetic-lethal therapeutic strategies in particular focussing on ARID1A deficiency. We also discuss current targeted clinical trials and immunotherapeutic approaches.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/diagnosis
- Adenocarcinoma, Clear Cell/etiology
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/therapy
- Biomarkers
- Carcinoma, Ovarian Epithelial/diagnosis
- Carcinoma, Ovarian Epithelial/etiology
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/therapy
- DNA Copy Number Variations
- DNA-Binding Proteins/genetics
- Disease Management
- Epigenesis, Genetic
- Female
- Genetic Association Studies
- Genetic Predisposition to Disease
- Genomics/methods
- Humans
- Mutation
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Signal Transduction
- Transcription Factors/genetics
- Translational Research, Biomedical
Collapse
Affiliation(s)
- Saira Khalique
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
| | - Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, UK; Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
30
|
Saunders J, Ingley K, Wang XQ, Harvey M, Armstrong L, Ng T, Dunham C, Bush J. Loss of BRG1 ( SMARCA4) Immunoexpression in a Pediatric Non-Central Nervous System Tumor Cohort. Pediatr Dev Pathol 2020; 23:132-138. [PMID: 31403913 DOI: 10.1177/1093526619869154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Malignant rhabdoid tumors and atypical teratoid/rhabdoid tumors of the central nervous system are primitive malignancies associated with a poor prognosis. These tumors have previously been characterized by inactivation of the switch/sucrose nonfermenting (SWI/SNF) chromatin remodeling complex protein integrase interactor 1 (INI1), encoded by the SMARCB1 gene. In the last decade, sporadic publications have shown that a different SWI/SNF protein, brahma-related gene 1 (BRG1), encoded by the SMARCA4 gene, is associated with a similar rhabdoid phenotype and possible germline mutation termed rhabdoid tumor predisposition syndrome type 2. We sought to determine the presence of BRG1 expression in pediatric embryonal tumors. Using a local tissue microarray consisting of 28 tumors diagnosed as having an undifferentiated, polyphenotypic, or rhabdoid morphology, expression of BRG1 by immunohistochemistry was performed. Four cases showed loss of INI1, while 3 of the remaining 24 cases demonstrated loss of BRG1. Two cases were diagnosed as soft tissue sarcomas, and 1 case was diagnosed as a small cell carcinoma of the ovary, hypercalcemic type. Survival ranged from less than 6 months after diagnosis to more than 5 years at the time of last follow-up. In conclusion, we demonstrate that BRG1 immunohistochemistry is a useful second-line immunostain for the workup of undifferentiated, polyphenotypic or rhabdoid pediatric tumors that demonstrate retained expression of INI1.
Collapse
Affiliation(s)
- Jessica Saunders
- Division of Anatomical Pathology, British Columbia Children's Hospital and Women's Hospital and Health Center, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Katrina Ingley
- University of British Columbia, Vancouver, British Columbia, Canada.,Division of Pediatric Hematology/Oncology/BMT, British Columbia Children's Hospital and Women's Hospital and Health Center, Vancouver, British Columbia, Canada
| | - Xiu Qing Wang
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Melissa Harvey
- University of British Columbia, Vancouver, British Columbia, Canada.,Division of Pediatric Hematology/Oncology/BMT, British Columbia Children's Hospital and Women's Hospital and Health Center, Vancouver, British Columbia, Canada
| | - Linlea Armstrong
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medical Genetics, British Columbia Children's Hospital and Women's Hospital and Health Center, Vancouver, British Columbia, Canada
| | - Tony Ng
- University of British Columbia, Vancouver, British Columbia, Canada.,Division of Anatomical Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Christopher Dunham
- Division of Anatomical Pathology, British Columbia Children's Hospital and Women's Hospital and Health Center, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Bush
- Division of Anatomical Pathology, British Columbia Children's Hospital and Women's Hospital and Health Center, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death Differ 2019; 27:1981-1997. [PMID: 31831874 DOI: 10.1038/s41418-019-0475-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma (SCC) is defined as a category of aggressive malignancies arising from the squamous epithelium of various organs. Resistance to chemotherapies is a common feature of SCCs, which leads to a poor prognosis among SCC patients. Recently, studies have illustrated the essential tumor suppressive role of ARID1A in several cancer types, but its role in SCCs remains unclear. Cancer stemness has been recognized as a main reason for tumorigenesis and is commonly correlated with chemoresistance, yet the relationship between ARID1A and cancer stemness remains unknown. In this study, we showed that Arid1a conditional knockout mice had a high incidence of SCCs occurring in the tongue and esophagus. ARID1A depletion promoted tumor initiation and cancer stemness in human SCC cells. Mechanistic studies revealed that ARID1A blocked the interaction between cyclin-dependent kinases (CDKs) and retinoblastoma protein (Rb), reducing the phosphorylation of Rb. Dephosphorylated Rb suppressed E2F1 activity and then suppressed cancer stemness by inactivating c-Myc. Furthermore, we showed that ARID1A depletion significantly increased the chemoresistance of SCC and that a CDK inhibitor exhibited a favorable effect on rescuing the chemoresistance caused by ARID1A loss. Collectively, our study showed that ARID1A inhibits the cancer stemness of SCCs by competing with CDKs to bind with Rb to inhibit the E2F1/c-Myc pathway.
Collapse
|
32
|
Unique Molecular Features in High-Risk Histology Endometrial Cancers. Cancers (Basel) 2019; 11:cancers11111665. [PMID: 31717878 PMCID: PMC6896116 DOI: 10.3390/cancers11111665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in the United States and the sixth most common cancer in women worldwide. Fortunately, most women who develop endometrial cancer have low-grade early-stage endometrioid carcinomas, and simple hysterectomy is curative. Unfortunately, 15% of women with endometrial cancer will develop high-risk histologic tumors including uterine carcinosarcoma or high-grade endometrioid, clear cell, or serous carcinomas. These high-risk histologic tumors account for more than 50% of deaths from this disease. In this review, we will highlight the biologic differences between low- and high-risk carcinomas with a focus on the cell of origin, early precursor lesions including atrophic and proliferative endometrium, and the potential role of stem cells. We will discuss treatment, including standard of care therapy, hormonal therapy, and precision medicine-based or targeted molecular therapies. We will also discuss the impact and need for model systems. The molecular underpinnings behind this high death to incidence ratio are important to understand and improve outcomes.
Collapse
|
33
|
Chabanon RM, Morel D, Postel-Vinay S. Exploiting epigenetic vulnerabilities in solid tumors: Novel therapeutic opportunities in the treatment of SWI/SNF-defective cancers. Semin Cancer Biol 2019; 61:180-198. [PMID: 31568814 DOI: 10.1016/j.semcancer.2019.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
Abstract
Mammalian switch/sucrose non-fermentable (mSWI/SNF) family complexes are pivotal elements of the chromatin remodeling machinery, which contribute to the regulation of several major cellular functions. Large-scale exome-wide sequencing studies have identified mutations in genes encoding mSWI/SNF subunits in 20% of all human cancers, establishing mSWI/SNF deficiency as a recurrent oncogenic alteration. Accumulating evidence now supports that several mSWI/SNF defects represent targetable vulnerabilities in cancer; notably, recent research advances have unveiled unexpected synthetic lethal opportunities that foster the development of novel biomarker-driven and mechanism-based therapeutic approaches for the treatment of mSWI/SNF-deficient tumors. Here, we review the latest breakthroughs and discoveries that inform our understanding of the mSWI/SNF complexes biology in carcinogenesis, and discuss the most promising therapeutic strategies to target mSWI/SNF defects in human solid malignancies.
Collapse
Affiliation(s)
- Roman M Chabanon
- Université Paris Saclay, Université Paris-Sud, Faculté de médicine, Le Kremlin Bicêtre, France; ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy, Villejuif, France; The Breast Cancer Now Toby Robins Breast Cancer Research Centre, France; CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Daphné Morel
- Université Paris Saclay, Université Paris-Sud, Faculté de médicine, Le Kremlin Bicêtre, France; ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Sophie Postel-Vinay
- Université Paris Saclay, Université Paris-Sud, Faculté de médicine, Le Kremlin Bicêtre, France; ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy, Villejuif, France; DITEP (Département d'Innovations Thérapeutiques et Essais Précoces), Gustave Roussy, Villejuif, France.
| |
Collapse
|
34
|
Xiao L, Zhou Z, Li W, Peng J, Sun Q, Zhu H, Song Y, Hou JL, Sun J, Cao HC, Zhongyi D, Wu D, Liu L. Chromobox homolog 8 (CBX8) Interacts with Y-Box binding protein 1 (YBX1) to promote cellular proliferation in hepatocellular carcinoma cells. Aging (Albany NY) 2019; 11:7123-7149. [PMID: 31495785 PMCID: PMC6756871 DOI: 10.18632/aging.102241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022]
Abstract
Polycomb group (PcG) proteins have recently been identified as critical regulators in tumor initiation and development. However, the function of CBX8 in human hepatocellular carcinoma (HCC) remains largely unknown. Our study was designed to explore the biological function and clinical implication of CBX8 in HCC. We investigated the interplay between CBX8 and cell cycle through Gene Set Enrichment Analysis and western blotting. Bioinformatics tools and co-immunoprecipitation were used to explore cell cycle regulation. Finally, we studied the expression and clinical significance of CBX8 in HCC through 3 independent datasets. CBX8 was upregulated in HCC and its expression correlated with cell cycle progression. CyclinD1 was downregulated by CBX8 knockdown but upregulated by CBX8 overexpression. YBX1 interacted with CBX8 and regulated the cell cycle. Moreover, targeting YBX1 with specific siRNA impaired CBX8-mediated regulation of CyclinD1. CBX8 overexpression boosted HCC cell growth, while CBX8 knockdown suppressed cell proliferation. Further, YBX1 interacted with CBX8. YBX1 knockdown compromised the proliferation of CBX8 overexpressing cells. CBX8 promotes HCC cell proliferation through YBX1 mediated cell cycle progression and is related to poor HCC prognoses. Therefore, CBX8 may serve as a potential target for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Lushan Xiao
- State Key Laboratory of Organ Failure Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Infectious Diseases, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zixiao Zhou
- State Key Laboratory of Organ Failure Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Infectious Diseases, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenwen Li
- State Key Laboratory of Organ Failure Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Infectious Diseases, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Peng
- Department of Oncology, The Second Affiliated Hospital, Guizhou Medical University, Kaili, P.R. China
| | - Qingcan Sun
- State Key Laboratory of Organ Failure Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Infectious Diseases, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongbo Zhu
- Department of Infectious Diseases, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yang Song
- State Key Laboratory of Organ Failure Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Infectious Diseases, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jin-Lin Hou
- State Key Laboratory of Organ Failure Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Infectious Diseases, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingyuan Sun
- State Key Laboratory of Organ Failure Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Radiation Oncology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hui-Chuan Cao
- State Key Laboratory of Organ Failure Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Radiation Oncology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dong Zhongyi
- State Key Laboratory of Organ Failure Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Radiation Oncology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehua Wu
- State Key Laboratory of Organ Failure Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Radiation Oncology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Liu
- State Key Laboratory of Organ Failure Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Infectious Diseases, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
35
|
Zhao B, Lin J, Rong L, Wu S, Deng Z, Fatkhutdinov N, Zundell J, Fukumoto T, Liu Q, Kossenkov A, Jean S, Cadungog MG, Borowsky ME, Drapkin R, Lieberman PM, Abate-Shen CT, Zhang R. ARID1A promotes genomic stability through protecting telomere cohesion. Nat Commun 2019; 10:4067. [PMID: 31492885 PMCID: PMC6731242 DOI: 10.1038/s41467-019-12037-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022] Open
Abstract
ARID1A inactivation causes mitotic defects. Paradoxically, cancers with high ARID1A mutation rates typically lack copy number alterations (CNAs). Here, we show that ARID1A inactivation causes defects in telomere cohesion, which selectively eliminates gross chromosome aberrations during mitosis. ARID1A promotes the expression of cohesin subunit STAG1 that is specifically required for telomere cohesion. ARID1A inactivation causes telomere damage that can be rescued by STAG1 expression. Colony formation capability of single cells in G2/M, but not G1 phase, is significantly reduced by ARID1A inactivation. This correlates with an increase in apoptosis and a reduction in tumor growth. Compared with ARID1A wild-type tumors, ARID1A-mutated tumors display significantly less CNAs across multiple cancer types. Together, these results show that ARID1A inactivation is selective against gross chromosome aberrations through causing defects in telomere cohesion, which reconciles the long-standing paradox between the role of ARID1A in maintaining mitotic integrity and the lack of genomic instability in ARID1A-mutated cancers.
Collapse
Affiliation(s)
- Bo Zhao
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Jianhuang Lin
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Lijie Rong
- Department of Pharmacology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Shuai Wu
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Zhong Deng
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Nail Fatkhutdinov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Joseph Zundell
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Takeshi Fukumoto
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Andrew Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Stephanie Jean
- Helen F. Graham Cancer Center & Research Institute, Newark, DE, 19713, USA
| | - Mark G Cadungog
- Helen F. Graham Cancer Center & Research Institute, Newark, DE, 19713, USA
| | - Mark E Borowsky
- Helen F. Graham Cancer Center & Research Institute, Newark, DE, 19713, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul M Lieberman
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Cory T Abate-Shen
- Department of Pharmacology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
36
|
Kumar R, Paul AM, Rameshwar P, Pillai MR. Epigenetic Dysregulation at the Crossroad of Women's Cancer. Cancers (Basel) 2019; 11:cancers11081193. [PMID: 31426393 PMCID: PMC6721458 DOI: 10.3390/cancers11081193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
An increasingly number of women of all age groups are affected by cancer, despite substantial progress in our understanding of cancer pathobiology, the underlying genomic alterations and signaling cascades, and cellular-environmental interactions. Though our understanding of women’s cancer is far more complete than ever before, there is no comprehensive model to explain the reasons behind the increased incidents of certain reproductive cancer among older as well as younger women. It is generally suspected that environmental and life-style factors affecting hormonal and growth control pathways might help account for the rise of women’s cancers in younger age, as well, via epigenetic mechanisms. Epigenetic regulators play an important role in orchestrating an orderly coordination of cellular signals in gene activity in response to upstream signaling and/or epigenetic modifiers present in a dynamic extracellular milieu. Here we will discuss the broad principles of epigenetic regulation of DNA methylation and demethylation, histone acetylation and deacetylation, and RNA methylation in women’s cancers in the context of gene expression, hormonal action, and the EGFR family of cell surface receptor tyrosine kinases. We anticipate that a better understanding of the epigenetics of women’s cancers may provide new regulatory leads and further fuel the development of new epigenetic biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India.
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Aswathy Mary Paul
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
- Graduate Degree Program, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pranela Rameshwar
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - M Radhakrishna Pillai
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
| |
Collapse
|
37
|
Jing J, Feng J, Li J, Han X, He J, Ho TV, Du J, Zhou X, Urata M, Chai Y. Antagonistic interaction between Ezh2 and Arid1a coordinates root patterning and development via Cdkn2a in mouse molars. eLife 2019; 8:46426. [PMID: 31259687 PMCID: PMC6602580 DOI: 10.7554/elife.46426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023] Open
Abstract
Patterning is a critical step during organogenesis and is closely associated with the physiological function of organs. Tooth root shapes are finely tuned to provide precise occlusal support to facilitate the function of each tooth type. However, the mechanism regulating tooth root patterning and development is largely unknown. In this study, we provide the first in vivo evidence demonstrating that Ezh2 in the dental mesenchyme determines patterning and furcation formation during dental root development in mouse molars. Mechanistically, an antagonistic interaction between epigenetic regulators Ezh2 and Arid1a controls Cdkn2a expression in the dental mesenchyme to regulate dental root patterning and development. These findings indicate the importance of balanced epigenetic regulation in determining the tooth root pattern and the integration of roots with the jaw bones to achieve physiological function. Collectively, our study provides important clues about the regulation of organogenesis and has general implications for tooth regeneration in the future.
Collapse
Affiliation(s)
- Junjun Jing
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Xia Han
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Jiahui Du
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mark Urata
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| |
Collapse
|