1
|
Bauer EA, Laing PAF, Cooper SE, Cisler JM, Dunsmoor JE. Out with the bad, in with the good: A review on augmented extinction learning in humans. Neurobiol Learn Mem 2024; 215:107994. [PMID: 39426561 DOI: 10.1016/j.nlm.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Several leading therapies for anxiety-related disorders rely on the principles of extinction learning. However, despite decades of development and research, many of these treatments remain only moderately effective. Developing techniques to improve extinction learning is an important step towards developing improved and mechanistically-informed exposure-based therapies. In this review, we highlight human research on strategies that might augment extinction learning through reward neurocircuitry and dopaminergic pathways, with an emphasis on counterconditioning and other behaviorally-augmented forms of extinction learning (e.g., novelty-facilitated extinction, positive affect training). We also highlight emerging pharmacological and non-pharmacological methods of augmenting extinction, including L-DOPA and aerobic exercise. Finally, we discuss future directions for augmented extinction learning and memory research, including the need for more work examining the influence of individual differences and psychopathology.
Collapse
Affiliation(s)
- Elizabeth A Bauer
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Patrick A F Laing
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Samuel E Cooper
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Dell Medical School, Department of Psychiatry and Behavioral Sciences, Austin, TX, USA
| | - Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA; Department of Neuroscience, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Hermans EJ, Hendler T, Kalisch R. Building Resilience: The Stress Response as a Driving Force for Neuroplasticity and Adaptation. Biol Psychiatry 2024:S0006-3223(24)01700-1. [PMID: 39448004 DOI: 10.1016/j.biopsych.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/21/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
People exhibit an extraordinary capacity to adjust to stressful situations. Here, we argue that the acute stress response is a major driving force behind this adaptive process. In addition to immediately freeing energy reserves, facilitating a rapid and robust neurocognitive response, and helping to reinstate homeostasis, the stress response also critically regulates neuroplasticity. Understanding the healthy acute stress response is therefore crucial for understanding stress resilience: the maintenance or rapid recovery of mental health during and after times of adversity. Contemporary resilience research distinguishes between resilience factors (RFs) and resilience mechanisms (RMs). RFs refer to a broad array of social, psychological, or biological variables that are stable but potentially malleable and predict resilient outcomes. RMs, by contrast, refer to proximate mechanisms activated during acute stress that enable individuals to effectively navigate immediate challenges. In this paper, we review literature related to how neurotransmitter and hormonal changes during acute stress regulate the activation of RMs. We integrate literature on the timing-dependent and neuromodulator-specific regulation of neurocognition, episodic memory, and behavioral and motivational control, highlighting the distinct and often synergistic roles of catecholamines (dopamine and norepinephrine) and glucocorticoids. We conclude that stress resilience is bolstered by improved future predictions and the success-based reinforcement of effective coping strategies during acute stress. The resulting generalized memories of success, controllability, and safety constitute beneficial plasticity that lastingly improves self-control under stress. Insight into such mechanisms of resilience is critical for the development of novel interventions focused on prevention rather than treatment of stress-related disorders.
Collapse
Affiliation(s)
- Erno J Hermans
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, the Netherlands.
| | - Talma Hendler
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; School of Psychological Science, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany; Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
3
|
Cortese A, Ohata R, Alemany-González M, Kitagawa N, Imamizu H, Koizumi A. Time-dependent neural arbitration between cue associative and episodic fear memories. Nat Commun 2024; 15:8706. [PMID: 39433735 PMCID: PMC11494204 DOI: 10.1038/s41467-024-52733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
After traumatic events, simple cue-threat associative memories strengthen while episodic memories become incoherent. However, how the brain prioritises cue associations over episodic coding of traumatic events remains unclear. Here, we developed an original episodic threat conditioning paradigm in which participants concurrently form two memory representations: cue associations and episodic cue sequence. We discovered that these two distinct memories compete for physiological fear expression, reorganising overnight from an overgeneralised cue-based to a precise sequence-based expression. With multivariate fMRI, we track inter-area communication of the memory representations to reveal that a rebalancing between hippocampal- and prefrontal control of the fear regulatory circuit governs this memory maturation. Critically, this overnight re-organisation is altered with heightened trait anxiety. Together, we show the brain prioritises generalisable associative memories under recent traumatic stress but resorts to selective episodic memories 24 h later. Time-dependent memory competition may provide a unifying account for memory dysfunctions in post-traumatic stress disorders.
Collapse
Affiliation(s)
| | - Ryu Ohata
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
| | | | - Norimichi Kitagawa
- Yoshika Institute of Psychology, Shimane, Japan
- BKC Research Organization of Social Sciences, Ritsumeikan University, Shiga, Japan
| | - Hiroshi Imamizu
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan.
- ATR Cognitive Mechanisms Laboratories, Kyoto, Japan.
- The Research into Artifacts, Center for Engineering, The University of Tokyo, Tokyo, Japan.
| | - Ai Koizumi
- Sony Computer Science Laboratories, Inc., Tokyo, Japan.
| |
Collapse
|
4
|
Cisler JM, Dunsmoor JE, Privratsky AA, James GA. Decoding neural reactivation of threat during fear learning, extinction, and recall in a randomized clinical trial of L-DOPA among women with PTSD. Psychol Med 2024; 54:1091-1101. [PMID: 37807886 DOI: 10.1017/s0033291723002891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Laboratory paradigms are widely used to study fear learning in posttraumatic stress disorder (PTSD). Recent basic science models demonstrate that, during fear learning, patterns of activity in large neuronal ensembles for the conditioned stimuli (CS) begin to reinstate neural activity patterns for the unconditioned stimuli (US), suggesting a direct way of quantifying fear memory strength for the CS. Here, we translate this concept to human neuroimaging and test the impact of post-learning dopaminergic neurotransmission on fear memory strength during fear acquisition, extinction, and recall among women with PTSD in a re-analysis of previously reported data. METHODS Participants (N = 79) completed a context-dependent fear acquisition and extinction task on day 1 and extinction recall tests 24 h later. We decoded activity patterns in large-scale functional networks for the US, then applied this decoder to activity patterns toward the CS on day 1 and day 2. RESULTS US decoder output for the CS+ increased during acquisition and decreased during extinction in networks traditionally implicated in human fear learning. The strength of US neural reactivation also predicted individuals skin conductance responses. Participants randomized to receive L-DOPA (n = 43) following extinction on day 1 demonstrated less US neural reactivation on day 2 relative to the placebo group (n = 28). CONCLUSION These results support neural reactivation as a measure of memory strength between competing memories of threat and safety and further demonstrate the role of dopaminergic neurotransmission in the consolidation of fear extinction memories.
Collapse
Affiliation(s)
- Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Institute for Early Life Adversity Research, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Institute for Early Life Adversity Research, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | | | - G Andrew James
- Brain Imaging Research Center, Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
5
|
Hamati R, Ahrens J, Shvetz C, Holahan MR, Tuominen L. 65 years of research on dopamine's role in classical fear conditioning and extinction: A systematic review. Eur J Neurosci 2024; 59:1099-1140. [PMID: 37848184 DOI: 10.1111/ejn.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Collapse
Affiliation(s)
- Rami Hamati
- Neuroscience Graduate Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Cecelia Shvetz
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Sartori SB, Keil TMV, Kummer KK, Murphy CP, Gunduz-Cinar O, Kress M, Ebner K, Holmes A, Singewald N. Fear extinction rescuing effects of dopamine and L-DOPA in the ventromedial prefrontal cortex. Transl Psychiatry 2024; 14:11. [PMID: 38191458 PMCID: PMC10774374 DOI: 10.1038/s41398-023-02708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
The ventromedial prefrontal cortex (vmPFC; rodent infralimbic cortex (IL)), is posited to be an important locus of fear extinction-facilitating effects of the dopamine (DA) bio-precursor, L-DOPA, but this hypothesis remains to be formally tested. Here, in a model of impaired fear extinction (the 129S1/SvImJ inbred mouse strain; S1), we monitored extracellular DA dynamics via in vivo microdialysis in IL during fear extinction and following L-DOPA administration. Systemic L-DOPA caused sustained elevation of extracellular DA levels in IL and increased neuronal activation in a subpopulation of IL neurons. Systemic L-DOPA enabled extinction learning and promoted extinction retention at one but not ten days after training. Conversely, direct microinfusion of DA into IL produced long-term fear extinction (an effect that was insensitive to ɑ-/ß-adrenoreceptor antagonism). However, intra-IL delivery of a D1-like or D2 receptor agonist did not facilitate extinction. Using ex vivo multi-electrode array IL neuronal recordings, along with ex vivo quantification of immediate early genes and DA receptor signalling markers in mPFC, we found evidence of reduced DA-evoked mPFC network responses in S1 as compared with extinction-competent C57BL/6J mice that were partially driven by D1 receptor activation. Together, our data demonstrate that locally increasing DA in IL is sufficient to produce lasting rescue of impaired extinction. The finding that systemic L-DOPA increased IL DA levels, but had only transient effects on extinction, suggests L-DOPA failed to reach a threshold level of IL DA or produced opposing behavioural effects in other brain regions. Collectively, our findings provide further insight into the neural basis of the extinction-promoting effects of DA and L-DOPA in a clinically relevant animal model, with possible implications for therapeutically targeting the DA system in anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Simone B Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Thomas M V Keil
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Kai K Kummer
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Conor P Murphy
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, NIH/NIAAA, Rockville, MD, USA
| | - Michaela Kress
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, NIH/NIAAA, Rockville, MD, USA
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
7
|
Nostadt A, Nitsche MA, Tegenthoff M, Lissek S. Dopaminergic D2-like receptor stimulation affects attention on contextual information and modulates BOLD activation of extinction-related brain areas. Sci Rep 2023; 13:21003. [PMID: 38017050 PMCID: PMC10684513 DOI: 10.1038/s41598-023-47704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
Contextual information is essential for learning and memory processes and plays a crucial role during the recall of extinction memory, and in the renewal effect, which is the context-dependent recovery of an extinguished response. The dopaminergic system is known to be involved in regulating attentional processes by shifting attention to novel and salient contextual cues. Higher dopamine levels are associated with a better recall of previously learned stimulus-outcome associations and enhanced encoding, as well as retrieval of contextual information which promotes renewal. In this fMRI study, we aimed to investigate the impact of processing contextual information and the influence of dopaminergic D2-like receptor activation on attention to contextual information during a predictive learning task as well as upon extinction learning, memory performance, and activity of extinction-related brain areas. A single oral dose of 1.25 mg bromocriptine or an identical-looking placebo was administered to the participants. We modified a predictive learning task that in previous studies reliably evoked a renewal effect, by increasing the complexity of contextual information. We analysed fixations and dwell on contextual cues by use of eye-tracking and correlated these with behavioural performance and BOLD activation of extinction-related brain areas. Our results indicate that the group with dopaminergic D2-like receptor stimulation had higher attention to task-relevant contextual information and greater/lower BOLD activation of brain regions associated with cognitive control during extinction learning and recall. Moreover, renewal responses were almost completely absent. Since this behavioural effect was observed for both treatment groups, we assume that this was due to the complexity of the altered task design.
Collapse
Affiliation(s)
- Alina Nostadt
- Ruhr-University Bochum, Faculty of Psychology, 44789, Bochum, Germany.
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany.
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle de La Camp-Platz 1, 44789, Bochum, Germany.
| | - Michael A Nitsche
- Ruhr-University Bochum, Faculty of Psychology, 44789, Bochum, Germany
- German Centre for Mental Health (DZPG), 44789, Bochum, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld University, 33617, Bielefeld, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle de La Camp-Platz 1, 44789, Bochum, Germany
| | - Silke Lissek
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle de La Camp-Platz 1, 44789, Bochum, Germany
| |
Collapse
|
8
|
Kampa M, Hermann A, Stark R, Klucken T. Neural correlates of immediate versus delayed extinction when simultaneously varying the time of the test in humans. Cereb Cortex 2023:bhad205. [PMID: 37317067 DOI: 10.1093/cercor/bhad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Anxiety disorders are effectively treated with exposure therapy based on the extinction of Pavlovian fear conditioning. Animal research indicates that both the timing of extinction and test are important factors to reduce the return of fear. However, empirical evidence in humans is incomplete and inconsistent. In this neuroimaging study, we, therefore, tested 103 young, healthy participants in a 2-factorial between-subjects design with the factors extinction group (immediate, delayed) and test group (+1 day and +7 days). Immediate extinction led to greater retention of fear memory at the beginning of extinction training indicated by increased skin conductance responses. A return of fear was observed in both extinction groups, with a trend toward a greater return of fear in immediate extinction. The return of fear was generally higher in groups with an early test. Neuroimaging results show successful cross-group fear acquisition and retention, as well as activation of the left nucleus accumbens during extinction training. Importantly, the delayed extinction group showed a larger bilateral nucleus accumbens activation during test. This nucleus accumbens finding is discussed in terms of salience, contingency, relief, and prediction error processing. It may imply that the delayed extinction group benefits more from the test as a new learning opportunity.
Collapse
Affiliation(s)
- Miriam Kampa
- Department of Clinical Psychology and Psychotherapy, University of Siegen, Siegen 57072, Germany
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen 35394, Germany
| | - Andrea Hermann
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen 35394, Germany
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University, Giessen 35394, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen 35394, Germany
| | - Rudolf Stark
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen 35394, Germany
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University, Giessen 35394, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen 35394, Germany
| | - Tim Klucken
- Department of Clinical Psychology and Psychotherapy, University of Siegen, Siegen 57072, Germany
| |
Collapse
|
9
|
Liu MN, Tian XY, Fang T, Wu N, Li H, Li J. Insights into the Involvement and Therapeutic Target Potential of the Dopamine System in the Posttraumatic Stress Disorder. Mol Neurobiol 2023; 60:3708-3723. [PMID: 36933147 DOI: 10.1007/s12035-023-03312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a neuropsychiatric disease closely related to life-threatening events and psychological stress. Re-experiencing, hyperarousal, avoidance, and numbness are the hallmark symptoms of PTSD, but their underlying neurological processes have not been clearly elucidated. Therefore, the identification and development of drugs for PTSD that targets brain neuronal activities have stalled. Considering that the persistent fear memory induced by traumatic stimulation causes high alertness, high arousal, and cognitive impairment of PTSD symptoms. While the midbrain dopamine system can affect physiological processes such as aversive fear memory learning, consolidation, persistence, and extinction, by altering the functions of the dopaminergic neurons, our viewpoint is that the dopamine system plays a considerable role in the PTSD occurrence and acts as a potential therapeutic target of the disorder. This paper reviews recent findings on the structural and functional connections between ventral tegmental area neurons and the core synaptic circuits involved in PTSD, gene polymorphisms related to the dopamine system that confer susceptibility to clinical PTSD. Moreover, the progress of research on medications that target the dopamine system as PTSD therapies is also discussed. Our goal is to offer some hints for early detection and assist in identifying novel, efficient approaches for treating PTSD.
Collapse
Affiliation(s)
- Meng-Nan Liu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Xiao-Yu Tian
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.,Medical School of Chinese PLA, Beijing, 100853, China
| | - Ting Fang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Hong Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
10
|
Leng L, Beckers T, Vervliet B. No joy - why bother? Higher anhedonia relates to reduced pleasure from and motivation for threat avoidance. Behav Res Ther 2022; 159:104227. [PMID: 36423413 DOI: 10.1016/j.brat.2022.104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
Abstract
Anhedonia impairs various components of the pleasure cycle, including wanting, liking, and the learning of pleasure-related associations. While successfully controlling threats might be inherently pleasurable, it remains unclear whether anhedonia affects this form of pleasure as well. With aversive pictures as threats, we conducted an online study ( N = 200) to investigate the role of anhedonia during active avoidance learning process. Participants first learned cue-threat associations for different cues (threat vs. safety cues). In a subsequent avoidance learning phase, these cues signaled either avoidable, unavoidable, or no threat; participants could perform avoidance responses to prevent the upcoming threats during those cue presentations. Subjective relief pleasantness was measured after each threat omission. We found that higher trait anticipatory and consummatory anhedonia were both associated with lower relief pleasantness. Higher trait anticipatory anhedonia was also associated with fewer avoidance attempts. Since reduced threat-controlling behavior is reminiscent of a learned-helplessness state, the current results contribute to a better understanding of the connections between anhedonia and learned helplessness that have mostly been studied separately in the context of mood disturbance.
Collapse
Affiliation(s)
- Lu Leng
- Center for the Psychology of Learning and Experimental Psychopathology, KU Leuven, Belgium; Leuven Brain Institute, KU Leuven, Belgium.
| | - Tom Beckers
- Center for the Psychology of Learning and Experimental Psychopathology, KU Leuven, Belgium; Leuven Brain Institute, KU Leuven, Belgium
| | - Bram Vervliet
- Laboratory of Biological Psychology, KU Leuven, Belgium; Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
11
|
Craske MG, Sandman CF, Stein MB. How can neurobiology of fear extinction inform treatment? Neurosci Biobehav Rev 2022; 143:104923. [DOI: 10.1016/j.neubiorev.2022.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
12
|
Yuan M, Zhu H, Li Y, Ge F, Lui S, Gong Q, Qiu C, Song H, Zhang W. The DRD2 Taq1A polymorphism moderates the effect of PTSD symptom severity on the left hippocampal CA3 volume: a pilot study. Psychopharmacology (Berl) 2022; 239:3431-3438. [PMID: 34086098 PMCID: PMC9585014 DOI: 10.1007/s00213-021-05882-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/21/2021] [Indexed: 02/08/2023]
Abstract
RATIONALE AND OBJECTIVES The hippocampus, especially the CA1, CA3, and dentate gyrus (DG) subfields, is reported to be associated with post-traumatic stress disorder (PTSD) after trauma. However, neuroimaging studies of the associations between PTSD and hippocampal subfield volumes have failed to yield consistent findings. The aim of this study is to examine whether the dopamine D2 receptor (DRD2) Taq1A polymorphism, which is associated with both hippocampal function and PTSD, moderated the association between PTSD severity and hippocampal CA1, CA3 and DG volumes. METHODS T1-weighted images were acquired from 142 trauma survivors from the 2008 Wenchuan earthquake using a 3.0-T magnetic resonance imaging system. Hippocampal subfield segmentations were performed with FreeSurfer v6.0. We used the simple moderation model from the PROCESS v3.4 tool for SPSS 23.0 to examine the association between the rs1800497 polymorphism, PTSD severity, and hippocampal CA3 and DG volumes. RESULTS A significant genotype × PTSD symptom severity interaction was found for the left CA3 volume (ΔF = 5.01, p = 0.008, ΔR2 = 0.05). Post hoc, exploratory analyses deconstructing the interaction revealed that severe PTSD symptomatology were associated with reduced left CA3 volume among TC heterozygotes (t = - 2.86, p = 0.005). CONCLUSIONS This study suggests that DRD2 Taq1A polymorphism moderates the association between PTSD symptomatology and left CA3 volume, which promotes an etiological understanding of the hippocampal atrophy at the subfield level. This highlights the complex effect of environmental stress, and provides possible mechanism for the relationship between the dopaminergic system and hippocampal function in PTSD.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuchen Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Fenfen Ge
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Changjian Qiu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Huan Song
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, 610041, Chengdu, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, 610041, Chengdu, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Hennings AC, Cooper SE, Lewis-Peacock JA, Dunsmoor JE. Pattern analysis of neuroimaging data reveals novel insights on threat learning and extinction in humans. Neurosci Biobehav Rev 2022; 142:104918. [PMID: 36257347 PMCID: PMC11163873 DOI: 10.1016/j.neubiorev.2022.104918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 01/27/2023]
Abstract
Several decades of rodent neurobiology research have identified a network of brain regions that support Pavlovian threat conditioning and extinction, focused predominately on the amygdala, hippocampus, and medial prefrontal cortex (mPFC). Surprisingly, functional magnetic resonance imaging (fMRI) studies have shown inconsistent evidence for these regions while humans undergo threat conditioning and extinction. In this review, we suggest that translational neuroimaging efforts have been hindered by reliance on traditional univariate analysis of fMRI. Whereas univariate analyses average activity across voxels in a given region, multivariate pattern analyses (MVPA) leverage the information present in spatial patterns of activity. MVPA therefore provides a more sensitive analysis tool to translate rodent neurobiology to human neuroimaging. We review human fMRI studies using MVPA that successfully bridge rodent models of amygdala, hippocampus, and mPFC function during Pavlovian learning. We also highlight clinical applications of these information-sensitive multivariate analyses. In sum, we advocate that the field should consider adopting a variety of multivariate approaches to help bridge cutting-edge research on the neuroscience of threat and anxiety.
Collapse
Affiliation(s)
- Augustin C Hennings
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA; Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Samuel E Cooper
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Jarrod A Lewis-Peacock
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA; Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA; Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Joseph E Dunsmoor
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA; Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
14
|
Visser RM, Henson RN, Holmes EA. A Naturalistic Paradigm to Investigate Postencoding Neural Activation Patterns in Relation to Subsequent Voluntary and Intrusive Recall of Distressing Events. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:960-969. [PMID: 34454167 DOI: 10.1016/j.bpsc.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND While neuroimaging has provided insights into the formation of episodic memories in relation to voluntary memory recall, less is known about neural mechanisms that cause memories to occur involuntarily, for example, as intrusive memories of trauma. Here, we investigated brain activity shortly after viewing distressing events as a function of whether memories for those events later intruded involuntarily. The postencoding period is particularly important because it is a period when clinical interventions could be applied. METHODS A total of 32 healthy volunteers underwent functional magnetic resonance imaging while viewing distressing film clips, interspersed with 5 minutes of awake (postencoding) rest. Voluntary memories of the films were assessed using free recall and verbal and visual recognition tests after a week, while intrusive (involuntary) memories were recorded in a diary throughout that week. RESULTS When analyzing functional magnetic resonance imaging responses related to watching the films, we replicated findings that those "hotspots" (salient moments within the films) that would later become intrusive memories elicited higher activation in parts of the brain's salience network. Surprisingly, while the postencoding persistence of multivoxel correlation structures associated with entire film clips predicted subsequent voluntary recall, there was no evidence that they predicted subsequent intrusions. CONCLUSIONS Results replicate findings regarding the formation of intrusive memories during encoding and extend findings regarding the consolidation of information in postencoding rest in relation to voluntary memory. While we provided a first step using a naturalistic paradigm, further research is needed to elucidate the role of postencoding neural processes in the development of intrusive memories.
Collapse
Affiliation(s)
- Renée M Visser
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | - Richard N Henson
- Medical Research Council Cognition and Brain Sciences Unit and Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Emily A Holmes
- Department of Psychology, Uppsala University, Uppsala, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Ojala KE, Tzovara A, Poser BA, Lutti A, Bach DR. Asymmetric representation of aversive prediction errors in Pavlovian threat conditioning. Neuroimage 2022; 263:119579. [PMID: 35995374 DOI: 10.1016/j.neuroimage.2022.119579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Survival in biological environments requires learning associations between predictive sensory cues and threatening outcomes. Such aversive learning may be implemented through reinforcement learning algorithms that are driven by the signed difference between expected and encountered outcomes, termed prediction errors (PEs). While PE-based learning is well established for reward learning, the role of putative PE signals in aversive learning is less clear. Here, we used functional magnetic resonance imaging in humans (21 healthy men and women) to investigate the neural representation of PEs during maintenance of learned aversive associations. Four visual cues, each with a different probability (0, 33, 66, 100%) of being followed by an aversive outcome (electric shock), were repeatedly presented to participants. We found that neural activity at omission (US-) but not occurrence of the aversive outcome (US+) encoded PEs in the medial prefrontal cortex. More expected omission of aversive outcome was associated with lower neural activity. No neural signals fulfilled axiomatic criteria, which specify necessary and sufficient components of PE signals, for signed PE representation in a whole-brain search or in a-priori regions of interest. Our results might suggest that, different from reward learning, aversive learning does not involve signed PE signals that are represented within the same brain region for all conditions.
Collapse
Affiliation(s)
- Karita E Ojala
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; Neuroscience Centre Zurich, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland.
| | - Athina Tzovara
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; Neuroscience Centre Zurich, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Institute of Computer Science, University of Bern, Neubrückstrasse 10, Bern 3012, Switzerland
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55 EV 6299, Maastricht, the Netherlands
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Chemin de Mont-Paisible 16, Lausanne 1011, Switzerland
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; Neuroscience Centre Zurich, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Wellcome Centre for Human Neuroimaging and Max-Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, 10-12 Russell Square, London WC1B 5EH, United Kingdom.
| |
Collapse
|
16
|
Role of noradrenergic arousal for fear extinction processes in rodents and humans. Neurobiol Learn Mem 2022; 194:107660. [PMID: 35870717 DOI: 10.1016/j.nlm.2022.107660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 01/22/2023]
Abstract
Fear extinction is a learning mechanism that is pivotal for the inhibition of fear responses towards cues or contexts that no longer predict the occurrence of a threat. Failure of fear extinction leads to fear expression under safe conditions and is regarded to be a cardinal characteristic of many anxiety-related disorders and posttraumatic stress disorder. Importantly, the neurotransmitter noradrenaline was shown to be a potent modulator of fear extinction. Rodent studies demonstrated that excessive noradrenaline transmission after acute stress opens a time window of vulnerability, in which fear extinction learning results in attenuated long-term extinction success. In contrast, when excessive noradrenergic transmission subsides, well-coordinated noradrenaline transmission is necessary for the formation of a long-lasting extinction memory. In addition, emerging evidence suggests that the neuropeptide corticotropin releasing hormone (CRF), which strongly regulates noradrenaline transmission under conditions of acute stress, also impedes long-term extinction success. Recent rodent work - using sophisticated methods - provides evidence for a hypothetical mechanistic framework of how noradrenaline and CRF dynamically orchestrate the neural fear and extinction circuitry to attenuate or to improve fear extinction and extinction recall. Accordingly, we review the evidence from rodent studies linking noradrenaline and CRF to fear extinction learning and recall and derive the hypothetical mechanistic framework of how different levels of noradrenaline and CRF may create a time window of vulnerability which impedes successful long-term fear extinction. We also address evidence from human studies linking noradrenaline and fear extinction success. Moreover, we accumulate emerging approaches to non-invasively measure and manipulate the noradrenergic system in healthy humans. Finally, we emphasize the importance of future studies to account for sex (hormone) differences when examining the interaction between fear extinction, noradrenaline, and CRF. To conclude, NA's effects on fear extinction recall strongly depend on the arousal levels at the onset of fear extinction learning. Our review aimed at compiling the available (mainly rodent) data in a neurobiological framework, suited to derive testable hypotheses for future work in humans.
Collapse
|
17
|
Obliviate! Reviewing Neural Fundamentals of Intentional Forgetting from a Meta-Analytic Perspective. Biomedicines 2022; 10:biomedicines10071555. [PMID: 35884860 PMCID: PMC9313188 DOI: 10.3390/biomedicines10071555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Intentional forgetting (IF) is an important adaptive mechanism necessary for correct memory functioning, optimal psychological wellbeing, and appropriate daily performance. Due to its complexity, the neuropsychological processes that give birth to successful intentional forgetting are not yet clearly known. In this study, we used two different meta-analytic algorithms, Activation Likelihood Estimation (ALE) & Latent Dirichlet Allocation (LDA) to quantitatively assess the neural correlates of IF and to evaluate the degree of compatibility between the proposed neurobiological models and the existing brain imaging data. We found that IF involves the interaction of two networks, the main “core regions” consisting of a primarily right-lateralized frontal-parietal circuit that is activated irrespective of the paradigm used and sample characteristics and a second less constrained “supportive network” that involves frontal-hippocampal interactions when IF takes place. Additionally, our results support the validity of the inhibitory or thought suppression hypothesis. The presence of a neural signature of IF that is stable regardless of experimental paradigms is a promising finding that may open new venues for the development of effective clinical interventions.
Collapse
|
18
|
Pharmacological Implications of Adjusting Abnormal Fear Memory: Towards the Treatment of Post-Traumatic Stress Disorder. Pharmaceuticals (Basel) 2022; 15:ph15070788. [PMID: 35890087 PMCID: PMC9322538 DOI: 10.3390/ph15070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a unique clinical mental abnormality presenting a cluster of symptoms in which patients primarily experience flashbacks, nightmares and uncontrollable thoughts about the event that triggered their PTSD. Patients with PTSD may also have comorbid depression and anxiety in an intractable and long-term course, which makes establishing a comprehensive treatment plan difficult and complicated. The present article reviews current pharmacological manipulations for adjusting abnormal fear memory. The roles of the central monoaminergic systems (including serotonin, norepinephrine and dopamine) within the fear circuit areas and the involvement of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid receptor (GR) are explored based on attempts to integrate current clinical and preclinical basic studies. In this review, we explain how these therapeutic paradigms function based on their connections to stages of the abnormal fear memory process from condition to extinction. This may provide useful translational interpretations for clinicians to manage PTSD.
Collapse
|
19
|
Raut SB, Marathe PA, van Eijk L, Eri R, Ravindran M, Benedek DM, Ursano RJ, Canales JJ, Johnson LR. Diverse therapeutic developments for post-traumatic stress disorder (PTSD) indicate common mechanisms of memory modulation. Pharmacol Ther 2022; 239:108195. [PMID: 35489438 DOI: 10.1016/j.pharmthera.2022.108195] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
Post-traumatic stress disorder (PTSD), characterized by abnormally persistent and distressing memories, is a chronic debilitating condition in need of new treatment options. Current treatment guidelines recommend psychotherapy as first line management with only two drugs, sertraline and paroxetine, approved by U.S. Food and Drug Administration (FDA) for treatment of PTSD. These drugs have limited efficacy as they only reduce symptoms related to depression and anxiety without producing permanent remission. PTSD remains a significant public health problem with high morbidity and mortality requiring major advances in therapeutics. Early evidence has emerged for the beneficial effects of psychedelics particularly in combination with psychotherapy for management of PTSD, including psilocybin, MDMA, LSD, cannabinoids, ayahuasca and ketamine. MDMA and psilocybin reduce barrier to therapy by increasing trust between therapist and patient, thus allowing for modification of trauma related memories. Furthermore, research into the memory reconsolidation mechanisms has allowed for identification of various pharmacological targets to disrupt abnormally persistent memories. A number of pre-clinical and clinical studies have investigated novel and re-purposed pharmacological agents to disrupt fear memory in PTSD. Novel therapeutic approaches like neuropeptide Y, oxytocin, cannabinoids and neuroactive steroids have also shown potential for PTSD treatment. Here, we focus on the role of fear memory in the pathophysiology of PTSD and propose that many of these new therapeutic strategies produce benefits through the effect on fear memory. Evaluation of recent research findings suggests that while a number of drugs have shown promising results in preclinical studies and pilot clinical trials, the evidence from large scale clinical trials would be needed for these drugs to be incorporated in clinical practice.
Collapse
Affiliation(s)
- Sanket B Raut
- Schools of Psychological Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia
| | - Padmaja A Marathe
- Department of Pharmacology and Therapeutics, Seth GS Medical College & KEM Hospital, Parel, Mumbai 400 012, India
| | - Liza van Eijk
- Department of Psychology, College of Healthcare Sciences, James Cook University, QLD 4811, Australia
| | - Rajaraman Eri
- Health Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia
| | - Manoj Ravindran
- Medicine, College of Health and Medicine, University of Tasmania, TAS 7250, Australia; Department of Psychiatry, North-West Private Hospital, Burnie TAS 7320, Australia
| | - David M Benedek
- Centre for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA
| | - Robert J Ursano
- Centre for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA
| | - Juan J Canales
- Schools of Psychological Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia
| | - Luke R Johnson
- Schools of Psychological Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia; Centre for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA.
| |
Collapse
|
20
|
Kuhn M, Gerlicher AMV, Lonsdorf TB. Navigating the manyverse of skin conductance response quantification approaches - A direct comparison of trough-to-peak, baseline correction, and model-based approaches in Ledalab and PsPM. Psychophysiology 2022; 59:e14058. [PMID: 35365863 DOI: 10.1111/psyp.14058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/27/2022]
Abstract
Raw data are typically required to be processed to be ready for statistical analyses, and processing pipelines are often characterized by substantial heterogeneity. Here, we applied seven different approaches (trough-to-peak scoring by two different raters, script-based baseline correction, Ledalab as well as four different models implemented in the software PsPM) to two fear conditioning data sets. Selection of the approaches included was guided by a systematic literature search by using fear conditioning research as a case example. Our approach can be viewed as a set of robustness analyses (i.e., same data subjected to different processing pipelines) aiming to investigate if and to what extent these different quantification approaches yield comparable results given the same data. To our knowledge, no formal framework for the evaluation of robustness analyses exists to date, but we may borrow some criteria from a framework suggested for the evaluation of "replicability" in general. Our results from seven different SCR quantification approaches applied to two data sets with different paradigms suggest that there may be no single approach that consistently yields larger effect sizes and could be universally considered "best." Yet, at least some of the approaches employed show consistent effect sizes within each data set indicating comparability. Finally, we highlight substantial heterogeneity also within most quantification approaches and discuss implications and potential remedies.
Collapse
Affiliation(s)
- Manuel Kuhn
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychiatry, Harvard Medical School, and Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Anna M V Gerlicher
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | - Tina B Lonsdorf
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Craske M, Treanor M, Zbozinek T, Vervliet B. Optimizing exposure therapy with an inhibitory retrieval approach and the OptEx Nexus. Behav Res Ther 2022; 152:104069. [DOI: 10.1016/j.brat.2022.104069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 01/05/2023]
|
22
|
Lonsdorf T, Gerlicher A, Klingelhöfer-Jens M, Krypotos AM. Multiverse analyses in fear conditioning research. Behav Res Ther 2022; 153:104072. [DOI: 10.1016/j.brat.2022.104072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023]
|
23
|
Qing X, Xu YL, Liu H, Liu XS. The influence of anesthesia and surgery on fear extinction. Neurosci Lett 2022; 766:136347. [PMID: 34808271 DOI: 10.1016/j.neulet.2021.136347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/29/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Accumulating evidence has demonstrated significant clinical post-traumatic stress disorder (PTSD) symptoms after anesthesia or surgery. Fear extinction dysfunction is a notable feature of PTSD. Although anesthetics and surgery profoundly affect memory processes, their designated effects on fear extinction have not been dissertated. Previous studies have suggested that innate immune system activation disrupts fear extinction, and surgery has been shown to increase the inflammatory response. Thus, in the current study, we examined the effects of propofol, sevoflurane, dexmedetomidine and surgery on fear extinction in adolescent mice, and further tested whether dexmedetomidine could reverse the injury effect of surgery on fear extinction through its anti-inflammatory effects. Our results showed that propofol (200 mg/kg) impaired the acquisition and recall of cued fear extinction, and surgery disrupted cued fear extinction acquisition/recall and consolidation. In contrast to cued fear extinction, contextual fear extinction was not affected by propofol or surgery. Moreover, dexmedetomidine prevented surgery-induced impairment of cued extinction acquisition and recall but not consolidation. Finally, TNF-α and IL-6 levels in the ventromedial prefrontal cortex were not necessary for the dexmedetomidine treatment effect of surgery-induced fear extinction dysfunction. The study results showed that propofol and surgery selective impaired the cued fear extinction stage in adolescent mice, and dexmedetomidine may unleash a protective effect in preventing postoperative PTSD.
Collapse
Affiliation(s)
- Xin Qing
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Yuan-Ling Xu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Hu Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China.
| | - Xue-Sheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China.
| |
Collapse
|
24
|
Visser RM, Bathelt J, Scholte HS, Kindt M. Robust BOLD Responses to Faces But Not to Conditioned Threat: Challenging the Amygdala's Reputation in Human Fear and Extinction Learning. J Neurosci 2021; 41:10278-10292. [PMID: 34750227 PMCID: PMC8672698 DOI: 10.1523/jneurosci.0857-21.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Most of our knowledge about human emotional memory comes from animal research. Based on this work, the amygdala is often labeled the brain's "fear center", but it is unclear to what degree neural circuitries underlying fear and extinction learning are conserved across species. Neuroimaging studies in humans yield conflicting findings, with many studies failing to show amygdala activation in response to learned threat. Such null findings are often treated as resulting from MRI-specific problems related to measuring deep brain structures. Here we test this assumption in a mega-analysis of three studies on fear acquisition (n = 98; 68 female) and extinction learning (n = 79; 53 female). The conditioning procedure involved the presentation of two pictures of faces and two pictures of houses: one of each pair was followed by an electric shock [a conditioned stimulus (CS+)], the other one was never followed by a shock (CS-), and participants were instructed to learn these contingencies. Results revealed widespread responses to the CS+ compared with the CS- in the fear network, including anterior insula, midcingulate cortex, thalamus, and bed nucleus of the stria terminalis, but not the amygdala, which actually responded stronger to the CS- Results were independent of spatial smoothing, and of individual differences in trait anxiety and conditioned pupil responses. In contrast, robust amygdala activation distinguished faces from houses, refuting the idea that a poor signal could account for the absence of effects. Moving forward, we suggest that, apart from imaging larger samples at higher resolution, alternative statistical approaches may be used to identify cross-species similarities in fear and extinction learning.SIGNIFICANCE STATEMENT The science of emotional memory provides the foundation of numerous theories on psychopathology, including stress and anxiety disorders. This field relies heavily on animal research, which suggests a central role of the amygdala in fear learning and memory. However, this finding is not strongly corroborated by neuroimaging evidence in humans, and null findings are too easily explained away by methodological limitations inherent to imaging deep brain structures. In a large nonclinical sample, we find widespread BOLD activation in response to learned fear, but not in the amygdala. A poor signal could not account for the absence of effects. While these findings do not disprove the involvement of the amygdala in human fear learning, they challenge its typical portrayals and illustrate the complexities of translational science.
Collapse
Affiliation(s)
- Renée M Visser
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Joe Bathelt
- Department of Psychology, Royal Holloway University of London, Egham TW20 0EX, United Kingdom
| | - H Steven Scholte
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Merel Kindt
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Crombie KM, Sartin-Tarm A, Sellnow K, Ahrenholtz R, Lee S, Matalamaki M, Almassi NE, Hillard CJ, Koltyn KF, Adams TG, Cisler JM. Exercise-induced increases in Anandamide and BDNF during extinction consolidation contribute to reduced threat following reinstatement: Preliminary evidence from a randomized controlled trial. Psychoneuroendocrinology 2021; 132:105355. [PMID: 34280820 PMCID: PMC8487992 DOI: 10.1016/j.psyneuen.2021.105355] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION We recently demonstrated that moderate-intensity aerobic exercise delivered during the consolidation of fear extinction learning reduced threat expectancy during a test of extinction recall among women with posttraumatic stress disorder (PTSD). These findings suggest that exercise may be a potential candidate for improving the efficacy of exposure-based therapies, which are hypothesized to work via the mechanisms of fear extinction learning. The purpose of this secondary analysis was to examine whether exercise-induced increases in circulating concentrations of candidate biomarkers: endocannabinoids (anandamide [AEA]; 2-arachidonoylglycerol [2-AG], brain-derived neurotrophic factor (BDNF), and homovanillic acid (HVA), mediate the effects of exercise on extinction recall. METHODS Participants (N = 35) completed a 3-day fear acquisition (day 1), extinction (day 2), and extinction recall (day 3) protocol, in which participants were randomly assigned to complete either moderate-intensity aerobic exercise (EX) or a light-intensity control (CON) condition following extinction training (day 2). Blood was obtained prior to and following EX or CON. Threat expectancy ratings during tests of extinction recall (i.e., initial fear recall and fear recall following reinstatement) were obtained 24 h following EX or CON. Mediation was tested using linear-mixed effects models and bootstrapping of the indirect effect. RESULTS Circulating concentrations of AEA and BDNF (but not 2-AG and HVA) were found to mediate the relationship between moderate-intensity aerobic exercise and reduced threat expectancy ratings following reinstatement (AEA 95% CI: -0.623 to -0.005; BDNF 95% CI: -0.941 to -0.005). CONCLUSIONS Exercise-induced increases in peripheral AEA and BDNF appear to play a role in enhancing consolidation of fear extinction learning, thereby leading to reduced threat expectancies following reinstatement among women with PTSD. Future mechanistic research examining these and other biomarkers (e.g., brain-based biomarkers) is warranted.
Collapse
Affiliation(s)
- Kevin M. Crombie
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Anneliis Sartin-Tarm
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Kyrie Sellnow
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Rachel Ahrenholtz
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Sierra Lee
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Megan Matalamaki
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Neda E. Almassi
- University of Wisconsin, Department of Kinesiology, 285 Med
Sci, 1300 University Ave, Madison, WI, United States of America, 53706-1121
| | - Cecilia J. Hillard
- Medical College of Wisconsin, Neuroscience Research Center,
Department of Pharmacology and, Toxicology, 8701 Watertown Plank Rd., Milwaukee, WI
53226
| | - Kelli F. Koltyn
- University of Wisconsin, Department of Kinesiology, 285 Med
Sci, 1300 University Ave, Madison, WI, United States of America, 53706-1121
| | - Tom G. Adams
- University of Kentucky, Department of Psychology, 105
Kastle Hill, Lexington, Kentucky, United States of America, 40506-0044,Yale School of Medicine, Department of Psychiatry, 300
George St., New Haven, CT, United States of America, 06511,National Center for PTSD, Clinical Neurosciences Division,
VA CT Healthcare System, 950 Campbell Avenue, West Haven, CT, United States of
America, 06516
| | - Josh M. Cisler
- University of Texas at Austin, Department of Psychiatry and
Behavioral Sciences, 1601 Trinity St, Bldg B, Austin, TX, United States of America,
78712
| |
Collapse
|
26
|
Esser R, Korn CW, Ganzer F, Haaker J. L-DOPA modulates activity in the vmPFC, nucleus accumbens, and VTA during threat extinction learning in humans. eLife 2021; 10:65280. [PMID: 34473055 PMCID: PMC8443250 DOI: 10.7554/elife.65280] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
Learning to be safe is central for adaptive behaviour when threats are no longer present. Detecting the absence of an expected threat is key for threat extinction learning and an essential process for the behavioural treatment of anxiety-related disorders. One possible mechanism underlying extinction learning is a dopaminergic mismatch signal that encodes the absence of an expected threat. Here we show that such a dopamine-related pathway underlies extinction learning in humans. Dopaminergic enhancement via administration of L-DOPA (vs. Placebo) was associated with reduced retention of differential psychophysiological threat responses at later test, which was mediated by activity in the ventromedial prefrontal cortex that was specific to extinction learning. L-DOPA administration enhanced signals at the time-point of an expected, but omitted threat in extinction learning within the nucleus accumbens, which were functionally coupled with the ventral tegmental area and the amygdala. Computational modelling of threat expectancies further revealed prediction error encoding in nucleus accumbens that was reduced when L-DOPA was administered. Our results thereby provide evidence that extinction learning is influenced by L-DOPA and provide a mechanistic perspective to augment extinction learning by dopaminergic enhancement in humans.
Collapse
Affiliation(s)
- Roland Esser
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph W Korn
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section Social Neuroscience, Department of General Psychiatry, Heidelberg, Germany
| | - Florian Ganzer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Addiction Research in Childhood and Adolescence, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Haaker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Malikowska-Racia N, Salat K, Gdula-Argasinska J, Popik P. Sex, Pramipexole and Tiagabine Affect Behavioral and Hormonal Response to Traumatic Stress in a Mouse Model of PTSD. Front Pharmacol 2021; 12:691598. [PMID: 34276379 PMCID: PMC8277945 DOI: 10.3389/fphar.2021.691598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) has been associated with abnormal regulation of the hypothalamic-pituitary-adrenal gland axis (HPA). Women demonstrate a more robust HPA response and are twice as likely to develop PTSD than men. The role of sex hormones in PTSD remains unclear. We investigated whether post-trauma chronic treatment with the GABA-ergic agent tiagabine and dopamine-mimetic pramipexole affected the behavioral outcome and plasma levels of corticosterone, testosterone, or 17β-estradiol in female and male mice. These medications were investigated due to their potential capacity to restore GABA-ergic and dopaminergic deficits in PTSD. Animals were exposed to a single prolonged stress procedure (mSPS). Following 13 days treatment with tiagabine (10 mg/kg) or pramipexole (1 mg/kg) once daily, the PTSD-like phenotype was examined in the fear conditioning paradigm. Plasma hormones were measured almost immediately following the conditioned fear assessment. We report that the exposure to mSPS equally enhanced conditioned fear in both sexes. However, while males demonstrated decreased plasma corticosterone, its increase was observed in females. Trauma elevated plasma testosterone in both sexes, but it had no significant effects on 17β-estradiol. Behavioral manifestation of trauma was reduced by pramipexole in both sexes and by tiagabine in females only. While neither compound affected corticosterone in stressed animals, testosterone levels were further enhanced by tiagabine in females. This study shows sex-dependent efficacy of tiagabine but not pramipexole in a mouse model of PTSD-like symptoms and a failure of steroid hormones’ levels to predict PTSD treatment efficacy.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.,Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Kinga Salat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Gdula-Argasinska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.,Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
28
|
Laing PAF, Harrison BJ. Safety learning and the Pavlovian conditioned inhibition of fear in humans: Current state and future directions. Neurosci Biobehav Rev 2021; 127:659-674. [PMID: 34023357 DOI: 10.1016/j.neubiorev.2021.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
Safety learning occurs when an otherwise neutral stimulus comes to signal the absence of threat, allowing organisms to use safety information to inhibit fear and anxiety in nonthreatening environments. Although it continues to emerge as a topic of relevance in biological and clinical psychology, safety learning remains inconsistently defined and under-researched. Here, we analyse the Pavlovian conditioned inhibition paradigm and its application to the study of safety learning in humans. We discuss existing studies; address outstanding theoretical considerations; and identify prospects for its further application. Though Pavlovian conditioned inhibition presents a theoretically sound model of safety learning, it has been investigated infrequently, with decade-long interims between some studies, and notable methodological variability. Consequently, we argue that the full potential of conditioned inhibition as a model for human safety learning remains untapped, and propose that it could be revisited as a framework for addressing timely questions in the behavioural and clinical sciences.
Collapse
Affiliation(s)
- Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
29
|
Bergmann TO, Varatheeswaran R, Hanlon CA, Madsen KH, Thielscher A, Siebner HR. Concurrent TMS-fMRI for causal network perturbation and proof of target engagement. Neuroimage 2021; 237:118093. [PMID: 33940146 DOI: 10.1016/j.neuroimage.2021.118093] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
The experimental manipulation of neural activity by neurostimulation techniques overcomes the inherent limitations of correlative recordings, enabling the researcher to investigate causal brain-behavior relationships. But only when stimulation and recordings are combined, the direct impact of the stimulation on neural activity can be evaluated. In humans, this can be achieved non-invasively through the concurrent combination of transcranial magnetic stimulation (TMS) with functional magnetic resonance imaging (fMRI). Concurrent TMS-fMRI allows the assessment of the neurovascular responses evoked by TMS with excellent spatial resolution and full-brain coverage. This enables the functional mapping of both local and remote network effects of TMS in cortical as well as deep subcortical structures, offering unique opportunities for basic research and clinical applications. The purpose of this review is to introduce the reader to this powerful tool. We will introduce the technical challenges and state-of-the art solutions and provide a comprehensive overview of the existing literature and the available experimental approaches. We will highlight the unique insights that can be gained from concurrent TMS-fMRI, including the state-dependent assessment of neural responsiveness and inter-regional effective connectivity, the demonstration of functional target engagement, and the systematic evaluation of stimulation parameters. We will also discuss how concurrent TMS-fMRI during a behavioral task can help to link behavioral TMS effects to changes in neural network activity and to identify peripheral co-stimulation confounds. Finally, we will review the use of concurrent TMS-fMRI for developing TMS treatments of psychiatric and neurological disorders and suggest future improvements for further advancing the application of concurrent TMS-fMRI.
Collapse
Affiliation(s)
- Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Leibniz Institute for Resilience Research, Wallstraße 7-9, 55122, Mainz, Germany.
| | - Rathiga Varatheeswaran
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Leibniz Institute for Resilience Research, Wallstraße 7-9, 55122, Mainz, Germany
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark; Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København NV, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
30
|
Crombie KM, Sartin-Tarm A, Sellnow K, Ahrenholtz R, Lee S, Matalamaki M, Adams TG, Cisler JM. Aerobic exercise and consolidation of fear extinction learning among women with posttraumatic stress disorder. Behav Res Ther 2021; 142:103867. [PMID: 34020153 DOI: 10.1016/j.brat.2021.103867] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 03/21/2021] [Accepted: 04/16/2021] [Indexed: 12/30/2022]
Abstract
This study tested whether aerobic exercise delivered during the consolidation window following fear extinction learning reduces the return of fear among women with posttraumatic stress disorder (PTSD). Participants (n=35) completed an initial clinical assessment followed by a 3-day fear acquisition, extinction, and recall protocol. On day 1, participants completed a fear acquisition training task in which one geometric shape (conditioning stimulus; CS+) was paired (with 50% probability) with a mild electric shock (unconditioned stimulus; US), while a different shape (CS-) was never paired with the US. On day 2 (24 h later), participants completed a fear extinction training task in which the CS+ no longer predicted administration of the US. Shortly following extinction, participants were randomly assigned to complete either moderate-intensity aerobic exercise (EX) or a light-intensity exercise control (CON) condition. On day 3 (24 h later), participants completed fear recall tests assessing the return of fear (spontaneous recovery, renewal, and reinstatement). Fear responding was assessed via threat expectancy ratings and skin conductance responses (SCR). In the threat expectancy ratings, there were no significant differences between groups in spontaneous recovery; however, EX significantly (p=.02) reduced threat expectancy ratings following reinstatement relative to CON. In SCR measures, there were no significant differences between groups in spontaneous recovery, renewal, or reinstatement. These results support a role for moderate-intensity aerobic exercise during the consolidation window in reducing threat expectations following reinstatement in women with PTSD. Research should continue to examine exercise as a potential method for improving the efficacy of exposure-based therapies. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04113798.
Collapse
Affiliation(s)
- Kevin M Crombie
- University of Wisconsin, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI, 53719-1176, USA.
| | - Anneliis Sartin-Tarm
- University of Wisconsin, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI, 53719-1176, USA
| | - Kyrie Sellnow
- University of Wisconsin, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI, 53719-1176, USA
| | - Rachel Ahrenholtz
- University of Wisconsin, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI, 53719-1176, USA
| | - Sierra Lee
- University of Wisconsin, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI, 53719-1176, USA
| | - Megan Matalamaki
- University of Wisconsin, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI, 53719-1176, USA
| | - Tom G Adams
- University of Kentucky, Department of Psychology, 105 Kastle Hill, Lexington, KY, 40506-0044, USA; Yale School of Medicine, Department of Psychiatry, 300 George St., New Haven, CT, 06511, USA; National Center for PTSD, Clinical Neurosciences Division, VA CT Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA.
| | - Josh M Cisler
- University of Wisconsin, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI, 53719-1176, USA.
| |
Collapse
|
31
|
Ney LJ, Akhurst J, Bruno R, Laing PAF, Matthews A, Felmingham KL. Dopamine, endocannabinoids and their interaction in fear extinction and negative affect in PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110118. [PMID: 32991952 DOI: 10.1016/j.pnpbp.2020.110118] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
There currently exist few frameworks for common neurobiology between reexperiencing and negative cognitions and mood symptoms of PTSD. Adopting a dopaminergic framework for PTSD unites many aspects of unique symptom clusters, and this approach also links PTSD symptomology to common comorbidities with a common neurobiological deficiency. Here we review the dopamine literature and incorporate it with a growing field of research that describes both the contribution of endocannabinoids to fear extinction and PTSD, as well as the interactions between dopaminergic and endocannabinoid systems underlying this disorder. Based on current evidence, we outline an early, preliminary model that links re-experiencing and negative cognitions and mood in PTSD by invoking the interaction between endocannabinoid and dopaminergic signalling in the brain. These interactions between PTSD, dopamine and endocannabinoids may have implications for future therapies for treatment-resistant and comorbid PTSD patients.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology, University of Tasmania, Australia.
| | - Jane Akhurst
- School of Psychology, University of Tasmania, Australia
| | | | - Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Australia
| | | | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| |
Collapse
|
32
|
Salinas-Hernández XI, Duvarci S. Dopamine in Fear Extinction. Front Synaptic Neurosci 2021; 13:635879. [PMID: 33732133 PMCID: PMC7956961 DOI: 10.3389/fnsyn.2021.635879] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/09/2021] [Indexed: 11/30/2022] Open
Abstract
The ability to extinguish fear memories when threats are no longer present is critical for adaptive behavior. Fear extinction represents a new learning process that eventually leads to the formation of extinction memories. Understanding the neural basis of fear extinction has considerable clinical significance as deficits in extinction learning are the hallmark of human anxiety disorders. In recent years, the dopamine (DA) system has emerged as one of the key regulators of fear extinction. In this review article, we highlight recent advances that have demonstrated the crucial role DA plays in mediating different phases of fear extinction. Emerging concepts and outstanding questions for future research are also discussed.
Collapse
Affiliation(s)
| | - Sevil Duvarci
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany
| |
Collapse
|
33
|
Kulu M, Özarslan Y, Ozsoy F, Karamustafalıoğlu O. Optical Coherence Tomography findings in patients with Multiple Substance Use Disorder. Cutan Ocul Toxicol 2021; 40:37-44. [PMID: 33555206 DOI: 10.1080/15569527.2021.1874007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Optical Coherence Tomography (OCT) is a relatively new diagnosis method displaying biological tissue layers by with high-resolution sections. In the present study, the purpose was to examine the OCT findings of patients with Multiple Substance Use Disorder (MSUD) by comparing these findings with healthy controls. METHODS The study included 30 MSUD and 30 controls. Detailed biomicroscopic examinations were carried out for all participants, and intraocular pressure, followed by OCT. The central macular thickness (CMT), mean macular thickness (MMT), mean macular volume (MMV), and retinal nerve fibre layer thickness (RNFL) were measured by using OCT. RESULTS It was determined that the MMT and CMT were thinned in both eyes compared to the healthy controls. The MMV was decreased in both eyes in patients with substance use disorders compared to healthy controls. The RNFL and total thickness were thickened in temporal and inferior parts in patients with MSUD in both eyes compared to healthy. In the superior quadrant, thickening was detected only in the left eye. CONCLUSIONS Based on our results obtained here, it was concluded that vision-related findings should be carefully questioned and evaluated when treatment is planned for patients with substance use.
Collapse
Affiliation(s)
- Müberra Kulu
- Clinic of Psychiatry, Tokat Mental Health and Diseases Hospital, Tokat, Turkey
| | - Yakup Özarslan
- Clinic of Ophthalmology, Tokat State Hospital, Tokat, Turkey
| | - Filiz Ozsoy
- Clinic of Psychiatry, Tokat State Hospital, Tokat, Turkey
| | | |
Collapse
|
34
|
A ventral striatal prediction error signal in human fear extinction learning. Neuroimage 2021; 229:117709. [PMID: 33460800 DOI: 10.1016/j.neuroimage.2020.117709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/30/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022] Open
Abstract
Animal studies have shown that the prediction error (PE) signal that drives fear extinction learning is encoded by phasic activity of midbrain dopamine (DA) neurons. Thus, the extinction PE resembles the appetitive PE that drives reward learning. In humans, fear extinction learning is less well understood. Using computational neuroimaging, a previous study from our group reported hemodynamic activity in the left ventral putamen, a subregion of the ventral striatum (VS), to correlate with a PE function derived from a formal associative learning model. The activity was modulated by genetic variation in a DA-related gene. To conceptually replicate and extend this finding, we here asked whether an extinction PE (EPE) signal in the left ventral putamen can also be observed when genotype information is not taken into account. Using an optimized experimental design for model estimation, we again observed EPE-related activity in the same striatal region, indicating that activation of this region is a feature of human extinction learning. We further observed significant EPE signals across wider parts of the VS as well as in frontal cortical areas. These results may suggest that the prediction errors during extinction learning are available to larger parts of the brain, as has also been observed in human neuroimaging studies of reward PE signaling. Conclusive evidence that the human EPE signal is of DAergic nature is still outstanding.
Collapse
|
35
|
Zhou P, Deng M, Wu J, Lan Q, Yang H, Zhang C. Ventral Tegmental Area Dysfunction and Disruption of Dopaminergic Homeostasis: Implications for Post-traumatic Stress Disorder. Mol Neurobiol 2021; 58:2423-2434. [PMID: 33428093 DOI: 10.1007/s12035-020-02278-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition characterized by intrusive recollections of the traumatic event, avoidance behaviors, hyper-arousal to event-related cues, cognitive disruption, and mood dysregulation. Accumulating preclinical and clinical evidence implicates dysfunction of the ventral tegmental area (VTA) dopaminergic system in PTSD pathogenesis. This article reviews recent advances in our knowledge of the relationship between dopaminergic dyshomeostasis and PTSD, including the contributions of specific dopaminergic gene variants to disease susceptibility, alterations in VTA dopamine neuron activity, dysregulation of dopaminergic transmission, and potential pharmacological and psychological interventions for PTSD targeting the dopaminergic system. An in-depth understanding of PTSD etiology is crucial for the development of innovative risk assessment, diagnostic, and treatment strategies following traumatic events.
Collapse
Affiliation(s)
- Peiling Zhou
- School of Educational Sciences & Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, 29 Cunjing Road, Chikan District, Zhanjiang, 524048, China
| | - Meiping Deng
- School of Educational Sciences & Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, 29 Cunjing Road, Chikan District, Zhanjiang, 524048, China
| | - Jiashan Wu
- School of Educational Sciences & Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, 29 Cunjing Road, Chikan District, Zhanjiang, 524048, China
| | - Qinghui Lan
- School of Educational Sciences & Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, 29 Cunjing Road, Chikan District, Zhanjiang, 524048, China
| | - Huifang Yang
- School of Educational Sciences & Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, 29 Cunjing Road, Chikan District, Zhanjiang, 524048, China.
| | - Changzheng Zhang
- School of Educational Sciences & Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, 29 Cunjing Road, Chikan District, Zhanjiang, 524048, China. .,School of Psychology, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing, 210097, China.
| |
Collapse
|
36
|
Willems AL, Vervliet B. When nothing matters: Assessing markers of expectancy violation during omissions of threat. Behav Res Ther 2021; 136:103764. [DOI: 10.1016/j.brat.2020.103764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/20/2020] [Accepted: 11/06/2020] [Indexed: 02/03/2023]
|
37
|
Translational opportunities for circuit-based social neuroscience: advancing 21st century psychiatry. Curr Opin Neurobiol 2020; 68:1-8. [PMID: 33260106 DOI: 10.1016/j.conb.2020.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
The recent advancements of social behavioral neuroscience are unprecedented. Through manipulations targeting neural circuits, complex behaviors can be switched on and off, social bonds can be induced, and false memories can be 'incepted.' Psychiatry, however, remains tethered to concepts and techniques developed over half a century ago, including purely behavioral definitions of psychopathology and chronic, brain-wide pharmacological interventions. Drawing on recent animal and human research, we outline a circuit-level approach to the social brain and highlight studies demonstrating the translational potential of this approach. We conclude by suggesting ways both clinical practice and translational research can apply circuit-level neuroscientific knowledge to advance psychiatry, including adopting neuroscience-based nomenclature, stratifying patients into diagnostic subgroups based on neurobiological phenotypes, and pharmacologically enhancing psychotherapy.
Collapse
|
38
|
Fritz EM, Singewald N, De Bundel D. The Good, the Bad and the Unknown Aspects of Ghrelin in Stress Coping and Stress-Related Psychiatric Disorders. Front Synaptic Neurosci 2020; 12:594484. [PMID: 33192444 PMCID: PMC7652849 DOI: 10.3389/fnsyn.2020.594484] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Ghrelin is a peptide hormone released by specialized X/A cells in the stomach and activated by acylation. Following its secretion, it binds to ghrelin receptors in the periphery to regulate energy balance, but it also acts on the central nervous system where it induces a potent orexigenic effect. Several types of stressors have been shown to stimulate ghrelin release in rodents, including nutritional stressors like food deprivation, but also physical and psychological stressors such as foot shocks, social defeat, forced immobilization or chronic unpredictable mild stress. The mechanism through which these stressors drive ghrelin release from the stomach lining remains unknown and, to date, the resulting consequences of ghrelin release for stress coping remain poorly understood. Indeed, ghrelin has been proposed to act as a stress hormone that reduces fear, anxiety- and depression-like behaviors in rodents but some studies suggest that ghrelin may - in contrast - promote such behaviors. In this review, we aim to provide a comprehensive overview of the literature on the role of the ghrelin system in stress coping. We discuss whether ghrelin release is more than a byproduct of disrupted energy homeostasis following stress exposure. Furthermore, we explore the notion that ghrelin receptor signaling in the brain may have effects independent of circulating ghrelin and in what way this might influence stress coping in rodents. Finally, we examine how the ghrelin system could be utilized as a therapeutic avenue in stress-related psychiatric disorders (with a focus on anxiety- and trauma-related disorders), for example to develop novel biomarkers for a better diagnosis or new interventions to tackle relapse or treatment resistance in patients.
Collapse
Affiliation(s)
- Eva Maria Fritz
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Dimitri De Bundel
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
39
|
Cisler JM, Privratsky AA, Sartin-Tarm A, Sellnow K, Ross M, Weaver S, Hahn E, Herringa RJ, James GA, Kilts CD. L-DOPA and consolidation of fear extinction learning among women with posttraumatic stress disorder. Transl Psychiatry 2020; 10:287. [PMID: 32801342 PMCID: PMC7429959 DOI: 10.1038/s41398-020-00975-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/23/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
This study tested whether L-DOPA delivered during the consolidation window following fear extinction learning reduces subsequent fear responding among women with PTSD. Adult women diagnosed with PTSD completed a contextual fear acquisition and extinction task during fMRI and then immediately received either placebo (n = 34), 100/25 mg L-DOPA/carbidopa (n = 28), or 200/50 mg L-DOPA/carbidopa (n = 29). Participants completed a resting-state scan before the task and again 45 min following drug ingestion to characterize effects of L-DOPA on extinction memory neural reactivation patterns during consolidation. Twenty-four hours later, participants returned for tests of context renewal, extinction recall, and reinstatement during fMRI with concurrent skin conductance responding (SCR) assessment. Both active drug groups demonstrated increased reactivation of extinction encoding in the amygdala during the post-task resting-state scan. For SCR data, both drug groups exhibited decreased Day 2 reinstatement across all stimuli compared to placebo, and there was some evidence for decreased context renewal to the fear stimulus in the 100 mg group compared to placebo. For imaging data, both drug groups demonstrated decreased Day 2 reinstatement across stimuli in a bilateral insula network compared to placebo. There was no evidence in SCR or neural activity that L-DOPA improved extinction recall. Reactivation of extinction encodings in the amygdala during consolidation on Day 1 predicted Day 2 activation of the insula network. These results support a role for dopamine during the consolidation window in boosting reactivation of amygdala extinction encodings and reducing reinstatement, but not improving extinction recall, in women with PTSD.
Collapse
Affiliation(s)
- Josh M. Cisler
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin Madison, Madison, WI USA
| | - Anthony A. Privratsky
- grid.241054.60000 0004 4687 1637University of Arkansas for Medical Sciences, Brain Imaging Research Center, Little Rock, AR USA
| | - Anneliis Sartin-Tarm
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin Madison, Madison, WI USA
| | - Kyrie Sellnow
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin Madison, Madison, WI USA
| | - Marisa Ross
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin Madison, Madison, WI USA
| | - Shelby Weaver
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin Madison, Madison, WI USA
| | - Emily Hahn
- Massachusetts General Hospital/Harvard Medical School, Boston, MA USA
| | - Ryan J. Herringa
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin Madison, Madison, WI USA
| | - George Andrew James
- grid.241054.60000 0004 4687 1637University of Arkansas for Medical Sciences, Brain Imaging Research Center, Little Rock, AR USA
| | - Clinton D. Kilts
- grid.241054.60000 0004 4687 1637University of Arkansas for Medical Sciences, Brain Imaging Research Center, Little Rock, AR USA
| |
Collapse
|
40
|
Papalini S, Beckers T, Vervliet B. Dopamine: from prediction error to psychotherapy. Transl Psychiatry 2020; 10:164. [PMID: 32451377 PMCID: PMC7248121 DOI: 10.1038/s41398-020-0814-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Dopamine, one of the main neurotransmitters in the mammalian brain, has been implicated in the coding of prediction errors that govern reward learning as well as fear extinction learning. Psychotherapy too can be viewed as a form of error-based learning, because it challenges erroneous beliefs and behavioral patterns in order to induce long-term changes in emotions, cognitions, and behaviors. Exposure therapy, for example, relies in part on fear extinction principles to violate erroneous expectancies of danger and induce novel safety learning that inhibits and therefore reduces fear in the long term. As most forms of psychotherapy, however, exposure therapy suffers from non-response, dropout, and relapse. This narrative review focuses on the role of midbrain and prefrontal dopamine in novel safety learning and investigates possible pathways through which dopamine-based interventions could be used as an adjunct to improve both the response and the long-term effects of the therapy. Convincing evidence exists for an involvement of the midbrain dopamine system in the acquisition of new, safe memories. Additionally, prefrontal dopamine is emerging as a key ingredient for the consolidation of fear extinction. We propose that applying a dopamine prediction error perspective to psychotherapy can inspire both pharmacological and non-pharmacological studies aimed at discovering innovative ways to enhance the acquisition of safety memories. Additionally, we call for further empirical investigations on dopamine-oriented drugs that might be able to maximize consolidation of successful fear extinction and its long-term retention after therapy, and we propose to also include investigations on non-pharmacological interventions with putative prefrontal dopaminergic effects, like working memory training.
Collapse
Affiliation(s)
- Silvia Papalini
- Laboratory of Biological Psychology (LBP), Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium. .,Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Tom Beckers
- grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Centre for the Psychology of Learning and Experimental Psychopathology (CLEP), Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Bram Vervliet
- grid.5596.f0000 0001 0668 7884Laboratory of Biological Psychology (LBP), Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Lissemore JI, Nagano-Saito A, Smart K, Gravel P, Leyton M, Benkelfat C. Dopaminergic Plasticity in the Bilateral Hippocampus Following Threat Reversal in Humans. Sci Rep 2020; 10:7627. [PMID: 32376865 PMCID: PMC7203150 DOI: 10.1038/s41598-020-63977-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/06/2020] [Indexed: 11/24/2022] Open
Abstract
When a cue no longer predicts a threat, a diminished ability to extinguish or reverse this association is thought to increase risk for stress-related disorders. Despite the clear clinical relevance, the mediating neurochemical mechanisms of threat reversal have received relatively little study. One neurotransmitter implicated in rodent research of changing associations with threat is dopamine. To study whether dopamine is involved in threat reversal in humans, we used high-resolution positron emission tomography (PET) coupled with 18F-fallypride. Twelve healthy volunteers (6 F/6 M) underwent three PET scans: (i) at baseline, (ii) following threat conditioning (the response to a cue associated with electric wrist shock), and (iii) following threat reversal (the response to the same cue now associated with safety). We observed moderate evidence of reduced dopamine D2/3 receptor availability, consistent with greater dopamine release, in the bilateral anterior hippocampus following threat reversal, in response to a safety cue that was previously associated with threat, as compared to both baseline and during exposure to the same cue prior to threat reversal. These findings offer the first preliminary evidence that the response to a previously threatening cue that has since become associated with safety involves dopaminergic neurotransmission within the hippocampus in healthy humans.
Collapse
Affiliation(s)
- Jennifer I Lissemore
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, H3A 1A1, Quebec, Canada.
| | - Atsuko Nagano-Saito
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, H3A 1A1, Quebec, Canada
| | - Kelly Smart
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, H3A 1A1, Quebec, Canada
| | - Paul Gravel
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, H3A 1A1, Quebec, Canada
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, H3A 2B4, Quebec, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, H3A 1A1, Quebec, Canada
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, H3A 2B4, Quebec, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, H3A 1A1, Quebec, Canada
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, H3A 2B4, Quebec, Canada
| |
Collapse
|
42
|
Pierre A, Van Schuerbeek A, Allaoui W, Van Laere S, Singewald N, Van Eeckhaut A, Smolders I, De Bundel D. Effects of ghrelin receptor activation on forebrain dopamine release, conditioned fear and fear extinction in C57BL/6J mice. J Neurochem 2020; 154:389-403. [DOI: 10.1111/jnc.14996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Anouk Pierre
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| | - Andries Van Schuerbeek
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| | - Wissal Allaoui
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| | - Sven Van Laere
- Interfaculty Center Data Processing & Statistics Vrije Universiteit Brussel Brussels Belgium
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology Institute of Pharmacy and CMBI University of Innsbruck Innsbruck Austria
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
43
|
Antov MI, Plog E, Bierwirth P, Keil A, Stockhorst U. Visuocortical tuning to a threat-related feature persists after extinction and consolidation of conditioned fear. Sci Rep 2020; 10:3926. [PMID: 32127551 PMCID: PMC7054355 DOI: 10.1038/s41598-020-60597-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/14/2020] [Indexed: 12/28/2022] Open
Abstract
Neurons in the visual cortex sharpen their orientation tuning as humans learn aversive contingencies. A stimulus orientation (CS+) that reliably predicts an aversive noise (unconditioned stimulus: US) is selectively enhanced in lower-tier visual cortex, while similar unpaired orientations (CS-) are inhibited. Here, we examine in male volunteers how sharpened visual processing is affected by fear extinction learning (where no US is presented), and how fear and extinction memory undergo consolidation one day after the original learning episode. Using steady-state visually evoked potentials from electroencephalography in a fear generalization task, we found that extinction learning prompted rapid changes in orientation tuning: Both conditioned visuocortical and skin conductance responses to the CS+ were strongly reduced. Next-day re-testing (delayed recall) revealed a brief but precise return-of-tuning to the CS+ in visual cortex accompanied by a brief, more generalized return-of-fear in skin conductance. Explorative analyses also showed persistent tuning to the threat cue in higher visual areas, 24 h after successful extinction, outlasting peripheral responding. Together, experience-based changes in the sensitivity of visual neurons show response patterns consistent with memory consolidation and spontaneous recovery, the hallmarks of long-term neural plasticity.
Collapse
Affiliation(s)
- Martin I Antov
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, D-49074, Osnabrück, Germany.
| | - Elena Plog
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, D-49074, Osnabrück, Germany
| | - Philipp Bierwirth
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, D-49074, Osnabrück, Germany
| | - Andreas Keil
- Department of Psychology and Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, 32611, USA
| | - Ursula Stockhorst
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, D-49074, Osnabrück, Germany
| |
Collapse
|
44
|
Chmitorz A, Kurth K, Mey LK, Wenzel M, Lieb K, Tüscher O, Kubiak T, Kalisch R. Assessment of Microstressors in Adults: Questionnaire Development and Ecological Validation of the Mainz Inventory of Microstressors. JMIR Ment Health 2020; 7:e14566. [PMID: 32130154 PMCID: PMC7063526 DOI: 10.2196/14566] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/25/2019] [Accepted: 11/02/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Many existing scales for microstressor assessment do not differentiate between objective (ie, observable) stressor events and stressful cognitions or concerns. They often mix items assessing objective stressor events with items measuring other aspects of stress, such as perceived stressor severity, the evoked stress reaction, or further consequences on health, which may result in spurious associations in studies that include other questionnaires that measure such constructs. Most scales were developed several decades ago; therefore, modern life stressors may not be represented. Ecological momentary assessment (EMA) allows for sampling of current behaviors and experiences in real time and in the natural habitat, thereby maximizing the generalization of the findings to real-life situations (ie, ecological validity) and minimizing recall bias. However, it has not been used for the validation of microstressor questionnaires so far. OBJECTIVE The aim is to develop a questionnaire that (1) allows for retrospective assessment of microstressors over one week, (2) focuses on objective (ie, observable) microstressors, (3) includes stressors of modern life, and (4) separates stressor occurrence from perceived stressor severity. METHODS Cross-sectional (N=108) and longitudinal studies (N=10 and N=70) were conducted to evaluate the Mainz Inventory of Microstressors (MIMIS). In the longitudinal studies, EMA was used to compare stressor data, which was collected five times per day for 7 or 30 days with retrospective reports (end-of-day, end-of-week). Pearson correlations and multilevel modeling were used in the analyses. RESULTS High correlations were found between end-of-week, end-of-day, and EMA data for microstressor occurrence (counts) (r≥.69 for comparisons per week, r≥.83 for cumulated data) and for mean perceived microstressor severity (r≥.74 for comparisons per week, r≥.85 for cumulated data). The end-of-week questionnaire predicted the EMA assessments sufficiently (counts: beta=.03, 95% CI .02-.03, P<.001; severity: beta=.73, 95% CI .59-.88, P<.001) and the association did not change significantly over four subsequent weeks. CONCLUSIONS Our results provide evidence for the ecological validity of the MIMIS questionnaire.
Collapse
Affiliation(s)
- Andrea Chmitorz
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,Faculty of Social Work, Health Care and Nursing Sciences, Esslingen University of Applied Sciences, Esslingen, Germany
| | - Karolina Kurth
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,Health Psychology, Institute for Psychology, Johannes Gutenberg University, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Lara K Mey
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,Health Psychology, Institute for Psychology, Johannes Gutenberg University, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Mario Wenzel
- Health Psychology, Institute for Psychology, Johannes Gutenberg University, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Thomas Kubiak
- Health Psychology, Institute for Psychology, Johannes Gutenberg University, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Raffael Kalisch
- Leibniz Institute for Resilience Research, Mainz, Germany.,Neuroimaging Center, University Medical Center, Mainz, Germany
| |
Collapse
|
45
|
Neural responses during extinction learning predict exposure therapy outcome in phobia: results from a randomized-controlled trial. Neuropsychopharmacology 2020; 45:534-541. [PMID: 31352467 PMCID: PMC6969109 DOI: 10.1038/s41386-019-0467-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/13/2019] [Accepted: 07/19/2019] [Indexed: 01/31/2023]
Abstract
Extinction learning is assumed to represent a core mechanism underlying exposure therapy. Empirical evaluations of this assumption, however, are largely lacking. The current study investigated whether neural activations and self-report outcomes during extinction learning and extinction recall could specifically predict exposure therapy response in specific phobia. In this double-blind randomized controlled trial, individuals with spider phobia (N = 45; female/male = 41/4) were on group basis randomly allocated to exposure therapy (n = 25; female/male = 24/1) or progressive muscle relaxation (PMR; n = 20; female/male = 17/3). Intervention effects were measured with the Fears of Spiders questionnaire. Participants also underwent a three-day fear conditioning, extinction learning, and extinction recall paradigm during functional magnetic resonance imaging at baseline. Extinction outcomes were self-reported fear and threat expectancy, and neural responses during conditioned stimulus processing and during extinction-related prediction errors (US omissions) in regions of interest (ventromedial prefrontal cortex (vmPFC) and nucleus accumbens). Results showed that exposure therapy resulted in stronger symptom reductions than PMR (Cohen's d = 0.90). Exposure therapy response was specifically predicted by prediction-error related vmPFC activation during early extinction. There were also indications vmPFC activations during conditioned safety stimulus processing at early extinction predicted therapy outcome. Neural activations during extinction recall and self-report data did however not predict therapy outcome. These findings indicate that exposure therapy may rely on neural extinction learning processes. Prediction errors are thought to drive the extinction learning process, and prediction error-related vmPFC activation specifically predicted therapy outcome. The extent to which vmPFC processes safety signals may additionally be predictive of exposure therapy response, but the specificity is less clear.
Collapse
|
46
|
Lonsdorf TB, Klingelhöfer-Jens M, Andreatta M, Beckers T, Chalkia A, Gerlicher A, Jentsch VL, Meir Drexler S, Mertens G, Richter J, Sjouwerman R, Wendt J, Merz CJ. Navigating the garden of forking paths for data exclusions in fear conditioning research. eLife 2019; 8:e52465. [PMID: 31841112 PMCID: PMC6989118 DOI: 10.7554/elife.52465] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
In this report, we illustrate the considerable impact of researcher degrees of freedom with respect to exclusion of participants in paradigms with a learning element. We illustrate this empirically through case examples from human fear conditioning research, in which the exclusion of 'non-learners' and 'non-responders' is common - despite a lack of consensus on how to define these groups. We illustrate the substantial heterogeneity in exclusion criteria identified in a systematic literature search and highlight the potential problems and pitfalls of different definitions through case examples based on re-analyses of existing data sets. On the basis of these studies, we propose a consensus on evidence-based rather than idiosyncratic criteria, including clear guidelines on reporting details. Taken together, we illustrate how flexibility in data collection and analysis can be avoided, which will benefit the robustness and replicability of research findings and can be expected to be applicable to other fields of research that involve a learning element.
Collapse
Affiliation(s)
- Tina B Lonsdorf
- Department of Systems NeuroscienceUniversity Medical Center Hamburg EppendorfHamburgGermany
| | | | - Marta Andreatta
- Department of Psychology, Biological Psychology, Clinical Psychology and PsychotherapyUniversity of WürzburgWürzburgGermany
- Instutute of Psychology, Education & Child StudiesErasmus University RotterdamRotterdamNetherlands
| | - Tom Beckers
- Centre for the Psychology of Learning and Experimental Psychopathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Anastasia Chalkia
- Centre for the Psychology of Learning and Experimental Psychopathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Anna Gerlicher
- Faculty of Social and Behavioural Sciences, Programme group Clinical PsychologyUniversity of AmsterdamAmsterdamNetherlands
| | - Valerie L Jentsch
- Institute of Cognitive Neuroscience, Department of Cognitive PsychologyRuhr University BochumBochumGermany
| | - Shira Meir Drexler
- Institute of Cognitive Neuroscience, Department of Cognitive PsychologyRuhr University BochumBochumGermany
| | - Gaetan Mertens
- Department of PsychologyUtrecht UniversityUtrechtNetherlands
| | - Jan Richter
- Department of Physiological and Clinical Psychology/PsychotherapyUniversity of GreifswaldGreifswaldGermany
| | - Rachel Sjouwerman
- Department of Systems NeuroscienceUniversity Medical Center Hamburg EppendorfHamburgGermany
| | - Julia Wendt
- Biological Psychology and Affective ScienceUniversity of PotsdamPotsdamGermany
| | - Christian J Merz
- Institute of Cognitive Neuroscience, Department of Cognitive PsychologyRuhr University BochumBochumGermany
| |
Collapse
|
47
|
Malikowska-Racia N, Popik P, Sałat K. Behavioral effects of buspirone in a mouse model of posttraumatic stress disorder. Behav Brain Res 2019; 381:112380. [PMID: 31765726 DOI: 10.1016/j.bbr.2019.112380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022]
Abstract
Buspirone presents a unique profile of action, which involves activation of 5-HT1A receptors and complex effects on D2-like dopaminergic receptors. This medication is studied in terms of potential clinical repositioning to conditions that are associated with dopaminergic dysfunctions including schizophrenia and substance use disorder. Buspirone antagonizes D3 and D4 receptors, however, depending on the dose it differentially interacts with D2 receptors. Previously, we reported that some of D2/D3 dopaminergic agonists attenuate PTSD-like behavioral symptoms in mice. Here we investigated whether buspirone could also affect PTSD-like symptoms. We used the single prolonged stress (mSPS) protocol to induce PTSD-like behavior in adult male CD-1 mice. Buspirone (0.5, 2, or 10 mg/kg, i.p.) was injected for 15 consecutive days. The subjects were repeatedly examined in a variety of behavioral tests measuring conditioned freezing response, antidepressant-like effects, anxiety, and ultrasonic vocal response to the restraint stress. Mouse SPS resulted in prolonged immobility in the forced swim test and freezing in the fear-conditioning test, and produced symptoms of anxiety. Buspirone dose-dependently decreased the exaggerated freezing response in mice, but only at the dose of 2 mg/kg exhibited the anxiolytic-like effect in the elevated plus maze test. Buspirone reduced the number of ultrasonic calls in mSPS-exposed mice but revealed no antidepressant-like effect in the forced swim test. Present data suggest some positive effects of buspirone in the treatment of selected PTSD-like symptoms and prompt for its further clinical evaluation.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| | - Piotr Popik
- Faculty of Health Sciences, Jagiellonian University Medical College, 12 Michalowskiego St., 31-126, Krakow, Poland; Department of Behavioral Neuroscience and Drug Development Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343, Krakow, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland
| |
Collapse
|
48
|
Abstract
Animal studies have demonstrated that catecholamines regulate several aspects of fear conditioning. In humans, however, pharmacological manipulations of the catecholaminergic system have been scarce, and their primary focus has been to interfering with catecholaminergic activity after fear acquisition or expression had taken place, using L-Dopa, primarily, as catecholaminergic precursor. Here, we sought to determine if putative increases in presynaptic dopamine and norepinephrine by tyrosine administered before conditioning could affect fear expression. Electrodermal activity (EDA) of 46 healthy participants (24 placebo, 22 tyrosine) was measured in an instructed fear task. Results showed that tyrosine abolished fear expression compared to placebo. Importantly, tyrosine did not affect EDA responses to the aversive stimulus (UCS) or alter participants’ mood. Therefore, the effect of tyrosine on fear expression cannot be attributed to these factors. Taken together, these findings provide evidence that the catecholaminergic system influences fear expression in humans.
Collapse
|
49
|
van den Brink RL, Pfeffer T, Donner TH. Brainstem Modulation of Large-Scale Intrinsic Cortical Activity Correlations. Front Hum Neurosci 2019; 13:340. [PMID: 31649516 PMCID: PMC6794422 DOI: 10.3389/fnhum.2019.00340] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
Brain activity fluctuates continuously, even in the absence of changes in sensory input or motor output. These intrinsic activity fluctuations are correlated across brain regions and are spatially organized in macroscale networks. Variations in the strength, topography, and topology of correlated activity occur over time, and unfold upon a backbone of long-range anatomical connections. Subcortical neuromodulatory systems send widespread ascending projections to the cortex, and are thus ideally situated to shape the temporal and spatial structure of intrinsic correlations. These systems are also the targets of the pharmacological treatment of major neurological and psychiatric disorders, such as Parkinson's disease, depression, and schizophrenia. Here, we review recent work that has investigated how neuromodulatory systems shape correlations of intrinsic fluctuations of large-scale cortical activity. We discuss studies in the human, monkey, and rodent brain, with a focus on non-invasive recordings of human brain activity. We provide a structured but selective overview of this work and distil a number of emerging principles. Future efforts to chart the effect of specific neuromodulators and, in particular, specific receptors, on intrinsic correlations may help identify shared or antagonistic principles between different neuromodulatory systems. Such principles can inform models of healthy brain function and may provide an important reference for understanding altered cortical dynamics that are evident in neurological and psychiatric disorders, potentially paving the way for mechanistically inspired biomarkers and individualized treatments of these disorders.
Collapse
Affiliation(s)
- R. L. van den Brink
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T. Pfeffer
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T. H. Donner
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Center for Brain and Cognition, Institute for Interdisciplinary Studies, Amsterdam, Netherlands
| |
Collapse
|
50
|
Sartori SB, Singewald N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol Ther 2019; 204:107402. [PMID: 31470029 DOI: 10.1016/j.pharmthera.2019.107402] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
Current medication for anxiety disorders is suboptimal in terms of efficiency and tolerability, highlighting the need for improved drug treatments. In this review an overview of drugs being studied in different phases of clinical trials for their potential in the treatment of fear-, anxiety- and trauma-related disorders is presented. One strategy followed in drug development is refining and improving compounds interacting with existing anxiolytic drug targets, such as serotonergic and prototypical GABAergic benzodiazepines. A more innovative approach involves the search for compounds with novel mechanisms of anxiolytic action using the growing knowledge base concerning the relevant neurocircuitries and neurobiological mechanisms underlying pathological fear and anxiety. The target systems evaluated in clinical trials include glutamate, endocannabinoid and neuropeptide systems, as well as ion channels and targets derived from phytochemicals. Examples of promising novel candidates currently in clinical development for generalised anxiety disorder, social anxiety disorder, panic disorder, obsessive compulsive disorder or post-traumatic stress disorder include ketamine, riluzole, xenon with one common pharmacological action of modulation of glutamatergic neurotransmission, as well as the neurosteroid aloradine. Finally, compounds such as D-cycloserine, MDMA, L-DOPA and cannabinoids have shown efficacy in enhancing fear-extinction learning in humans. They are thus investigated in clinical trials as an augmentative strategy for speeding up and enhancing the long-term effectiveness of exposure-based psychotherapy, which could render chronic anxiolytic drug treatment dispensable for many patients. These efforts are indicative of a rekindled interest and renewed optimism in the anxiety drug discovery field, after decades of relative stagnation.
Collapse
Affiliation(s)
- Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| |
Collapse
|