1
|
Liang C, Song R, Zhang J, Yao J, Guan Z, Zeng X. Melatonin enhances NK cell function in aged mice by increasing T-bet expression via the JAK3-STAT5 signaling pathway. Immun Ageing 2024; 21:59. [PMID: 39237911 PMCID: PMC11375890 DOI: 10.1186/s12979-024-00459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024]
Abstract
Natural killer (NK) cells are crucial innate immune cells that provide defense against viruses and tumors. However, aging is associated with alterations in NK cell composition and compromised cell functions. Melatonin, known for its anti-tumor effects, has been reported to improve NK cell function. However, the molecular mechanism underlying melatonin's effect on senescent NK cells remains unclear. In this study, we aimed to elucidate the mechanism by which melatonin enhances the function of senescent NK cells. Our findings revealed that melatonin significantly increased the number and function of NK cells in aging mice. The results suggest that melatonin enhances NK cell proliferation, degranulation, and IFN-γ secretion. Further investigations demonstrated that melatonin promotes NK cell maturation and activation, mainly via the JAK3/STAT5 signaling pathway, leading to increased expression of T-bet. These discoveries provide a theoretical basis for potential immunotherapy strategies based on melatonin-mediated modulation of NK cell function in aging individuals.
Collapse
Affiliation(s)
- Caiying Liang
- Laboratory Center of The Sixth affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, Guangdong, China
| | - Rongrong Song
- Laboratory Center of The Sixth affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, Guangdong, China
| | - Jieyu Zhang
- Laboratory Center of The Sixth affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, Guangdong, China
| | - Jie Yao
- Clinical Laboratory of The Sixth affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, Guangdong, China.
| | - Ziyun Guan
- Department of Emergency, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China.
| | - Xiaokang Zeng
- Laboratory Center of The Sixth affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, Guangdong, China.
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China.
| |
Collapse
|
2
|
Meng M, Zhong Z, Song L, Zhang Z, Yin X, Xie X, Tian L, Wu W, Yang Y, Deng Y, Peng H, Wu S, Ran G, Lin Y, Lai Q, Bi Q, Yan F, Ji Y, Wang Y, Li X, Yi P, Yu J, Deng Y. mTOR Signaling Promotes Rapid m6A mRNA Methylation to Regulate NK-Cell Activation and Effector Functions. Cancer Immunol Res 2024; 12:1039-1057. [PMID: 38640466 DOI: 10.1158/2326-6066.cir-23-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 01/13/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024]
Abstract
NK cells can be rapidly activated in response to cytokines during host defense against malignant cells or viral infection. However, it remains unclear what mechanisms precisely and rapidly regulate the expression of a large number of genes involved in activating NK cells. In this study, we discovered that NK-cell N6-methyladenosine (m6A) methylation levels were rapidly upregulated upon short-term NK-cell activation and were repressed in the tumor microenvironment (TME). Deficiency of methyltransferase-like 3 (METTL3) or METTL14 moderately influenced NK-cell homeostasis, while double-knockout of METTL3/14 more significantly impacted NK-cell homeostasis, maturation, and antitumor immunity. This suggests a cooperative role of METTL3 and METTL14 in regulating NK-cell development and effector functions. Using methylated RNA immunoprecipitation sequencing, we demonstrated that genes involved in NK-cell effector functions, such as Prf1 and Gzmb, were directly modified by m6A methylation. Furthermore, inhibiting mTOR complex 1 activation prevented m6A methylation levels from increasing when NK cells were activated, and this could be restored by S-adenosylmethionine supplementation. Collectively, we have unraveled crucial roles for rapid m6A mRNA methylation downstream of the mTOR complex 1-S-adenosylmethionine signal axis in regulating NK-cell activation and effector functions.
Collapse
Affiliation(s)
- Meng Meng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhaoyang Zhong
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Liang Song
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Zhaohui Zhang
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Xiaofeng Yin
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Xiqiang Xie
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, California
| | - Wei Wu
- Thoracic Surgery Department, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Yao Yang
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Yafei Deng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Hongyan Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Shuting Wu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Guanghe Ran
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Yuqing Lin
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Qiangqiang Lai
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Qinghua Bi
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Fulin Yan
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Yan Ji
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Yang Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohui Li
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, California
| | - Youcai Deng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Xiao H, Jiang N, Zhang H, Wang S, Pi Q, Chen H, He X, Luo W, Lu Y, Deng Y, Zhong Z. Inhibitors of APE1 redox and ATM synergistically sensitize osteosarcoma cells to ionizing radiation by inducing ferroptosis. Int Immunopharmacol 2024; 139:112672. [PMID: 39032469 DOI: 10.1016/j.intimp.2024.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The resistance of osteosarcoma (OS) to ionizing radiation (IR) is an obstacle for effective patient treatment. Apurinic/apyrimidinic endonuclease-reduction/oxidation factor 1 (APE1/Ref-1) is a multifunctional protein with DNA repair and reduction/oxidation (redox) activities. We previously revealed the role of APE1 in OS radioresistance; however, whether the redox activity of APE1 is involved in OS radioresistance is unclear. APE1 regulates the activation of ataxia-telangiectasia mutated (ATM), an initiator of DNA damage response that mediates radioresistance in other cancers. The role of APE1 redox activity and ATM activation in OS radioresistance is unknown. Our study revealed that IR increased APE1 expression and ATM activation in OS cells, and APE1 directly regulated ATM activation by its redox activity. The combined use of an APE1 redox inhibitor and ATM inhibitor effectively sensitized OS cells to IR in vitro and in vivo. Mechanistically, the increased radiosensitization of OS cells by the combined use of the two inhibitors was mediated by increased ferroptosis. Co-treatment with the two inhibitors significantly decreased expression of the common targeted transcription factor P53 compared with single inhibitor treatment. Collectively, APE1 redox activity, ATM activation and their crosstalk play important roles in the resistance of OS to irradiation. Synergetic inhibition of APE1 redox activity and ATM activation sensitized OS cells to IR by inducing ferroptosis, which provides a promising strategy for OS radiotherapy.
Collapse
Affiliation(s)
- Hanxi Xiao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China; Department of Clinical Hematology, College of Pharmacy, Army Medical University, Chongqing 400038, China; Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Nan Jiang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hongbin Zhang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shuai Wang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qin Pi
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Huawei Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xuan He
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Luo
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yonghui Lu
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing 400038, China.
| | - Youcai Deng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China; Department of Clinical Hematology, College of Pharmacy, Army Medical University, Chongqing 400038, China.
| | - Zhaoyang Zhong
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China; Department of Oncology, The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| |
Collapse
|
4
|
Xu W, Chen H, Xiao H. mTORC2: A neglected player in aging regulation. J Cell Physiol 2024:e31363. [PMID: 38982866 DOI: 10.1002/jcp.31363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in various biological processes, through integrating external and internal signals, facilitating gene transcription and protein translation, as well as by regulating mitochondria and autophagy functions. mTOR kinase operates within two distinct protein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which engage separate downstream signaling pathways impacting diverse cellular processes. Although mTORC1 has been extensively studied as a pro-proliferative factor and a pro-aging hub if activated aberrantly, mTORC2 received less attention, particularly regarding its implication in aging regulation. However, recent studies brought increasing evidence or clues for us, which implies the associations of mTORC2 with aging, as the genetic elimination of unique subunits of mTORC2, such as RICTOR, has been shown to alleviate aging progression in comparison to mTORC1 inhibition. In this review, we first summarized the basic characteristics of mTORC2, including its protein architecture and signaling network. We then focused on reviewing the molecular signaling regulation of mTORC2 in cellular senescence and organismal aging, and proposed the multifaceted regulatory characteristics under senescent and nonsenescent contexts. Next, we outlined the research progress of mTOR inhibitors in the field of antiaging and discussed future prospects and challenges. It is our pleasure if this review article could provide meaningful information for our readers and call forth more investigations working on this topic.
Collapse
Affiliation(s)
- Weitong Xu
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Honghan Chen
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Jiao JZ, Zhang Y, Zhang WJ, He MD, Meng M, Liu T, Ma QL, Xu Y, Gao P, Chen CH, Zhang L, Pi HF, Deng P, Wu YZ, Zhou Z, Yu ZP, Deng YC, Lu YH. Radiofrequency radiation reshapes tumor immune microenvironment into antitumor phenotype in pulmonary metastatic melanoma by inducing active transformation of tumor-infiltrating CD8 + T and NK cells. Acta Pharmacol Sin 2024; 45:1492-1505. [PMID: 38538718 PMCID: PMC11192955 DOI: 10.1038/s41401-024-01260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/03/2024] [Indexed: 06/23/2024] Open
Abstract
Immunosuppression by the tumor microenvironment is a pivotal factor contributing to tumor progression and immunotherapy resistance. Priming the tumor immune microenvironment (TIME) has emerged as a promising strategy for improving the efficacy of cancer immunotherapy. In this study we investigated the effects of noninvasive radiofrequency radiation (RFR) exposure on tumor progression and TIME phenotype, as well as the antitumor potential of PD-1 blockage in a model of pulmonary metastatic melanoma (PMM). Mouse model of PMM was established by tail vein injection of B16F10 cells. From day 3 after injection, the mice were exposed to RFR at an average specific absorption rate of 9.7 W/kg for 1 h per day for 14 days. After RFR exposure, lung tissues were harvested and RNAs were extracted for transcriptome sequencing; PMM-infiltrating immune cells were isolated for single-cell RNA-seq analysis. We showed that RFR exposure significantly impeded PMM progression accompanied by remodeled TIME of PMM via altering the proportion and transcription profile of tumor-infiltrating immune cells. RFR exposure increased the activation and cytotoxicity signatures of tumor-infiltrating CD8+ T cells, particularly in the early activation subset with upregulated genes associated with T cell cytotoxicity. The PD-1 checkpoint pathway was upregulated by RFR exposure in CD8+ T cells. RFR exposure also augmented NK cell subsets with increased cytotoxic characteristics in PMM. RFR exposure enhanced the effector function of tumor-infiltrating CD8+ T cells and NK cells, evidenced by increased expression of cytotoxic molecules. RFR-induced inhibition of PMM growth was mediated by RFR-activated CD8+ T cells and NK cells. We conclude that noninvasive RFR exposure induces antitumor remodeling of the TIME, leading to inhibition of tumor progression, which provides a promising novel strategy for TIME priming and potential combination with cancer immunotherapy.
Collapse
Affiliation(s)
- Jia-Zheng Jiao
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yang Zhang
- Radiation Biology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Wen-Juan Zhang
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Min-di He
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Meng Meng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Tao Liu
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Qin-Long Ma
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Ya Xu
- Radiation Biology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Peng Gao
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Chun-Hai Chen
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Lei Zhang
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Hui-Feng Pi
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Ping Deng
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yong-Zhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Zheng-Ping Yu
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China.
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| | - You-Cai Deng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China.
| | - Yong-Hui Lu
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China.
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
6
|
Wu S, Peng H, Li S, Huang L, Wang X, Li Y, Liu Y, Xiong P, Yang Q, Tian K, Wu W, Pu R, Lu X, Xiao Z, Yang J, Zhong Z, Gao Y, Deng Y, Deng Y. The ω-3 Polyunsaturated Fatty Acid Docosahexaenoic Acid Enhances NK-Cell Antitumor Effector Functions. Cancer Immunol Res 2024; 12:744-758. [PMID: 38526128 PMCID: PMC11148550 DOI: 10.1158/2326-6066.cir-23-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
ω-3 polyunsaturated fatty acids (PUFA) are known to directly repress tumor development and progression. In this study, we explored whether docosahexaenoic acid (DHA), a type of ω-3 PUFA, had an immunomodulatory role in inhibiting tumor growth in immunocompetent mice. The number of natural killer (NK) cells but not the number of T or B cells was decreased by DHA supplementation in various tissues under physiologic conditions. Although the frequency and number of NK cells were comparable, IFNγ production by NK cells in both the spleen and lung was increased in DHA-supplemented mice in the mouse B16F10 melanoma tumor model. Single-cell RNA sequencing revealed that DHA promoted effector function and oxidative phosphorylation in NK cells but had no obvious effects on other immune cells. Using Rag2-/- mice and NK-cell depletion by PK136 antibody injection, we demonstrated that the suppression of B16F10 melanoma tumor growth in the lung by DHA supplementation was dependent mainly on NK cells. In vitro experiments showed that DHA directly enhanced IFNγ production, CD107a expression, and mitochondrial oxidative phosphorylation (OXPHOS) activity and slightly increased proliferator-activated receptor gamma coactivator-1α (PGC-1α) protein expression in NK cells. The PGC-1α inhibitor SR-18292 in vitro and NK cell-specific knockout of PGC-1α in mice reversed the antitumor effects of DHA. In summary, our findings broaden the current knowledge on how DHA supplementation protects against cancer growth from the perspective of immunomodulation by upregulating PGC-1α signaling-mediated mitochondrial OXPHOS activity in NK cells.
Collapse
Affiliation(s)
- Shuting Wu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongyan Peng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Songyang Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lanlan Huang
- The School of Pediatrics, Hengyang Medical School, University of South China, Changsha, China
| | - Xiangyu Wang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yana Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongjie Liu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Peiwen Xiong
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qinglan Yang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Kunpeng Tian
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Weiru Wu
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Rongxi Pu
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Xiulan Lu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhenghui Xiao
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaoyang Zhong
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Yuan Gao
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| | - Yafei Deng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- The School of Pediatrics, Hengyang Medical School, University of South China, Changsha, China
| | - Youcai Deng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Vahidi S, Zabeti Touchaei A, Samadani AA. IL-15 as a key regulator in NK cell-mediated immunotherapy for cancer: From bench to bedside. Int Immunopharmacol 2024; 133:112156. [PMID: 38669950 DOI: 10.1016/j.intimp.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Interleukin 15 (IL-15) has emerged as a crucial factor in the relationship between natural killer (NK) cells and immunotherapy for cancer. This review article aims to provide a comprehensive understanding of the role of IL-15 in NK cell-mediated immunotherapy. First, the key role of IL-15 signaling in NK cell immunity is discussed, highlighting its regulation of NK cell functions and antitumor properties. Furthermore, the use of IL-15 or its analogs in clinical trials as a therapeutic strategy for various cancers, including the genetic modification of NK cells to produce IL-15, has been explored. The potential of IL-15-based therapies, such as chimeric antigen receptor (CAR) T and NK cell infusion along with IL-15 in combination with checkpoint inhibitors and other treatments, has been examined. This review also addresses the challenges and advantages of incorporating IL-15 in cell-based immunotherapy. Additionally, unresolved questions regarding the detection and biological significance of the soluble IL-15/IL-15Rα complex, as well as the potential role of IL-15/IL-15Rα in human cancer and the immunological consequences of prolonged exposure to soluble IL-15 for NK cells, are discussed.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
8
|
Dhaliwal NK, Weng OY, Dong X, Bhattacharya A, Ahmed M, Nishimura H, Choi WWY, Aggarwal A, Luikart BW, Shu Q, Li X, Wilson MD, Moffat J, Wang LY, Muffat J, Li Y. Synergistic hyperactivation of both mTORC1 and mTORC2 underlies the neural abnormalities of PTEN-deficient human neurons and cortical organoids. Cell Rep 2024; 43:114173. [PMID: 38700984 DOI: 10.1016/j.celrep.2024.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Mutations in the phosphatase and tensin homolog (PTEN) gene are associated with severe neurodevelopmental disorders. Loss of PTEN leads to hyperactivation of the mechanistic target of rapamycin (mTOR), which functions in two distinct protein complexes, mTORC1 and mTORC2. The downstream signaling mechanisms that contribute to PTEN mutant phenotypes are not well delineated. Here, we show that pluripotent stem cell-derived PTEN mutant human neurons, neural precursors, and cortical organoids recapitulate disease-relevant phenotypes, including hypertrophy, electrical hyperactivity, enhanced proliferation, and structural overgrowth. PTEN loss leads to simultaneous hyperactivation of mTORC1 and mTORC2. We dissect the contribution of mTORC1 and mTORC2 by generating double mutants of PTEN and RPTOR or RICTOR, respectively. Our results reveal that the synergistic hyperactivation of both mTORC1 and mTORC2 is essential for the PTEN mutant human neural phenotypes. Together, our findings provide insights into the molecular mechanisms that underlie PTEN-related neural disorders and highlight novel therapeutic targets.
Collapse
Affiliation(s)
- Navroop K Dhaliwal
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Octavia Yifang Weng
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Xiaoxue Dong
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Afrin Bhattacharya
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Mai Ahmed
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Haruka Nishimura
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Wendy W Y Choi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Aditi Aggarwal
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Qiang Shu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Michael D Wilson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Lu-Yang Wang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
9
|
Xu L, Pan F, Guo Z. TIPE2: A Candidate for Targeting Antitumor Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:755-763. [PMID: 38377476 DOI: 10.4049/jimmunol.2300433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 02/22/2024]
Abstract
TNF-α-induced protein 8-like 2 (TIPE2 or TNFAIP8L2) is a recently discovered negative regulator of innate and adaptive immunity. TIPE2 is expressed in a wide range of tissues, both immune and nonimmune, and is implicated in the maintenance of immune homeostasis within the immune system. Furthermore, TIPE2 has been shown to play a pivotal role in the regulation of inflammation and the development of tumor. This review focuses on the structural characteristics, expression patterns, and functional roles of TIPE proteins, with a particular emphasis on the role and underlying mechanisms of TIPE2 in immune regulation and its involvement in different diseases. However, the current body of evidence is still limited in providing a comprehensive understanding of the complex role of TIPE2 in the human body, warranting further investigation to elucidate the possible mechanisms and functions of TIPE2 in diverse disease contexts.
Collapse
Affiliation(s)
- Luxia Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
10
|
Gargalionis AN, Papavassiliou KA, Papavassiliou AG. mTOR Signaling: Recent Progress. Int J Mol Sci 2024; 25:2587. [PMID: 38473834 DOI: 10.3390/ijms25052587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
In the intricate landscape of human biology, the mechanistic target of rapamycin (mTOR) emerges as a key regulator, orchestrating a vast array of processes in health and disease [...].
Collapse
Affiliation(s)
- Antonios N Gargalionis
- Department of Biopathology, 'Eginition' Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Kostas A Papavassiliou
- 'Sotiria' Hospital, Medical School, First University Department of Respiratory Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
11
|
Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Prasher P, Oliver B, Singh SK, MacLoughlin R, Dua K, Gupta G. From carcinogenesis to therapeutic avenues: lncRNAs and mTOR crosstalk in lung cancer. Pathol Res Pract 2024; 253:155015. [PMID: 38103364 DOI: 10.1016/j.prp.2023.155015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to have a crucial function in the modulation of the activity of genes, impacting a variety of homeostatic processes involving growth, survival, movement, and genomic consistency. Certain lncRNAs' aberrant expression has been linked to carcinogenesis, tumor growth, and therapeutic resistance. They are beneficial for the management of malignancies since they can function as cancer-causing or cancer-suppressing genes and behave as screening or prognosis indicators. The modulation of the tumor microenvironment, metabolic modification, and spread have all been linked to lncRNAs in lung cancer. Recent research has indicated that lncRNAs may interact with various mTOR signalling systems to control expression in lung cancer. Furthermore, the route can affect how lncRNAs are expressed. Emphasizing the function of lncRNAs as crucial participants in the mTOR pathway, the current review intends to examine the interactions between the mTOR cascade and the advancement of lung cancer. The article will shed light on the roles and processes of a few lncRNAs associated with the development of lung cancer, as well as their therapeutic prospects.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- ōDepartment of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Brian Oliver
- Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Woolcock Institute of Medical Research, Macquarie university, Sydney, NSW, 2137
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
12
|
Pan W, Tao T, Qiu Y, Zhu X, Zhou X. Natural killer cells at the forefront of cancer immunotherapy with immune potency, genetic engineering, and nanotechnology. Crit Rev Oncol Hematol 2024; 193:104231. [PMID: 38070841 DOI: 10.1016/j.critrevonc.2023.104231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Natural killer (NK) cells are vital components of the human immune system, acting as innate lymphocytes and playing a crucial role in immune surveillance. Their unique ability to independently eliminate target cells without antigen contact or antibodies has sparked interest in immunological research. This review examines recent NK cell developments and applications, encompassing immune functions, interactions with target cells, genetic engineering techniques, pharmaceutical interventions, and implications in cancers. Insights into NK cell regulation emerge, with a focus on promising genetic engineering like CAR-engineered NK cells, enhancing specificity against tumors. Immune checkpoint inhibitors also enhance NK cells' potential in cancer therapy. Nanotechnology's emergence as a tool for targeted drug delivery to improve NK cell therapies is explored. In conclusion, NK cells are pivotal in immunity, holding exciting potential in cancer immunotherapy. Ongoing research promises novel therapeutic strategies, advancing immunotherapy and medical interventions.
Collapse
Affiliation(s)
- Weiyi Pan
- Department of Immunology, School of Medicine, Nantong University, Nantong, China; School of Public Health, Southern Medical University, Guangzhou, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Yishu Qiu
- Department of Biology, College of Arts and Science, New York University, New York, USA
| | - Xiao Zhu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
13
|
Giansanti M, Theinert T, Boeing SK, Haas D, Schlegel PG, Vacca P, Nazio F, Caruana I. Exploiting autophagy balance in T and NK cells as a new strategy to implement adoptive cell therapies. Mol Cancer 2023; 22:201. [PMID: 38071322 PMCID: PMC10709869 DOI: 10.1186/s12943-023-01893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Autophagy is an essential cellular homeostasis pathway initiated by multiple stimuli ranging from nutrient deprivation to viral infection, playing a key role in human health and disease. At present, a growing number of evidence suggests a role of autophagy as a primitive innate immune form of defense for eukaryotic cells, interacting with components of innate immune signaling pathways and regulating thymic selection, antigen presentation, cytokine production and T/NK cell homeostasis. In cancer, autophagy is intimately involved in the immunological control of tumor progression and response to therapy. However, very little is known about the role and impact of autophagy in T and NK cells, the main players in the active fight against infections and tumors. Important questions are emerging: what role does autophagy play on T/NK cells? Could its modulation lead to any advantages? Could specific targeting of autophagy on tumor cells (blocking) and T/NK cells (activation) be a new intervention strategy? In this review, we debate preclinical studies that have identified autophagy as a key regulator of immune responses by modulating the functions of different immune cells and discuss the redundancy or diversity among the subpopulations of both T and NK cells in physiologic context and in cancer.
Collapse
Affiliation(s)
- Manuela Giansanti
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Tobias Theinert
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Sarah Katharina Boeing
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Dorothee Haas
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Paul-Gerhardt Schlegel
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Francesca Nazio
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy.
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Ignazio Caruana
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
14
|
Deng YF, Wu ST, Peng HY, Tian L, Li YN, Yang Y, Meng M, Huang LL, Xiong PW, Li SY, Yang QL, Wang LL, Li XY, Li LP, Lu XL, Li XH, Wei YL, Xiao ZH, Yu JH, Deng YC. mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development. Acta Pharmacol Sin 2023; 44:2243-2252. [PMID: 37407703 PMCID: PMC10618277 DOI: 10.1038/s41401-023-01120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function. Recent studies have investigated the role of the mammalian target of rapamycin complex (mTOR) in ILC3s, whereas the mTORC1-related mechanisms and crosstalk between mTORC1 and mTORC2 involved in regulating ILC3 homeostasis remain unknown. In this study, we found that mTORC1 but not mTORC2 was critical in ILC3 development, IL-22 production, and ILC3-mediated intestinal homeostasis. Single-cell RNA sequencing revealed that mTORC1 deficiency led to disruption of ILC3 heterogeneity, showing an increase in differentiation into ILC1-like phenotypes. Mechanistically, mTORC1 deficiency decreased the expression of NFIL3, which is a critical transcription factor responsible for ILC3 development. The activities of both mTORC1 and mTORC2 were increased in wild-type ILC3s after activation by IL-23, whereas inhibition of mTORC1 by Raptor deletion or rapamycin treatment resulted in increased mTORC2 activity. Previous studies have demonstrated that S6K, the main downstream target of mTORC1, can directly phosphorylate Rictor to dampen mTORC2 activity. Our data found that inhibition of mTORC1 activity by rapamycin reduced Rictor phosphorylation in ILC3s. Reversing the increased mTORC2 activity via heterozygous or homozygous knockout of Rictor in Raptor-deleted ILC3s resulted in severe ILC3 loss and complete susceptibility to intestinal infection in mice with mTORC1 deficiency (100% mortality). Thus, mTORC1 acts as a rheostat of ILC3 heterogeneity, and mTORC2 protects ILC3s from severe loss of cells and immune activity against intestinal infection when mTORC1 activity is diminished.
Collapse
Affiliation(s)
- Ya-Fei Deng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Shu-Ting Wu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Hong-Yan Peng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Ya-Na Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Yao Yang
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Meng Meng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Lan-Lan Huang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Pei-Wen Xiong
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Song-Yang Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Qing-Lan Yang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Li-Li Wang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Xiao-Yao Li
- Department of Clinical Pharmacy, Weifang Traditional Chinese Hospital, Weifang, 261041, China
| | - Li-Ping Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Xiu-Lan Lu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Xiao-Hui Li
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Yan-Ling Wei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Zheng-Hui Xiao
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China.
| | - Jian-Hua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA.
| | - You-Cai Deng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
15
|
Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 2023; 8:375. [PMID: 37779156 PMCID: PMC10543444 DOI: 10.1038/s41392-023-01608-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses, autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis, biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1 and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance. Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the benefit of cancer patients in clinics.
Collapse
Affiliation(s)
- Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent, 100125, Uzbekistan
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Agha Saquib Raza
- Rajive Gandhi Super Speciality Hospital, Tahirpur, New Delhi, 110093, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
16
|
Zeng X, Dong X, Ma Y, Yao J. Chemokine (C-X-C motif) ligand 1 maintains the immune surveillance function of natural killer cells via the PDK2/mTOR signaling pathway. Cell Biol Toxicol 2023; 39:2227-2241. [PMID: 35304656 DOI: 10.1007/s10565-022-09708-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
Abstract
Chemokine (C-X-C motif) ligand 1 (CXCL1) is mainly expressed on neutrophils and macrophages and has neutrophil chemoattractant activity. However, natural killer (NK) cells also express CXCL1. We were curious about the role played by CXCL1 in NK cells. Knocking out CXCL1 in hematopoietic cells does not affect the occurrence of NK cells; however, it does hinder NK cell maturity. CXCL1 deletion enhances the expression of immature markers and decreases the expression of functional markers in NK cells, which may explain why it hinders the maturation of NK cells. Specific knockout of CXCL1 in NK cells (CXCL1flox/flox Ncr1-cre) leads to impaired IFN-γ production and degranulation of NK cells. The lack of CXCL1 may prevent IFN-γ production and degranulation of NK cells by inhibiting the phosphorylation of AKTS473 and S6. Therefore, we have discovered a new role for CXCL1 in regulating NK cell development and immune surveillance, providing a novel theoretical basis for immunotherapy based on NK cells and potential therapeutic targets for the clinical use of NK cells. 1. Knockout of CXCL1 in hematopoietic cells inhibits the maturation of NK cells. 2. Knockout of CXCL1 in NK cells inhibits the clearance of lymphoma by NK cells and reduces IFN-γ production and CD107 expression in NK cells. 3. CXCL1 activates the PKD2/mTOR signaling pathway, and promotes the production of IFN-γ and the expression of CD107a in NK cells.
Collapse
Affiliation(s)
- Xiaokang Zeng
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, Guangdong, China.
| | - Xinhuai Dong
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, Guangdong, China
| | - Yanning Ma
- Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
| | - Jie Yao
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, Guangdong, China.
- Department of Laboratory Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, 528300, Guangdong, China.
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China.
| |
Collapse
|
17
|
Ramalingam S, Shantha S, Muralitharan S, Sudhakar U, Thamizhchelvan H, Parvathi VD. Role of tissue markers associated with tumor microenvironment in the progression and immune suppression of oral squamous cell carcinoma. Med Oncol 2023; 40:303. [PMID: 37731058 DOI: 10.1007/s12032-023-02169-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023]
Abstract
Head and neck cancers (HNC) continues to dominate major cancers contributing to mortality worldwide. Squamous cell carcinoma is the major type of HNC. Oral Squamous Cell Carcinoma grouped under HNC is a malignant tumor occurring in the oral cavity. The primary risk factors of OSCC are tobacco, alcohol consumption, etc. This review focuses on modulations, mechanisms, growth and differentiation of oral squamous cell carcinoma. Cancer cell surrounds itself with a group of elements forming a favorable environment known as tumor microenvironment (TME). It consists of numerous cells which includes immune cells, blood cells and acellular components that are responsible for the progression, immunosuppression, metastasis and angiogenesis of cancer. This review highlights the most important tissue biomarkers (mTOR, CAF, FOXp3, CD163, CD33, CD34) that are associated with TME cells. mTOR remains as the primary regulator responsible in cancer and its importance towards immune-suppression is highlighted. Tumor-associated macrophages associated with cancer development and its relationship with immunomodulatory mechanism and Tregs, which are potential blockers of immune response and its mechanism and aberrations are discussed. Cancer-associated fibroblasts that are a part of TME and their role in evading the immune response and myeloid derived suppressor cells that have slight control over the immune response and their mechanism in the tumor progression is further explained. These markers have been emphasised as therapeutic targets and are currently in different stages of clinical trials.
Collapse
Affiliation(s)
- Suganya Ramalingam
- Department of Oral Pathology, Sri Ramachandra Dental College and Hospital, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Sivaramakrishnan Shantha
- Department of Oral Pathology, Sri Ramachandra Dental College and Hospital, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Susruthan Muralitharan
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
- Susrutha Diagnostics, Chennai, India
| | - Uma Sudhakar
- Department of Periodontics, Department of Dental Sciences, Tamil Nadu Dr. M.G.R. Medical University, Guindy, Chennai, 600032, India
| | - Harikrishnan Thamizhchelvan
- Department of Oral Pathology, Sri Ramachandra Dental College and Hospital, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India.
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India.
| |
Collapse
|
18
|
Fallone L, Walzer T, Marçais A. Signaling Pathways Leading to mTOR Activation Downstream Cytokine Receptors in Lymphocytes in Health and Disease. Int J Mol Sci 2023; 24:12736. [PMID: 37628917 PMCID: PMC10454121 DOI: 10.3390/ijms241612736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
CD8+ T cells and Natural Killer (NK) cells are cytotoxic lymphocytes important in the response to intracellular pathogens and cancer. Their activity depends on the integration of a large set of intracellular and environmental cues, including antigenic signals, cytokine stimulation and nutrient availability. This integration is achieved by signaling hubs, such as the mechanistic target of rapamycin (mTOR). mTOR is a conserved protein kinase that controls cellular growth and metabolism in eukaryotic cells and, therefore, is essential for lymphocyte development and maturation. However, our current understanding of mTOR signaling comes mostly from studies performed in transformed cell lines, which constitute a poor model for comprehending metabolic pathway regulation. Therefore, it is only quite recently that the regulation of mTOR in primary cells has been assessed. Here, we review the signaling pathways leading to mTOR activation in CD8+ T and NK cells, focusing on activation by cytokines. We also discuss how this knowledge can contribute to immunotherapy development, particularly for cancer treatment.
Collapse
Affiliation(s)
| | | | - Antoine Marçais
- CIRI—Centre International de Recherche en Infectiologie (Team Lyacts), Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.F.); (T.W.)
| |
Collapse
|
19
|
Zhao X, Lin M, Huang X. Current status and future perspective of natural killer cell therapy for cancer. MEDICAL REVIEW (2021) 2023; 3:305-320. [PMID: 38235405 PMCID: PMC10790210 DOI: 10.1515/mr-2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/23/2023] [Indexed: 01/19/2024]
Abstract
Natural killer (NK) cells possess innate abilities to effectively eliminate cancer cells. However, because of difficulties of proliferation and easy to be induced dysfunction in the setting of cancer post NK cell therapy, the curative effect of NK cell infusion has been constrained and not been widely applicable in clinical practice. The rapid development of biotechnology has promoted the development of NK cell therapy for cancer treatment. In this review, we will provide a comprehensive analysis of the current status and future prospects of NK cell therapy for cancer, focusing on the biological characteristics of NK cells, as well as strategies to enhance their targeting capabilities and overcome tumor immune suppression within the microenvironment.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Minghao Lin
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| |
Collapse
|
20
|
Lamarthée B, Callemeyn J, Van Herck Y, Antoranz A, Anglicheau D, Boada P, Becker JU, Debyser T, De Smet F, De Vusser K, Eloudzeri M, Franken A, Gwinner W, Koshy P, Kuypers D, Lambrechts D, Marquet P, Mathias V, Rabant M, Sarwal MM, Senev A, Sigdel TK, Sprangers B, Thaunat O, Tinel C, Van Brussel T, Van Craenenbroeck A, Van Loon E, Vaulet T, Bosisio F, Naesens M. Transcriptional and spatial profiling of the kidney allograft unravels a central role for FcyRIII+ innate immune cells in rejection. Nat Commun 2023; 14:4359. [PMID: 37468466 DOI: 10.1038/s41467-023-39859-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 06/28/2023] [Indexed: 07/21/2023] Open
Abstract
Rejection remains the main cause of premature graft loss after kidney transplantation, despite the use of potent immunosuppression. This highlights the need to better understand the composition and the cell-to-cell interactions of the alloreactive inflammatory infiltrate. Here, we performed droplet-based single-cell RNA sequencing of 35,152 transcriptomes from 16 kidney transplant biopsies with varying phenotypes and severities of rejection and without rejection, and identified cell-type specific gene expression signatures for deconvolution of bulk tissue. A specific association was identified between recipient-derived FCGR3A+ monocytes, FCGR3A+ NK cells and the severity of intragraft inflammation. Activated FCGR3A+ monocytes overexpressed CD47 and LILR genes and increased paracrine signaling pathways promoting T cell infiltration. FCGR3A+ NK cells overexpressed FCRL3, suggesting that antibody-dependent cytotoxicity is a central mechanism of NK-cell mediated graft injury. Multiplexed immunofluorescence using 38 markers on 18 independent biopsy slides confirmed this role of FcγRIII+ NK and FcγRIII+ nonclassical monocytes in antibody-mediated rejection, with specificity to the glomerular area. These results highlight the central involvement of innate immune cells in the pathogenesis of allograft rejection and identify several potential therapeutic targets that might improve allograft longevity.
Collapse
Affiliation(s)
- Baptiste Lamarthée
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Université de Franche-Comté, UBFC, EFS, Inserm UMR RIGHT, Besançon, France
| | - Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Yannick Van Herck
- Department of Oncology, Laboratory for Experimental Oncology, KU Leuven, Leuven, Belgium
| | - Asier Antoranz
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Dany Anglicheau
- Department of Nephrology and Kidney Transplantation, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, Inserm U1151, Necker Enfants-Malades Institute, Paris, France
| | - Patrick Boada
- Division of Multi-Organ Transplantation, Department of Surgery, UCSF, 513 Parnassus, San Francisco, CA, USA
| | - Jan Ulrich Becker
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Tim Debyser
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Katrien De Vusser
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Maëva Eloudzeri
- Université Paris Cité, Inserm U1151, Necker Enfants-Malades Institute, Paris, France
| | - Amelie Franken
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Human Genetics, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium
| | - Wilfried Gwinner
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Priyanka Koshy
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Human Genetics, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium
| | - Pierre Marquet
- Department of Pharmacology and Transplantation, University of Limoges, Inserm U1248, Limoges University Hospital, Limoges, France
| | - Virginie Mathias
- EFS, HLA Laboratory, Décines, France
- Université Claude Bernard Lyon I, Inserm U1111, CNRS UMR5308, CIRI, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marion Rabant
- Université Paris Cité, Inserm U1151, Necker Enfants-Malades Institute, Paris, France
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Minnie M Sarwal
- Division of Multi-Organ Transplantation, Department of Surgery, UCSF, 513 Parnassus, San Francisco, CA, USA
| | - Aleksandar Senev
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Histocompatibility and Immunogenetics Laboratory, Red Cross-Flanders, Mechelen, Belgium
| | - Tara K Sigdel
- Division of Multi-Organ Transplantation, Department of Surgery, UCSF, 513 Parnassus, San Francisco, CA, USA
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Olivier Thaunat
- Université Claude Bernard Lyon I, Inserm U1111, CNRS UMR5308, CIRI, Ecole Normale Supérieure de Lyon, Lyon, France
- Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, Lyon, France
| | - Claire Tinel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Université de Franche-Comté, UBFC, EFS, Inserm UMR RIGHT, Besançon, France
- Department of Nephrology and Kidney Transplantation, Dijon Hospital, Dijon, France
| | - Thomas Van Brussel
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Human Genetics, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium
| | - Amaryllis Van Craenenbroeck
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Thibaut Vaulet
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Francesca Bosisio
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium.
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Shin E, Bak SH, Park T, Kim JW, Yoon SR, Jung H, Noh JY. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond. Front Immunol 2023; 14:1192907. [PMID: 37539051 PMCID: PMC10395517 DOI: 10.3389/fimmu.2023.1192907] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Gene-engineered immune cell therapies have partially transformed cancer treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T cells in certain hematologic malignancies. However, there are several limitations that need to be addressed to target more cancer types. Natural killer (NK) cells are a type of innate immune cells that represent a unique biology in cancer immune surveillance. In particular, NK cells obtained from heathy donors can serve as a source for genetically engineered immune cell therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have emerged. With recent advances in genetic engineering and cell biology techniques, NK cell-based therapies have become promising approaches for a wide range of cancers, viral infections, and senescence. This review provides a brief overview of NK cell characteristics and summarizes diseases that could benefit from NK-based therapies. In addition, we discuss recent preclinical and clinical investigations on the use of adoptive NK cell transfer and agents that can modulate NK cell activity.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Jin Woo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Suk-Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
22
|
Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, Wang Y, Wang T, Xiang J, Wang B. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol 2023; 16:59. [PMID: 37277776 DOI: 10.1186/s13045-023-01453-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023] Open
Abstract
Amino acids are basic nutrients for immune cells during organ development, tissue homeostasis, and the immune response. Regarding metabolic reprogramming in the tumor microenvironment, dysregulation of amino acid consumption in immune cells is an important underlying mechanism leading to impaired anti-tumor immunity. Emerging studies have revealed that altered amino acid metabolism is tightly linked to tumor outgrowth, metastasis, and therapeutic resistance through governing the fate of various immune cells. During these processes, the concentration of free amino acids, their membrane bound transporters, key metabolic enzymes, and sensors such as mTOR and GCN2 play critical roles in controlling immune cell differentiation and function. As such, anti-cancer immune responses could be enhanced by supplement of specific essential amino acids, or targeting the metabolic enzymes or their sensors, thereby developing novel adjuvant immune therapeutic modalities. To further dissect metabolic regulation of anti-tumor immunity, this review summarizes the regulatory mechanisms governing reprogramming of amino acid metabolism and their effects on the phenotypes and functions of tumor-infiltrating immune cells to propose novel approaches that could be exploited to rewire amino acid metabolism and enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Luming Yang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Zhaole Chu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Meng Liu
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qiang Zou
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Jinyang Li
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qin Liu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Yazhou Wang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China.
| | - Tao Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Junyu Xiang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Bin Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China.
| |
Collapse
|
23
|
Cimpean M, Cooper MA. Metabolic regulation of NK cell antiviral functions during cytomegalovirus infection. J Leukoc Biol 2023; 113:525-534. [PMID: 36843434 PMCID: PMC11262056 DOI: 10.1093/jleuko/qiad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/28/2023] Open
Abstract
Natural killer (NK) cells quickly mount cytotoxic responses, produce cytokines, and proliferate in response to infected or transformed cells. Moreover, they can develop memory, with enhanced effector responses following activation, in some cases with antigen specificity. To optimally execute these functions, NK cells undergo metabolic reprogramming. Here, we discuss the interplay between metabolism and NK cell function in the context of viral infections. We review findings supporting metabolic regulation of NK cell effector functions, with a focus on NK cell antiviral infection in the context of cytomegalovirus in the mouse (MCMV) and human (HCMV).
Collapse
Affiliation(s)
- Maria Cimpean
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, USA
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, USA
| |
Collapse
|
24
|
Bi J, Jin X, Zheng C, Huang C, Zhong C, Zheng X, Tian Z, Sun H. Checkpoint TIPE2 Limits the Helper Functions of NK Cells in Supporting Antitumor CD8 + T Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207499. [PMID: 36807566 PMCID: PMC10131822 DOI: 10.1002/advs.202207499] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Natural killer (NK) cells not only are innate effector lymphocytes that directly participate in tumor surveillance but are also essential helpers in the antitumor CD8+ T-cell response. However, the molecular mechanisms and potential checkpoints regulating NK cell helper functions remain elusive. Here, it is shown that the T-bet/Eomes-IFN-γ axis in NK cells is essential for CD8+ T cell-dependent tumor control, whereas T-bet-dependent NK cell effector functions are required for an optimal response to anti-PD-L1 immunotherapy. Importantly, NK cell-expressed TIPE2 (tumor necrosis factor-alpha-induced protein-8 like-2) represents a checkpoint molecule for NK cell helper function, since Tipe2 deletion in NK cells not only enhances NK-intrinsic antitumor activity but also indirectly improves the antitumor CD8+ T cell response by promoting T-bet/Eomes-dependent NK cell effector functions. These studies thus reveal TIPE2 as a checkpoint for NK cell helper function, whose targeting might boost the antitumor T cell response in addition to T cell-based immunotherapy.
Collapse
Affiliation(s)
- Jiacheng Bi
- The CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Xiaomeng Jin
- The CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Chaoyue Zheng
- The CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Chen Huang
- The CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Chao Zhong
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191P. R. China
| | - Xiaohu Zheng
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical Sciences, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefei230027P. R. China
| | - Zhigang Tian
- The CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical Sciences, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefei230027P. R. China
- Research Unit of NK cell StudyChinese Academy of Medical SciencesBeijing100864P. R. China
| | - Haoyu Sun
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical Sciences, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefei230027P. R. China
| |
Collapse
|
25
|
Haroun-Izquierdo A, Lanuza PM, Pfefferle A, Netskar H, Ask EH, Törlén J, Björklund A, Sohlberg E, Malmberg KJ. Effect of mTOR Inhibition with Sirolimus on Natural Killer Cell Reconstitution in Allogeneic Stem Cell Transplantation. Transplant Cell Ther 2023:S2666-6367(23)01201-0. [PMID: 36966873 DOI: 10.1016/j.jtct.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Sirolimus is an inhibitor of the mammalian target of rapamycin (mTOR) and is emerging as a promising component of graft-versus-host disease (GVHD) prophylaxis regimens in the context of allogeneic hematopoietic stem cell transplantation (HSCT). Multiple studies have explored the clinical benefits of adding sirolimus to GVHD prophylaxis; however, detailed immunologic studies have not yet been carried out in this context. Mechanistically, mTOR is at the center of metabolic regulation in T cells and natural killer (NK) cells and is critical for their differentiation to mature effector cells. Therefore, close evaluation of the inhibition of mTOR in the context of immune reconstitution post-HSCT is warranted. In this work, we studied the effect of sirolimus on immune reconstitution using a biobank of longitudinal samples from patients receiving either tacrolimus/sirolimus (TAC/SIR) or cyclosporin A/methotrexate (CSA/MTX) as conventional GVHD prophylaxis. Healthy donor controls, donor graft material, and samples from 28 patients (14 with TAC/SIR, 14 with CSA/MTX) at 3 to 4 weeks and 34 to 39 weeks post- HSCT were collected. Multicolor flow cytometry was used to perform broad immune cell mapping, with a focus on NK cells. NK cell proliferation was evaluated over a 6-day in vitro homeostatic proliferation protocol. Furthermore, in vitro NK cell responses to cytokine stimulation or tumor cells were evaluated. Systems-level assessment of the immune repertoire revealed a deep and prolonged suppression (weeks 34 to 39 post-HSCT) of the naïve CD4 T cell compartment with relative sparing of regulatory T cells and enrichment of CD69+Ki-67+HLA-DR+ CD8 T cells, independent of the type of GVHD prophylaxis. Early after transplantation (weeks 3 to 4), while patients were still on TAC/SIR or CSA/MTX, we found a relative increase in less-differentiated CD56bright NK cells and NKG2A+CD57-KIR- CD56dim NK cells and a distinct loss of CD16 and DNAM-1 expression. Both regimens led to suppressed proliferative responses ex vivo and functional impairment with preferential loss of cytokine responsiveness and IFN-γ production. Patients who received TAC/SIR as GVHD prophylaxis showed delayed NK cell reconstitution with lower overall NK cell counts and fewer CD56bright and NKG2A+ CD56dim NK cells. Treatment with sirolimus- containing regimens generated similar immune cell profiles as conventional prophylaxis; however, the NK cell compartment seemed to be composed of slightly more mature NK cells. These effects were also present after the completion of GVHD prophylaxis, suggesting that mTOR inhibition with sirolimus leaves a lasting imprint on homeostatic proliferation and NK cell reconstitution following HSCT.
Collapse
Affiliation(s)
- Alvaro Haroun-Izquierdo
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Pilar M Lanuza
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Aline Pfefferle
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Herman Netskar
- Institute for Cancer Research, Department of Cancer Immunology, University of Oslo, Oslo University Hospital, Norway
| | - Eivind H Ask
- Institute for Cancer Research, Department of Cancer Immunology, University of Oslo, Oslo University Hospital, Norway
| | - Johan Törlén
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Björklund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Institute for Cancer Research, Department of Cancer Immunology, University of Oslo, Oslo University Hospital, Norway.
| |
Collapse
|
26
|
Ma S, Sun B, Duan S, Han J, Barr T, Zhang J, Bissonnette MB, Kortylewski M, He C, Chen J, Caligiuri MA, Yu J. YTHDF2 orchestrates tumor-associated macrophage reprogramming and controls antitumor immunity through CD8 + T cells. Nat Immunol 2023; 24:255-266. [PMID: 36658237 PMCID: PMC10150872 DOI: 10.1038/s41590-022-01398-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/02/2022] [Indexed: 01/21/2023]
Abstract
Despite tumor-associated macrophages (TAMs) playing a key role in shaping the tumor microenvironment (TME), the mechanisms by which TAMs influence the TME and contribute to cancer progression remain unclear. Here, we show that the N6-methyladenosine reader YTHDF2 regulates the antitumor functions of TAMs. YTHDF2 deficiency in TAMs suppressed tumor growth by reprogramming TAMs toward an antitumoral phenotype and increasing their antigen cross-presentation ability, which in turn enhanced CD8+ T cell-mediated antitumor immunity. YTHDF2 deficiency facilitated the reprogramming of TAMs by targeting interferon-γ-STAT1 signaling. The expression of YTHDF2 in TAMs was regulated by interleukin-10-STAT3 signaling. Selectively targeting YTHDF2 in TAMs using a Toll-like receptor 9 agonist-conjugated small interfering RNA reprogrammed TAMs toward an antitumoral phenotype, restrained tumor growth and enhanced the efficacy of PD-L1 antibody therapy. Collectively, our findings describe the role of YTHDF2 in orchestrating TAMs and suggest that YTHDF2 inhibition is an effective approach to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Baofa Sun
- College of Life Sciences, Nankai University, Tianjin, China
| | - Songqi Duan
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jingjing Han
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA, USA
| | | | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA, USA
| | - Chuan He
- Departments of Chemistry and Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Los Angeles, CA, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA.
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA, USA.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA.
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA, USA.
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Shemesh A, Su Y, Calabrese DR, Chen D, Arakawa-Hoyt J, Roybal KT, Heath JR, Greenland JR, Lanier LL. Diminished cell proliferation promotes natural killer cell adaptive-like phenotype by limiting FcεRIγ expression. J Exp Med 2022; 219:e20220551. [PMID: 36066491 PMCID: PMC9448639 DOI: 10.1084/jem.20220551] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 08/05/2022] [Indexed: 12/20/2022] Open
Abstract
Human adaptive-like natural killer (NK) cells express low levels of FcεRIγ (FcRγ-/low) and are reported to accumulate during COVID-19 infection; however, the mechanism underlying and regulating FcRγ expression in NK cells has yet to be fully defined. We observed lower FcRγ protein expression in NK cell subsets from lung transplant patients during rapamycin treatment, suggesting a link with reduced mTOR activity. Further, FcRγ-/low NK cell subsets from healthy donors displayed reduced mTOR activity. We discovered that FcRγ upregulation is dependent on cell proliferation progression mediated by IL-2, IL-15, or IL-12, is sensitive to mTOR suppression, and is inhibited by TGFβ or IFNα. Accordingly, the accumulation of adaptive-like FcRγ-/low NK cells in COVID-19 patients corresponded to increased TGFβ and IFNα levels and disease severity. Our results show that an adaptive-like NK cell phenotype is induced by diminished cell proliferation and has an early prognostic value for increased TGFβ and IFNα levels in COVID-19 infection associated with disease severity.
Collapse
Affiliation(s)
- Avishai Shemesh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA
| | - Daniel R. Calabrese
- Department of Medicine, University of California, San Francisco, CA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA
| | - Daniel Chen
- Institute for Systems Biology, Seattle, WA
- Department of Microbiology, University of Washington, Seattle, WA
- Department of Informatics, University of Washington, Seattle, WA
| | - Janice Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
- Gladstone University of California, San Francisco Institute for Genetic Immunology, San Francisco, CA
- University of California, San Francisco Cell Design Institute, San Francisco, CA
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, CA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
28
|
Wang J, Liu X, Jin T, Cao Y, Tian Y, Xu F. NK cell immunometabolism as target for liver cancer therapy. Int Immunopharmacol 2022; 112:109193. [PMID: 36087507 DOI: 10.1016/j.intimp.2022.109193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Natural killer (NK) cells are being used effectively as a potential candidate in tumor immunotherapy. However, the migration and transport of NK cells to solid tumors is inadequate. NK cell dysfunction, tumor invasiveness, and metastasis are associated with altered metabolism of NK cells in the liver cancer microenvironment. However, in liver cancers, metabolic impairment of NK cells is still not understood fully. Evidence from various sources has shown that the interaction of NK cell's immune checkpoints with its metabolic checkpoints is responsible for the regulation of the development and function of these cells. How immune checkpoints contribute to metabolic programming is still not fully understood, and how this can be beneficial needs a better understanding, but they are emerging to be incredibly compelling to rebuilding the function of NK cells in the tumor. It is expected to represent a potential aim that focuses on improving the efficacy of therapies based on NK cells for treating liver cancer. Here, the recent advancements made to understand the NK cell's metabolic reprogramming in liver cancer have been summarized, along with the possible interplay between the immune and the metabolic checkpoints in NK cell function. Finally, an overview of some potential metabolic-related targets that can be used for liver cancer therapy treatment has been presented.
Collapse
Affiliation(s)
- Junqi Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaolin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
29
|
Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments. Nat Commun 2022; 13:4495. [PMID: 35918337 PMCID: PMC9345862 DOI: 10.1038/s41467-022-32066-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
While hypoxia promotes carcinogenesis, tumour aggressiveness, metastasis, and resistance to oncological treatments, the impacts of hyperoxia on tumours are rarely explored because providing a long-lasting oxygen supply in vivo is a major challenge. Herein, we construct micro oxygen factories, namely, photosynthesis microcapsules (PMCs), by encapsulation of acquired cyanobacteria and upconversion nanoparticles in alginate microcapsules. This system enables a long-lasting oxygen supply through the conversion of external radiation into red-wavelength emissions for photosynthesis in cyanobacteria. PMC treatment suppresses the NF-kB pathway, HIF-1α production and cancer cell proliferation. Hyperoxic microenvironment created by an in vivo PMC implant inhibits hepatocarcinoma growth and metastasis and has synergistic effects together with anti-PD-1 in breast cancer. The engineering oxygen factories offer potential for tumour biology studies in hyperoxic microenvironments and inspire the exploration of oncological treatments.
Collapse
|
30
|
Gong YY, Shao H, Li Y, Brafford P, Stine ZE, Sun J, Felsher DW, Orange JS, Albelda SM, Dang CV. Na +/H +-exchanger 1 enhances antitumor activity of engineered NK-92 natural killer cells. CANCER RESEARCH COMMUNICATIONS 2022; 2:842-856. [PMID: 36380966 PMCID: PMC9648415 DOI: 10.1158/2767-9764.crc-22-0270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
Adoptive cell transfer (ACT) immunotherapy has remarkable efficacy against some hematological malignancies. However, its efficacy in solid tumors is limited by the adverse tumor microenvironment (TME) conditions, most notably that acidity inhibits T and natural killer (NK) cell mTOR complex 1 (mTORC1) activity and impairs cytotoxicity. In several reported studies, systemic buffering of tumor acidity enhanced the efficacy of immune checkpoint inhibitors. Paradoxically, we found in a c-Myc-driven hepatocellular carcinoma model that systemic buffering increased tumor mTORC1 activity, negating inhibition of tumor growth by anti-PD1 treatment. Therefore, in this proof-of-concept study, we tested the metabolic engineering of immune effector cells to mitigate the inhibitory effect of tumor acidity while avoiding side effects associated with systemic buffering. We first overexpressed an activated RHEB in the human NK cell line NK-92, thereby rescuing acid-blunted mTORC1 activity and enhancing cytolytic activity. Then, to directly mitigate the effect of acidity, we ectopically expressed acid extruder proteins. Whereas ectopic expression of carbonic anhydrase IX (CA9) moderately increased mTORC1 activity, it did not enhance effector function. In contrast, overexpressing a constitutively active Na+/H+-exchanger 1 (NHE1; SLC9A1) in NK-92 did not elevate mTORC1 but enhanced degranulation, target engagement, in vitro cytotoxicity, and in vivo antitumor activity. Our findings suggest the feasibility of overcoming the inhibitory effect of the TME by metabolically engineering immune effector cells, which can enhance ACT for better efficacy against solid tumors.
Collapse
Affiliation(s)
- Yao-Yu Gong
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Yu Li
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | | | | | - Jing Sun
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dean W. Felsher
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Jordan S. Orange
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Steven M. Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chi V. Dang
- The Wistar Institute, Philadelphia, Pennsylvania
- Ludwig Institute for Cancer Research, New York, New York
| |
Collapse
|
31
|
Cappoli N, Jenkinson MD, Russo CD, Dickens D. LAT1, a novel pharmacological target for the treatment of glioblastoma. Biochem Pharmacol 2022; 201:115103. [PMID: 35618000 DOI: 10.1016/j.bcp.2022.115103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
The L-Type Amino Acid transporter, LAT1 (SLC7A5), has a crucial role in mediating amino acid uptake into the cells, thus modulating cell growth and proliferation as well as other intracellular functions. Different studies have reported a central role of LAT1 in glioblastoma development and progression, suggesting that the modulation of its activity could be a novel therapeutic strategy. LAT1 also has an important role in the peripheral immune system, by regulating the activation status of several immune cells through modulation of the mechanistic target of rapamycin kinase. In glioblastoma (GBM), the blood-brain barrier is disrupted, which allows the recruitment of peripheral immune cells to the tumour site. These cells, together with resident microglia, contribute to cancer growth and progression. Currently, little is known about the function of LAT1 in the reprogramming of the immune component of the tumour microenvironment in the context of GBM. In this article, we review the available data on the role of LAT1 in the regulation of GBM biology, including its potential role in the tumour microenvironment, particularly in infiltrating-peripheral immune cells and resident microglial cells. In addition, we review the available data on the main pharmacological inhibitors of LAT1, aiming to evaluate their possible role as novel therapeutics for GBM.
Collapse
Affiliation(s)
- Natalia Cappoli
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michael D Jenkinson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Cinzia Dello Russo
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom.
| | - David Dickens
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
32
|
Wu S, Wang S, Wang L, Peng H, Zhang S, Yang Q, Huang M, Li Y, Guan S, Jiang W, Zhang Z, Bi Q, Li L, Gao Y, Xiong P, Zhong Z, Xu B, Deng Y, Deng Y. Docosahexaenoic acid supplementation represses the early immune response against murine cytomegalovirus but enhances NK cell effector function. BMC Immunol 2022; 23:17. [PMID: 35439922 PMCID: PMC9017742 DOI: 10.1186/s12865-022-00492-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/12/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA) supplementation is beneficial for several chronic diseases; however, its effect on immune regulation is still debated. Given the prevalence of cytomegalovirus (CMV) infection and because natural killer (NK) cells are a component of innate immunity critical for controlling CMV infection, the current study explored the effect of a DHA-enriched diet on susceptibility to murine (M) CMV infection and the NK cell effector response to MCMV infection. RESULTS Male C57BL/6 mice fed a control or DHA-enriched diet for 3 weeks were infected with MCMV and sacrificed at the indicated time points postinfection. Compared with control mice, DHA-fed mice had higher liver and spleen viral loads at day 7 postinfection, but final MCMV clearance was not affected. The total numbers of NK cells and their terminal mature cell subset (KLRG1+ and Ly49H+ NK cells) were reduced compared with those in control mice at day 7 postinfection but not day 21. DHA feeding resulted in higher IFN-γ and granzyme B expression in splenic NK cells at day 7 postinfection. A mechanistic analysis showed that the splenic NK cells of DHA-fed mice had enhanced glucose uptake, increased CD71 and CD98 expression, and higher mitochondrial mass than control mice. In addition, DHA-fed mice showed reductions in the total numbers and activation levels of CD4+ and CD8+ T cells. CONCLUSIONS These results suggest that DHA supplementation represses the early response to CMV infection but preserves NK cell effector functions by improving mitochondrial activity, which may play critical roles in subsequent MCMV clearance.
Collapse
Affiliation(s)
- Shuting Wu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Shanshan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Lili Wang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Hongyan Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Shuju Zhang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Qinglan Yang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Minghui Huang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Yana Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Shuzhen Guan
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Wenjuan Jiang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Zhaohui Zhang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Qinghua Bi
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Liping Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Yuan Gao
- Southwest Hospital/Southwest Eye Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Peiwen Xiong
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Zhaoyang Zhong
- Cancer Center, Daping Hospital and Research Institute of Surgery, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Bo Xu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China.
| | - Yafei Deng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China.
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China.
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
33
|
Huang M, Cai H, Han B, Xia Y, Kong X, Gu J. Natural Killer Cells in Hepatic Ischemia-Reperfusion Injury. Front Immunol 2022; 13:870038. [PMID: 35418990 PMCID: PMC8996070 DOI: 10.3389/fimmu.2022.870038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemia-reperfusion injury can be divided into two phases, including insufficient supply of oxygen and nutrients in the first stage and then organ injury caused by immune inflammation after blood flow recovery. Hepatic ischemia-reperfusion is an important cause of liver injury post-surgery, consisting of partial hepatectomy and liver transplantation, and a central driver of graft dysfunction, which greatly leads to complications and mortality after liver transplantation. Natural killer (NK) cells are the lymphocyte population mainly involved in innate immune response in the human liver. In addition to their well-known role in anti-virus and anti-tumor defense, NK cells are also considered to regulate the pathogenesis of liver ischemia-reperfusion injury under the support of more and more evidence recently. The infiltration of NK cells into the liver exacerbates the hepatic ischemia-reperfusion injury, which could be significantly alleviated after depletion of NK cells. Interestingly, NK cells may contribute to both liver graft rejection and tolerance according to their origins. In this article, we discussed the development of liver NK cells, their role in ischemia-reperfusion injury, and strategies of inhibiting NK cell activation in order to provide potential possibilities for translation application in future clinical practice.
Collapse
Affiliation(s)
- Miao Huang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Cai
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Han
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Xia
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Zhang J, Rousseaux N, Walzer T. Eomes and T‐bet, a dynamic duo regulating NK cell differentiation. Bioessays 2022; 44:e2100281. [DOI: 10.1002/bies.202100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jiang Zhang
- Department of Dermatology Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
| | - Noémi Rousseaux
- CIRI Centre International de Recherche en Infectiologie CNRS, UMR5308, ENS de Lyon Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1 Lyon France
| | - Thierry Walzer
- CIRI Centre International de Recherche en Infectiologie CNRS, UMR5308, ENS de Lyon Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1 Lyon France
| |
Collapse
|
35
|
Younes SA. Mitochondrial Exhaustion of Memory CD4 T-Cells in Treated HIV-1 Infection. IMMUNOMETABOLISM 2022; 4:e220013. [PMID: 35633761 PMCID: PMC9140223 DOI: 10.20900/immunometab20220013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
People living with HIV (PLWH) who are immune non-responders (INR) to therapy are unable to restore their CD4 T-cell count and remain at great risk of morbidity and mortality. Here the mitochondrial defects that characterize memory CD4 T-cells in INR and causes of this mitochondrial exhaustion are reviewed. This review also describes the various reagents used to induce the expression of the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), the master regulator of mitochondrial biogenesis, which can restore mitochondria fitness and CD4 T-cell proliferation in INR. Due to sustained heightened inflammation in INR, the mitochondrial network is unable to be rejuvenated and requires attenuation of mediators of inflammation to rescue mitochondria and CD4 T-cell counts in INR.
Collapse
Affiliation(s)
- Souheil-Antoine Younes
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine, Emory University, Atlanta 30322, USA
| |
Collapse
|
36
|
Yao B, Yang Q, Yang Y, Li Y, Peng H, Wu S, Wang L, Zhang S, Huang M, Wang E, Xiong P, Luo T, Li L, Jia S, Deng Y, Deng Y. Screening for Active Compounds Targeting Human Natural Killer Cell Activation Identifying Daphnetin as an Enhancer for IFN-γ Production and Direct Cytotoxicity. Front Immunol 2021; 12:680611. [PMID: 34956168 PMCID: PMC8693168 DOI: 10.3389/fimmu.2021.680611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Natural killer (NK) cells are a potent weapon against tumor and viral infection. Finding active compounds with the capacity of enhancing NK cell effector functions will be effective to develop new anti-cancer drugs. In this study, we initially screened 287 commercially available active compounds by co-culturing with peripheral blood mononuclear cells (PBMCs). We found that five compounds, namely, Daphnetin, MK-8617, LW6, JIB-04, and IOX1, increased the IFN-γ+ NK cell ratio in the presence of IL-12. Further studies using purified human primary NK cells revealed that Daphnetin directly promoted NK cell IFN-γ production in the presence of IL-12 but not IL-15, while the other four compounds acted on NK cells indirectly. Daphnetin also improved the direct cytotoxicity of NK cells against tumor cells in the presence of IL-12. Through RNA-sequencing, we found that PI3K-Akt-mTOR signaling acted as a central pathway in Daphnetin-mediated NK cell activation in the presence of IL-12. This was further confirmed by the finding that both inhibitors of PI3K-Akt and its main downstream signaling mTOR, LY294002, and rapamycin, respectively, can reverse the increase of IFN-γ production and cytotoxicity in NK cells promoted by Daphnetin. Collectively, we identify a natural product, Daphnetin, with the capacity of promoting human NK cell activation via PI3K-Akt-mTOR signaling in the presence of IL-12. Our current study opens up a new potential application for Daphnetin as a complementary immunomodulator for cancer treatments.
Collapse
Affiliation(s)
- Baige Yao
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinglan Yang
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Yao Yang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yana Li
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Hongyan Peng
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Shuting Wu
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Lili Wang
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Shuju Zhang
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Minghui Huang
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Erqiang Wang
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Peiwen Xiong
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Ting Luo
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Liping Li
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Sujie Jia
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yafei Deng
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
37
|
Liu J, Wang Z, Hao S, Wang F, Yao Y, Zhang Y, Zhao Y, Guo W, Yu G, Ma X, Liu J, Chen F, Yuan S, Kang Y, Yu S. Tcf1 Sustains the Expression of Multiple Regulators in Promoting Early Natural Killer Cell Development. Front Immunol 2021; 12:791220. [PMID: 34917097 PMCID: PMC8669559 DOI: 10.3389/fimmu.2021.791220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
T cell factor 1 (Tcf1) is known as a critical mediator for natural killer (NK) cell development and terminal maturation. However, its essential targets and precise mechanisms involved in early NK progenitors (NKP) are not well clarified. To investigate the role of Tcf1 in NK cells at distinct developmental phases, we employed three kinds of genetic mouse models, namely, Tcf7fl/flVavCre/+, Tcf7fl/flCD122Cre/+ and Tcf7fl/flNcr1Cre/+ mice, respectively. Similar to Tcf1 germline knockout mice, we found notably diminished cell number and defective development in BM NK cells from all strains. In contrast, Tcf7fl/flNcr1Cre/+ mice exhibited modest defects in splenic NK cells compared with those in the other two strains. By analyzing the published ATAC-seq and ChIP-seq data, we found that Tcf1 directly targeted 110 NK cell-related genes which displayed differential accessibility in the absence of Tcf1. Along with this clue, we further confirmed that a series of essential regulators were expressed aberrantly in distinct BM NK subsets with conditional ablating Tcf1 at NKP stage. Eomes, Ets1, Gata3, Ikzf1, Ikzf2, Nfil3, Runx3, Sh2d1a, Slamf6, Tbx21, Tox, and Zeb2 were downregulated, whereas Spi1 and Gzmb were upregulated in distinct NK subsets due to Tcf1 deficiency. The dysregulation of these genes jointly caused severe defects in NK cells lacking Tcf1. Thus, our study identified essential targets of Tcf1 in NK cells, providing new insights into Tcf1-dependent regulatory programs in step-wise governing NK cell development.
Collapse
Affiliation(s)
- Juanjuan Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shanshan Hao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fang Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingpeng Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yajiao Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yanyi Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenhui Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guotao Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohan Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingjing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Feng Chen
- Central Laboratory, School of Stomatology, Peking University, Beijing, China
| | - Shunzong Yuan
- Department of Hematology, the Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Youmin Kang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Barnes SA, Trew I, de Jong E, Foley B. Making a Killer: Selecting the Optimal Natural Killer Cells for Improved Immunotherapies. Front Immunol 2021; 12:765705. [PMID: 34777383 PMCID: PMC8578927 DOI: 10.3389/fimmu.2021.765705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Over the past 20 years natural killer (NK) cell-based immunotherapies have emerged as a safe and effective treatment option for patients with relapsed or refractory leukemia. Unlike T cell-based therapies, NK cells harbor an innate capacity to eliminate malignant cells without prior sensitization and can be adoptively transferred between individuals without the need for extensive HLA matching. A wide variety of therapeutic NK cell sources are currently being investigated clinically, including allogeneic donor-derived NK cells, stem cell-derived NK cells and NK cell lines. However, it is becoming increasingly clear that not all NK cells are endowed with the same antitumor potential. Despite advances in techniques to enhance NK cell cytotoxicity and persistence, the initial identification and utilization of highly functional NK cells remains essential to ensure the future success of adoptive NK cell therapies. Indeed, little consideration has been given to the identification and selection of donors who harbor NK cells with potent antitumor activity. In this regard, there is currently no standard donor selection criteria for adoptive NK cell therapy. Here, we review our current understanding of the factors which govern NK cell functional fate, and propose a paradigm shift away from traditional phenotypic characterization of NK cell subsets towards a functional profile based on molecular and metabolic characteristics. We also discuss previous selection models for NK cell-based immunotherapies and highlight important considerations for the selection of optimal NK cell donors for future adoptive cell therapies.
Collapse
Affiliation(s)
- Samantha A Barnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Isabella Trew
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Emma de Jong
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Bree Foley
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
39
|
Zhang ZJ, Huang YP, Li XX, Liu ZT, Liu K, Deng XF, Xiong L, Zou H, Wen Y. A Novel Ferroptosis-Related 4-Gene Prognostic Signature for Cholangiocarcinoma and Photodynamic Therapy. Front Oncol 2021; 11:747445. [PMID: 34712611 PMCID: PMC8545875 DOI: 10.3389/fonc.2021.747445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Cholangiocarcinoma is the second most common malignant tumor in the hepatobiliary system. Compared with data on hepatocellular carcinoma, fewer public data and prognostic-related studies on cholangiocarcinoma are available, and effective prognostic prediction methods for cholangiocarcinoma are lacking. In recent years, ferroptosis has become an important subject of tumor research. Some studies have indicated that ferroptosis plays an important role in hepatobiliary cancers. However, the prediction of the prognostic effect of ferroptosis in patients with cholangiocarcinoma has not been reported. In addition, many reports have described the ability of photodynamic therapy (PDT), a potential therapy for cholangiocarcinoma, to regulate ferroptosis by generating reactive oxygen species (ROS). By constructing ferroptosis scores, the prognoses of patients with cholangiocarcinoma can be effectively predicted, and potential gene targets can be discovered to further enhance the efficacy of PDT. In this study, gene expression profiles and clinical information (TCGA, E-MTAB-6389, and GSE107943) of patients with cholangiocarcinoma were collected and divided into training sets and validation sets. Then, a model of the ferroptosis gene signature was constructed using least absolute shrinkage and selection operator (LASSO)-penalized Cox regression analysis. Furthermore, through the analysis of RNA-seq data after PDT treatment of cholangiocarcinoma, PDT-sensitive genes were obtained and verified by immunohistochemistry staining and Western blot. The results of this study provide new insight for predicting the prognosis of cholangiocarcinoma and screening target genes that enhance the efficacy of PDT.
Collapse
Affiliation(s)
- Zi-Jian Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Peng Huang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Xue Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhong-Tao Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kai Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Feng Deng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Heng Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Huang C, Bi J. Expression Regulation and Function of T-Bet in NK Cells. Front Immunol 2021; 12:761920. [PMID: 34675939 PMCID: PMC8524037 DOI: 10.3389/fimmu.2021.761920] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 11/14/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes that play an important role in immune surveillance. The development, maturation and effector functions of NK cells are orchestrated by the T-box transcription factor T-bet, whose expression is induced by cytokines such as IFN-γ, IL-12, IL-15 and IL-21 through the respective cytokine receptors and downstream JAK/STATs or PI3K-AKT-mTORC1 signaling pathways. In this review, we aim to discuss the expression and regulation of T-bet in NK cells, the role of T-bet in mouse NK cell development, maturation, and function, as well as the role of T-bet in acute, chronic infection, inflammation, autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Chen Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
41
|
Xu S, Li S, Liu X, Tan K, Zhang J, Li K, Bai X, Zhang Y. Rictor Is a Novel Regulator of TRAF6/TRAF3 in Osteoclasts. J Bone Miner Res 2021; 36:2053-2064. [PMID: 34155681 DOI: 10.1002/jbmr.4398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022]
Abstract
Tumor necrosis factor receptor-associated factors (TRAFs) are crucial for receptor activator of nuclear factor-κB (RANK) activation in osteoclasts. However, the upstream mechanisms of TRAF members in the osteoclastic lineage remain largely unknown. Here, we demonstrated that Rictor, a key component of mechanistic target of rapamycin complex 2 (mTORC2), was crucial for TRAF6/TRAF3 expression in osteoclasts. Our ex vivo and in vivo studies showed that Rictor ablation from the osteoclastic lineage reduced osteoclast numbers and increased bone mass in mice. Mechanistically, we found that Rictor ablation restricted osteoclast formation, which disrupted TRAF6 stability and caused autophagy block in a manner distinct from mTORC1, resulting in reduced TRAF3 degradation. Boosting TRAF6 expression or knockdown of TRAF3 levels in Rictor-deficient cells could both overcome the defect. Moreover, Rictor could interact with TRAF6 upon RANK ligand (RANKL) stimulation and loss of Rictor impaired TRAF6 stability and promoted its ubiquitinated degradation. These findings established an innovative link between Rictor, TRAF protein levels, and autophagic block. More importantly, mTOR complexes in the osteoclastic lineage are likely switches for coordinating TRAF6 and TRAF3 protein levels, and Rictor may function as an essential upstream regulator of TRAF6/TRAF3 that is partially independent of mTORC1 activity. Inhibitors targeting Rictor may therefore be valuable for preventing or treating osteoclast-related diseases. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Song Xu
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China.,Department of Arthroplasty, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihai Li
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Xianming Liu
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Kang Tan
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Jiahuan Zhang
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Kai Li
- Academy of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Qi Y, Chen S, Lu Y, Zhang Z, Wang S, Chen N, Shen M, Chen F, Chen M, Quan Y, Yang L, Xu Y, Su Y, Hu M, Wang J. Grape seed proanthocyanidin extract ameliorates ionizing radiation-induced hematopoietic stem progenitor cell injury by regulating Foxo1 in mice. Free Radic Biol Med 2021; 174:144-156. [PMID: 34389464 DOI: 10.1016/j.freeradbiomed.2021.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022]
Abstract
Ionizing radiation (IR)-induced excessive reactive oxygen species (ROS) is an important contributor of the injury of hematopoietic system. Grape seed proanthocyanidin extract (GSPE) is a new type of antioxidant, whereas whether it could ameliorate IR-induced hematopoietic injury remains unclear. Here, we show that GSPE treatment improves the survival of irradiated mice and alleviates IR-induced myelosuppression. Meanwhile, the hematopoietic reconstituting ability of hematopoietic stem cells (HSCs) in mice following irradiation exposure is significantly increased after GSPE treatment. Furthermore, GSPE treatment can reduce IR-induced ROS production and relieve DNA damage and apoptosis in hematopoietic stem progenitor cells (HSPCs). Interestingly, we find that a critical antioxidant-associated gene fokhead box transcription factor O1 (Foxo1) is significantly decreased in HSPCs after irradiation. Consistently, hematopoietic specific deletion of Foxo1 increases the radiosensitivity of mice. Further investigations reveal that GSPE treatment specifically upregulates the expression of Foxo1, as well as its target genes superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2) and catalase (CAT). Importantly, Foxo1 deficiency largely abolishes the radioprotection of GSPE on HSPCs. Collectively, our data demonstrate that GSPE plays an important role in ameliorating IR-induced HSPC injury via the Foxo1-mediated pathway. Therefore, GSPE may be used as a promising radioprotective agent.
Collapse
Affiliation(s)
- Yan Qi
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Shilei Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yukai Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Zihao Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Naicheng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yong Quan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Lijing Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
43
|
Rahman ANU, Liu J, Mujib S, Kidane S, Ali A, Szep S, Han C, Bonner P, Parsons M, Benko E, Kovacs C, Yue FY, Ostrowski M. Elevated glycolysis imparts functional ability to CD8 + T cells in HIV infection. Life Sci Alliance 2021; 4:4/11/e202101081. [PMID: 34548381 PMCID: PMC8473722 DOI: 10.26508/lsa.202101081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
The mechanisms inducing exhaustion of HIV-specific CD8+ T cells are not fully understood. Metabolic programming directly influences T-cell differentiation, effector function, and memory. We evaluated metabolic profiles of ex vivo CD8+ T cells in HIV-infected individuals. The baseline oxygen consumption rate of CD8+ T cells was elevated in all infected individuals and CD8+ T cells were working at maximal respiratory capacity. The baseline glycolysis rate was enhanced only during early untreated HIV and in viral controllers, but glycolytic capacity was conserved at all stages of infection. CD8+ T-cell mTOR activity was found to be reduced. Enhanced glycolysis was crucial for HIV-specific killing of CD8+ T cells. CD8+ T-cell cytoplasmic GAPDH content was reduced in HIV, but less in early infection and viral controllers. Thus, CD8+ T-cell exhaustion in HIV is characterized by reduced glycolytic activity, enhanced OXPHOS demands, dysregulated mTOR, and reduced cytoplasmic GAPDH. These data provide potential metabolic strategies to reverse CD8+ T-cell dysfunction in HIV.
Collapse
Affiliation(s)
| | - Jun Liu
- Deparment of Medicine, University of Toronto, Toronto, Canada
| | - Shariq Mujib
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Segen Kidane
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Arman Ali
- Deparment of Medicine, University of Toronto, Toronto, Canada
| | - Steven Szep
- Deparment of Medicine, University of Toronto, Toronto, Canada
| | - Carrie Han
- Deparment of Medicine, University of Toronto, Toronto, Canada
| | - Phil Bonner
- Deparment of Medicine, University of Toronto, Toronto, Canada
| | - Michael Parsons
- Flow Cytometry Facility, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | | | - Feng Yun Yue
- Deparment of Medicine, University of Toronto, Toronto, Canada
| | - Mario Ostrowski
- Deparment of Medicine, University of Toronto, Toronto, Canada .,Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Deparment of Immunology, University of Toronto, Toronto, Canada.,Keenan Research Centre for Biomedical Sciences of St. Michael's Hospital Toronto, Toronto, Canada
| |
Collapse
|
44
|
Bi J, Cheng C, Zheng C, Huang C, Zheng X, Wan X, Chen YH, Tian Z, Sun H. TIPE2 is a checkpoint of natural killer cell maturation and antitumor immunity. SCIENCE ADVANCES 2021; 7:eabi6515. [PMID: 34524845 PMCID: PMC8443187 DOI: 10.1126/sciadv.abi6515] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The maturation process of NK cells determines their functionality during which IL-15 plays a critical role. However, very few checkpoints specifically targeting this process have been discovered. Here, we report that TIPE2 expression gradually increased during NK cell ontogenesis correlating to their maturation stages in both mice and humans. NK-specific TIPE2 deficiency increased mature NK cells in mice, and these TIPE2-deficient NK cells exhibited enhanced activation, cytotoxicity, and IFN-γ production upon stimulation and enhanced response to IL-15 for maturation. Moreover, TIPE2 suppressed IL-15–triggered mTOR activity in both human and murine NK cells. Consequently, blocking mTOR constrained the effect of TIPE2 deficiency on NK cell maturation in response to IL-15. Last, NK-specific TIPE2-deficient mice were resistant to tumor growth in vivo. Our results uncover a potent checkpoint in NK cell maturation and antitumor immunity in both mice and humans, suggesting a promising approach of targeting TIPE2 for NK cell–based immunotherapies.
Collapse
Affiliation(s)
- Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author. (J.B.); (H.S.)
| | - Chen Cheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chaoyue Zheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chen Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaohu Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Youhai H. Chen
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhigang Tian
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Beijing 100864, China
| | - Haoyu Sun
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
- Corresponding author. (J.B.); (H.S.)
| |
Collapse
|
45
|
Zhang J, Le Gras S, Pouxvielh K, Faure F, Fallone L, Kern N, Moreews M, Mathieu AL, Schneider R, Marliac Q, Jung M, Berton A, Hayek S, Vidalain PO, Marçais A, Dodard G, Dejean A, Brossay L, Ghavi-Helm Y, Walzer T. Sequential actions of EOMES and T-BET promote stepwise maturation of natural killer cells. Nat Commun 2021; 12:5446. [PMID: 34521844 PMCID: PMC8440589 DOI: 10.1038/s41467-021-25758-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/06/2021] [Indexed: 02/08/2023] Open
Abstract
EOMES and T-BET are related T-box transcription factors that control natural killer (NK) cell development. Here we demonstrate that EOMES and T-BET regulate largely distinct gene sets during this process. EOMES is dominantly expressed in immature NK cells and drives early lineage specification by inducing hallmark receptors and functions. By contrast, T-BET is dominant in mature NK cells, where it induces responsiveness to IL-12 and represses the cell cycle, likely through transcriptional repressors. Regardless, many genes with distinct functions are co-regulated by the two transcription factors. By generating two gene-modified mice facilitating chromatin immunoprecipitation of endogenous EOMES and T-BET, we show a strong overlap in their DNA binding targets, as well as extensive epigenetic changes during NK cell differentiation. Our data thus suggest that EOMES and T-BET may distinctly govern, via differential expression and co-factors recruitment, NK cell maturation by inserting partially overlapping epigenetic regulations.
Collapse
MESH Headings
- Animals
- Base Sequence
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- CD11b Antigen/genetics
- CD11b Antigen/immunology
- Cell Cycle/drug effects
- Cell Cycle/genetics
- Cell Cycle/immunology
- Cell Differentiation
- Cell Lineage/drug effects
- Cell Lineage/genetics
- Cell Lineage/immunology
- Epigenesis, Genetic/immunology
- Interleukin-12/pharmacology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Promoter Regions, Genetic
- Protein Binding
- Spleen/cytology
- Spleen/immunology
- T-Box Domain Proteins/deficiency
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/immunology
- Transcription, Genetic
- Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
Collapse
Affiliation(s)
- Jiang Zhang
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Stéphanie Le Gras
- IGBMC, CNRS UMR7104, Inserm U1258, Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, infrastructure France Génomique, Illkirch, France
| | - Kevin Pouxvielh
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Fabrice Faure
- Institut NeuroMyoGène, INSERM U1217/CNRS UMR5310, Université de Lyon, Université Claude Bernard, Lyon 1, Lyon, France
| | - Lucie Fallone
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Nicolas Kern
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Marion Moreews
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Anne-Laure Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Raphaël Schneider
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364, Lyon, France
| | - Quentin Marliac
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Mathieu Jung
- IGBMC, CNRS UMR7104, Inserm U1258, Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, infrastructure France Génomique, Illkirch, France
| | - Aurore Berton
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Simon Hayek
- Equipe Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS UMR 8601, 75006, Paris, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS UMR 8601, 75006, Paris, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Garvin Dodard
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, 02912, USA
| | - Anne Dejean
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, 02912, USA
| | - Yad Ghavi-Helm
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| |
Collapse
|
46
|
Tan S, Guo X, Li M, Wang T, Wang Z, Li C, Wu Z, Li N, Gao L, Liang X, Ma C. Transcription factor Zhx2 restricts NK cell maturation and suppresses their antitumor immunity. J Exp Med 2021; 218:e20210009. [PMID: 34279541 PMCID: PMC8292132 DOI: 10.1084/jem.20210009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/05/2021] [Accepted: 06/17/2021] [Indexed: 02/03/2023] Open
Abstract
The maturation and functional competence of natural killer (NK) cells is a tightly controlled process that relies on transcription factors (TFs). Here, we identify transcriptional repressor zinc fingers and homeoboxes 2 (Zhx2) as a novel regulator that restricts NK cell maturation and function. Mice with Zhx2 conditional deletion in NK cells (Zhx2Δ/Δ) showed accumulation of matured NK cells. Loss of Zhx2 enhanced NK cell survival and NK cell response to IL-15. Transcriptomic analysis revealed Zeb2, a key TF in NK cell terminal maturation, as a direct downstream target of Zhx2. Therapeutically, transfer of Zhx2-deficient NK cells resulted in inhibition of tumor growth and metastasis in different murine models. Our findings collectively unmask a previously unrecognized role of Zhx2 as a novel negative regulator in NK cell maturation and highlight its therapeutic potential as a promising strategy to enhance NK cell-mediated tumor surveillance.
Collapse
Affiliation(s)
- Siyu Tan
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Xiaowei Guo
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Mengzhen Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Nailin Li
- Clinical Pharmacology Group, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| |
Collapse
|
47
|
Sun Y, Li Z, Song K. AR-mTOR-SRF Axis Regulates HMMR Expression in Human Prostate Cancer Cells. Biomol Ther (Seoul) 2021; 29:667-677. [PMID: 34099592 PMCID: PMC8551732 DOI: 10.4062/biomolther.2021.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/24/2021] [Accepted: 05/16/2021] [Indexed: 11/05/2022] Open
Abstract
The elevated expression of the hyaluronan-mediated motility receptor (HMMR) is known to be highly associated with tumor progression in prostate cancer, but the molecular mechanisms underlying the regulation of HMMR expression remain unclear. Here, we report that mammalian target of rapamycin (mTOR) is a key regulator of HMMR expression, for which its kinase activity is required. Pharmacological inhibitors of mTOR, such as rapamycin and Torin2, markedly suppressed the mRNA level as well as the protein level of HMMR in LNCaP and PC-3 cells. Our data demonstrate that such regulation occurs at the transcription level. HMMR promoter reporter assays revealed that the transcription factor SRF is responsible for the mTOR-mediated transcriptional regulation of HMMR gene. Consistently, the suppression of HMMR expression by Torin2 was noticeably reversed by the overexpression of SRF. Moreover, our findings suggest that the SRF binding sites responsible for the transcriptional regulation of HMMR through the mTOR-SRF axis are located in HMMR promoter sequences carrying the first intron, downstream of the translational start site. Furthermore, the upregulation of HMMR by DHT was abolished by stimulation with rapamycin, prior to DHT treatment, suggesting that mTOR activity is required for the induction of HMMR expression by androgen. Collectively, our study provides new mechanistic insights into the role of mTOR/SRF/AR signaling in HMMR regulation in prostate cancer cells.
Collapse
Affiliation(s)
- You Sun
- Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Zewu Li
- Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Kyung Song
- Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Republic of Korea.,Department of Pharmacy, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea.,Institute of Pharmaceutical Research and Development, Wonkwang University, Iksan 54538, Republic of Korea.,Integrated Omics Institute, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
48
|
Cheng X, Li F, Tao Z. Tenascin-C promotes epithelial-to-mesenchymal transition and the mTOR signaling pathway in nasopharyngeal carcinoma. Oncol Lett 2021; 22:570. [PMID: 34113398 PMCID: PMC8185706 DOI: 10.3892/ol.2021.12831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Tenascin-C (TNC) is a large extracellular matrix glycoprotein that promotes cell adhesion and tissue remodeling, and is involved in the transduction of cellular signaling pathways. The present study aimed to investigate the role of TNC and determine its effect in nasopharyngeal carcinoma (NPC). TNC gene transcription and expression were analyzed using the NPC dataset and immunohistochemistry analysis of NPC tissues. Weighted gene co-expression network and gene enrichment analyses were performed to determine the potential molecular mechanisms underlying the effects of TNC in NPC. TNC expression was suppressed in NPC cells, and the effects were determined both in vitro and in vivo. The results demonstrated that TNC gene transcription and expression were high in NPC tissues compared with normal tissues. Notably, TNC knockdown inhibited NPC cell proliferation, migration and invasion. In addition, TNC knockdown inhibited tumor growth in mice. In vitro, TNC knockdown inhibited epithelial-to-mesenchymal transition (EMT) and decreased activity of the PI3K/AKT/mTOR signaling pathway in NPC cells. Taken together, these results suggest that TNC promotes cell proliferation, EMT and activity of the PI3K/AKT/mTOR signaling pathway in NPC cells, and thus functions as an oncogene.
Collapse
Affiliation(s)
- Xiang Cheng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fen Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
49
|
Ehlers FAI, Mahaweni NM, Olieslagers TI, Bos GMJ, Wieten L. Activated Natural Killer Cells Withstand the Relatively Low Glucose Concentrations Found in the Bone Marrow of Multiple Myeloma Patients. Front Oncol 2021; 11:622896. [PMID: 34094908 PMCID: PMC8174784 DOI: 10.3389/fonc.2021.622896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
Infusion of ex vivo expanded and cytokine-activated natural killer (NK) cells is a promising alternative way to treat multiple myeloma (MM). However, the tumor microenvironment (TME) may suppress their function. While reduced glucose availability is a TME hallmark of many solid tumors, glucose levels within the TME of hematological malignancies residing in the bone marrow (BM) remain unknown. Here, we measured glucose levels in the BM of MM patients and tested the effect of different glucose levels on NK cells. BM glucose levels were measured using a biochemical analyzer. Compared to the normal range of blood glucose, BM glucose levels were lower in 6 of 9 patients (479-1231 mg/L; mean=731.8 mg/L). The effect of different glucose levels on NK cell cytotoxicity was tested in 4-hour cytotoxicity assays with tumor cells. 500 mg/L glucose (representing low range of MM BM) during the 4-hour cytotoxicity assay did not negatively affect cytotoxicity of activated NK cells, while higher glucose concentrations (4000 mg/L) diminished NK cell cytotoxicity. Since clinical application of NK cell therapy might require ex vivo expansion, expanded NK cells were exposed to a range of glucose concentrations from 500-4000 mg/L for a longer period (4 days). This did not reduce cytotoxicity or IFN-γ secretion nor affected their phenotypic profile. In summary, low glucose concentrations, as found in BM of MM patients, by itself did not compromise the anti-tumor potential of IL-2 activated NK cells in vitro. Although follow up studies in models with a more complex TME would be relevant, our data suggest that highly activated NK cells could be used to target tumors with a reduced glucose environment.
Collapse
Affiliation(s)
- Femke A I Ehlers
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, Netherlands.,Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Niken M Mahaweni
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, Netherlands.,Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Timo I Olieslagers
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Gerard M J Bos
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
50
|
Traba J, Sack MN, Waldmann TA, Anton OM. Immunometabolism at the Nexus of Cancer Therapeutic Efficacy and Resistance. Front Immunol 2021; 12:657293. [PMID: 34079545 PMCID: PMC8166297 DOI: 10.3389/fimmu.2021.657293] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Constitutive activity of the immune surveillance system detects and kills cancerous cells, although many cancers have developed strategies to avoid detection and to resist their destruction. Cancer immunotherapy entails the manipulation of components of the endogenous immune system as targeted approaches to control and destroy cancer cells. Since one of the major limitations for the antitumor activity of immune cells is the immunosuppressive tumor microenvironment (TME), boosting the immune system to overcome the inhibition provided by the TME is a critical component of oncotherapeutics. In this article, we discuss the main effects of the TME on the metabolism and function of immune cells, and review emerging strategies to potentiate immune cell metabolism to promote antitumor effects either as monotherapeutics or in combination with conventional chemotherapy to optimize cancer management.
Collapse
Affiliation(s)
- Javier Traba
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Michael N. Sack
- Cardiovascular Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, United States
| | - Thomas A. Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Olga M. Anton
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|