1
|
Peng H, Yang W, Wan M, Liu J, Liu F. Refugium amidst ruins: Unearthing the lost flora that escaped the end-Permian mass extinction. SCIENCE ADVANCES 2025; 11:eads5614. [PMID: 40073122 PMCID: PMC11900852 DOI: 10.1126/sciadv.ads5614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
Searching for land refugia becomes imperative for human survival during the hypothetical sixth mass extinction. Studying past comparable crises can offer insights, but there is no fossil evidence of diverse megafloral ecosystems surviving the largest Phanerozoic biodiversity crisis. Here, we investigated palynomorphs, plant, and tetrapod fossils from the Permian-Triassic South Taodonggou Section in Xinjiang, China. Our fossil records, calibrated by a high-resolution age model, reveal the presence of vibrant regional gymnospermous forests and fern fields, while marine organisms experienced mass extinction. This refugial vegetation was crucial for nourishing the substantial influx of surviving animals, thereby establishing a diverse terrestrial ecosystem approximately 75,000 years after the mass extinction. Our findings contradict the widely held belief that restoring terrestrial ecosystem functional diversity to pre-extinction levels would take millions of years. Our research indicates that moderate hydrological fluctuations throughout the crisis sustained this refugium, likely making it one of the sources for the rapid radiation of terrestrial life in the early Mesozoic.
Collapse
Affiliation(s)
- Huiping Peng
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wan Yang
- Geology and Geophysics Program, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Mingli Wan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun Liu
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Liu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Nanjing, Nanjing 211135, China
| |
Collapse
|
2
|
Woodhouse A, Swain A, Smith J, Sibert E, Lam A, Dunne J, Auderset A. The Micropaleoecology Framework: Evaluating Biotic Responses to Global Change Through Paleoproxy, Microfossil, and Ecological Data Integration. Ecol Evol 2024; 14:e70470. [PMID: 39493613 PMCID: PMC11525056 DOI: 10.1002/ece3.70470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
The microfossil record contains abundant, diverse, and well-preserved fossils spanning multiple trophic levels from primary producers to apex predators. In addition, microfossils often constitute and are preserved in high abundances alongside continuous high-resolution geochemical proxy records. These characteristics mean that microfossils can provide valuable context for understanding the modern climate and biodiversity crises by allowing for the interrogation of spatiotemporal scales well beyond what is available in neo-ecological research. Here, we formalize a research framework of "micropaleoecology," which builds on a holistic understanding of global change from the environment to ecosystem level. Location: Global. Time period: Neoproterozoic-Phanerozoic. Taxa studied: Fossilizing organisms/molecules. Our framework seeks to integrate geochemical proxy records with microfossil records and metrics, and draws on mechanistic models and systems-level statistical analyses to integrate disparate records. Using multiple proxies and mechanistic mathematical frameworks extends analysis beyond traditional correlation-based studies of paleoecological associations and builds a greater understanding of past ecosystem dynamics. The goal of micropaleoecology is to investigate how environmental changes impact the component and emergent properties of ecosystems through the integration of multi-trophic level body fossil records (primarily using microfossils, and incorporating additional macrofossil data where possible) with contemporaneous environmental (biogeochemical, geochemical, and sedimentological) records. Micropaleoecology, with its focus on integrating ecological metrics within the context of paleontological records, facilitates a deeper understanding of the response of ecosystems across time and space to better prepare for a future Earth under threat from anthropogenic climate change.
Collapse
Affiliation(s)
- Adam Woodhouse
- School of Earth SciencesUniversity of BristolBristolUK
- University of Texas Institute for GeophysicsUniversity of Texas at AustinAustinTexasUSA
| | - Anshuman Swain
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Jansen A. Smith
- Department of Earth and Environmental SciencesUniversity of Minnesota DuluthDuluthMinnesotaUSA
| | - Elizabeth C. Sibert
- Department of Geology and GeophysicsWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Adriane R. Lam
- Department of Earth SciencesBinghamton UniversityBinghamtonNew YorkUSA
| | | | | |
Collapse
|
3
|
Klug C, Scheyer TM, Klein N, Liu J, Albisetti D, Furrer H, Stockar R. Special Issue: 100 years of scientific excavations at UNESCO World Heritage Site Monte San Giorgio and global research on Triassic marine Lagerstätten. SWISS JOURNAL OF PALAEONTOLOGY 2024; 143:37. [PMID: 39376472 PMCID: PMC11457694 DOI: 10.1186/s13358-024-00328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/11/2024] [Indexed: 10/09/2024]
Abstract
Only a few Swiss fossil localities are known globally and of which, the UNESCO World Heritage Site Monte San Giorgio, which extends from Switzerland into Italy, is the most important one. Following the discovery of the occurrence of articulated skeletons of marine reptiles in the local mines, large excavations were organized by Bernhard Peyer from the University of Zurich starting 1924. With this collection of articles, we commemorate the successful excavations and research, which initiated the publication of a series of monographies, mostly on the vertebrates but also on the invertebrates of this locality. Especially with the discovery of several remarkably similar Konservat-Lagerstätten in China, the discoveries from Monte San Giorgio gained global relevance. New methodologies such as computed tomography produced a wealth of new data, particularly on endocranial anatomy of several tetrapods.
Collapse
Affiliation(s)
- Christian Klug
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Torsten M. Scheyer
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Nicole Klein
- Abteilung Paläontologie, Institut für Geowissenschaften, Universität Bonn, Nußallee 8, 53115 Bonn, Germany
| | - Jun Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009 China
- Chengdu Center, China Geological Survey, Chengdu, 610081 China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, 210008 China
| | - Daniele Albisetti
- Museo dei Fossili del Monte San Giorgio, Via Bernardo Peyer 9, 6866 Meride, Switzerland
| | - Heinz Furrer
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Rudolf Stockar
- Repubblica e Cantone Ticino, Dipartimento del Territorio, Museo Cantonale di Storia Naturale, Viale Carlo Cattaneo 4, 6900 Lugano, Switzerland
| |
Collapse
|
4
|
Bastiaans D. Thalattosauria in time and space: a review of thalattosaur spatiotemporal occurrences, presumed evolutionary relationships and current ecological hypotheses. SWISS JOURNAL OF PALAEONTOLOGY 2024; 143:36. [PMID: 39345254 PMCID: PMC11427521 DOI: 10.1186/s13358-024-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
In the wake of the greatest mass extinction in Earth's history, the End-Permian Mass Extinction, the Triassic was a time of recovery and innovation. Aided by warm climatic conditions and favorable ecological circumstances, many reptilian clades originated and rapidly diversified during this time. This set the stage for numerous independent invasions of the marine realm by several reptilian clades, such as Ichthyosauriformes and Sauropterygia, shaping the oceanic ecosystems for the entire Mesozoic. Although comparatively less speciose, and temporally and latitudinally more restricted, another marine reptile clade, the Thalattosauriformes, stands out because of their unusual and highly disparate cranial, dental and skeletal morphology. Research on Thalattosauriformes has been hampered by a historic dearth of material, with the exception of rare material from Lagerstätten and highly fossiliferous localities, such as that from the UNESCO world heritage site of Monte San Giorgio. Consequently, their evolutionary origins and paleobiology remain poorly understood. The recent influx of new material from southwestern China and North America has renewed interest in this enigmatic group prompting the need for a detailed review of historic work and current views. The earliest representatives of the group may have been present from the late Early Triassic onwards in British Columbia. By the Ladinian the group had achieved a wide distribution across the northern hemisphere, spanning the eastern Panthalassic as well as the eastern and western Tethyan provinces. Distinct morphological and likely ecological differences exist between the two major clades of Thalattosauriformes, the Askeptosauroidea and the Thalattosauroidea, with the latter showing a higher degree of cranial and skeletal morphological disparity. In-group relationships remain poorly resolved beyond this bipartition. Overall, thalattosaurs may be closely related to other marine reptile groups such as ichthyopterygians and sauropterygians. However, their exact position within Diapsida remains elusive. Future focal points should utilize modern digital paleontological approaches to explore the many fragmentary specimens of otherwise poorly sampled localities.
Collapse
Affiliation(s)
- Dylan Bastiaans
- Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
- Natural History Museum Maastricht, Centre Céramique, De Bosquetplein 7, 6211 KJ Maastricht, The Netherlands
| |
Collapse
|
5
|
Klug C, Sivgin T, Miedema F, Scheffold B, Reisdorf AG, Stössel I, Maxwell EE, Scheyer TM. Swiss ichthyosaurs: a review. SWISS JOURNAL OF PALAEONTOLOGY 2024; 143:31. [PMID: 39229570 PMCID: PMC11366730 DOI: 10.1186/s13358-024-00327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024]
Abstract
Switzerland is an ichthyosaur country: it has a rich record of marine reptile fossils, particularly the fish-shaped ichthyosaurs, and the according research. Here, we provide an overview over the 12 or more genera and at least 13 species plus numerous fragmentary remains of ichthyosaurs from the Triassic to the Cretaceous that have been discovered in twelve cantons thus far, of which four species are based on Swiss holotypes. This wealth of ichthyosaur species can be explained by their abundance in the Middle Triassic conservation deposits (Konservat Lagerstätte) of Monte San Giorgio, as well as occasional discoveries in strata of Middle Triassic to Early Cretaceous age. The moderate abundance of outcrops in reasonable conditions in combination with the long history of palaeontological research in Switzerland explains this good fossil record. In addition to this unique overview, we provide more data for further studies and update the knowledge of these taxa.
Collapse
Affiliation(s)
- Christian Klug
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Timur Sivgin
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Feiko Miedema
- Staatliches Museum Für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
- Naturkundemuseum Bamberg, 96047 Bamberg, Germany
| | - Beat Scheffold
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | | | - Iwan Stössel
- Department Erdwissenschaften, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland
| | - Erin E. Maxwell
- Staatliches Museum Für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
| | - Torsten M. Scheyer
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| |
Collapse
|
6
|
Montagna M, Magoga G, Stockar R, Magnani F. The contribution of the Middle Triassic fossil assemblage of Monte San Giorgio to insect evolution. Commun Biol 2024; 7:1023. [PMID: 39164382 PMCID: PMC11336256 DOI: 10.1038/s42003-024-06678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
The Triassic represents a critical period for understanding the turnover of insect fauna from the Paleozoic to the Mesozoic following the end-Permian mass extinctions (EPME); however, fossil deposits from the Early-Middle Triassic are scarce. The exceptionally preserved 239 million-year-old fossil insect fauna recorded at Monte San Giorgio (Switzerland), including 248 fossils representing 15 major insect clades is presented here. Besides the exceptional features, including their small size and excellent preservation, the fossils have importance in the evolutionary history of the group. The taxonomic and ecological diversity recovered, including both freshwater (dragonflies and caddisflies) and terrestrial taxa (true bugs and wasps), demonstrates that complex environments sustained a paleocommunity dominated by monurans (thought not to have survived the EPME), midges, and beetles. Interestingly, a blattodean-like fossil bearing an external ootheca was also found, important for understanding Paleozoic roachoids to extant cockroaches' transition and the evolution of maternal brood care. Moreover, the youngest and first complete specimen of †Permithonidae and the oldest sawfly fossils were discovered. Finally, round-shaped bodies, compatible with seminal capsules or lycophyte spores, were found on the abdomens of several midge-like individuals. If these are spores, non-seed-bearing plants could have been the first entomophilous plants rather than gymnosperms, as recently supposed. Altogether, these fossils contribute substantially to understanding insect evolution and Paleozoic-Mesozoic faunal turnover.
Collapse
Affiliation(s)
- Matteo Montagna
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici, Italy.
| | - Giulia Magoga
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Fabio Magnani
- Museo cantonale di storia naturale, Lugano, Switzerland
| |
Collapse
|
7
|
Duan X, Shi Z. Sedimentary records of sea level fall during the end-Permian in the upper Yangtze region (southern China): Implications for the mass extinction. Heliyon 2024; 10:e31226. [PMID: 38799747 PMCID: PMC11126861 DOI: 10.1016/j.heliyon.2024.e31226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Sea level fall is considered one of the significant factors leading to the end-Permian mass extinction (EPME). We studied the relative sea level changes in the Beifengjing and Shangsi sections, and the results indicate that a sea level fall occurred in the Upper Yangtze region during the Permian-Triassic transition. Considering that there is no significant change in fossil abundance in the strata following the two sea level falls observed in the Beifengjing section, we conclude that the reduction in shallow marine habitat for sea level fall solely was insufficient to cause the mass extinction. However, sea level fall did exacerbate the input of terrestrial debris into the ocean, leading to the deterioration of the marine environment. We propose that the combined adverse effects of volcanic eruptions, sea level falls, and other events exceeded the threshold for biological survival, ultimately resulting in the catastrophic EPME.
Collapse
Affiliation(s)
- Xiong Duan
- School of Geographical Sciences, Sichuan Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion in Dry Valley, China West Normal University, Nanchong, 637009, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, 610059, China
| | - Zhiqiang Shi
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, 610059, China
| |
Collapse
|
8
|
Coiro M, Seyfullah LJ. Disparity of cycad leaves dispels the living fossil metaphor. Commun Biol 2024; 7:328. [PMID: 38485767 PMCID: PMC10940627 DOI: 10.1038/s42003-024-06024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
The living fossil metaphor is tightly linked with the cycads. This group of gymnosperms is supposed to be characterised by long-term morphological stasis, particularly after their peak of diversity and disparity in the Jurassic. However, no formal test of this hypothesis exists. Here, we use a recent phylogenetic framework and an improved character matrix to reconstruct the Disparity Through Time for cycad leaves using a Principal Coordinate Analysis and employing Pre-Ordination Ancestral State Reconstruction to test the impact of sampling on the results. Our analysis shows that the cycad leaf morsphospace expanded up to the present, with numerous shifts in its general positioning, independently of sampling biases. Moreover, they also show that Zamiaceae expanded rapidly in the Early Cretaceous and continued to expand up to the present, while now-extinct clades experienced a slow contraction from their peak in the Triassic. We also show that rates of evolution were constantly high up to the Early Cretaceous, and then experienced a slight decrease in the Paleogene, followed by a Neogene acceleration. These results show a much more dynamic history for cycads, and suggest that the 'living fossil' metaphor is actually a hindrance to our understanding of their macroevolution.
Collapse
Affiliation(s)
- Mario Coiro
- Department of Palaeontology, University of Vienna, Vienna, Austria.
- Ronin Institute for Independent Scholarship, Montclair, NJ, USA.
| | | |
Collapse
|
9
|
Su Y, Feng T, Liu CB, Huang H, Wang YL, Fu X, Han ML, Zhang X, Huang X, Wu JC, Song T, Shen H, Yang X, Xu L, Lü S, Chao DY. The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants. NATURE PLANTS 2023; 9:1968-1977. [PMID: 37932483 DOI: 10.1038/s41477-023-01555-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Seed plants overtook ferns to become the dominant plant group during the late Carboniferous, a period in which the climate became colder and dryer1,2. However, the specific innovations driving the success of seed plants are not clear. Here we report that the appearance of suberin lamellae (SL) contributed to the rise of seed plants. We show that the Casparian strip and SL vascular barriers evolved at different times, with the former originating in the most recent common ancestor (MRCA) of vascular plants and the latter in the MRCA of seed plants. Our results further suggest that most of the genes required for suberin formation arose through gene duplication in the MRCA of seed plants. We show that the appearance of the SL in the MRCA of seed plants enhanced drought tolerance through preventing water loss from the stele. We hypothesize that SL provide a decisive selective advantage over ferns in arid environments, resulting in the decline of ferns and the rise of gymnosperms. This study provides insights into the evolutionary success of seed plants and has implications for engineering drought-tolerant crops or fern varieties.
Collapse
Affiliation(s)
- Yu Su
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Feng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Biosystematics Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Chu-Bin Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ya-Ling Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojuan Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Mei-Ling Han
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuanhao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Chen Wu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Shen
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai, China
| | - Xianpeng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
10
|
Abstract
Paleontology has provided invaluable basic knowledge on the history of life on Earth. The discipline can also provide substantial knowledge to societal challenges such as climate change. The long-term perspective of climate change impacts on natural systems is both a unique selling point and a major obstacle to becoming more pertinent for policy-relevant bodies like the Intergovernmental Panel on Climate Change (IPCC). Repeated experiments on the impacts of climate change without anthropogenic disturbance facilitate the extraction of climate triggers in biodiversity changes. At the same time, the long timescales over which paleontological changes are usually assessed are beyond the scope of policymakers. Based on first-hand experience with the IPCC and a quantitative analysis of its cited literature, we argue that the differences in temporal scope are less of an issue than inappropriate framing and reporting of most paleontological publications. Accepting that some obstacles will remain, paleontology can quickly improve its relevance by targeting climate change impacts more directly and focusing on effect sizes and relevance for projections, particularly on higher-end climate change scenarios.
Collapse
|
11
|
Liu F, Peng H, Marshall JE, Lomax BH, Bomfleur B, Kent MS, Fraser WT, Jardine PE. Dying in the Sun: Direct evidence for elevated UV-B radiation at the end-Permian mass extinction. SCIENCE ADVANCES 2023; 9:eabo6102. [PMID: 36608140 PMCID: PMC9821938 DOI: 10.1126/sciadv.abo6102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Land plants can adjust the concentration of protective ultraviolet B (UV-B)-absorbing compounds (UACs) in the outer wall of their reproductive propagules in response to ambient UV-B flux. To infer changes in UV-B radiation flux at Earth's surface during the end-Permian mass extinction, we analyze UAC abundances in ca. 800 pollen grains from an independently dated Permian-Triassic boundary section in Tibet. Our data reveal an excursion in UACs that coincide with a spike in mercury concentration and a negative carbon-isotope excursion in the latest Permian deposits, suggesting a close temporal link between large-scale volcanic eruptions, global carbon and mercury cycle perturbations, and ozone layer disruption. Because enhanced UV-B radiation can exacerbate the environmental deterioration induced by massive magmatism, ozone depletion is considered a compelling ecological driver for the terrestrial mass extinction.
Collapse
Affiliation(s)
- Feng Liu
- Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- State Key Laboratory of Palaeobiology and Stratigraphy and Center for Excellence in Life and Paleoenvironment, Nanjing 210008, China
| | - Huiping Peng
- Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - John E. A. Marshall
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK
| | - Barry H. Lomax
- Division of Agricultural and Environmental Sciences, The School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Benjamin Bomfleur
- Palaeobotany Group, Institute of Geology and Palaeontology, University of Münster, Münster 48149, Germany
| | - Matthew S. Kent
- Division of Agricultural and Environmental Sciences, The School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Wesley T. Fraser
- Geography, School of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Phillip E. Jardine
- Palaeobotany Group, Institute of Geology and Palaeontology, University of Münster, Münster 48149, Germany
| |
Collapse
|
12
|
Jouault C, Nel A, Perrichot V, Legendre F, Condamine FL. Multiple drivers and lineage-specific insect extinctions during the Permo-Triassic. Nat Commun 2022; 13:7512. [PMID: 36473862 PMCID: PMC9726944 DOI: 10.1038/s41467-022-35284-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The Permo-Triassic interval encompasses three extinction events including the most dramatic biological crisis of the Phanerozoic, the latest Permian mass extinction. However, their drivers and outcomes are poorly quantified and understood for terrestrial invertebrates, which we assess here for insects. We find a pattern with three extinctions: the Roadian/Wordian (≈266.9 Ma; extinction of 64.5% insect genera), the Permian/Triassic (≈252 Ma; extinction of 82.6% insect genera), and the Ladinian/Carnian boundaries (≈237 Ma; extinction of 74.8% insect genera). We also unveil a heterogeneous effect of these extinction events across the major insect clades. Because extinction events have impacted Permo-Triassic ecosystems, we investigate the influence of abiotic and biotic factors on insect diversification dynamics and find that changes in floral assemblages are likely the strongest drivers of insects' responses throughout the Permo-Triassic. We also assess the effect of diversity dependence between three insect guilds; an effect ubiquitously found in current ecosystems. We find that herbivores held a central position in the Permo-Triassic interaction network. Our study reveals high levels of insect extinction that profoundly shaped the evolutionary history of the most diverse non-microbial lineage.
Collapse
Affiliation(s)
- Corentin Jouault
- grid.462844.80000 0001 2308 1657Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France ,grid.462934.e0000 0001 1482 4447Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, F-35000 Rennes, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 5554 Institut des Sciences de l’Évolution de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - André Nel
- grid.462844.80000 0001 2308 1657Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Vincent Perrichot
- grid.462934.e0000 0001 1482 4447Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Frédéric Legendre
- grid.462844.80000 0001 2308 1657Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Fabien L. Condamine
- grid.4444.00000 0001 2112 9282CNRS, UMR 5554 Institut des Sciences de l’Évolution de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
13
|
Schachat SR. Examining paleobotanical databases: Revisiting trends in angiosperm folivory and unlocking the paleoecological promise of propensity score matching and specification curve analysis. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.951547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Paleobotany is at a crossroads. Long-term trends in the fossil record of plants, encompassing their interactions with herbivores and with the environment, are of the utmost relevance for predicting global change as pCO2 continues to rise. Large data compilations with the potential to elucidate those trends are increasingly easy to assemble and access. However, in contrast to modern ecology and unlike various other paleontological disciplines, paleobotany has a limited history of “big data” meta-analyses. Debates about how much data are needed to address particular questions, and about how to control for potential confounding variables, have not examined paleobotanical data. Here I demonstrate the importance of analytical best practices by applying them to a recent meta-analysis of fossil angiosperms. Two notable analytical methods discussed here are propensity score matching and specification curve analysis. The former has been used in the biomedical and behavioral sciences for decades; the latter is a more recent method of examining relationships between, and inherent biases among, models. Propensity score matching allows one to account for potential confounding variables in observational studies, and more fundamentally, provides a way to quantify whether it is possible to account for them. Specification curve analysis provides the opportunity to examine patterns across a variety of schemes for partitioning data—for example, whether fossil assemblages are binned temporally by stage, epoch, or period. To my knowledge, neither of these methods has been used previously in paleontology, however, their use permits more robust analysis of paleoecological datasets. In the example provided here, propensity score matching is used to separate latitudinal trends from differences in age, climate, and plant community composition. Specification curve analysis is used to examine the robustness of apparent latitudinal trends to the schema used for assigning fossil assemblages to latitudinal bins. These analytical methods have the potential to further unlock the promise of the plant fossil record for elucidating long-term ecological and evolutionary change.
Collapse
|
14
|
Buatois LA, Davies NS, Gibling MR, Krapovickas V, Labandeira CC, MacNaughton RB, Mángano MG, Minter NJ, Shillito AP. The Invasion of the Land in Deep Time: Integrating Paleozoic Records of Paleobiology, Ichnology, Sedimentology, and Geomorphology. Integr Comp Biol 2022; 62:297-331. [PMID: 35640908 DOI: 10.1093/icb/icac059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The invasion of the land was a complex, protracted process, punctuated by mass extinctions, that involved multiple routes from marine environments. We integrate paleobiology, ichnology, sedimentology, and geomorphology to reconstruct Paleozoic terrestrialization. Cambrian landscapes were dominated by laterally mobile rivers with unstable banks in the absence of significant vegetation. Temporary incursions by arthropods and worm-like organisms into coastal environments apparently did not result in establishment of continental communities. Contemporaneous lacustrine faunas may have been inhibited by limited nutrient delivery and high sediment loads. The Ordovician appearance of early land plants triggered a shift in the primary locus of the global clay mineral factory, increasing the amount of mudrock on the continents. The Silurian-Devonian rise of vascular land plants, including the first forests and extensive root systems, was instrumental in further retaining fine sediment on alluvial plains. These innovations led to increased architectural complexity of braided and meandering rivers. Landscape changes were synchronous with establishment of freshwater and terrestrial arthropod faunas in overbank areas, abandoned fluvial channels, lake margins, ephemeral lakes, and inland deserts. Silurian-Devonian lakes experienced improved nutrient availability, due to increased phosphate weathering and terrestrial humic matter. All these changes favoured frequent invasions to permament establishment of jawless and jawed fishes in freshwater habitats and the subsequent tetrapod colonization of the land. The Carboniferous saw rapid diversification of tetrapods, mostly linked to aquatic reproduction, and land plants, including gymnosperms. Deeper root systems promoted further riverbank stabilization, contributing to the rise of anabranching rivers and braided systems with vegetated islands. New lineages of aquatic insects developed and expanded novel feeding modes, including herbivory. Late Paleozoic soils commonly contain pervasive root and millipede traces. Lacustrine animal communities diversified, accompanied by increased food-web complexity and improved food delivery which may have favored permanent colonization of offshore and deep-water lake environments. These trends continued in the Permian, but progressive aridification favored formation of hypersaline lakes, which were stressful for colonization. The Capitanian and end-Permian extinctions affected lacustrine and fluvial biotas, particularly the invertebrate infauna, although burrowing may have allowed some tetrapods to survive associated global warming and increased aridification.
Collapse
Affiliation(s)
- Luis A Buatois
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Neil S Davies
- Department of Earth Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EQ, UK
| | - Martin R Gibling
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Verónica Krapovickas
- Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Argentina
| | - Conrad C Labandeira
- Department of Paleobiology, Smithsonian Institution, Washington DC 20013-7012, USA.,Department of Entomology and BEES Program, University of Maryland, College Park, Maryland 21740, USA.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Robert B MacNaughton
- Geological Survey of Canada (Calgary), Natural Resources Canada, Calgary, Alberta T2L 2A7, Canada
| | - M Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Nicholas J Minter
- School of the Environment, Geography, and Geosciences, University of Portsmouth, Portsmouth, Hampshire PO1 3QL, UK
| | - Anthony P Shillito
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
15
|
Gulbranson EL, Mellum MM, Corti V, Dahlseid A, Atkinson BA, Ryberg PE, Cornamusini G. Paleoclimate-induced stress on polar forested ecosystems prior to the Permian-Triassic mass extinction. Sci Rep 2022; 12:8702. [PMID: 35610472 PMCID: PMC9130125 DOI: 10.1038/s41598-022-12842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
The end-Permian extinction (EPE) has been considered to be contemporaneous on land and in the oceans. However, re-examined floristic records and new radiometric ages from Gondwana indicate a nuanced terrestrial ecosystem response to EPE global change. Paleosol geochemistry and climate simulations indicate paleoclimate change likely caused the demise of the widespread glossopterid ecosystems in Gondwana. Here, we evaluate the climate response of plants to the EPE via dendrochronology snapshots to produce annual-resolution records of tree-ring growth for a succession of late Permian and early Middle Triassic fossil forests from Antarctica. Paleosol geochemistry indicates a shift in paleoclimate towards more humid conditions in the Early and early Middle Triassic relative to the late Permian. Paleosol morphology, however, supports inferences of a lack of forested ecosystems in the Early Triassic. The plant responses to this paleoclimate change were accompanied by enhanced stress during the latest Permian as determined by high-resolution paleoclimate analysis of wood growth intervals. These results suggest that paleoclimate change during the late Permian exerted significant stress on high-latitude forests, consistent with the hypothesis that climate change was likely the primary driver of the extinction of the glossopterid ecosystems.
Collapse
Affiliation(s)
- Erik L Gulbranson
- Department of Geology, Gustavus Adolphus College, 800 W. College Ave, St. Peter, MN, 56082, USA.
| | - Morgan M Mellum
- Department of Geology, Gustavus Adolphus College, 800 W. College Ave, St. Peter, MN, 56082, USA
| | - Valentina Corti
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, 53100, Siena, Italy
| | - Aidan Dahlseid
- Department of Geology, Gustavus Adolphus College, 800 W. College Ave, St. Peter, MN, 56082, USA
| | - Brian A Atkinson
- Department of Ecology and Evolutionary Biology, University of Kansas, 6012 Haworth Hall, Lawrence, KS, 66045, USA
| | - Patricia E Ryberg
- Department of Physical and Natural Sciences, Park University, Parkville, MO, 64152, USA
| | - Gianluca Cornamusini
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, 53100, Siena, Italy
| |
Collapse
|
16
|
Zhao X, Yu Y, Clapham ME, Yan E, Chen J, Jarzembowski EA, Zhao X, Wang B. Early evolution of beetles regulated by the end-Permian deforestation. eLife 2021; 10:72692. [PMID: 34747694 PMCID: PMC8585485 DOI: 10.7554/elife.72692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/03/2021] [Indexed: 01/10/2023] Open
Abstract
The end-Permian mass extinction (EPME) led to a severe terrestrial ecosystem collapse. However, the ecological response of insects—the most diverse group of organisms on Earth—to the EPME remains poorly understood. Here, we analyse beetle evolutionary history based on taxonomic diversity, morphological disparity, phylogeny, and ecological shifts from the Early Permian to Middle Triassic, using a comprehensive new dataset. Permian beetles were dominated by xylophagous stem groups with high diversity and disparity, which probably played an underappreciated role in the Permian carbon cycle. Our suite of analyses shows that Permian xylophagous beetles suffered a severe extinction during the EPME largely due to the collapse of forest ecosystems, resulting in an Early Triassic gap of xylophagous beetles. New xylophagous beetles appeared widely in the early Middle Triassic, which is consistent with the restoration of forest ecosystems. Our results highlight the ecological significance of insects in deep-time terrestrial ecosystems.
Collapse
Affiliation(s)
- Xianye Zhao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yilun Yu
- University of Chinese Academy of Sciences, Beijing, China.,Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Matthew E Clapham
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, United States
| | - Evgeny Yan
- Palaeontological Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Jun Chen
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.,Institute of Geology and Paleontology, Linyi University, Linyi, China
| | - Edmund A Jarzembowski
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.,Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | - Xiangdong Zhao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
17
|
Kulik ZT, Lungmus JK, Angielczyk KD, Sidor CA. Living fast in the Triassic: New data on life history in Lystrosaurus (Therapsida: Dicynodontia) from northeastern Pangea. PLoS One 2021; 16:e0259369. [PMID: 34739492 PMCID: PMC8570511 DOI: 10.1371/journal.pone.0259369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Lystrosaurus was one of the few tetrapods to survive the Permo-Triassic mass extinction, the most profound biotic crisis in Earth’s history. The wide paleolatitudinal range and high abundance of Lystrosaurus during the Early Triassic provide a unique opportunity to investigate changes in growth dynamics and longevity following the mass extinction, yet most studies have focused only on species that lived in the southern hemisphere. Here, we present the long bone histology from twenty Lystrosaurus skeletal elements spanning a range of sizes that were collected in the Jiucaiyuan Formation of northwestern China. In addition, we compare the average body size of northern and southern Pangean Triassic-aged species and conduct cranial geometric morphometric analyses of southern and northern taxa to begin investigating whether specimens from China are likely to be taxonomically distinct from South African specimens. We demonstrate that Lystrosaurus from China have larger average body sizes than their southern Pangean relatives and that their cranial morphologies are distinctive. The osteohistological examination revealed sustained, rapid osteogenesis punctuated by growth marks in some, but not all, immature individuals from China. We find that the osteohistology of Chinese Lystrosaurus shares a similar growth pattern with South African species that show sustained growth until death. However, bone growth arrests more frequently in the Chinese sample. Nevertheless, none of the long bones sampled here indicate that maximum or asymptotic size was reached, suggesting that the maximum size of Lystrosaurus from the Jiucaiyuan Formation remains unknown.
Collapse
Affiliation(s)
- Zoe T. Kulik
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, United States of America
- * E-mail:
| | - Jacqueline K. Lungmus
- Smithsonian National Museum of Natural History, Washington, D.C., United States of America
| | - Kenneth D. Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, United States of America
| | - Christian A. Sidor
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
18
|
Silvestro D, Bacon CD, Ding W, Zhang Q, Donoghue PCJ, Antonelli A, Xing Y. Fossil data support a pre-Cretaceous origin of flowering plants. Nat Ecol Evol 2021; 5:449-457. [PMID: 33510432 DOI: 10.1038/s41559-020-01387-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023]
Abstract
Flowering plants (angiosperms) are the most diverse of all land plants, becoming abundant in the Cretaceous and achieving dominance in the Cenozoic. However, the exact timing of their origin remains a controversial topic, with molecular clocks generally placing their origin much further back in time than the oldest unequivocal fossils. To resolve this discrepancy, we developed a Bayesian method to estimate the ages of angiosperm families on the basis of the fossil record (a newly compiled dataset of ~15,000 occurrences in 198 families) and their living diversity. Our results indicate that several families originated in the Jurassic, strongly rejecting a Cretaceous origin for the group. We report a marked increase in lineage accumulation from 125 to 72 million years ago, supporting Darwin's hypothesis of a rapid Cretaceous angiosperm diversification. Our results demonstrate that a pre-Cretaceous origin of angiosperms is supported not only by molecular clock approaches but also by analyses of the fossil record that explicitly correct for incomplete sampling.
Collapse
Affiliation(s)
- Daniele Silvestro
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
- Swiss Institute of Bioinformatics, Fribourg, Switzerland.
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden.
| | - Christine D Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Wenna Ding
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Qiuyue Zhang
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Yaowu Xing
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
19
|
|
20
|
Condamine FL, Silvestro D, Koppelhus EB, Antonelli A. The rise of angiosperms pushed conifers to decline during global cooling. Proc Natl Acad Sci U S A 2020; 117:28867-28875. [PMID: 33139543 PMCID: PMC7682372 DOI: 10.1073/pnas.2005571117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Competition among species and entire clades can impact species diversification and extinction, which can shape macroevolutionary patterns. The fossil record shows successive biotic turnovers such that a dominant group is replaced by another. One striking example involves the decline of gymnosperms and the rapid diversification and ecological dominance of angiosperms in the Cretaceous. It is generally believed that angiosperms outcompeted gymnosperms, but the macroevolutionary processes and alternative drivers explaining this pattern remain elusive. Using extant time trees and vetted fossil occurrences for conifers, we tested the hypotheses that clade competition or climate change led to the decline of conifers at the expense of angiosperms. Here, we find that both fossil and molecular data show high congruence in revealing 1) low diversification rates, punctuated by speciation pulses, during warming events throughout the Phanerozoic and 2) that conifer extinction increased significantly in the Mid-Cretaceous (100 to 110 Ma) and remained high ever since. Their extinction rates are best explained by the rise of angiosperms, rejecting alternative models based on either climate change or time alone. Our results support the hypothesis of an active clade replacement, implying that direct competition with angiosperms increased the extinction of conifers by pushing their remaining species diversity and dominance out of the warm tropics. This study illustrates how entire branches on the Tree of Life may actively compete for ecological dominance under changing climates.
Collapse
Affiliation(s)
- Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier), 34095 Montpellier, France;
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, SE-405 30 Gothenburg, Sweden
| | - Eva B Koppelhus
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, SE-405 30 Gothenburg, Sweden
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom
| |
Collapse
|
21
|
Gao JG, Liu H, Wang N, Yang J, Zhang XL. Plant extinction excels plant speciation in the Anthropocene. BMC PLANT BIOLOGY 2020; 20:430. [PMID: 32938403 PMCID: PMC7493330 DOI: 10.1186/s12870-020-02646-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In the past several millenniums, we have domesticated several crop species that are crucial for human civilization, which is a symbol of significant human influence on plant evolution. A pressing question to address is if plant diversity will increase or decrease in this warming world since contradictory pieces of evidence exit of accelerating plant speciation and plant extinction in the Anthropocene. RESULTS Comparison may be made of the Anthropocene with the past geological times characterised by a warming climate, e.g., the Palaeocene-Eocene Thermal Maximum (PETM) 55.8 million years ago (Mya)-a period of "crocodiles in the Arctic", during which plants saw accelerated speciation through autopolyploid speciation. Three accelerators of plant speciation were reasonably identified in the Anthropocene, including cities, polar regions and botanical gardens where new plant species might be accelerating formed through autopolyploid speciation and hybridization. CONCLUSIONS However, this kind of positive effect of climate warming on new plant species formation would be thoroughly offset by direct and indirect intensive human exploitation and human disturbances that cause habitat loss, deforestation, land use change, climate change, and pollution, thus leading to higher extinction risk than speciation in the Anthropocene. At last, four research directions are proposed to deepen our understanding of how plant traits affect speciation and extinction, why we need to make good use of polar regions to study the mechanisms of dispersion and invasion, how to maximize the conservation of plant genetics, species, and diverse landscapes and ecosystems and a holistic perspective on plant speciation and extinction is needed to integrate spatiotemporally.
Collapse
Affiliation(s)
- Jian-Guo Gao
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, China.
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou, 510650, China
| | - Ning Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiao-Ling Zhang
- Department of Public Policy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
22
|
Nic Lughadha E, Bachman SP, Leão TCC, Forest F, Halley JM, Moat J, Acedo C, Bacon KL, Brewer RFA, Gâteblé G, Gonçalves SC, Govaerts R, Hollingsworth PM, Krisai‐Greilhuber I, Lirio EJ, Moore PGP, Negrão R, Onana JM, Rajaovelona LR, Razanajatovo H, Reich PB, Richards SL, Rivers MC, Cooper A, Iganci J, Lewis GP, Smidt EC, Antonelli A, Mueller GM, Walker BE. Extinction risk and threats to plants and fungi. PLANTS, PEOPLE, PLANET 2020; 2:389-408. [PMID: 0 DOI: 10.1002/ppp3.10146] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/09/2020] [Indexed: 05/29/2023]
Affiliation(s)
| | - Steven P. Bachman
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| | | | - Félix Forest
- Analytical Methods Royal Botanic Gardens, Kew Richmond UK
| | - John M. Halley
- Laboratory of Ecology Department of Biological Applications & Technology University of Ioannina Ioannina Greece
| | - Justin Moat
- Bioinformatics and Spatial Analysis Department Royal Botanic Gardens, Kew Richmond UK
| | - Carmen Acedo
- Department of Biodiversity and Environment Management Faculty of Biological and Environmental Sciences Campus of Vegazana University of León León Spain
| | - Karen L. Bacon
- Botany & Plant Sciences School of Natural Sciences National University of Ireland Galway Ireland
| | - Ryan F. A. Brewer
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| | - Gildas Gâteblé
- Equipe ARBOREAL Institut Agronomique néo‐Calédonien Mont‐Dore New Caledonia
| | - Susana C. Gonçalves
- Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
| | - Rafaël Govaerts
- Bioinformatics and Spatial Analysis Department Royal Botanic Gardens, Kew Richmond UK
| | | | - Irmgard Krisai‐Greilhuber
- Mycology Research Group Division of Systematic and Evolutionary Biology Department of Botany and Biodiversity Research University of Vienna Vienna Austria
| | - Elton J. Lirio
- Departamento de Botânica Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| | | | - Raquel Negrão
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| | - Jean Michel Onana
- Systematics, Biodiversity and Conservation of Plants Faculty of Science University of Yaoundé I & National Herbarium of Cameroon Yaoundé Cameroon
| | - Landy R. Rajaovelona
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
- Kew Madagascar Conservation Centre Antananarivo Madagascar
| | - Henintsoa Razanajatovo
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
- Kew Madagascar Conservation Centre Antananarivo Madagascar
| | - Peter B. Reich
- Department of Forest Resources University of Minnesota St. Paul MN USA
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | | | | | - Amanda Cooper
- Bioinformatics and Spatial Analysis Department Royal Botanic Gardens, Kew Richmond UK
- Department of Biological Sciences Royal HollowayUniversity of London Egham UK
| | - João Iganci
- Instituto de Biologia Departamento de Botânica Universidade Federal de Pelotas Pelotas Brazil
- Instituto de Biociências Programa de Pós‐Graduação em Botânica Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Gwilym P. Lewis
- Comparative Plant and Fungal Biology Royal Botanic Gardens, Kew Richmond UK
| | - Eric C. Smidt
- Departamento de Botânica Universidade Federal do Paraná Curitiba Brazil
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew Richmond UK
- Gothenburg Global Biodiversity Centre Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
| | - Gregory M. Mueller
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Chicago IL USA
| | - Barnaby E. Walker
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| |
Collapse
|
23
|
Gomez-Fernandez BJ, Risso VA, Rueda A, Sanchez-Ruiz JM, Alcalde M. Ancestral Resurrection and Directed Evolution of Fungal Mesozoic Laccases. Appl Environ Microbiol 2020; 86:e00778-20. [PMID: 32414792 PMCID: PMC7357490 DOI: 10.1128/aem.00778-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Ancestral sequence reconstruction and resurrection provides useful information for protein engineering, yet its alliance with directed evolution has been little explored. In this study, we have resurrected several ancestral nodes of fungal laccases dating back ∼500 to 250 million years. Unlike modern laccases, the resurrected Mesozoic laccases were readily secreted by yeast, with similar kinetic parameters, a broader stability, and distinct pH activity profiles. The resurrected Agaricomycetes laccase carried 136 ancestral mutations, a molecular testimony to its origin, and it was subjected to directed evolution in order to improve the rate of 1,3-cyclopentanedione oxidation, a β-diketone initiator commonly used in vinyl polymerization reactions.IMPORTANCE The broad variety of biotechnological uses of fungal laccases is beyond doubt (food, textiles, pulp and paper, pharma, biofuels, cosmetics, and bioremediation), and protein engineering (in particular, directed evolution) has become the key driver for adaptation of these enzymes to harsh industrial conditions. Usually, the first requirement for directed laccase evolution is heterologous expression, which presents an important hurdle and often a time-consuming process. In this work, we resurrected a fungal Mesozoic laccase node which showed strikingly high heterologous expression and pH stability. As a proof of concept that the ancestral laccase is a suitable blueprint for engineering, we performed a quick directed evolution campaign geared to the oxidation of the β-diketone 1,3-cyclopentanedione, a poor laccase substrate that is used in the polymerization of vinyl monomers.
Collapse
Affiliation(s)
- Bernardo J Gomez-Fernandez
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, CSIC, Madrid, Spain
- EvoEnzyme, S.L., Madrid, Spain
| | - Valeria A Risso
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Andres Rueda
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| | - Jose M Sanchez-Ruiz
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, CSIC, Madrid, Spain
- EvoEnzyme, S.L., Madrid, Spain
| |
Collapse
|
24
|
Dal Corso J, Mills BJW, Chu D, Newton RJ, Mather TA, Shu W, Wu Y, Tong J, Wignall PB. Permo-Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse. Nat Commun 2020; 11:2962. [PMID: 32528009 PMCID: PMC7289894 DOI: 10.1038/s41467-020-16725-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/18/2020] [Indexed: 11/09/2022] Open
Abstract
Records suggest that the Permo-Triassic mass extinction (PTME) involved one of the most severe terrestrial ecosystem collapses of the Phanerozoic. However, it has proved difficult to constrain the extent of the primary productivity loss on land, hindering our understanding of the effects on global biogeochemistry. We build a new biogeochemical model that couples the global Hg and C cycles to evaluate the distinct terrestrial contribution to atmosphere-ocean biogeochemistry separated from coeval volcanic fluxes. We show that the large short-lived Hg spike, and nadirs in δ202Hg and δ13C values at the marine PTME are best explained by a sudden, massive pulse of terrestrial biomass oxidation, while volcanism remains an adequate explanation for the longer-term geochemical changes. Our modelling shows that a massive collapse of terrestrial ecosystems linked to volcanism-driven environmental change triggered significant biogeochemical changes, and cascaded organic matter, nutrients, Hg and other organically-bound species into the marine system.
Collapse
Affiliation(s)
- Jacopo Dal Corso
- School of Earth and Environments, University of Leeds, Leeds, LS2 9JT, UK. .,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Benjamin J W Mills
- School of Earth and Environments, University of Leeds, Leeds, LS2 9JT, UK.
| | - Daoliang Chu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Robert J Newton
- School of Earth and Environments, University of Leeds, Leeds, LS2 9JT, UK
| | - Tamsin A Mather
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| | - Wenchao Shu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yuyang Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jinnan Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Paul B Wignall
- School of Earth and Environments, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
25
|
Budd GE, Mann RP. The dynamics of stem and crown groups. SCIENCE ADVANCES 2020; 6:eaaz1626. [PMID: 32128421 PMCID: PMC7030935 DOI: 10.1126/sciadv.aaz1626] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/03/2019] [Indexed: 05/22/2023]
Abstract
The fossil record of the origins of major groups such as animals and birds has generated considerable controversy, especially when it conflicts with timings based on molecular clock estimates. Here, we model the diversity of "stem" (basal) and "crown" (modern) members of groups using a "birth-death model," the results of which qualitatively match many large-scale patterns seen in the fossil record. Typically, the stem group diversifies rapidly until the crown group emerges, at which point its diversity collapses, followed shortly by its extinction. Mass extinctions can disturb this pattern and create long stem groups such as the dinosaurs. Crown groups are unlikely to emerge either cryptically or just before mass extinctions, in contradiction to popular hypotheses such as the "phylogenetic fuse". The patterns revealed provide an essential context for framing ecological and evolutionary explanations for how major groups originate, and strengthen our confidence in the reliability of the fossil record.
Collapse
Affiliation(s)
- Graham E. Budd
- Department of Earth Sciences, Palaeobiology Programme, Uppsala University, Uppsala, Sweden
- Corresponding author.
| | - Richard P. Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds, UK
- The Alan Turing Institute, London, UK
| |
Collapse
|
26
|
Schachat SR, Labandeira CC, Clapham ME, Payne JL. A Cretaceous peak in family-level insect diversity estimated with mark-recapture methodology. Proc Biol Sci 2019; 286:20192054. [PMID: 31847775 PMCID: PMC6939917 DOI: 10.1098/rspb.2019.2054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022] Open
Abstract
The history of insects' taxonomic diversity is poorly understood. The two most common methods for estimating taxonomic diversity in deep time yield conflicting results: the 'range through' method suggests a steady, nearly monotonic increase in family-level diversity, whereas 'shareholder quorum subsampling' suggests a highly volatile taxonomic history with family-level mass extinctions occurring repeatedly, even at the midpoints of geological periods. The only feature shared by these two diversity curves is a steep increase in standing diversity during the Early Cretaceous. This apparent diversification event occurs primarily during the Aptian, the pre-Cenozoic interval with the most described insect occurrences, raising the possibility that this feature of the diversity curves reflects preservation and sampling biases rather than insect evolution and extinction. Here, the capture-mark-recapture (CMR) approach is used to estimate insects' family-level diversity. This method accounts for the incompleteness of the insect fossil record as well as uneven sampling among time intervals. The CMR diversity curve shows extinctions at the Permian/Triassic and Cretaceous/Palaeogene boundaries but does not contain any mass extinctions within geological periods. This curve also includes a steep increase in diversity during the Aptian, which appears not to be an artefact of sampling or preservation bias because this increase still appears when time bins are standardized by the number of occurrences they contain rather than by the amount of time that they span. The Early Cretaceous increase in family-level diversity predates the rise of angiosperms by many millions of years and can be better attributed to the diversification of parasitic and especially parasitoid insect lineages.
Collapse
Affiliation(s)
- Sandra R. Schachat
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Conrad C. Labandeira
- Department of Paleobiology, Smithsonian Institution, Washington, DC 20013, USA
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
- College of Life Sciences, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Matthew E. Clapham
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064, USA
| | - Jonathan L. Payne
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Van de Wetering N, Esterle JS, Golding SD, Rodrigues S, Götz AE. Carbon isotopic evidence for rapid methane clathrate release recorded in coals at the terminus of the Late Palaeozoic Ice Age. Sci Rep 2019; 9:16544. [PMID: 31719563 PMCID: PMC6851110 DOI: 10.1038/s41598-019-52863-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/22/2019] [Indexed: 11/09/2022] Open
Abstract
The end of the Late Palaeozoic Ice Age (LPIA) ushered in a period of significant change in Earth's carbon cycle, demonstrated by the widespread occurrence of coals worldwide. In this study, we present stratigraphically constrained organic stable carbon isotope (δ13Corg) data for Early Permian coals (312 vitrain samples) from the Moatize Basin, Mozambique, which record the transition from global icehouse to greenhouse conditions. These coals exhibit a three-stage evolution in atmospheric δ13C from the Artinskian to the Kungurian. Early Kungurian coals effectively record the presence of the short-lived Kungurian Carbon Isotopic Excursion (KCIE), associated with the proposed rapid release of methane clathrates during deglaciation at the terminus of the Late Palaeozoic Ice Age (LPIA), with no observed disruption to peat-forming and terrestrial plant communities. δ13Corg variations in coals from the Moatize Basin are cyclic in nature on the order of 103-105 years and reflect changes in δ13Corg of ~±1‰ during periods of stable peat accumulation, supporting observations from Palaeozoic coals elsewhere. These cyclic variations express palaeoenvironmental factors constraining peat growth and deposition, associated with changes in base level. This study also demonstrates the effectiveness of vitrain in coal as a geochemical tool for recording global atmospheric change during the Late Palaeozoic.
Collapse
Affiliation(s)
- Nikola Van de Wetering
- Vale-UQ Coal Geosciences Program, School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, 4102, Australia.
| | - Joan S Esterle
- Vale-UQ Coal Geosciences Program, School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Suzanne D Golding
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Sandra Rodrigues
- Vale-UQ Coal Geosciences Program, School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Annette E Götz
- Technische Universität Ilmenau, D-98693, Ilmenau, Germany
| |
Collapse
|
28
|
Montagna M, Tong KJ, Magoga G, Strada L, Tintori A, Ho SYW, Lo N. Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the End-Permian Extinction. Proc Biol Sci 2019; 286:20191854. [PMID: 31594499 PMCID: PMC6790769 DOI: 10.1098/rspb.2019.1854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
Insects are a highly diverse group of organisms and constitute more than half of all known animal species. They have evolved an extraordinary range of traits, from flight and complete metamorphosis to complex polyphenisms and advanced eusociality. Although the rich insect fossil record has helped to chart the appearance of many phenotypic innovations, data are scarce for a number of key periods. One such period is that following the End-Permian Extinction, recognized as the most catastrophic of all extinction events. We recently discovered several 240-million-year-old insect fossils in the Mount San Giorgio Lagerstätte (Switzerland-Italy) that are remarkable for their state of preservation (including internal organs and soft tissues), and because they extend the records of their respective taxa by up to 200 million years. By using these fossils as calibrations in a phylogenomic dating analysis, we present a revised time scale for insect evolution. Our date estimates for several major lineages, including the hyperdiverse crown groups of Lepidoptera, Hemiptera: Heteroptera and Diptera, are substantially older than their currently accepted post-Permian origins. We found that major evolutionary innovations, including flight and metamorphosis, appeared considerably earlier than previously thought. These results have numerous implications for understanding the evolution of insects and their resilience in the face of extreme events such as the End-Permian Extinction.
Collapse
Affiliation(s)
- Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - K. Jun Tong
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Sydney, Australia
| | - Giulia Magoga
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Laura Strada
- Dipartimento di Scienze della Terra ‘Ardito Desio’, Università degli Studi di Milano, Via Mangiagalli 34, 20133 Milano, Italy
| | - Andrea Tintori
- Dipartimento di Scienze della Terra ‘Ardito Desio’, Università degli Studi di Milano, Via Mangiagalli 34, 20133 Milano, Italy
| | - Simon Y. W. Ho
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Sydney, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Sydney, Australia
| |
Collapse
|
29
|
|