1
|
Leitz J, Wang C, Esquivies L, Peters JJ, Gopal N, Pfuetzner RA, Wang AL, Brunger AT. Observing isolated synaptic vesicle association and fusion ex vivo. Nat Protoc 2024; 19:3139-3161. [PMID: 38956381 DOI: 10.1038/s41596-024-01014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/15/2024] [Indexed: 07/04/2024]
Abstract
Here, we present a protocol for isolating functionally intact glutamatergic synaptic vesicles from whole-mouse brain tissue and using them in a single-vesicle assay to examine their association and fusion with plasma membrane mimic vesicles. This is a Protocol Extension, building on our previous protocol, which used a purely synthetic system comprised of reconstituted proteins in liposomes. We also describe the generation of a peptide based on the vesicular glutamate transporter, which is essential in the isolation process of glutamatergic synaptic vesicles. This method uses easily accessible reagents to generate fusion-competent glutamatergic synaptic vesicles through immunoisolation. The generation of the vGlut peptide can be accomplished in 6 d, while the isolation of the synaptic vesicles by using the peptide can be accomplished in 2 d, with an additional day to fluorescently label the synaptic vesicles for use in a single-vesicle hybrid fusion assay. The single-vesicle fusion assay can be accomplished in 1 d and can unambiguously delineate synaptic vesicle association, dissociation, Ca2+-independent and Ca2+-dependent fusion modalities. This assay grants control of the synaptic vesicle environment while retaining the complexity of the synaptic vesicles themselves. This protocol can be adapted to studies of other types of synaptic vesicles or, more generally, different secretory or transport vesicles. The workflow described here requires expertise in biochemistry techniques, in particular, protein purification and fluorescence imaging. We assume that the laboratory has protein-purification equipment, including chromatography systems.
Collapse
Affiliation(s)
- Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - John J Peters
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Nisha Gopal
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Austin L Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Department of Structural Biology, Stanford University, Stanford, CA, USA.
- Department of Photon Science, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Duong VT, Lee D, Kim YH, Oh SO. Functional role of UNC13D in immune diseases and its therapeutic applications. Front Immunol 2024; 15:1460882. [PMID: 39469717 PMCID: PMC11513310 DOI: 10.3389/fimmu.2024.1460882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
UNC13 family (also known as Munc13) proteins are evolutionarily conserved proteins involved in the rapid and regulated secretion of vesicles, including synaptic vesicles and cytotoxic granules. Fast and regulated secretion at the neuronal and immunological synapses requires multiple steps, from the biogenesis of vesicles to membrane fusion, and a complex array of proteins for each step. Defects at these steps can lead to various genetic disorders. Recent studies have shown multiple roles of UNC13D in the secretion of cytotoxic granules by immune cells. Here, the molecular structure and detailed roles of UNC13D in the biogenesis, tethering, and priming of cytotoxic vesicles and in endoplasmic reticulum are summarized. Moreover, its association with immune diseases, including familial hemophagocytic lymphohistiocytosis type 3, macrophage activation syndrome, juvenile idiopathic arthritis, and autoimmune lymphoproliferative syndrome, is reviewed. Finally, the therapeutic application of CRISPR/Cas9-based gene therapy for genetic diseases is introduced.
Collapse
Affiliation(s)
- Van-Thanh Duong
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
3
|
Tammareddy T, Keyrouz W, Sriram RD, Pant HC, Cardone A, Klauda JB. Investigation of the Effect of Peptide p5 Targeting CDK5-p25 Hyperactivity on Munc18-1 (P67) Regulating Neuronal Exocytosis Using Molecular Simulations. Biochemistry 2024; 63:1837-1857. [PMID: 38953497 DOI: 10.1021/acs.biochem.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Munc18-1 is an SM (sec1/munc-like) family protein involved in vesicle fusion and neuronal exocytosis. Munc18-1 is known to regulate the exocytosis process by binding with closed- and open-state conformations of Syntaxin1, a protein belonging to the SNARE family established to be central to the exocytosis process. Our previous work studied peptide p5 as a promising drug candidate for CDK5-p25 complex, an Alzheimer's disease (AD) pathological target. Experimental in vivo and in vitro studies suggest that Munc18-1 promotes p5 to selectively inhibit the CDK5-p25 complex without affecting the endogenous CDK5 activity, a characteristic of remarkable therapeutic implications. In this paper, we identify several binding modes of p5 with Munc18-1 that could potentially affect the Munc18-1 binding with SNARE proteins and lead to off-target effects on neuronal communication using molecular dynamics simulations. Recent studies indicate that disruption of Munc18-1 function not only disrupts neurotransmitter release but also results in neurodegeneration, exhibiting clinical resemblance to other neurodegenerative conditions such as AD, causing diagnostic and treatment challenges. We characterize such interactions between p5 and Munc18-1, define the corresponding pharmacophores, and provide guidance for the in vitro validation of our findings to improve therapeutic efficacy and safety of p5.
Collapse
Affiliation(s)
- Tejaswi Tammareddy
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | | | | | - Harish C Pant
- Neuronal Cytoskeletal Protein Regulation Section, Laboratory of Neurochemistry, NINDS, Bethesda, Maryland 20892, United States
| | | | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Physical Science & Technology, Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Guiberson NGL, Black LS, Haller JE, Brukner A, Abramov D, Ahmad S, Xie YX, Sharma M, Burré J. Disease-linked mutations in Munc18-1 deplete synaptic Doc2. Brain 2024; 147:2185-2202. [PMID: 38242640 PMCID: PMC11146428 DOI: 10.1093/brain/awae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Heterozygous de novo mutations in the neuronal protein Munc18-1/STXBP1 cause syndromic neurological symptoms, including severe epilepsy, intellectual disability, developmental delay, ataxia and tremor, summarized as STXBP1 encephalopathies. Although haploinsufficiency is the prevailing disease mechanism, it remains unclear how the reduction in Munc18-1 levels causes synaptic dysfunction in disease as well as how haploinsufficiency alone can account for the significant heterogeneity among patients in terms of the presence, onset and severity of different symptoms. Using biochemical and cell biological readouts on mouse brains, cultured mouse neurons and heterologous cells, we found that the synaptic Munc18-1 interactors Doc2A and Doc2B are unstable in the absence of Munc18-1 and aggregate in the presence of disease-causing Munc18-1 mutants. In haploinsufficiency-mimicking heterozygous knockout neurons, we found a reduction in Doc2A/B levels that is further aggravated by the presence of the disease-causing Munc18-1 mutation G544D as well as an impairment in Doc2A/B synaptic targeting in both genotypes. We also demonstrated that overexpression of Doc2A/B partially rescues synaptic dysfunction in heterozygous knockout neurons but not heterozygous knockout neurons expressing G544D Munc18-1. Our data demonstrate that STXBP1 encephalopathies are not only characterized by the dysfunction of Munc18-1 but also by the dysfunction of the Munc18-1 binding partners Doc2A and Doc2B, and that this dysfunction is exacerbated by the presence of a Munc18-1 missense mutant. These findings may offer a novel explanation for the significant heterogeneity in symptoms observed among STXBP1 encephalopathy patients.
Collapse
Affiliation(s)
- Noah Guy Lewis Guiberson
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luca S Black
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jillian E Haller
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Aniv Brukner
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Debra Abramov
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Saad Ahmad
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yan Xin Xie
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Manu Sharma
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jacqueline Burré
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
5
|
Leitz J, Wang C, Esquivies L, Pfuetzner RA, Peters JJ, Couoh-Cardel S, Wang AL, Brunger AT. Beyond the MUN domain, Munc13 controls priming and depriming of synaptic vesicles. Cell Rep 2024; 43:114026. [PMID: 38809756 PMCID: PMC11286359 DOI: 10.1016/j.celrep.2024.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 05/31/2024] Open
Abstract
Synaptic vesicle docking and priming are dynamic processes. At the molecular level, SNAREs (soluble NSF attachment protein receptors), synaptotagmins, and other factors are critical for Ca2+-triggered vesicle exocytosis, while disassembly factors, including NSF (N-ethylmaleimide-sensitive factor) and α-SNAP (soluble NSF attachment protein), disassemble and recycle SNAREs and antagonize fusion under some conditions. Here, we introduce a hybrid fusion assay that uses synaptic vesicles isolated from mouse brains and synthetic plasma membrane mimics. We included Munc18, Munc13, complexin, NSF, α-SNAP, and an ATP-regeneration system and maintained them continuously-as in the neuron-to investigate how these opposing processes yield fusogenic synaptic vesicles. In this setting, synaptic vesicle association is reversible, and the ATP-regeneration system produces the most synchronous Ca2+-triggered fusion, suggesting that disassembly factors perform quality control at the early stages of synaptic vesicle association to establish a highly fusogenic state. We uncovered a functional role for Munc13 ancillary to the MUN domain that alleviates an α-SNAP-dependent inhibition of Ca2+-triggered fusion.
Collapse
Affiliation(s)
- Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - John Jacob Peters
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Sergio Couoh-Cardel
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Austin L Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Zhang H, Lei M, Zhang Y, Li H, He Z, Xie S, Zhu L, Wang S, Liu J, Li Y, Lu Y, Ma C. Phosphorylation of Doc2 by EphB2 modulates Munc13-mediated SNARE complex assembly and neurotransmitter release. SCIENCE ADVANCES 2024; 10:eadi7024. [PMID: 38758791 PMCID: PMC11100570 DOI: 10.1126/sciadv.adi7024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
At the synapse, presynaptic neurotransmitter release is tightly controlled by release machinery, involving the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and Munc13. The Ca2+ sensor Doc2 cooperates with Munc13 to regulate neurotransmitter release, but the underlying mechanisms remain unclear. In our study, we have characterized the binding mode between Doc2 and Munc13 and found that Doc2 originally occludes Munc13 to inhibit SNARE complex assembly. Moreover, our investigation unveiled that EphB2, a presynaptic adhesion molecule (SAM) with inherent tyrosine kinase functionality, exhibits the capacity to phosphorylate Doc2. This phosphorylation attenuates Doc2 block on Munc13 to promote SNARE complex assembly, which functionally induces spontaneous release and synaptic augmentation. Consistently, application of a Doc2 peptide that interrupts Doc2-Munc13 interplay impairs excitatory synaptic transmission and leads to dysfunction in spatial learning and memory. These data provide evidence that SAMs modulate neurotransmitter release by controlling SNARE complex assembly.
Collapse
Affiliation(s)
- Hong Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Mengshi Lei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Hao Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Sheng Xie
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Le Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Youming Lu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Liu W, Gao T, Li N, Shao S, Liu B. Vesicle fusion and release in neurons under dynamic mechanical equilibrium. iScience 2024; 27:109793. [PMID: 38736547 PMCID: PMC11088343 DOI: 10.1016/j.isci.2024.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Vesicular fusion plays a pivotal role in cellular processes, involving stages like vesicle trafficking, fusion pore formation, content release, and membrane integration or separation. This dynamic process is regulated by a complex interplay of protein assemblies, osmotic forces, and membrane tension, which together maintain a mechanical equilibrium within the cell. Changes in cellular mechanics or external pressures prompt adjustments in this equilibrium, highlighting the system's adaptability. This review delves into the synergy between intracellular proteins, structural components, and external forces in facilitating vesicular fusion and release. It also explores how cells respond to mechanical stress, maintaining equilibrium and offering insights into vesicle fusion mechanisms and the development of neurological disorders.
Collapse
Affiliation(s)
- Wenhao Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Tianyu Gao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Na Li
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Bhaskar BR, Yadav L, Sriram M, Sanghrajka K, Gupta M, V BK, Nellikka RK, Das D. Differential SNARE chaperoning by Munc13-1 and Munc18-1 dictates fusion pore fate at the release site. Nat Commun 2024; 15:4132. [PMID: 38755165 PMCID: PMC11099066 DOI: 10.1038/s41467-024-46965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/14/2024] [Indexed: 05/18/2024] Open
Abstract
The regulated release of chemical messengers is crucial for cell-to-cell communication; abnormalities in which impact coordinated human body function. During vesicular secretion, multiple SNARE complexes assemble at the release site, leading to fusion pore opening. How membrane fusion regulators act on heterogeneous SNARE populations to assemble fusion pores in a timely and synchronized manner, is unknown. Here, we demonstrate the role of SNARE chaperones Munc13-1 and Munc18-1 in rescuing individual nascent fusion pores from their diacylglycerol lipid-mediated inhibitory states. At the onset of membrane fusion, Munc13-1 clusters multiple SNARE complexes at the release site and synchronizes release events, while Munc18-1 stoichiometrically interacts with trans-SNARE complexes to enhance N- to C-terminal zippering. When both Munc proteins are present simultaneously, they differentially access dynamic trans-SNARE complexes to regulate pore properties. Overall, Munc proteins' direct action on fusion pore assembly indicates their role in controlling quantal size during vesicular secretion.
Collapse
Affiliation(s)
- Bhavya R Bhaskar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Laxmi Yadav
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Malavika Sriram
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Kinjal Sanghrajka
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Mayank Gupta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Boby K V
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Rohith K Nellikka
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Debasis Das
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India.
| |
Collapse
|
9
|
Meijer M, Öttl M, Yang J, Subkhangulova A, Kumar A, Feng Z, van Voorst TW, Groffen AJ, van Weering JRT, Zhang Y, Verhage M. Tomosyns attenuate SNARE assembly and synaptic depression by binding to VAMP2-containing template complexes. Nat Commun 2024; 15:2652. [PMID: 38531902 PMCID: PMC10965968 DOI: 10.1038/s41467-024-46828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Tomosyns are widely thought to attenuate membrane fusion by competing with synaptobrevin-2/VAMP2 for SNARE-complex assembly. Here, we present evidence against this scenario. In a novel mouse model, tomosyn-1/2 deficiency lowered the fusion barrier and enhanced the probability that synaptic vesicles fuse, resulting in stronger synapses with faster depression and slower recovery. While wild-type tomosyn-1m rescued these phenotypes, substitution of its SNARE motif with that of synaptobrevin-2/VAMP2 did not. Single-molecule force measurements indeed revealed that tomosyn's SNARE motif cannot substitute synaptobrevin-2/VAMP2 to form template complexes with Munc18-1 and syntaxin-1, an essential intermediate for SNARE assembly. Instead, tomosyns extensively bind synaptobrevin-2/VAMP2-containing template complexes and prevent SNAP-25 association. Structure-function analyses indicate that the C-terminal polybasic region contributes to tomosyn's inhibitory function. These results reveal that tomosyns regulate synaptic transmission by cooperating with synaptobrevin-2/VAMP2 to prevent SNAP-25 binding during SNARE assembly, thereby limiting initial synaptic strength and equalizing it during repetitive stimulation.
Collapse
Affiliation(s)
- Marieke Meijer
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands.
| | - Miriam Öttl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Jie Yang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA.
| | - Aygul Subkhangulova
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Avinash Kumar
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Zicheng Feng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Torben W van Voorst
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Alexander J Groffen
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
| | - Matthijs Verhage
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands.
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Salazar Lázaro A, Trimbuch T, Vardar G, Rosenmund C. The stability of the primed pool of synaptic vesicles and the clamping of spontaneous neurotransmitter release rely on the integrity of the C-terminal half of the SNARE domain of syntaxin-1A. eLife 2024; 12:RP90775. [PMID: 38512129 PMCID: PMC10957171 DOI: 10.7554/elife.90775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
The SNARE proteins are central in membrane fusion and, at the synapse, neurotransmitter release. However, their involvement in the dual regulation of the synchronous release while maintaining a pool of readily releasable vesicles remains unclear. Using a chimeric approach, we performed a systematic analysis of the SNARE domain of STX1A by exchanging the whole SNARE domain or its N- or C-terminus subdomains with those of STX2. We expressed these chimeric constructs in STX1-null hippocampal mouse neurons. Exchanging the C-terminal half of STX1's SNARE domain with that of STX2 resulted in a reduced RRP accompanied by an increased release rate, while inserting the C-terminal half of STX1's SNARE domain into STX2 leads to an enhanced priming and decreased release rate. Additionally, we found that the mechanisms for clamping spontaneous, but not for Ca2+-evoked release, are particularly susceptible to changes in specific residues on the outer surface of the C-terminus of the SNARE domain of STX1A. Particularly, mutations of D231 and R232 affected the fusogenicity of the vesicles. We propose that the C-terminal half of the SNARE domain of STX1A plays a crucial role in the stabilization of the RRP as well as in the clamping of spontaneous synaptic vesicle fusion through the regulation of the energetic landscape for fusion, while it also plays a covert role in the speed and efficacy of Ca2+-evoked release.
Collapse
Affiliation(s)
- Andrea Salazar Lázaro
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Thorsten Trimbuch
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Gülçin Vardar
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Christian Rosenmund
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
- NeuroCure Excellence ClusterBerlinGermany
| |
Collapse
|
11
|
Liu F, He R, Xu X, Zhu M, Yu H, Liu Y. Munc18c accelerates SNARE-dependent membrane fusion in the presence of regulatory proteins α-SNAP and NSF. J Biol Chem 2024; 300:105782. [PMID: 38395304 PMCID: PMC10959665 DOI: 10.1016/j.jbc.2024.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Intracellular vesicle fusion is driven by the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and their cofactors, including Sec1/Munc18 (SM), α-SNAP, and NSF. α-SNAP and NSF play multiple layers of regulatory roles in the SNARE assembly, disassembling the cis-SNARE complex and the prefusion SNARE complex. How SM proteins coupled with NSF and α-SNAP regulate SNARE-dependent membrane fusion remains incompletely understood. Munc18c, an SM protein involved in the exocytosis of the glucose transporter GLUT4, binds and activates target (t-) SNAREs to accelerate the fusion reaction through a SNARE-like peptide (SLP). Here, using an in vitro reconstituted system, we discovered that α-SNAP blocks the GLUT4 SNAREs-mediated membrane fusion. Munc18c interacts with t-SNAREs to displace α-SNAP, which overcomes the fusion inhibition. Furthermore, Munc18c shields the trans-SNARE complex from NSF/α-SNAP-mediated disassembly and accelerates SNARE-dependent fusion kinetics in the presence of NSF and α-SNAP. The SLP in domain 3a is indispensable in Munc18c-assisted resistance to NSF and α-SNAP. Together, our findings demonstrate that Munc18c protects the prefusion SNARE complex from α-SNAP and NSF, promoting SNARE-dependent membrane fusion through its SLP.
Collapse
Affiliation(s)
- Furong Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruyue He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xinyu Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Min Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
12
|
Kádková A, Murach J, Østergaard M, Malsam A, Malsam J, Lolicato F, Nickel W, Söllner TH, Sørensen JB. SNAP25 disease mutations change the energy landscape for synaptic exocytosis due to aberrant SNARE interactions. eLife 2024; 12:RP88619. [PMID: 38411501 PMCID: PMC10911398 DOI: 10.7554/elife.88619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca2+-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons. The V48F and D166Y mutants (with potency D166Y > V48F) led to reduced readily releasable pool (RRP) size, due to increased spontaneous (miniature Excitatory Postsynaptic Current, mEPSC) release and decreased priming rates. These mutations lowered the energy barrier for fusion and increased the release probability, which are gain-of-function features not found in Syt1 knockout (KO) neurons; normalized mEPSC release rates were higher (potency D166Y > V48F) than in the Syt1 KO. These mutations (potency D166Y > V48F) increased spontaneous association to partner SNAREs, resulting in unregulated membrane fusion. In contrast, the I67N mutant decreased mEPSC frequency and evoked EPSC amplitudes due to an increase in the height of the energy barrier for fusion, whereas the RRP size was unaffected. This could be partly compensated by positive charges lowering the energy barrier. Overall, pathogenic mutations in SNAP25 cause complex changes in the energy landscape for priming and fusion.
Collapse
Affiliation(s)
- Anna Kádková
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | | | - Maiken Østergaard
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | - Andrea Malsam
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | - Jörg Malsam
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | - Fabio Lolicato
- Heidelberg University Biochemistry CenterHeidelbergDenmark
- Department of Physics, University of HelsinkiHelsinkiFinland
| | - Walter Nickel
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | | | | |
Collapse
|
13
|
Stefani I, Iwaszkiewicz J, Fasshauer D. Exploring the conformational changes of the Munc18-1/syntaxin 1a complex. Protein Sci 2023; 33:e4870. [PMID: 38109275 PMCID: PMC10895456 DOI: 10.1002/pro.4870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Neurotransmitters are released from synaptic vesicles, the membrane of which fuses with the plasma membrane upon calcium influx. This membrane fusion reaction is driven by the formation of a tight complex comprising the plasma membrane N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins syntaxin-1a and SNAP-25 with the vesicle SNARE protein synaptobrevin. The neuronal protein Munc18-1 forms a stable complex with syntaxin-1a. Biochemically, syntaxin-1a cannot escape the tight grip of Munc18-1, so formation of the SNARE complex is inhibited. However, Munc18-1 is essential for the release of neurotransmitters in vivo. It has therefore been assumed that Munc18-1 makes the bound syntaxin-1a available for SNARE complex formation. Exactly how this occurs is still unclear, but it is assumed that structural rearrangements occur. Here, we used a series of mutations to specifically weaken the complex at different positions in order to induce these rearrangements biochemically. Our approach was guided through sequence and structural analysis and supported by molecular dynamics simulations. Subsequently, we created a homology model showing the complex in an altered conformation. This conformation presumably represents a more open arrangement of syntaxin-1a that permits the formation of a SNARE complex to be initiated while still bound to Munc18-1. In the future, research should investigate how this central reaction for neuronal communication is controlled by other proteins.
Collapse
Affiliation(s)
- Ioanna Stefani
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | | | - Dirk Fasshauer
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
14
|
Bera M, Radhakrishnan A, Coleman J, K. Sundaram RV, Ramakrishnan S, Pincet F, Rothman JE. Synaptophysin chaperones the assembly of 12 SNAREpins under each ready-release vesicle. Proc Natl Acad Sci U S A 2023; 120:e2311484120. [PMID: 37903271 PMCID: PMC10636311 DOI: 10.1073/pnas.2311484120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2023] [Indexed: 11/01/2023] Open
Abstract
The synaptic vesicle protein Synaptophysin (Syp) has long been known to form a complex with the Vesicle associated soluble N-ethylmaleimide sensitive fusion protein attachment receptor (v-SNARE) Vesicle associated membrane protein (VAMP), but a more specific molecular function or mechanism of action in exocytosis has been lacking because gene knockouts have minimal effects. Utilizing fully defined reconstitution and single-molecule measurements, we now report that Syp functions as a chaperone that determines the number of SNAREpins assembling between a ready-release vesicle and its target membrane bilayer. Specifically, Syp directs the assembly of 12 ± 1 SNAREpins under each docked vesicle, even in the face of an excess of SNARE proteins. The SNAREpins assemble in successive waves of 6 ± 1 and 5 ± 2 SNAREpins, respectively, tightly linked to oligomerization of and binding to the vesicle Ca++ sensor Synaptotagmin. Templating of 12 SNAREpins by Syp is likely the direct result of its hexamer structure and its binding of VAMP2 dimers, both of which we demonstrate in detergent extracts and lipid bilayers.
Collapse
Affiliation(s)
- Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Abhijith Radhakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - R. Venkat K. Sundaram
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Pathology, Yale University School of Medicine, New Haven, CT06520
| | - Frederic Pincet
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, CNRS, Sorbonne Université, Université de Paris Cité, 75005Paris, France
| | - James E. Rothman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| |
Collapse
|
15
|
Li F, Grushin K, Coleman J, Pincet F, Rothman JE. Diacylglycerol-dependent hexamers of the SNARE-assembling chaperone Munc13-1 cooperatively bind vesicles. Proc Natl Acad Sci U S A 2023; 120:e2306086120. [PMID: 37883433 PMCID: PMC10623011 DOI: 10.1073/pnas.2306086120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Munc13-1 is essential for vesicle docking and fusion at the active zone of synapses. Here, we report that Munc13-1 self-assembles into molecular clusters within diacylglycerol-rich microdomains present in phospholipid bilayers. Although the copy number of Munc13-1 molecules in these clusters has a broad distribution, a systematic Poisson analysis shows that this is most likely the result of two molecular species: monomers and mainly hexameric oligomers. Each oligomer is able to capture one vesicle independently. Hexamers have also been observed in crystals of Munc13-1 that form between opposed phospholipid bilayers [K. Grushin, R. V. Kalyana Sundaram, C. V. Sindelar, J. E. Rothman, Proc. Natl. Acad. Sci. U.S.A. 119, e2121259119 (2022)]. Mutations targeting the contacts stabilizing the crystallographic hexagons also disrupt the isolated hexamers, suggesting they are identical. Additionally, these mutations also convert vesicle binding from a cooperative to progressive mode. Our study provides an independent approach showing that Munc13-1 can form mainly hexamers on lipid bilayers each capable of vesicle capture.
Collapse
Affiliation(s)
- Feng Li
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT06520
- Nanobiology Institute, School of Medicine, Yale University, West Haven, CT06516
| | - Kirill Grushin
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT06520
- Nanobiology Institute, School of Medicine, Yale University, West Haven, CT06516
| | - Jeff Coleman
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT06520
- Nanobiology Institute, School of Medicine, Yale University, West Haven, CT06516
| | - Frederic Pincet
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT06520
- Nanobiology Institute, School of Medicine, Yale University, West Haven, CT06516
- Laboratoire de Physique de l’Ecole normale supérieure, Département de Physique, Ecole Normale Supérieure, Université Paris Sciences & Lettres CNRS, Sorbonne Université, Université de Paris, ParisF-75005, France
| | - James E. Rothman
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT06520
- Nanobiology Institute, School of Medicine, Yale University, West Haven, CT06516
| |
Collapse
|
16
|
Kalyana Sundaram RV, Chatterjee A, Bera M, Grushin K, Panda A, Li F, Coleman J, Lee S, Ramakrishnan S, Ernst AM, Gupta K, Rothman JE, Krishnakumar SS. Roles for diacylglycerol in synaptic vesicle priming and release revealed by complete reconstitution of core protein machinery. Proc Natl Acad Sci U S A 2023; 120:e2309516120. [PMID: 37590407 PMCID: PMC10450444 DOI: 10.1073/pnas.2309516120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Here, we introduce the full functional reconstitution of genetically validated core protein machinery (SNAREs, Munc13, Munc18, Synaptotagmin, and Complexin) for synaptic vesicle priming and release in a geometry that enables detailed characterization of the fate of docked vesicles both before and after release is triggered with Ca2+. Using this setup, we identify new roles for diacylglycerol (DAG) in regulating vesicle priming and Ca2+-triggered release involving the SNARE assembly chaperone Munc13. We find that low concentrations of DAG profoundly accelerate the rate of Ca2+-dependent release, and high concentrations reduce clamping and permit extensive spontaneous release. As expected, DAG also increases the number of docked, release-ready vesicles. Dynamic single-molecule imaging of Complexin binding to release-ready vesicles directly establishes that DAG accelerates the rate of SNAREpin assembly mediated by chaperones, Munc13 and Munc18. The selective effects of physiologically validated mutations confirmed that the Munc18-Syntaxin-VAMP2 "template" complex is a functional intermediate in the production of primed, release-ready vesicles, which requires the coordinated action of Munc13 and Munc18.
Collapse
Affiliation(s)
- R. Venkat Kalyana Sundaram
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Atrouli Chatterjee
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Kirill Grushin
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Aniruddha Panda
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Feng Li
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Seong Lee
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Pathology, Yale University School of Medicine, New Haven, CT06520
| | - Andreas M. Ernst
- School of Biological Sciences, University of California San Diego, San Diego, CA92093
| | - Kallol Gupta
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - James E. Rothman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Shyam S. Krishnakumar
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Neurology, Yale University School of Medicine, New Haven, CT06520
| |
Collapse
|
17
|
Willemse SW, Harley P, van Eijk RPA, Demaegd KC, Zelina P, Pasterkamp RJ, van Damme P, Ingre C, van Rheenen W, Veldink JH, Kiernan MC, Al-Chalabi A, van den Berg LH, Fratta P, van Es MA. UNC13A in amyotrophic lateral sclerosis: from genetic association to therapeutic target. J Neurol Neurosurg Psychiatry 2023; 94:649-656. [PMID: 36737245 PMCID: PMC10359588 DOI: 10.1136/jnnp-2022-330504] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited treatment options and an incompletely understood pathophysiology. Although genomewide association studies (GWAS) have advanced our understanding of the disease, the precise manner in which risk polymorphisms contribute to disease pathogenesis remains unclear. Of relevance, GWAS have shown that a polymorphism (rs12608932) in the UNC13A gene is associated with risk for both ALS and frontotemporal dementia (FTD). Homozygosity for the C-allele at rs12608932 modifies the ALS phenotype, as these patients are more likely to have bulbar-onset disease, cognitive impairment and FTD at baseline as well as shorter survival. UNC13A is expressed in neuronal tissue and is involved in maintaining synaptic active zones, by enabling the priming and docking of synaptic vesicles. In the absence of functional TDP-43, risk variants in UNC13A lead to the inclusion of a cryptic exon in UNC13A messenger RNA, subsequently leading to nonsense mediated decay, with loss of functional protein. Depletion of UNC13A leads to impaired neurotransmission. Recent discoveries have identified UNC13A as a potential target for therapy development in ALS, with a confirmatory trial with lithium carbonate in UNC13A cases now underway and future approaches with antisense oligonucleotides currently under consideration. Considering UNC13A is a potent phenotypic modifier, it may also impact clinical trial outcomes. This present review describes the path from the initial discovery of UNC13A as a risk gene in ALS to the current therapeutic options being explored and how knowledge of its distinct phenotype needs to be taken into account in future trials.
Collapse
Affiliation(s)
- Sean W Willemse
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Peter Harley
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ruben P A van Eijk
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands
| | - Koen C Demaegd
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Pavol Zelina
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Philip van Damme
- Department of Neurology, KU Leuven Hospital, Leuven, Belgium
- Laboratory of Neurobiology, VIB KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Matthew C Kiernan
- Bushell Chair of Neurology, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | | | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| |
Collapse
|
18
|
Bera M, Grushin K, Sundaram RVK, Shahanoor Z, Chatterjee A, Radhakrishnan A, Lee S, Padmanarayana M, Coleman J, Pincet F, Rothman JE, Dittman JS. Two successive oligomeric Munc13 assemblies scaffold vesicle docking and SNARE assembly to support neurotransmitter release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549017. [PMID: 37503179 PMCID: PMC10369971 DOI: 10.1101/2023.07.14.549017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The critical presynaptic protein Munc13 serves numerous roles in the process of docking and priming synaptic vesicles. Here we investigate the functional significance of two distinct oligomers of the Munc13 core domain (Munc13C) comprising C1-C2B-MUN-C2C. Oligomer interface point mutations that specifically destabilized either the trimer or lateral hexamer assemblies of Munc13C disrupted vesicle docking, trans-SNARE formation, and Ca 2+ -triggered vesicle fusion in vitro and impaired neurotransmitter secretion and motor nervous system function in vivo. We suggest that a progression of oligomeric Munc13 complexes couples vesicle docking and assembly of a precise number of SNARE molecules to support rapid and high-fidelity vesicle priming.
Collapse
|
19
|
Wang X, Gong J, Zhu L, Chen H, Jin Z, Mo X, Wang S, Yang X, Ma C. Identification of residues critical for the extension of Munc18-1 domain 3a. BMC Biol 2023; 21:158. [PMID: 37443000 PMCID: PMC10347870 DOI: 10.1186/s12915-023-01655-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Neurotransmitter release depends on the fusion of synaptic vesicles with the presynaptic membrane and is mainly mediated by SNARE complex assembly. During the transition of Munc18-1/Syntaxin-1 to the SNARE complex, the opening of the Syntaxin-1 linker region catalyzed by Munc13-1 leads to the extension of the domain 3a hinge loop, which enables domain 3a to bind SNARE motifs in Synaptobrevin-2 and Syntaxin-1 and template the SNARE complex assembly. However, the exact mechanism of domain 3a extension remains elusive. RESULTS Here, we characterized residues on the domain 3a hinge loop that are crucial for the extension of domain 3a by using biophysical and biochemical approaches and electrophysiological recordings. We showed that the mutation of residues T323/M324/R325 disrupted Munc13-1-mediated SNARE complex assembly and membrane fusion starting from Munc18-1/Syntaxin-1 in vitro and caused severe defects in the synaptic exocytosis of mouse cortex neurons in vivo. Moreover, the mutation had no effect on the binding of Synaptobrevin-2 to isolated Munc18-1 or the conformational change of the Syntaxin-1 linker region catalyzed by the Munc13-1 MUN domain. However, the extension of the domain 3a hinge loop in Munc18-1/Syntaxin-1 was completely disrupted by the mutation, leading to the failure of Synaptobrevin-2 binding to Munc18-1/Syntaxin-1. CONCLUSIONS Together with previous results, our data further support the model that the template function of Munc18-1 in SNARE complex assembly requires the extension of domain 3a, and particular residues in the domain 3a hinge loop are crucial for the autoinhibitory release of domain 3a after the MUN domain opens the Syntaxin-1 linker region.
Collapse
Affiliation(s)
- Xianping Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Jihong Gong
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Le Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huidan Chen
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Ziqi Jin
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Xiaoqiang Mo
- Youjiang Medical University for Nationalities, Baise, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Yang
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Bera M, Radhakrishnan A, Coleman J, Sundaram RVK, Ramakrishnan S, Pincet F, Rothman JE. Synaptophysin Chaperones the Assembly of 12 SNAREpins under each Ready-Release Vesicle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547834. [PMID: 37461465 PMCID: PMC10349951 DOI: 10.1101/2023.07.05.547834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The synaptic vesicle protein Synaptophysin has long been known to form a complex with the v-SNARE VAMP, but a more specific molecular function or mechanism of action in exocytosis has been lacking because gene knockouts have minimal effects. Utilizing fully-defined reconstitution and single-molecule measurements, we now report that Synaptophysin functions as a chaperone that determines the number of SNAREpins assembling between a ready-release vesicle and its target membrane bilayer. Specifically, Synaptophysin directs the assembly of 12 ± 1 SNAREpins under each docked vesicle, even in the face of an excess of SNARE proteins. The SNAREpins assemble in successive waves of 6 ± 1 and 5 ± 2 SNAREpins, respectively, tightly linked to oligomerization of and binding to the vesicle Ca++ sensor Synaptotagmin. Templating of 12 SNAREpins by Synaptophysin is likely the direct result of its hexamer structure and its binding of VAMP2 dimers, both of which we demonstrate in detergent extracts and lipid bilayers.
Collapse
Affiliation(s)
- Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Abhijith Radhakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ramalingam Venkat Kalyana Sundaram
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Frederic Pincet
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - James E. Rothman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
21
|
Sundaram RVK, Chatterjee A, Bera M, Grushin K, Panda A, Li F, Coleman J, Lee S, Ramakrishnan S, Ernst AM, Gupta K, Rothman JE, Krishnakumar SS. Novel Roles for Diacylglycerol in Synaptic Vesicle Priming and Release Revealed by Complete Reconstitution of Core Protein Machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543781. [PMID: 37333317 PMCID: PMC10274626 DOI: 10.1101/2023.06.05.543781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Here we introduce the full functional reconstitution of genetically-validated core protein machinery (SNAREs, Munc13, Munc18, Synaptotagmin, Complexin) for synaptic vesicle priming and release in a geometry that enables detailed characterization of the fate of docked vesicles both before and after release is triggered with Ca 2+ . Using this novel setup, we discover new roles for diacylglycerol (DAG) in regulating vesicle priming and Ca 2+- triggered release involving the SNARE assembly chaperone Munc13. We find that low concentrations of DAG profoundly accelerate the rate of Ca 2+ -dependent release, and high concentrations reduce clamping and permit extensive spontaneous release. As expected, DAG also increases the number of ready-release vesicles. Dynamic single-molecule imaging of Complexin binding to ready-release vesicles directly establishes that DAG accelerates the rate of SNAREpin assembly mediated by Munc13 and Munc18 chaperones. The selective effects of physiologically validated mutations confirmed that the Munc18-Syntaxin-VAMP2 'template' complex is a functional intermediate in the production of primed, ready-release vesicles, which requires the coordinated action of Munc13 and Munc18. SIGNIFICANCE STATEMENT Munc13 and Munc18 are SNARE-associated chaperones that act as "priming" factors, facilitating the formation of a pool of docked, release-ready vesicles and regulating Ca 2+ -evoked neurotransmitter release. Although important insights into Munc18/Munc13 function have been gained, how they assemble and operate together remains enigmatic. To address this, we developed a novel biochemically-defined fusion assay which enabled us to investigate the cooperative action of Munc13 and Munc18 in molecular terms. We find that Munc18 nucleates the SNARE complex, while Munc13 promotes and accelerates the SNARE assembly in a DAG-dependent manner. The concerted action of Munc13 and Munc18 stages the SNARE assembly process to ensure efficient 'clamping' and formation of stably docked vesicles, which can be triggered to fuse rapidly (∼10 msec) upon Ca 2+ influx.
Collapse
Affiliation(s)
- R Venkat Kalyana Sundaram
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Atrouli Chatterjee
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kirill Grushin
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Aniruddha Panda
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Feng Li
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Seong Lee
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andreas M. Ernst
- School of Biological Sciences, University of California San Diego, La Jolla CA 92093, USA
| | - Kallol Gupta
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James E. Rothman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shyam S. Krishnakumar
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
22
|
Wu S, Fan J, Tang F, Chen L, Zhang X, Xiao D, Li X. The role of RIM in neurotransmitter release: promotion of synaptic vesicle docking, priming, and fusion. Front Neurosci 2023; 17:1123561. [PMID: 37179554 PMCID: PMC10169678 DOI: 10.3389/fnins.2023.1123561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
There are many special sites at the end of a synapse called active zones (AZs). Synaptic vesicles (SVs) fuse with presynaptic membranes at these sites, and this fusion is an important step in neurotransmitter release. The cytomatrix in the active zone (CAZ) is made up of proteins such as the regulating synaptic membrane exocytosis protein (RIM), RIM-binding proteins (RIM-BPs), ELKS/CAST, Bassoon/Piccolo, Liprin-α, and Munc13-1. RIM is a scaffold protein that interacts with CAZ proteins and presynaptic functional components to affect the docking, priming, and fusion of SVs. RIM is believed to play an important role in regulating the release of neurotransmitters (NTs). In addition, abnormal expression of RIM has been detected in many diseases, such as retinal diseases, Asperger's syndrome (AS), and degenerative scoliosis. Therefore, we believe that studying the molecular structure of RIM and its role in neurotransmitter release will help to clarify the molecular mechanism of neurotransmitter release and identify targets for the diagnosis and treatment of the aforementioned diseases.
Collapse
Affiliation(s)
- Shanshan Wu
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jiali Fan
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fajuan Tang
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Lin Chen
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoyan Zhang
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dongqiong Xiao
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xihong Li
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
23
|
Yang X, Tu W, Gao X, Zhang Q, Guan J, Zhang J. Functional regulation of syntaxin-1: An underlying mechanism mediating exocytosis in neuroendocrine cells. Front Endocrinol (Lausanne) 2023; 14:1096365. [PMID: 36742381 PMCID: PMC9892835 DOI: 10.3389/fendo.2023.1096365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
The fusion of the secretory vesicle with the plasma membrane requires the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein complexes formed by synaptobrevin, syntaxin-1, and SNAP-25. Within the pathway leading to exocytosis, the transitions between the "open" and "closed" conformations of syntaxin-1 function as a switch for the fusion of vesicles with the plasma membranes; rapid assembly and disassembly of syntaxin-1 clusters on the plasma membrane provide docking and fusion sites for secretory vesicles in neuroendocrine cells; and the fully zippered trans-SNARE complex, which requires the orderly, rapid and accurate binding of syntaxin-1 to other SNARE proteins, play key roles in triggering fusion. All of these reactions that affect exocytosis under physiological conditions are tightly regulated by multiple factors. Here, we review the current evidence for the involvement of syntaxin-1 in the mechanism of neuroendocrine cell exocytosis, discuss the roles of multiple factors such as proteins, lipids, protein kinases, drugs, and toxins in SNARE complex-mediated membrane fusion, and present an overview of syntaxin-1 mutation-associated diseases with a view to developing novel mechanistic therapeutic targets for the treatment of neuroendocrine disorders.
Collapse
Affiliation(s)
- Xinquan Yang
- Anesthesia and Perioperative Medicine laboratory, the Affiliated Lianyungang Hospital of Jiangsu University, Lianyungang, China
| | - Weifeng Tu
- Faculty of Anesthesioloy, Suzhou Hospital Affiliated to Medical School of Nanjing University, Suzhou, China
| | - Xuzhu Gao
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Qi Zhang
- Anesthesia and Perioperative Medicine laboratory, the Affiliated Lianyungang Hospital of Jiangsu University, Lianyungang, China
| | - Jinping Guan
- Anesthesia and Perioperative Medicine laboratory, the Affiliated Lianyungang Hospital of Jiangsu University, Lianyungang, China
| | - Junlong Zhang
- Anesthesia and Perioperative Medicine laboratory, the Affiliated Lianyungang Hospital of Jiangsu University, Lianyungang, China
- *Correspondence: Junlong Zhang,
| |
Collapse
|
24
|
Palfreyman MT, West SE, Jorgensen EM. SNARE Proteins in Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:63-118. [PMID: 37615864 DOI: 10.1007/978-3-031-34229-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are stored in small membrane-bound vesicles at synapses; a subset of synaptic vesicles is docked at release sites. Fusion of docked vesicles with the plasma membrane releases neurotransmitters. Membrane fusion at synapses, as well as all trafficking steps of the secretory pathway, is mediated by SNARE proteins. The SNAREs are the minimal fusion machinery. They zipper from N-termini to membrane-anchored C-termini to form a 4-helix bundle that forces the apposed membranes to fuse. At synapses, the SNAREs comprise a single helix from syntaxin and synaptobrevin; SNAP-25 contributes the other two helices to complete the bundle. Unc13 mediates synaptic vesicle docking and converts syntaxin into the permissive "open" configuration. The SM protein, Unc18, is required to initiate and proofread SNARE assembly. The SNAREs are then held in a half-zippered state by synaptotagmin and complexin. Calcium removes the synaptotagmin and complexin block, and the SNAREs drive vesicle fusion. After fusion, NSF and alpha-SNAP unwind the SNAREs and thereby recharge the system for further rounds of fusion. In this chapter, we will describe the discovery of the SNAREs, their relevant structural features, models for their function, and the central role of Unc18. In addition, we will touch upon the regulation of SNARE complex formation by Unc13, complexin, and synaptotagmin.
Collapse
Affiliation(s)
- Mark T Palfreyman
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sam E West
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Erik M Jorgensen
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
25
|
Meunier FA, Hu Z. Functional Roles of UNC-13/Munc13 and UNC-18/Munc18 in Neurotransmission. ADVANCES IN NEUROBIOLOGY 2023; 33:203-231. [PMID: 37615868 DOI: 10.1007/978-3-031-34229-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are released from synaptic and secretory vesicles following calcium-triggered fusion with the plasma membrane. These exocytotic events are driven by assembly of a ternary SNARE complex between the vesicle SNARE synaptobrevin and the plasma membrane-associated SNAREs syntaxin and SNAP-25. Proteins that affect SNARE complex assembly are therefore important regulators of synaptic strength. In this chapter, we review our current understanding of the roles played by two SNARE interacting proteins: UNC-13/Munc13 and UNC-18/Munc18. We discuss results from both invertebrate and vertebrate model systems, highlighting recent advances, focusing on the current consensus on molecular mechanisms of action and nanoscale organization, and pointing out some unresolved aspects of their functions.
Collapse
Affiliation(s)
- Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Zhitao Hu
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
26
|
Yan C, Jiang J, Yang Y, Geng X, Dong W. The function of VAMP2 in mediating membrane fusion: An overview. Front Mol Neurosci 2022; 15:948160. [PMID: 36618823 PMCID: PMC9816800 DOI: 10.3389/fnmol.2022.948160] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Vesicle-associated membrane protein 2 (VAMP2, also known as synaptobrevin-2), encoded by VAMP2 in humans, is a key component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. VAMP2 combined with syntaxin-1A (SYX-1A) and synaptosome-associated protein 25 (SNAP-25) produces a force that induces the formation of fusion pores, thereby mediating the fusion of synaptic vesicles and the release of neurotransmitters. VAMP2 is largely unstructured in the absence of interaction partners. Upon interaction with other SNAREs, the structure of VAMP2 stabilizes, resulting in the formation of four structural domains. In this review, we highlight the current knowledge of the roles of the VAMP2 domains and the interaction between VAMP2 and various fusion-related proteins in the presynaptic cytoplasm during the fusion process. Our summary will contribute to a better understanding of the roles of the VAMP2 protein in membrane fusion.
Collapse
Affiliation(s)
- Chong Yan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Jiang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqi Geng
- Department of Neurosurgery, Neurosurgical Clinical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China,*Correspondence: Xiaoqi Geng,
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China,Wei Dong,
| |
Collapse
|
27
|
Li T, Cheng Q, Wang S, Ma C. Rabphilin 3A binds the N-peptide of SNAP-25 to promote SNARE complex assembly in exocytosis. eLife 2022; 11:e79926. [PMID: 36173100 PMCID: PMC9522249 DOI: 10.7554/elife.79926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Exocytosis of secretory vesicles requires the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and small GTPase Rabs. As a Rab3/Rab27 effector protein on secretory vesicles, Rabphilin 3A was implicated to interact with SNAP-25 to regulate vesicle exocytosis in neurons and neuroendocrine cells, yet the underlying mechanism remains unclear. In this study, we have characterized the physiologically relevant binding sites between Rabphilin 3A and SNAP-25. We found that an intramolecular interplay between the N-terminal Rab-binding domain and C-terminal C2AB domain enables Rabphilin 3A to strongly bind the SNAP-25 N-peptide region via its C2B bottom α-helix. Disruption of this interaction significantly impaired docking and fusion of vesicles with the plasma membrane in rat PC12 cells. In addition, we found that this interaction allows Rabphilin 3A to accelerate SNARE complex assembly. Furthermore, we revealed that this interaction accelerates SNARE complex assembly via inducing a conformational switch from random coils to α-helical structure in the SNAP-25 SNARE motif. Altogether, our data suggest that the promotion of SNARE complex assembly by binding the C2B bottom α-helix of Rabphilin 3A to the N-peptide of SNAP-25 underlies a pre-fusion function of Rabphilin 3A in vesicle exocytosis.
Collapse
Affiliation(s)
- Tianzhi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Qiqi Cheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
28
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
29
|
Imoto Y, Raychaudhuri S, Ma Y, Fenske P, Sandoval E, Itoh K, Blumrich EM, Matsubayashi HT, Mamer L, Zarebidaki F, Söhl-Kielczynski B, Trimbuch T, Nayak S, Iwasa JH, Liu J, Wu B, Ha T, Inoue T, Jorgensen EM, Cousin MA, Rosenmund C, Watanabe S. Dynamin is primed at endocytic sites for ultrafast endocytosis. Neuron 2022; 110:2815-2835.e13. [PMID: 35809574 PMCID: PMC9464723 DOI: 10.1016/j.neuron.2022.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/24/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023]
Abstract
Dynamin mediates fission of vesicles from the plasma membrane during endocytosis. Typically, dynamin is recruited from the cytosol to endocytic sites, requiring seconds to tens of seconds. However, ultrafast endocytosis in neurons internalizes vesicles as quickly as 50 ms during synaptic vesicle recycling. Here, we demonstrate that Dynamin 1 is pre-recruited to endocytic sites for ultrafast endocytosis. Specifically, Dynamin 1xA, a splice variant of Dynamin 1, interacts with Syndapin 1 to form molecular condensates on the plasma membrane. Single-particle tracking of Dynamin 1xA molecules confirms the liquid-like property of condensates in vivo. When Dynamin 1xA is mutated to disrupt its interaction with Syndapin 1, the condensates do not form, and consequently, ultrafast endocytosis slows down by 100-fold. Mechanistically, Syndapin 1 acts as an adaptor by binding the plasma membrane and stores Dynamin 1xA at endocytic sites. This cache bypasses the recruitment step and accelerates endocytosis at synapses.
Collapse
Affiliation(s)
- Yuuta Imoto
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ye Ma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pascal Fenske
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Eduardo Sandoval
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eva-Maria Blumrich
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland EH8 9XD, UK; The Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, Scotland EH8 9XD, UK; Simons Initiatives for the Developing Brain, University of Edinburgh, Edinburgh, Scotland EH8 9XD, UK
| | - Hideaki T Matsubayashi
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lauren Mamer
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Fereshteh Zarebidaki
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Shraddha Nayak
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Janet H Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Jian Liu
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland EH8 9XD, UK
| | - Bin Wu
- The Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Takanari Inoue
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Erik M Jorgensen
- HHMI, Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland EH8 9XD, UK; The Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, Scotland EH8 9XD, UK; Simons Initiatives for the Developing Brain, University of Edinburgh, Edinburgh, Scotland EH8 9XD, UK
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Rizo J, David G, Fealey ME, Jaczynska K. On the difficulties of characterizing weak protein interactions that are critical for neurotransmitter release. FEBS Open Bio 2022; 12:1912-1938. [PMID: 35986639 PMCID: PMC9623538 DOI: 10.1002/2211-5463.13473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
The mechanism of neurotransmitter release has been extensively characterized, showing that vesicle fusion is mediated by the SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin. This complex is disassembled by N-ethylmaleimide sensitive factor (NSF) and SNAPs to recycle the SNAREs, whereas Munc18-1 and Munc13s organize SNARE complex assembly in an NSF-SNAP-resistant manner. Synaptotagmin-1 acts as the Ca2+ sensor that triggers exocytosis in a tight interplay with the SNAREs and complexins. Here, we review technical aspects associated with investigation of protein interactions underlying these steps, which is hindered because the release machinery is assembled between two membranes and is highly dynamic. Moreover, weak interactions, which are difficult to characterize, play key roles in neurotransmitter release, for instance by lowering energy barriers that need to be overcome in this highly regulated process. We illustrate the crucial role that structural biology has played in uncovering mechanisms underlying neurotransmitter release, but also discuss the importance of considering the limitations of the techniques used, including lessons learned from research in our lab and others. In particular, we emphasize: (a) the promiscuity of some protein sequences, including membrane-binding regions that can mediate irrelevant interactions with proteins in the absence of their native targets; (b) the need to ensure that weak interactions observed in crystal structures are biologically relevant; and (c) the limitations of isothermal titration calorimetry to analyze weak interactions. Finally, we stress that even studies that required re-interpretation often helped to move the field forward by improving our understanding of the system and providing testable hypotheses.
Collapse
Affiliation(s)
- Josep Rizo
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Guillaume David
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Michael E. Fealey
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Klaudia Jaczynska
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
31
|
Peer M, Yuan H, Zhang Y, Korbula K, Novick P, Dong G. Double NPY motifs at the N-terminus of the yeast t-SNARE Sso2 synergistically bind Sec3 to promote membrane fusion. eLife 2022; 11:82041. [PMID: 35979953 PMCID: PMC9427108 DOI: 10.7554/elife.82041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Exocytosis is an active vesicle trafficking process by which eukaryotes secrete materials to the extracellular environment and insert membrane proteins into the plasma membrane. The final step of exocytosis in yeast involves the assembly of two t-SNAREs, Sso1/2 and Sec9, with the v-SNARE, Snc1/2, on secretory vesicles. The rate-limiting step in this process is the formation of a binary complex of the two t-SNAREs. Despite a previous report of acceleration of binary complex assembly by Sec3, it remains unknown how Sso2 is efficiently recruited to the vesicle-docking site marked by Sec3. Here, we report a crystal structure of the pleckstrin homology (PH) domain of Sec3 in complex with a nearly full-length version of Sso2 lacking only its C-terminal transmembrane helix. The structure shows a previously uncharacterized binding site for Sec3 at the N-terminus of Sso2, consisting of two highly conserved triple residue motifs (NPY: Asn-Pro-Tyr). We further reveal that the two NPY motifs bind Sec3 synergistically, which together with the previously reported binding interface constitute dual-site interactions between Sso2 and Sec3 to drive the fusion of secretory vesicles at target sites on the plasma membrane.
Collapse
Affiliation(s)
- Maximilian Peer
- Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Hua Yuan
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Yubo Zhang
- Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | | | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Gang Dong
- Medical Unviersity of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Wang S, Ma C. Stability profile of the neuronal SNARE complex reflects its potency to drive fast membrane fusion. Biophys J 2022; 121:3081-3102. [PMID: 35810329 PMCID: PMC9463651 DOI: 10.1016/j.bpj.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) form the SNARE complex to mediate most fusion events of the secretory pathway. The neuronal SNARE complex is featured by its high stability and half-zippered conformation required for driving robust and fast synaptic exocytosis. However, these two features seem to be thermodynamically mutually exclusive. In this study, we have employed temperature-dependent disassociation assays and single-molecule Förster resonance energy transfer (FRET) experiments to analyze the stability and conformation of the neuronal SNARE complex. We reclassified the amino acids of the SNARE motif into four sub-groups (core, core-side I and II, and non-contact). Our data showed that the core residues predominantly contribute to the complex stability to meet a basal requirement for SNARE-mediated membrane fusion, while the core-side residues exert an unbalanced effect on the N- and C-half bundle stability that determines the half-zippered conformation of the neuronal SNARE complex, which would accommodate essential regulations by complexins and synaptotagmins for fast Ca2+-triggered membrane fusion. Furthermore, our data confirmed a strong coupling of folding energy between the N- and C-half assembly of the neuronal SNARE complex, which rationalizes the strong potency of the half-zippered conformation to conduct robust and fast fusion. Overall, these results uncovered that the stability profile of the neuronal SNARE complex reflects its potency to drive fast and robust membrane fusion. Based on these results, we also developed a new parameter, the stability factor (Fs), to characterize the overall stability of the neuronal SNARE complex and resolved a linear correlation between the stability and inter-residue coulombic interactions of the neuronal SNARE complex, which would help rationally design artificial SNARE complexes and remold functional SNARE complexes with desirable stability.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
33
|
Zhang Y, Ma L, Bao H. Energetics, kinetics, and pathways of SNARE assembly in membrane fusion. Crit Rev Biochem Mol Biol 2022; 57:443-460. [PMID: 36151854 PMCID: PMC9588726 DOI: 10.1080/10409238.2022.2121804] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fusion of transmitter-containing vesicles with plasma membranes at the synaptic and neuromuscular junctions mediates neurotransmission and muscle contractions, respectively, thereby underlying all thoughts and actions. The fusion process is driven by the coupled folding and assembly of three synaptic SNARE proteins--syntaxin-1 and SNAP-25 on the target plasma membrane (t-SNAREs) and VAMP2 on the vesicular membrane (v-SNARE) into a four-helix bundle. Their assembly is chaperoned by Munc18-1 and many other proteins to achieve the speed and accuracy required for neurotransmission. However, the physiological pathway of SNARE assembly and its coupling to membrane fusion remains unclear. Here, we review recent progress in understanding SNARE assembly and membrane fusion, with a focus on results obtained by single-molecule manipulation approaches and electric recordings of single fusion pores. We describe two pathways of synaptic SNARE assembly, their associated intermediates, energetics, and kinetics. Assembly of the three SNAREs in vitro begins with the formation of a t-SNARE binary complex, on which VAMP2 folds in a stepwise zipper-like fashion. Munc18-1 significantly alters the SNARE assembly pathway: syntaxin-1 and VAMP2 first bind on the surface of Munc18-1 to form a template complex, with which SNAP-25 associates to conclude SNARE assembly and displace Munc18-1. During membrane fusion, multiple trans-SNARE complexes cooperate to open a dynamic fusion pore in a manner dependent upon their copy number and zippering states. Together, these results demonstrate that stepwise and cooperative SNARE assembly drive stagewise membrane fusion.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA;,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA;,Conatct: and
| | - Lu Ma
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA;,Present address: Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Huan Bao
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458,Conatct: and
| |
Collapse
|
34
|
Synaptic Secretion and Beyond: Targeting Synapse and Neurotransmitters to Treat Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9176923. [PMID: 35923862 PMCID: PMC9343216 DOI: 10.1155/2022/9176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
The nervous system is important, because it regulates the physiological function of the body. Neurons are the most basic structural and functional unit of the nervous system. The synapse is an asymmetric structure that is important for neuronal function. The chemical transmission mode of the synapse is realized through neurotransmitters and electrical processes. Based on vesicle transport, the abnormal information transmission process in the synapse can lead to a series of neurorelated diseases. Numerous proteins and complexes that regulate the process of vesicle transport, such as SNARE proteins, Munc18-1, and Synaptotagmin-1, have been identified. Their regulation of synaptic vesicle secretion is complicated and delicate, and their defects can lead to a series of neurodegenerative diseases. This review will discuss the structure and functions of vesicle-based synapses and their roles in neurons. Furthermore, we will analyze neurotransmitter and synaptic functions in neurodegenerative diseases and discuss the potential of using related drugs in their treatment.
Collapse
|
35
|
Parra-Rivas LA, Palfreyman MT, Vu TN, Jorgensen EM. Interspecies complementation identifies a pathway to assemble SNAREs. iScience 2022; 25:104506. [PMID: 35754735 PMCID: PMC9213704 DOI: 10.1016/j.isci.2022.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/23/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Unc18 and SNARE proteins form the core of the membrane fusion complex at synapses. To understand the functional interactions within the core machinery, we adopted an "interspecies complementation" approach in Caenorhabditis elegans. Substitutions of individual SNAREs and Unc18 proteins with those from yeast fail to rescue fusion. However, synaptic transmission could be restored in worm-yeast chimeras when two key interfaces were present: an Habc-Unc18 contact site and an Unc18-SNARE motif contact site. A constitutively open form of Unc18 bypasses the requirement for the Habc-Unc18 interface. These data suggest that the Habc domain of syntaxin is required for Unc18 to adopt an open conformation; open Unc18 then templates SNARE complex formation. Finally, we demonstrate that the SNARE and Unc18 machinery in the nematode C. elegans can be replaced by yeast proteins and still carry out synaptic transmission, pointing to the deep evolutionary conservation of these two interfaces.
Collapse
Affiliation(s)
- Leonardo A. Parra-Rivas
- Howard Hughes Medical Institute, School of Biological Sciences, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Mark T. Palfreyman
- Howard Hughes Medical Institute, School of Biological Sciences, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Thien N. Vu
- Howard Hughes Medical Institute, School of Biological Sciences, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Erik M. Jorgensen
- Howard Hughes Medical Institute, School of Biological Sciences, University of Utah, Salt Lake City, UT 84112-0840, USA
| |
Collapse
|
36
|
Mochida S. Mechanisms of Synaptic Vesicle Exo- and Endocytosis. Biomedicines 2022; 10:1593. [PMID: 35884898 PMCID: PMC9313035 DOI: 10.3390/biomedicines10071593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023] Open
Abstract
Within 1 millisecond of action potential arrival at presynaptic terminals voltage-gated Ca2+ channels open. The Ca2+ channels are linked to synaptic vesicles which are tethered by active zone proteins. Ca2+ entrance into the active zone triggers: (1) the fusion of the vesicle and exocytosis, (2) the replenishment of the active zone with vesicles for incoming exocytosis, and (3) various types of endocytosis for vesicle reuse, dependent on the pattern of firing. These time-dependent vesicle dynamics are controlled by presynaptic Ca2+ sensor proteins, regulating active zone scaffold proteins, fusion machinery proteins, motor proteins, endocytic proteins, several enzymes, and even Ca2+ channels, following the decay of Ca2+ concentration after the action potential. Here, I summarize the Ca2+-dependent protein controls of synchronous and asynchronous vesicle release, rapid replenishment of the active zone, endocytosis, and short-term plasticity within 100 msec after the action potential. Furthermore, I discuss the contribution of active zone proteins to presynaptic plasticity and to homeostatic readjustment during and after intense activity, in addition to activity-dependent endocytosis.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
37
|
Khan S. Endoplasmic Reticulum in Metaplasticity: From Information Processing to Synaptic Proteostasis. Mol Neurobiol 2022; 59:5630-5655. [PMID: 35739409 DOI: 10.1007/s12035-022-02916-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The ER (endoplasmic reticulum) is a Ca2+ reservoir and the unique protein-synthesizing machinery which is distributed throughout the neuron and composed of multiple different structural domains. One such domain is called EMC (endoplasmic reticulum membrane protein complex), pleiotropic nature in cellular functions. The ER/EMC position inside the neurons unmasks its contribution to synaptic plasticity via regulating various cellular processes from protein synthesis to Ca2+ signaling. Since presynaptic Ca2+ channels and postsynaptic ionotropic receptors are organized into the nanodomains, thus ER can be a crucial player in establishing TMNCs (transsynaptic molecular nanocolumns) to shape efficient neural communications. This review hypothesized that ER is not only involved in stress-mediated neurodegeneration but also axon regrowth, remyelination, neurotransmitter switching, information processing, and regulation of pre- and post-synaptic functions. Thus ER might not only be a protein-synthesizing and quality control machinery but also orchestrates plasticity of plasticity (metaplasticity) within the neuron to execute higher-order brain functions and neural repair.
Collapse
Affiliation(s)
- Shumsuzzaman Khan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
38
|
Gething C, Ferrar J, Misra B, Howells G, Andrzejewski AL, Bowen ME, Choi UB. Conformational change of Syntaxin-3b in regulating SNARE complex assembly in the ribbon synapses. Sci Rep 2022; 12:9261. [PMID: 35661757 PMCID: PMC9166750 DOI: 10.1038/s41598-022-09654-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Neurotransmitter release of synaptic vesicles relies on the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consisting of syntaxin and SNAP-25 on the plasma membrane and synaptobrevin on the synaptic vesicle. The formation of the SNARE complex progressively zippers towards the membranes, which drives membrane fusion between the plasma membrane and the synaptic vesicle. However, the underlying molecular mechanism of SNARE complex regulation is unclear. In this study, we investigated the syntaxin-3b isoform found in the retinal ribbon synapses using single-molecule fluorescence resonance energy transfer (smFRET) to monitor the conformational changes of syntaxin-3b that modulate the SNARE complex formation. We found that syntaxin-3b is predominantly in a self-inhibiting closed conformation, inefficiently forming the ternary SNARE complex. Conversely, a phosphomimetic mutation (T14E) at the N-terminal region of syntaxin-3b promoted the open conformation, similar to the constitutively open form of syntaxin LE mutant. When syntaxin-3b is bound to Munc18-1, SNARE complex formation is almost completely blocked. Surprisingly, the T14E mutation of syntaxin-3b partially abolishes Munc18-1 regulation, acting as a conformational switch to trigger SNARE complex assembly. Thus, we suggest a model where the conformational change of syntaxin-3b induced by phosphorylation initiates the release of neurotransmitters in the ribbon synapses.
Collapse
Affiliation(s)
- Claire Gething
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Joshua Ferrar
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Bishal Misra
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Giovanni Howells
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | | | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.,Quantum-Si, Inc, Guilford, CT, 06437, USA
| | - Ucheor B Choi
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA. .,Quantum-Si, Inc, Guilford, CT, 06437, USA.
| |
Collapse
|
39
|
Xu Y, Zhu L, Wang S, Ma C. Munc18 − Munc13‐dependent pathway of
SNARE
complex assembly is resistant to
NSF
and
α‐SNAP. FEBS J 2022; 289:6367-6384. [DOI: 10.1111/febs.16528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Yuanyuan Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| | - Le Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
40
|
Abstract
Major recent advances and previous data have led to a plausible model of how key proteins mediate neurotransmitter release. In this model, the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin form tight complexes that bring the membranes together and are crucial for membrane fusion. NSF and SNAPs disassemble SNARE complexes and ensure that fusion occurs through an exquisitely regulated pathway that starts with Munc18-1 bound to a closed conformation of syntaxin-1. Munc18-1 also binds to synaptobrevin, forming a template to assemble the SNARE complex when Munc13-1 opens syntaxin-1 while bridging the vesicle and plasma membranes. Synaptotagmin-1 and complexin bind to partially assembled SNARE complexes, likely stabilizing them and preventing fusion until Ca2+ binding to synaptotagmin-1 causes dissociation from the SNARE complex and induces interactions with phospholipids that help trigger release. Although fundamental questions remain about the mechanism of membrane fusion, these advances provide a framework to investigate the mechanisms underlying presynaptic plasticity.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
41
|
Wang S, Ma C. Neuronal SNARE complex assembly guided by Munc18-1 and Munc13-1. FEBS Open Bio 2022; 12:1939-1957. [PMID: 35278279 PMCID: PMC9623535 DOI: 10.1002/2211-5463.13394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/25/2023] Open
Abstract
Neurotransmitter release by Ca2+ -triggered synaptic vesicle exocytosis is essential for information transmission in the nervous system. The soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form the SNARE complex to bring synaptic vesicles and the plasma membranes together and to catalyze membrane fusion. Munc18-1 and Munc13-1 regulate synaptic vesicle priming via orchestrating neuronal SNARE complex assembly. In this review, we summarize recent advances toward the functions and molecular mechanisms of Munc18-1 and Munc13-1 in guiding neuronal SNARE complex assembly, and discuss the functional similarities and differences between Munc18-1 and Munc13-1 in neurons and their homologs in other intracellular membrane trafficking systems.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
42
|
Ferritinophagy and α-Synuclein: Pharmacological Targeting of Autophagy to Restore Iron Regulation in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23042378. [PMID: 35216492 PMCID: PMC8878351 DOI: 10.3390/ijms23042378] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
A major hallmark of Parkinson’s disease (PD) is the fatal destruction of dopaminergic neurons within the substantia nigra pars compacta. This event is preceded by the formation of Lewy bodies, which are cytoplasmic inclusions composed of α-synuclein protein aggregates. A triad contribution of α-synuclein aggregation, iron accumulation, and mitochondrial dysfunction plague nigral neurons, yet the events underlying iron accumulation are poorly understood. Elevated intracellular iron concentrations up-regulate ferritin expression, an iron storage protein that provides cytoprotection against redox stress. The lysosomal degradation pathway, autophagy, can release iron from ferritin stores to facilitate its trafficking in a process termed ferritinophagy. Aggregated α-synuclein inhibits SNARE protein complexes and destabilizes microtubules to halt vesicular trafficking systems, including that of autophagy effectively. The scope of this review is to describe the physiological and pathological relationship between iron regulation and α-synuclein, providing a detailed understanding of iron metabolism within nigral neurons. The underlying mechanisms of autophagy and ferritinophagy are explored in the context of PD, identifying potential therapeutic targets for future investigation.
Collapse
|
43
|
Munc13 structural transitions and oligomers that may choreograph successive stages in vesicle priming for neurotransmitter release. Proc Natl Acad Sci U S A 2022; 119:2121259119. [PMID: 35135883 PMCID: PMC8851502 DOI: 10.1073/pnas.2121259119] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
The speed of neural information processing in the human central nervous system is ultimately determined by the speed of chemical transmission at synapses, because action potentials have relatively short distances to traverse. The release of synaptic vesicles containing neurotransmitters must therefore be remarkably fast as compared to other forms of membrane fusion. Six separate SNARE complexes cooperate to achieve this. But how can exactly six copies be assembled under every vesicle? Here we report that six copies of the key molecular chaperone that assembles the SNAREs can arrange themselves into a closed hexagon, providing the likely answer. How can exactly six SNARE complexes be assembled under each synaptic vesicle? Here we report cryo-EM crystal structures of the core domain of Munc13, the key chaperone that initiates SNAREpin assembly. The functional core of Munc13, consisting of C1–C2B–MUN–C2C (Munc13C) spontaneously crystallizes between phosphatidylserine-rich bilayers in two distinct conformations, each in a radically different oligomeric state. In the open conformation (state 1), Munc13C forms upright trimers that link the two bilayers, separating them by ∼21 nm. In the closed conformation, six copies of Munc13C interact to form a lateral hexamer elevated ∼14 nm above the bilayer. Open and closed conformations differ only by a rigid body rotation around a flexible hinge, which when performed cooperatively assembles Munc13 into a lateral hexamer (state 2) in which the key SNARE assembly-activating site of Munc13 is autoinhibited by its neighbor. We propose that each Munc13 in the lateral hexamer ultimately assembles a single SNAREpin, explaining how only and exactly six SNARE complexes are templated. We suggest that state 1 and state 2 may represent two successive states in the synaptic vesicle supply chain leading to “primed” ready-release vesicles in which SNAREpins are clamped and ready to release (state 3).
Collapse
|
44
|
Cali E, Rocca C, Salpietro V, Houlden H. Epileptic Phenotypes Associated With SNAREs and Related Synaptic Vesicle Exocytosis Machinery. Front Neurol 2022; 12:806506. [PMID: 35095745 PMCID: PMC8792400 DOI: 10.3389/fneur.2021.806506] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/16/2021] [Indexed: 01/29/2023] Open
Abstract
SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptor) are an heterogeneous family of proteins that, together with their key regulators, are implicated in synaptic vesicle exocytosis and synaptic transmission. SNAREs represent the core component of this protein complex. Although the specific mechanisms of the SNARE machinery is still not completely uncovered, studies in recent years have provided a clearer understanding of the interactions regulating the essential fusion machinery for neurotransmitter release. Mutations in genes encoding SNARE proteins or SNARE complex associated proteins have been associated with a variable spectrum of neurological conditions that have been recently defined as “SNAREopathies.” These include neurodevelopmental disorder, autism spectrum disorder (ASD), movement disorders, seizures and epileptiform abnormalities. The SNARE phenotypic spectrum associated with seizures ranges from simple febrile seizures and infantile spasms, to severe early-onset epileptic encephalopathies. Our study aims to review and delineate the epileptic phenotypes associated with dysregulation of synaptic vesicle exocytosis and transmission, focusing on the main proteins of the SNARE core complex (STX1B, VAMP2, SNAP25), tethering complex (STXBP1), and related downstream regulators.
Collapse
Affiliation(s)
- Elisa Cali
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Clarissa Rocca
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Vincenzo Salpietro
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
45
|
Gong J, Wang X, Cui C, Qin Y, Jin Z, Ma C, Yang X. Exploring the Two Coupled Conformational Changes That Activate the Munc18-1/Syntaxin-1 Complex. Front Mol Neurosci 2022; 14:785696. [PMID: 35002621 PMCID: PMC8728020 DOI: 10.3389/fnmol.2021.785696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Calcium-dependent synaptic vesicle exocytosis is mediated by SNARE complex formation. The transition from the Munc18-1/syntaxin-1 complex to the SNARE complex is catalyzed by the Munc13-1 MUN domain and involves at least two conformational changes: opening of the syntaxin-1 linker region and extension of Munc18-1 domain 3a. However, the relationship and the action order of the two conformational changes remain not fully understood. Here, our data show that an open conformation in the syntaxin-1 linker region can bypass the requirement of the MUN NF sequence. In addition, an extended state of Munc18-1 domain 3a can compensate the role of the syntaxin-1 RI sequence. Altogether, the current data strongly support our previous notion that opening of the syntaxin-1 linker region by Munc13-1 is a key step to initiate SNARE complex assembly, and consequently, Munc18-1 domain 3a can extend its conformation to serve as a template for association of synaptobrevin-2 and syntaxin-1.
Collapse
Affiliation(s)
- Jihong Gong
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Xianping Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Chaoyang Cui
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Yuyang Qin
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Ziqi Jin
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
46
|
Piao C, Sigrist SJ. (M)Unc13s in Active Zone Diversity: A Drosophila Perspective. Front Synaptic Neurosci 2022; 13:798204. [PMID: 35046788 PMCID: PMC8762327 DOI: 10.3389/fnsyn.2021.798204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
The so-called active zones at pre-synaptic terminals are the ultimate filtering devices, which couple between action potential frequency and shape, and the information transferred to the post-synaptic neurons, finally tuning behaviors. Within active zones, the release of the synaptic vesicle operates from specialized “release sites.” The (M)Unc13 class of proteins is meant to define release sites topologically and biochemically, and diversity between Unc13-type release factor isoforms is suspected to steer diversity at active zones. The two major Unc13-type isoforms, namely, Unc13A and Unc13B, have recently been described from the molecular to the behavioral level, exploiting Drosophila being uniquely suited to causally link between these levels. The exact nanoscale distribution of voltage-gated Ca2+ channels relative to release sites (“coupling”) at pre-synaptic active zones fundamentally steers the release of the synaptic vesicle. Unc13A and B were found to be either tightly or loosely coupled across Drosophila synapses. In this review, we reported recent findings on diverse aspects of Drosophila Unc13A and B, importantly, their nano-topological distribution at active zones and their roles in release site generation, active zone assembly, and pre-synaptic homeostatic plasticity. We compared their stoichiometric composition at different synapse types, reviewing the correlation between nanoscale distribution of these two isoforms and release physiology and, finally, discuss how isoform-specific release components might drive the functional heterogeneity of synapses and encode discrete behavior.
Collapse
Affiliation(s)
- Chengji Piao
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
- *Correspondence: Stephan J. Sigrist
| |
Collapse
|
47
|
Abstract
Whole-cell patch clamping is a standard method to monitor the secretion of synaptic vesicles. In this chapter, we describe the basic steps of whole-cell patch clamping for measuring synaptic exocytosis, aiming to provide reference for researchers who are new to this field.
Collapse
Affiliation(s)
- Jihong Gong
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central MINZU University, Wuhan, China
| | - Xiaofei Yang
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central MINZU University, Wuhan, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
48
|
Mochida S. Stable and Flexible Synaptic Transmission Controlled by the Active Zone Protein Interactions. Int J Mol Sci 2021; 22:ijms222111775. [PMID: 34769208 PMCID: PMC8583982 DOI: 10.3390/ijms222111775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022] Open
Abstract
An action potential triggers neurotransmitter release from synaptic vesicles docking to a specialized release site of the presynaptic plasma membrane, the active zone. The active zone is a highly organized structure with proteins that serves as a platform for synaptic vesicle exocytosis, mediated by SNAREs complex and Ca2+ sensor proteins, within a sub-millisecond opening of nearby Ca2+ channels with the membrane depolarization. In response to incoming neuronal signals, each active zone protein plays a role in the release-ready site replenishment with synaptic vesicles for sustainable synaptic transmission. The active zone release apparatus provides a possible link between neuronal activity and plasticity. This review summarizes the mostly physiological role of active zone protein interactions that control synaptic strength, presynaptic short-term plasticity, and homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
49
|
Li F, Kalyana Sundaram RV, Gatta AT, Coleman J, Ramakrishnan S, Krishnakumar SS, Pincet F, Rothman JE. Vesicle capture by membrane-bound Munc13-1 requires self-assembly into discrete clusters. FEBS Lett 2021; 595:2185-2196. [PMID: 34227103 DOI: 10.1002/1873-3468.14157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Munc13-1 is a large banana-shaped soluble protein that is involved in the regulation of synaptic vesicle docking and fusion. Recent studies suggest that multiple copies of Munc13-1 form nano-assemblies in active zones of neurons. However, it is not known whether such clustering of Munc13-1 is correlated with multivalent binding to synaptic vesicles or specific plasma membrane domains at docking sites in the active zone. The functional significance of putative Munc13-1 clustering is also unknown. Here, we report that nano-clustering is an inherent property of Munc13-1 and is indeed required for vesicle binding to bilayers containing Munc13-1. Purified Munc13-1 protein reconstituted onto supported lipid bilayers assembled into clusters containing from 2 to ˜ 20 copies as revealed by a combination of quantitative TIRF microscopy and step-wise photobleaching. Surprisingly, only clusters containing a minimum of 6 copies of Munc13-1 were capable of efficiently capturing and retaining small unilamellar vesicles. The C-terminal C2 C domain of Munc13-1 is not required for Munc13-1 clustering, but is required for efficient vesicle capture. This capture is largely due to a combination of electrostatic and hydrophobic interactions between the C2 C domain and the vesicle membrane.
Collapse
Affiliation(s)
- Feng Li
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Ramalingam Venkat Kalyana Sundaram
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Alberto T Gatta
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Jeff Coleman
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Sathish Ramakrishnan
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Shyam S Krishnakumar
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Frederic Pincet
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - James E Rothman
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| |
Collapse
|
50
|
Puntman DC, Arora S, Farina M, Toonen RF, Verhage M. Munc18-1 Is Essential for Neuropeptide Secretion in Neurons. J Neurosci 2021; 41:5980-5993. [PMID: 34103363 PMCID: PMC8276746 DOI: 10.1523/jneurosci.3150-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Neuropeptide secretion from dense-core vesicles (DCVs) controls many brain functions. Several components of the DCV exocytosis machinery have recently been identified, but the participation of a SEC1/MUNC18 (SM) protein has remained elusive. Here, we tested the ability of the three exocytic SM proteins expressed in the mammalian brain, MUNC18-1/2/3, to support neuropeptide secretion. We quantified DCV exocytosis at a single vesicle resolution on action potential (AP) train-stimulation in mouse CNS neurons (of unknown sex) using pHluorin-tagged and/or mCherry-tagged neuropeptide Y (NPY) or brain-derived neurotrophic factor (BDNF). Conditional inactivation of Munc18-1 abolished all DCV exocytosis. Expression of MUNC18-1, but not MUNC18-2 or MUNC18-3, supported DCV exocytosis in Munc18-1 null neurons. Heterozygous (HZ) inactivation of Munc18-1, as a model for reduced MUNC18-1 expression, impaired DCV exocytosis, especially during the initial phase of train-stimulation, when the release was maximal. These data show that neurons critically and selectively depend on MUNC18-1 for neuropeptide secretion. Impaired neuropeptide secretion may explain aspects of the behavioral and neurodevelopmental phenotypes that were observed in Munc18-1 HZ mice.SIGNIFICANCE STATEMENT Neuropeptide secretion from dense-core vesicles (DCVs) modulates synaptic transmission, sleep, appetite, cognition and mood. However, the mechanisms of DCV exocytosis are poorly characterized. Here, we identify MUNC18-1 as an essential component for neuropeptide secretion from DCVs. Paralogs MUNC18-2 or MUNC18-3 cannot compensate for MUNC18-1. MUNC18-1 is the first protein identified to be essential for both neuropeptide secretion and synaptic transmission. In heterozygous (HZ) Munc18-1 neurons, that have a 50% reduced MUNC18-1expression and model the human STXBP1 syndrome, DCV exocytosis is impaired, especially during the initial phase of train-stimulation, when the release is maximal. These data show that MUNC18-1 is essential for neuropeptide secretion and that impaired neuropeptide secretion on reduced MUNC18-1expression may contribute to the symptoms of STXBP1 syndrome.
Collapse
Affiliation(s)
- Daniël C Puntman
- Section Functional genomics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Universitair Medisch Centrum, Amsterdam1081 HV, The Netherlands
| | - Swati Arora
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Margherita Farina
- Section Functional genomics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Universitair Medisch Centrum, Amsterdam1081 HV, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Matthijs Verhage
- Section Functional genomics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Universitair Medisch Centrum, Amsterdam1081 HV, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| |
Collapse
|