1
|
Jin M, Hu S, Wu Q, Feng X, Zhang Y, Jiang Q, Ma J, Qi P, Chen G, Jiang Y, Zheng Y, Wei Y, Xu Q. An effector protein of Fusarium graminearum targets chloroplasts and suppresses cyclic photosynthetic electron flow. PLANT PHYSIOLOGY 2024; 196:2422-2436. [PMID: 39365766 DOI: 10.1093/plphys/kiae538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Chloroplasts are important photosynthetic organelles that regulate plant immunity, growth, and development. However, the role of fungal secretory proteins in linking the photosystem to the plant immune system remains largely unknown. Our systematic characterization of 17 chloroplast-targeting secreted proteins of Fusarium graminearum indicated that Fg03600 is an important virulence factor. Fg03600 translocation into plant cells and accumulation in chloroplasts depended on its chloroplast transit peptide. Fg03600 interacted with the wheat (Triticum aestivum L.) proton gradient regulation 5-like protein 1 (TaPGRL1), a part of the cyclic photosynthetic electron transport chain, and promoted TaPGRL1 homo-dimerization. Interestingly, TaPGRL1 also interacted with ferredoxin (TaFd), a chloroplast ferredoxin protein that transfers cyclic electrons to TaPGRL1. TaFd competed with Fg03600 for binding to the same region of TaPGRL1. Fg03600 expression in plants decreased cyclic electron flow (CEF) but increased the production of chloroplast-derived reactive oxygen species (ROS). Stably silenced TaPGRL1 impaired resistance to Fusarium head blight (FHB) and disrupted CEF. Overall, Fg03600 acts as a chloroplast-targeting effector to suppress plant CEF and increase photosynthesis-derived ROS for FHB development at the necrotrophic stage by promoting homo-dimeric TaPGRL1 or competing with TaFd for TaPGRL1 binding.
Collapse
Affiliation(s)
- Minxia Jin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Su Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qin Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiangran Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
2
|
Song J, Li Y, Zhang Z, Gao X, Li S, Zhang J, Zhou M, Duan Y. Endoplasmic reticulum-mitochondrial encounter structure regulates the mitochondrial morphology, DON biosynthesis and toxisome formation in Fusarium graminearum. Microbiol Res 2024; 289:127892. [PMID: 39255584 DOI: 10.1016/j.micres.2024.127892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
The endoplasmic reticulum-mitochondrial encounter structure (ERMES) complex is known to play crucial roles in various cellular processes. However, its functional significance in filamentous fungi, particularly its impact on deoxynivalenol (DON) biosynthesis in Fusarium graminearum, remains inadequately understood. In this study, we aimed to investigate the regulatory function of the ERMES complex in F. graminearum. Our findings indicate significant changes in mitochondrial morphology of ERMES mutants, accompanied by decreased ATP content and ergosterol production. Notably, the toxisome formation in the ERMES mutant ΔFgMDM10 was defective, resulting in a substantial reduction in DON biosynthesis. This suggests a pivotal role of ERMES in toxisome formation, as evidenced by the pronounced inhibition of toxisome formation when ERMES was disrupted by boscalid. Furthermore, ERMES deficiencies were shown to diminish the virulence of F. graminearum towards host plants significantly. In conclusion, our results suggest ERMES is an important regulator of mitochondrial morphology, DON biosynthesis, and toxisome formation in F. graminearum.
Collapse
Affiliation(s)
- Jichang Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yige Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinlong Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengxue Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Cai H, Li J, Ran L, Chen Y, Teng H. Mps1-Targeted Molecular Design of Melatonin for Broad-Spectrum Antifungal Agent Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39370610 DOI: 10.1021/acs.jafc.4c04150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Melatonin, a multifunctional class of natural products, has demonstrated antifungal activity, making it a promising candidate for developing antifungal agents. The mitogen-activated protein kinase (Mps1) within fungal pathogens has a target inhibitory effect of melatonin in fungi. We use a virtual screening strategy to design melatonin derivatives based on the melatonin-Mps1 targeting model. Of these, a multiflorane-substitution compound M-12 emerges as a potent antifungal agent, exhibiting broad-spectrum efficacy against eight phytopathogenic fungal species, and effectively reduces the severity of tomato gray mold, Fusarium head blight in wheat, Sclerotinia stem rot in rape, and peach brown rot. M-12 half-maximal effective concentration values (5.50 μM against Botrytis cinerea, 5.21 μM against Fusarium graminearum, 10.6 μM against Rhizoctonia solani, and 9.02 μM against Sclerotinia sclerotiorum) are better than those of commercial broad-spectrum fungicide azoxystrobin (55.0, 23.2, 46.5, and 17.7 μM, respectively). Antifungal activity of enantiomer (S)-M-12 (5.02 μM) is significantly greater than its (R)-enantiomer (23.6 μM) against B. cinerea. Molecular docking and transcriptome analysis reveal that M-12 achieves its antifungal effects by inhibiting Mps1 kinase, thereby suppressing fungal growth and virulence.
Collapse
Affiliation(s)
- Huanyu Cai
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Ran
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yu Chen
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Huailong Teng
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Xie W, Lai X, Wu Y, Li Z, Zhu J, Huang Y, Zhang F. Transcription Factor and Protein Regulatory Network of PmACRE1 in Pinus massoniana Response to Pine Wilt Nematode Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2672. [PMID: 39409542 PMCID: PMC11479228 DOI: 10.3390/plants13192672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024]
Abstract
Pine wilt disease, caused by Bursaphelenchus xylophilus, is a highly destructive and contagious forest affliction. Often termed the "cancer" of pine trees, it severely impacts the growth of Masson pine (Pinus massoniana). Previous studies have demonstrated that ectopic expression of the PmACRE1 gene from P. massoniana in Arabidopsis thaliana notably enhances resistance to pine wilt nematode infection. To further elucidate the transcriptional regulation and protein interactions of the PmACRE1 in P. massoniana in response to pine wilt nematode infection, we cloned a 1984 bp promoter fragment of the PmACRE1 gene, a transient expression vector was constructed by fusing this promoter with the reporter GFP gene, which successfully activated the GFP expression. DNA pull-down assays identified PmMYB8 as a trans-acting factor regulating PmACRE1 gene expression. Subsequently, we found that the PmACRE1 protein interacts with several proteins, including the ATP synthase CF1 α subunit, ATP synthase CF1 β subunit, extracellular calcium-sensing receptor (PmCAS), caffeoyl-CoA 3-O-methyltransferase (PmCCoAOMT), glutathione peroxidase, NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase 1, cinnamyl alcohol dehydrogenase, auxin response factor 16, and dehydrin 1 protein. Bimolecular fluorescence complementation (BiFC) assays confirmed the interactions between PmACRE1 and PmCCoAOMT, as well as PmCAS proteins in vitro. These findings provide preliminary insights into the regulatory role of PmACRE1 in P. massoniana's defense against pine wilt nematode infection.
Collapse
Affiliation(s)
- Wanfeng Xie
- Jinshan College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.X.); (Z.L.)
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolin Lai
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxiao Wu
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zheyu Li
- Jinshan College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.X.); (Z.L.)
| | - Jingwen Zhu
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Huang
- Fujian Academy of Forestry, Fuzhou 350000, China
| | - Feiping Zhang
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Wang S, Wang J, Wang T, Li T, Xu L, Cheng Y, Chang M, Meng J, Hou L. Integrated Transcriptomics-Proteomics Analysis Reveals the Response Mechanism of Morchella sextelata to Pseudodiploöspora longispora Infection. J Fungi (Basel) 2024; 10:604. [PMID: 39330364 PMCID: PMC11433447 DOI: 10.3390/jof10090604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Morels (Morchella spp.) are valuable and rare edible mushrooms with unique flavors and high nutritional value. White mold disease occurring during cultivation has seriously affected the quality and yield of morels in China. In this study, the fungus causing white mold disease in morels was isolated, purified, and identified as Pseudodiploöspora longispora by morphology and molecular biology. In addition, research has shown that P. longispora infection causes wrinkled and rupturing asci, loosened cell walls, and obvious membrane breakage accompanied by severe cytoplasmic leakage in M. sextelata. Interestingly, research has shown that infection with P. longispora can induce the production of an unknown substance in the cells of M. sextelata, which accumulates on the cell membrane, leading to membrane breakage. Furthermore, integrated transcriptomics-proteomics analysis revealed the response mechanism of M. sextelata to P. longispora infection. The results indicate that DEGs and DEPs can be significantly enriched in pathways involved in oxidoreductase activity; peroxisomes, lipid transport, and metabolism; cell wall assembly; and integral components of membranes. Further electron microscopy analysis clarified the important role of changes in the cell membrane and cell wall in the response of mycelia to biological stress. This study clarified the response mechanism of M. sextelata to P. longispora, laying a foundation for further clarifying the infection mechanism of P. longispora.
Collapse
Affiliation(s)
- Shurong Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Research Center for Engineering Technology of Edible Fungi, Taigu, Jinzhong 030801, China
| | - Jingyi Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Tengyun Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Tonglou Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Jinzhong 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Jinzhong 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Research Center for Engineering Technology of Edible Fungi, Taigu, Jinzhong 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Research Center for Engineering Technology of Edible Fungi, Taigu, Jinzhong 030801, China
| | - Ludan Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Jinzhong 030801, China
| |
Collapse
|
6
|
Tian X, Hu L, Jia R, Cao S, Sun Y, Dong X, Wang Y. Streptomyces pratensis S10 Promotes Wheat Plant Growth and Induces Resistance in Wheat Seedlings against Fusarium graminearum. J Fungi (Basel) 2024; 10:578. [PMID: 39194904 DOI: 10.3390/jof10080578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Fusarium graminearum, a devastating fungal pathogen, causes great economic losses to crop yields worldwide. The present study investigated the potential of Streptomyces pratensis S10 to alleviate F. graminearum stress in wheat seedlings based on plant growth-promoting and resistance-inducing assays. The bioassays revealed that S10 exhibited multiple plant growth-promoting properties, including the production of siderophores, 1-aminocyclopropane-1-carboxylic acid deaminase (ACC), and indole-3-acetic acid (IAA), phosphate solubilization, and nitrogen fixation. Meanwhile, the pot experiment demonstrated that S10 improved wheat plant development, substantially enhancing wheat height, weight, root activity, and chlorophyll content. Consistently, genome mining identified abundant genes associated with plant growth promotion. S10 induced resistance against F. graminearum in wheat seedlings. The disease incidence and disease index reduced by nearly 52% and 65% in S10 pretreated wheat seedlings, respectively, compared with those infected with F. graminearum only in the non-contact inoculation assay. Moreover, S10 enhanced callose deposition and reactive oxygen species (ROS) accumulation and induced the activities of CAT, SOD, POD, PAL, and PPO. Furthermore, the quantitative real-time PCR (qRT-PCR) results indicated that S10 pretreatment increased the expression of SA- (PR1.1, PR2, PR5, and PAL1) and JA/ET-related genes (PR3, PR4a, PR9, and PDF1.2) in wheat seedlings upon F. graminearum infection. In summary, S. pratensis S10 could be an integrated biological agent and biofertilizer in wheat seedling blight management and plant productivity enhancement.
Collapse
Affiliation(s)
- Xiaoman Tian
- College of Bioengineering, Yangling Vocation & Technical College, Yangling, Xianyang 712100, China
| | - Lifang Hu
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ruimin Jia
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Shang Cao
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yan Sun
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiaomin Dong
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
7
|
Jin Z, Wang YC. Mitigating fungal contamination of cereals: The efficacy of microplasma-based far-UVC lamps against Aspergillus flavus and Fusarium graminearum. Food Res Int 2024; 190:114550. [PMID: 38945594 DOI: 10.1016/j.foodres.2024.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/19/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
Fungal contaminations of cereal grains are a profound food-safety and food-security concern worldwide, threatening consumers' and animals' health and causing enormous economic burdens. Because far-ultraviolet C (far-UVC) light at 222 nm has recently been shown to be human-safe, we investigated its efficacy as an alternative to thermal, chemical, and conventional 254 nm UVC anti-fungal treatments. Our microplasma-based far-UVC lamp system achieved a 5.21-log reduction in the conidia of Aspergillus flavus suspended in buffer with a dose of 1032.0 mJ/cm2, and a 5.11-log reduction of Fusarium graminearum conidia in suspension with a dose of 619.2 mJ/cm2. We further observed that far-UVC treatments could induce fungal-cell apoptosis, alter mitochondrial membrane potential, lead to the accumulation of intracellular reactive oxygen species, cause lipid peroxidation, and result in cell-membrane damage. The lamp system also exhibited a potent ability to inhibit the mycelial growth of both A. flavus and F. graminearum. On potato dextrose agar plates, such growth was completely inhibited after doses of 576.0 mJ/cm2 and 460.8 mJ/cm2, respectively. To test our approach's efficacy at decontaminating actual cereal grains, we designed a cubical 3D treatment chamber fitted with six lamps. At a dose of 780.0 mJ/cm2 on each side, the chamber achieved a 1.88-log reduction of A. flavus on dried yellow corn kernels and a 1.11-log reduction of F. graminearum on wheat grains, without significant moisture loss to either cereal type (p > 0.05). The treatment did not cause significant changes in the propensity of wheat grains to germinate in the week following treatment (p > 0.05). However, it increased the germination propensity of corn kernels by more than 71% in the same timeframe (p < 0.05). Collectively, our results demonstrate that 222 nm far-UVC radiation can effectively inactivate fungal growth in liquid, on solid surfaces, and on cereal grains. If scalable, its emergence as a safe, cost-effective alternative tool for reducing fungi-related post-harvest cereal losses could have important positive implications for the fight against world hunger and food insecurity.
Collapse
Affiliation(s)
- Zhenhui Jin
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Yi-Cheng Wang
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Center for Digital Agriculture, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
8
|
Hu L, Chen J, Jia R, Sun Y, Dong X, Cao S, Shen X, Wang Y. Streptomyces pratensis S10 Inhibits the Spread of Fusarium graminearum Invasive Hyphae and Toxisome Formation in Wheat Plants. PHYTOPATHOLOGY 2024; 114:1770-1781. [PMID: 38809607 DOI: 10.1094/phyto-12-23-0506-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Fusarium head blight (FHB) of wheat, mainly caused by Fusarium graminearum, leads to severe economic losses worldwide. Effective management measures for controlling FHB are not available due to a lack of resistant cultivars. Currently, the utilization of biological control is a promising approach that can be used to help manage FHB. Previous studies have confirmed that Streptomyces pratensis S10 harbors excellent inhibitory effects on F. graminearum. However, there is no information regarding whether invasive hyphae of F. graminearum are inhibited by S10. Thus, we investigated the effects of S10 on F. graminearum strain PH-1 hypha extension, toxisome formation, and TRI5 gene expression on wheat plants via microscopic observation. The results showed that S10 effectively inhibited the spread of F. graminearum hyphae along the rachis, restricting the infection of neighboring florets via the phloem. In the presence of S10, the hyphal growth is impeded by the formation of dense cell wall thickenings in the rachis internode surrounding the F. graminearum infection site, avoiding cell plasmolysis and collapse. We further demonstrated that S10 largely prevented cell-to-cell invasion of fungal hyphae inside wheat coleoptiles using a constitutively green fluorescence protein-expressing F. graminearum strain, PH-1. Importantly, S. pratensis S10 inhibited toxisome formation and TRI5 gene expression in wheat plants during infection. Collectively, these findings indicate that S. pratensis S10 prevents the spread of F. graminearum invasive hyphae via the rachis.
Collapse
Affiliation(s)
- Lifang Hu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jing Chen
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Ruimin Jia
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yan Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaomin Dong
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shang Cao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
9
|
Brauer EK, Bosnich W, Holy K, Thapa I, Krishnan S, Moatter Syed, Bredow M, Sproule A, Power M, Johnston A, Cloutier M, Haribabu N, Izhar U H Khan, Diallo JS, Monaghan J, Chabot D, Overy DP, Subramaniam R, Piñeros M, Blackwell B, Harris LJ. A cyclic lipopeptide from Fusarium graminearum targets plant membranes to promote virulence. Cell Rep 2024; 43:114384. [PMID: 38970790 DOI: 10.1016/j.celrep.2024.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024] Open
Abstract
Microbial plant pathogens deploy amphipathic cyclic lipopeptides to reduce surface tension in their environment. While plants can detect these molecules to activate cellular stress responses, the role of these lipopeptides or associated host responses in pathogenesis are not fully clear. The gramillin cyclic lipopeptide is produced by the Fusarium graminearum fungus and is a virulence factor and toxin in maize. Here, we show that gramillin promotes virulence and necrosis in both monocots and dicots by disrupting ion balance across membranes. Gramillin is a cation-conducting ionophore and causes plasma membrane depolarization. This disruption triggers cellular signaling, including a burst of reactive oxygen species (ROS), transcriptional reprogramming, and callose production. Gramillin-induced ROS depends on expression of host ILK1 and RBOHD genes, which promote fungal induction of virulence genes during infection and host susceptibility. We conclude that gramillin's ionophore activity targets plant membranes to coordinate attack by the F. graminearum fungus.
Collapse
Affiliation(s)
- Elizabeth K Brauer
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; Department of Biology, University of Ottawa, Ottawa, ON K1N 9A7, Canada.
| | - Whynn Bosnich
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Kirsten Holy
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Indira Thapa
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Srinivasan Krishnan
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Moatter Syed
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; Department of Biology, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Melissa Bredow
- Biology Department, Queen's University, Biological Sciences Complex, 116 Barrie St., Kingston, ON K7L 3N6, Canada
| | - Amanda Sproule
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Monique Power
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; Department of Biology, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Anne Johnston
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Michel Cloutier
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Naveen Haribabu
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Jacqueline Monaghan
- Biology Department, Queen's University, Biological Sciences Complex, 116 Barrie St., Kingston, ON K7L 3N6, Canada
| | - Denise Chabot
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - David P Overy
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Rajagopal Subramaniam
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Miguel Piñeros
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA; Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, NY 14853, USA
| | - Barbara Blackwell
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Linda J Harris
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
10
|
Li Z, Jiao Y, Ling J, Zhao J, Yang Y, Mao Z, Zhou K, Wang W, Xie B, Li Y. Characterization of a methyltransferase for iterative N-methylation at the leucinostatin termini in Purpureocillium lilacinum. Commun Biol 2024; 7:757. [PMID: 38909167 PMCID: PMC11193748 DOI: 10.1038/s42003-024-06467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
N-methyltransferase (NMT)-catalyzed methylation at the termini of nonribosomal peptides (NRPs) has rarely been reported. Here, we discover a fungal NMT LcsG for the iterative terminal N-methylation of a family of NRPs, leucinostatins. Gene deletion results suggest that LcsG is essential for leucinostatins methylation. Results from in vitro assays and HRESI-MS-MS analysis reveal the methylation sites as NH2, NHCH3 and N(CH3)2 in the C-terminus of various leucinostatins. LcsG catalysis yields new lipopeptides, some of which demonstrate effective antibiotic properties against the human pathogen Cryptococcus neoformans and the plant pathogen Phytophthora infestans. Multiple sequence alignments and site-directed mutagenesis of LcsG indicate the presence of a highly conserved SAM-binding pocket, along with two possible active site residues (D368 and D395). Molecular dynamics simulations show that the targeted N can dock between these two residues. Thus, this study suggests a method for increasing the variety of natural bioactivity of NPRs and a possible catalytic mechanism underlying the N-methylation of NRPs.
Collapse
Affiliation(s)
- Zixin Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
| | - Yang Jiao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Yuhong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Kaixiang Zhou
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|
11
|
Xia A, Wang X, Huang Y, Yang Q, Ye M, Wang Y, Jiang C, Duan K. The ING protein Fng2 associated with RPD3 HDAC complex for the regulation of fungal development and pathogenesis in wheat head blight fungus. Int J Biol Macromol 2024; 268:131938. [PMID: 38692539 DOI: 10.1016/j.ijbiomac.2024.131938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
ING proteins display a high level of evolutionary conservation across various species, and play a crucial role in modulating histone acetylation levels, thus regulating various important biological processes in yeast and humans. Filamentous fungi possess distinct biological characteristics that differentiate them from yeasts and humans, and the specific roles of ING proteins in filamentous fungi remain largely unexplored. In this study, an ING protein, Fng2, orthologous to the yeast Pho23, has been identified in the wheat head blight fungus Fusarium graminearum. The deletion of the FNG2 gene resulted in defects in vegetative growth, conidiation, sexual reproduction, plant infection, and deoxynivalenol (DON) biosynthesis. Acting as a global regulator, Fng2 exerts negative control over histone H4 acetylation and governs the expression of over 4000 genes. Moreover, almost half of the differentially expressed genes in the fng3 mutant were found to be co-regulated by Fng2, emphasizing the functional association between these two ING proteins. Notably, the fng2 fng3 double mutant exhibits significantly increased H4 acetylation and severe defects in both fungal development and pathogenesis. Furthermore, Fng2 localizes within the nucleus and associates with the FgRpd3 histone deacetylase (HDAC) to modulate gene expression. Overall, Fng2's interaction with FgRpd3, along with its functional association with Fng3, underscores its crucial involvement in governing gene expression, thereby significantly influencing fungal growth, asexual and sexual development, pathogenicity, and secondary metabolism.
Collapse
Affiliation(s)
- Aliang Xia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingao Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Ye
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yankun Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Kaili Duan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Buttar ZA, Cheng M, Wei P, Zhang Z, Lv C, Zhu C, Ali NF, Kang G, Wang D, Zhang K. Update on the Basic Understanding of Fusarium graminearum Virulence Factors in Common Wheat Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:1159. [PMID: 38674569 PMCID: PMC11053692 DOI: 10.3390/plants13081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Wheat is one of the most important food crops, both in China and worldwide. Wheat production is facing extreme stresses posed by different diseases, including Fusarium head blight (FHB), which has recently become an increasingly serious concerns. FHB is one of the most significant and destructive diseases affecting wheat crops all over the world. Recent advancements in genomic tools provide a new avenue for the study of virulence factors in relation to the host plants. The current review focuses on recent progress in the study of different strains of Fusarium infection. The presence of genome-wide repeat-induced point (RIP) mutations causes genomic mutations, eventually leading to host plant susceptibility against Fusarium invasion. Furthermore, effector proteins disrupt the host plant resistance mechanism. In this study, we proposed systematic modification of the host genome using modern biological tools to facilitate plant resistance against foreign invasion. We also suggested a number of scientific strategies, such as gene cloning, developing more powerful functional markers, and using haplotype marker-assisted selection, to further improve FHB resistance and associated breeding methods.
Collapse
Affiliation(s)
- Zeeshan Ali Buttar
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Mengquan Cheng
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Panqin Wei
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Ziwei Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Chunlei Lv
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Chenjia Zhu
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Nida Fatima Ali
- Department of Plant Biotechnology, Atta-Ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology, Islamabad 44000, Pakistan
| | - Guozhang Kang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
13
|
Huang Z, Zhu W, Bai Y, Bai X, Zhang H. Non-ribosomal peptide synthetase (NRPS)-encoding products and their biosynthetic logics in Fusarium. Microb Cell Fact 2024; 23:93. [PMID: 38539193 PMCID: PMC10967133 DOI: 10.1186/s12934-024-02378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/21/2024] [Indexed: 11/11/2024] Open
Abstract
Fungal non-ribosomal peptide synthetase (NRPS)-encoding products play a paramount role in new drug discovery. Fusarium, one of the most common filamentous fungi, is well-known for its biosynthetic potential of NRPS-type compounds with diverse structural motifs and various biological properties. With the continuous improvement and extensive application of bioinformatic tools (e.g., anti-SMASH, NCBI, UniProt), more and more biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) have been identified in Fusarium strains. However, the biosynthetic logics of these SMs have not yet been well investigated till now. With the aim to increase our knowledge of the biosynthetic logics of NPRS-encoding products in Fusarium, this review firstly provides an overview of research advances in elucidating their biosynthetic pathways.
Collapse
Affiliation(s)
- Ziwei Huang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wangjie Zhu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yifan Bai
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
14
|
Chen S, Li P, Abubakar YS, Lü P, Li Y, Mao X, Zhang C, Zheng W, Wang Z, Lu GD, Zheng H. A feedback regulation of FgHtf1-FgCon7 loop in conidiogenesis and development of Fusarium graminearum. Int J Biol Macromol 2024; 261:129841. [PMID: 38309401 DOI: 10.1016/j.ijbiomac.2024.129841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
The transcription factor FgHtf1 is important for conidiogenesis in Fusarium graminearum and it positively regulates the expression of the sporulation-related gene FgCON7. However, the regulatory mechanism underlying its functions is still unclear. The present study intends to uncover the functional mechanism of FgHtf1 in relation to FgCon7 in F. graminearum. We demonstrated that FgCON7 serves as a target gene for FgHtf1. Interestingly, FgCon7 also binds the promoter region of FgHTF1 to negatively regulate its expression, thus forming a negative-feedback loop. We demonstrated that FgHtf1 and FgCon7 have functional redundancy in fungal development. FgCon7 localizes in the nucleus and has transcriptional activation activity. Deletion of FgCON7 significantly reduces conidia production. 4444 genes were regulated by FgCon7 in ChIP-Seq, and RNA-Seq revealed 4430 differentially expressed genes in FgCON7 deletion mutant, with CCAAT serving as a consensus binding motif of FgCon7 to the target genes. FgCon7 directly binds the promoter regions of FgMSN2, FgABAA, FgVEA and FgSMT3 genes and regulates their expression. These genes were found to be important for conidiogenesis. To our knowledge, this is the first study that unveiled the mutual regulatory functions of FgCON7 and FgHTF1 to form a negative-feedback loop, and how the loop mediates sporulation in F. graminearum.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Pengfang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810281, Nigeria
| | - Peitao Lü
- College of Horticulture, Center for Plant Metabolomics, Haixia lnstitute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yulong Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Xuzhao Mao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Chengkang Zhang
- College of Life Science, Ningde Normal University, Ningde 352100, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Huawei Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
15
|
Todorović I, Moënne-Loccoz Y, Raičević V, Jovičić-Petrović J, Muller D. Microbial diversity in soils suppressive to Fusarium diseases. FRONTIERS IN PLANT SCIENCE 2023; 14:1228749. [PMID: 38111879 PMCID: PMC10726057 DOI: 10.3389/fpls.2023.1228749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
Fusarium species are cosmopolitan soil phytopathogens from the division Ascomycota, which produce mycotoxins and cause significant economic losses of crop plants. However, soils suppressive to Fusarium diseases are known to occur, and recent knowledge on microbial diversity in these soils has shed new lights on phytoprotection effects. In this review, we synthesize current knowledge on soils suppressive to Fusarium diseases and the role of their rhizosphere microbiota in phytoprotection. This is an important issue, as disease does not develop significantly in suppressive soils even though pathogenic Fusarium and susceptible host plant are present, and weather conditions are suitable for disease. Soils suppressive to Fusarium diseases are documented in different regions of the world. They contain biocontrol microorganisms, which act by inducing plants' resistance to the pathogen, competing with or inhibiting the pathogen, or parasitizing the pathogen. In particular, some of the Bacillus, Pseudomonas, Paenibacillus and Streptomyces species are involved in plant protection from Fusarium diseases. Besides specific bacterial populations involved in disease suppression, next-generation sequencing and ecological networks have largely contributed to the understanding of microbial communities in soils suppressive or not to Fusarium diseases, revealing different microbial community patterns and differences for a notable number of taxa, according to the Fusarium pathosystem, the host plant and the origin of the soil. Agricultural practices can significantly influence soil suppressiveness to Fusarium diseases by influencing soil microbiota ecology. Research on microbial modes of action and diversity in suppressive soils should help guide the development of effective farming practices for Fusarium disease management in sustainable agriculture.
Collapse
Affiliation(s)
- Irena Todorović
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
- University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
| | - Yvan Moënne-Loccoz
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Vera Raičević
- University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
| | | | - Daniel Muller
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
16
|
Gutiérrez-Sánchez A, Plasencia J, Monribot-Villanueva JL, Rodríguez-Haas B, Ruíz-May E, Guerrero-Analco JA, Sánchez-Rangel D. Virulence factors of the genus Fusarium with targets in plants. Microbiol Res 2023; 277:127506. [PMID: 37783182 DOI: 10.1016/j.micres.2023.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Fusarium spp. comprise various species of filamentous fungi that cause severe diseases in plant crops of both agricultural and forestry interest. These plant pathogens produce a wide range of molecules with diverse chemical structures and biological activities. Genetic functional analyses of some of these compounds have shown their role as virulence factors (VF). However, their mode of action and contributions to the infection process for many of these molecules are still unknown. This review aims to analyze the state of the art in Fusarium VF, emphasizing their biological targets on the plant hosts. It also addresses the current experimental approaches to improve our understanding of their role in virulence and suggests relevant research questions that remain to be answered with a greater focus on species of agroeconomic importance. In this review, a total of 37 confirmed VF are described, including 22 proteinaceous and 15 non-proteinaceous molecules, mainly from Fusarium oxysporum and Fusarium graminearum and, to a lesser extent, in Fusarium verticillioides and Fusarium solani.
Collapse
Affiliation(s)
- Angélica Gutiérrez-Sánchez
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Eliel Ruíz-May
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico.
| | - Diana Sánchez-Rangel
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Investigador por México - CONAHCyT en la Red de Estudios Moleculares Avanzados del Instituto de Ecología, A. C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico.
| |
Collapse
|
17
|
Hu S, Jin M, Xu Y, Wu Q, Jiang Q, Ma J, Zhang Y, Qi P, Chen G, Jiang Y, Zheng Y, Wei Y, Xu Q. Deacetylation of chitin oligomers by Fusarium graminearum polysaccharide deacetylase suppresses plant immunity. MOLECULAR PLANT PATHOLOGY 2023; 24:1495-1509. [PMID: 37746915 PMCID: PMC10632789 DOI: 10.1111/mpp.13387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Chitin is a long-chain polymer of β-1,4-linked N-acetylglucosamine that forms rigid microfibrils to maintain the hyphal form and protect it from host attacks. Chitin oligomers are first recognized by the plant receptors in the apoplast region, priming the plant's immune system. Here, seven polysaccharide deacetylases (PDAs) were identified and their activities on chitin substrates were investigated via systematic characterization of the PDA family from Fusarium graminearum. Among these PDAs, FgPDA5 was identified as an important virulence factor and was specifically expressed during pathogenesis. ΔFgpda5 compromised the pathogen's ability to infect wheat. The polysaccharide deacetylase structure of FgPDA5 is essential for the pathogenicity of F. graminearum. FgPDA5 formed a homodimer and accumulated in the plant apoplast. In addition, FgPDA5 showed a high affinity toward chitin substrates. FgPDA5-mediated deacetylation of chitin oligomers prevented activation of plant defence responses. Overall, our results identify FgPDA5 as a polysaccharide deacetylase that can prevent chitin-triggered host immunity in plant apoplast through deacetylation of chitin oligomers.
Collapse
Affiliation(s)
- Su Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Minxia Jin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yangjie Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Qin Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| |
Collapse
|
18
|
Moonjely S, Ebert M, Paton-Glassbrook D, Noel ZA, Roze L, Shay R, Watkins T, Trail F. Update on the state of research to manage Fusarium head blight. Fungal Genet Biol 2023; 169:103829. [PMID: 37666446 DOI: 10.1016/j.fgb.2023.103829] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Fusarium head blight (FHB) is one of the most devastating diseases of cereal crops, causing severe reduction in yield and quality of grain worldwide. In the United States, the major causal agent of FHB is the mycotoxigenic fungus, Fusarium graminearum. The contamination of grain with mycotoxins, including deoxynivalenol and zearalenone, is a particularly serious concern due to its impact on the health of humans and livestock. For the past few decades, multidisciplinary studies have been conducted on management strategies designed to reduce the losses caused by FHB. However, effective management is still challenging due to the emergence of fungicide-tolerant strains of F. graminearum and the lack of highly resistant wheat and barley cultivars. This review presents multidisciplinary approaches that incorporate advances in genomics, genetic-engineering, new fungicide chemistries, applied biocontrol, and consideration of the disease cycle for management of FHB.
Collapse
Affiliation(s)
- Soumya Moonjely
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Malaika Ebert
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Drew Paton-Glassbrook
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Zachary A Noel
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Ludmila Roze
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Rebecca Shay
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Tara Watkins
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
19
|
Dong W, Chen B, Zhang R, Dai H, Han J, Lu Y, Zhao Q, Liu X, Liu H, Sun J. Identification and Characterization of Peptaibols as the Causing Agents of Pseudodiploöspora longispora Infecting the Edible Mushroom Morchella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18385-18394. [PMID: 37888752 DOI: 10.1021/acs.jafc.3c05783] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Pseudodiploöspora longispora (previously known as Diploöspora longispora) is a pathogenic fungus of Morchella mushrooms. The molecular mechanism underlying the infection of P. longispora in fruiting bodies remains unknown. In this study, three known peptaibols, alamethicin F-50, polysporin B, and septocylindrin B (1-3), and a new analogue, longisporin A (4), were detected and identified in the culture of P. longispora and the fruiting bodies of M. sextelata infected by P. longispora. The primary amino sequence of longisporin A is defined as Ac-Aib1-Pro2-Aib3-Ala4-Aib5-Aib6-Gln7-Aib8-Val9-Aib10-Glu11-Leu12-Aib13-Pro14-Val15-Aib16-Aib17-Gln18-Gln19-Phaol20. The peptaibols 1-4 greatly suppressed the mycelial growth of M. sextelata. In addition, treatment with alamethicin F-50 produced damage on the cell wall and membrane of M. sextelata. Compounds 1-4 also exhibited inhibitory activities against human pathogens including Aspergillus fumigatus, Candida albicans, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, and plant pathogen Verticillium dahlia. Herein, peptaibols are confirmed as virulence factors involved in the invasion of P. longispora on Morchella, providing insights into the interaction between pathogenic P. longispora and mushrooms.
Collapse
Affiliation(s)
- Wang Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Rui Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yongzhong Lu
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang550003 ,China
| | - Qi Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - Xingzhong Liu
- Department of Microbiology, College of Life Science, Nankai University, Jinnan District, Tianjin 300350, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
20
|
Ou PP, He QL, Zhao Q. Structural diversification of natural substrates modified by the O-methyltransferase AurJ from Fusarium Graminearum. Biochem Biophys Res Commun 2023; 678:158-164. [PMID: 37640001 DOI: 10.1016/j.bbrc.2023.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Aromatic polyketide and phenylpropanoid derivatives are a large class of natural products produced by bacteria, fungi, and plants. The O-methylation is a unique decoration that can increase structural diversity of aromatic compounds and improve their pharmacological properties, but the substrate specificity of O-methyltransferase hinders the discovery of more natural products with O-methylation through biosynthesis. Here, we reported that the O-methyltransferase AurJ from plant pathogenic fungus Fusarium graminearum could methylate a broad range of natural substrates of monocyclic, bicyclic, and tricyclic aromatic precursors, exhibiting excellent substrate tolerance. This finding will partly change our stereotype about the specificity of traditional methyltransferases, and urge us to mine more O-methyltransferases with good substrate tolerance and discover more methylated natural products for drug discovery and development through directed evolution and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Pei-Pei Ou
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
21
|
Mao H, Jiang C, Tang C, Nie X, Du L, Liu Y, Cheng P, Wu Y, Liu H, Kang Z, Wang X. Wheat adaptation to environmental stresses under climate change: Molecular basis and genetic improvement. MOLECULAR PLANT 2023; 16:1564-1589. [PMID: 37671604 DOI: 10.1016/j.molp.2023.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
Wheat (Triticum aestivum) is a staple food for about 40% of the world's population. As the global population has grown and living standards improved, high yield and improved nutritional quality have become the main targets for wheat breeding. However, wheat production has been compromised by global warming through the more frequent occurrence of extreme temperature events, which have increased water scarcity, aggravated soil salinization, caused plants to be more vulnerable to diseases, and directly reduced plant fertility and suppressed yield. One promising option to address these challenges is the genetic improvement of wheat for enhanced resistance to environmental stress. Several decades of progress in genomics and genetic engineering has tremendously advanced our understanding of the molecular and genetic mechanisms underlying abiotic and biotic stress responses in wheat. These advances have heralded what might be considered a "golden age" of functional genomics for the genetic improvement of wheat. Here, we summarize the current knowledge on the molecular and genetic basis of wheat resistance to abiotic and biotic stresses, including the QTLs/genes involved, their functional and regulatory mechanisms, and strategies for genetic modification of wheat for improved stress resistance. In addition, we also provide perspectives on some key challenges that need to be addressed.
Collapse
Affiliation(s)
- Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Hu L, Guo C, Chen J, Jia R, Sun Y, Cao S, Xiang P, Wang Y. Venturicidin A Is a Potential Fungicide for Controlling Fusarium Head Blight by Affecting Deoxynivalenol Biosynthesis, Toxisome Formation, and Mitochondrial Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12440-12451. [PMID: 37566096 DOI: 10.1021/acs.jafc.3c02683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Fusarium graminearum, which causes Fusarium head blight (FHB) in cereals, is one of the most devastating fungal diseases by causing great yield losses and mycotoxin contamination. A major bioactive ingredient, venturicidin A (VentA), was isolated from Streptomyces pratensis S10 mycelial extract with an activity-guided approach. No report is available on antifungal activity of VentA against F. graminearum and effects on deoxynivalenol (DON) biosynthesis. Here, VentA showed a high antagonistic activity toward F. graminearum with an EC50 value of 3.69 μg/mL. As observed by scanning electron microscopy, after exposure to VentA, F. graminearum conidia and mycelia appeared abnormal. Different dyes staining revealed that VentA increased cell membrane permeability. In growth chamber and field trials, VentA effectively reduced disease severity of FHB. Moreover, VentA inhibited DON biosynthesis by reducing pyruvic acid, acetyl-CoA production, and accumulation of reactive oxygen species (ROS) and then inhibiting trichothecene (TRI) genes expression and toxisome formation. These results suggest that VentA is a potential fungicide for controlling FHB.
Collapse
Affiliation(s)
- Lifang Hu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Cong Guo
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jing Chen
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ruimin Jia
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yan Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shang Cao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ping Xiang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU Purdue Joint Research Center, Yangling, Shaanxi 712100, People's Republic of China
| | - Yang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
23
|
Lin C, Feng XL, Liu Y, Li ZC, Li XZ, Qi J. Bioinformatic Analysis of Secondary Metabolite Biosynthetic Potential in Pathogenic Fusarium. J Fungi (Basel) 2023; 9:850. [PMID: 37623621 PMCID: PMC10455296 DOI: 10.3390/jof9080850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Fusarium species are among the filamentous fungi with the most pronounced impact on agricultural production and human health. The mycotoxins produced by pathogenic Fusarium not only attack various plants including crops, causing various plant diseases that lead to reduced yields and even death, but also penetrate into the food chain of humans and animals to cause food poisoning and consequent health hazards. Although sporadic studies have revealed some of the biosynthetic pathways of Fusarium toxins, they are insufficient to satisfy the need for a comprehensive understanding of Fusarium toxin production. In this study, we focused on 35 serious pathogenic Fusarium species with available genomes and systematically analyzed the ubiquity of the distribution of identified Fusarium- and non-Fusarium-derived fungal toxin biosynthesis gene clusters (BGCs) in these species through the mining of core genes and the comparative analysis of corresponding BGCs. Additionally, novel sesterterpene synthases and PKS_NRPS clusters were discovered and analyzed. This work is the first to systematically analyze the distribution of related mycotoxin biosynthesis in pathogenic Fusarium species. These findings enhance the knowledge of mycotoxin production and provide a theoretical grounding for the prevention of fungal toxin production using biotechnological approaches.
Collapse
Affiliation(s)
- Chao Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xi-long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yu Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhao-chen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
24
|
Pokhrel A, Coleman JJ. Inventory of the Secondary Metabolite Biosynthetic Potential of Members within the Terminal Clade of the Fusarium solani Species Complex. J Fungi (Basel) 2023; 9:799. [PMID: 37623570 PMCID: PMC10455376 DOI: 10.3390/jof9080799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
The Fusarium solani species complex (FSSC) constitutes at least 77 phylogenetically distinct species including several agriculturally important and clinically relevant opportunistic pathogens. As with other Fusaria, they have been well documented to produce many secondary metabolites-compounds that are not required for the fungus to grow or develop but may be beneficial to the organism. An analysis of ten genomes from fungi within the terminal clade (clade 3) of the FSSC revealed each genome encoded 35 (F. cucurbitcola) to 48 (F. tenucristatum) secondary metabolite biosynthetic gene clusters (BGCs). A total of seventy-four different BGCs were identified from the ten FSSC genomes including seven polyketide synthases (PKS), thirteen nonribosomal peptide synthetases (NRPS), two terpene synthase BGCs, and a single dimethylallytryptophan synthase (DMATS) BGC conserved in all the genomes. Some of the clusters that were shared included those responsible for producing naphthoquinones such as fusarubins, a red pigmented compound, squalestatin, and the siderophores malonichrome, ferricrocin, and triacetylfusarinine. Eight novel NRPS and five novel PKS BGCs were identified, while BGCs predicted to produce radicicol, gibberellin, and fusaoctaxin were identified, which have not previously described in members of the FSSC. The diversity of the secondary metabolite repertoire of the FSSC may contribute to the expansive host range of these fungi and their ability to colonize broad habitats.
Collapse
Affiliation(s)
- Ambika Pokhrel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA;
- The Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Jeffrey J. Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
25
|
Hicks C, Witte TE, Sproule A, Hermans A, Shields SW, Colquhoun R, Blackman C, Boddy CN, Subramaniam R, Overy DP. CRISPR-Cas9 Gene Editing and Secondary Metabolite Screening Confirm Fusarium graminearum C16 Biosynthetic Gene Cluster Products as Decalin-Containing Diterpenoid Pyrones. J Fungi (Basel) 2023; 9:695. [PMID: 37504684 PMCID: PMC10381663 DOI: 10.3390/jof9070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 07/29/2023] Open
Abstract
Fusarium graminearum is a causal organism of Fusarium head blight in cereals and maize. Although a few secondary metabolites produced by F. graminearum are considered disease virulence factors, many molecular products of biosynthetic gene clusters expressed by F. graminearum during infection and their associated role in the disease are unknown. In particular, the predicted meroterpenoid products of the biosynthetic gene cluster historically designated as "C16" are likely associated with pathogenicity. Presented here are the results of CRISPR-Cas9 gene-editing experiments disrupting the polyketide synthase and terpene synthase genes associated with the C16 biosynthetic gene cluster in F. graminearum. Culture medium screening experiments using transformant strains were profiled by UHPLC-HRMS and targeted MS2 experiments to confirm the associated secondary metabolite products of the C16 biosynthetic gene cluster as the decalin-containing diterpenoid pyrones, FDDP-D and FDDP-E. Both decalin-containing diterpenoid pyrones were confirmed to be produced in wheat heads challenged with F. graminearum in growth chamber trials. The extent to which the F. graminearum C16 biosynthetic gene cluster is dispersed within the genus Fusarium is discussed along with a proposed role of the FDDPs as pathogen virulence factors.
Collapse
Affiliation(s)
- Carmen Hicks
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Thomas E Witte
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Amanda Sproule
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Anne Hermans
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Samuel W Shields
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Ronan Colquhoun
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Chris Blackman
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Christopher N Boddy
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Rajagopal Subramaniam
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - David P Overy
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
26
|
Ibrahim E, Nasser R, Hafeez R, Ogunyemi SO, Abdallah Y, Khattak AA, Shou L, Zhang Y, Ahmed T, Atef Hatamleh A, Abdullah Al-Dosary M, M Ali H, Luo J, Li B. Biocontrol Efficacy of Endophyte Pseudomonas poae to Alleviate Fusarium Seedling Blight by Refining the Morpho-Physiological Attributes of Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2277. [PMID: 37375902 DOI: 10.3390/plants12122277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Some endophyte bacteria can improve plant growth and suppress plant diseases. However, little is known about the potential of endophytes bacteria to promote wheat growth and suppress the Fusarium seedling blight pathogen Fusarium graminearum. This study was conducted to isolate and identify endophytic bacteria and evaluate their efficacy for the plant growth promotion and disease suppression of Fusarium seedling blight (FSB) in wheat. The Pseudomonas poae strain CO showed strong antifungal activity in vitro and under greenhouse conditions against F. graminearum strain PH-1. The cell-free supernatants (CFSs) of P. poae strain CO were able to inhibit the mycelium growth, the number of colonies forming, spore germination, germ tube length, and the mycotoxin production of FSB with an inhibition rate of 87.00, 62.25, 51.33, 69.29, and 71.08%, respectively, with the highest concentration of CFSs. The results indicated that P. poae exhibited multifarious antifungal properties, such as the production of hydrolytic enzymes, siderophores, and lipopeptides. In addition, compared to untreated seeds, wheat plants treated with the strain showed significant growth rates, where root and shoot length increased by about 33% and the weight of fresh roots, fresh shoots, dry roots, and dry shoots by 50%. In addition, the strain produced high levels of indole-3-acetic acid, phosphate solubilization, and nitrogen fixation. Finally, the strain demonstrated strong antagonistic properties as well as a variety of plant growth-promoting properties. Thus, this result suggest that this strain could be used as an alternate to synthetic chemicals, which can serve as an effective method of protecting wheat from fungal infection.
Collapse
Affiliation(s)
- Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza 12916, Egypt
| | - Raghda Nasser
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zoology and Entomology Department, Faculty of Science, Minia University, Elminya 61519, Egypt
| | - Rahila Hafeez
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Arif Ali Khattak
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Linfei Shou
- Station for the Plant Protection & Quarantine and Control of Agrochemicals Zhejiang Province, Hangzhou 310004, China
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Munirah Abdullah Al-Dosary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
27
|
Hu L, Jia R, Sun Y, Chen J, Chen N, Zhang J, Wang Y. Streptomyces pratensis S10 Controls Fusarium Head Blight by Suppressing Different Stages of the Life Cycle and ATP Production. PLANT DISEASE 2023:PDIS09222063RE. [PMID: 36269586 DOI: 10.1094/pdis-09-22-2063-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Fusarium head blight (FHB) of wheat, predominately caused by Fusarium graminearum, is an economically important plant disease worldwide. With increased fungicide resistance, controlling this filamentous fungal disease has become an enormous challenge. Biocontrol agents alone or integrated with other methods could better manage FHB. Streptomyces pratensis S10 has strong antagonistic activity against FHB as reported in our previous study. We now have investigated S10 controls of FHB in more detail by combining microscope observations, biological assays, and transcriptome profiling. S10 culture filtrates (SCF) significantly inhibited essential stages of the life cycle of F. graminearum in the laboratory and under simulated natural conditions. SCF at different concentrations inhibited conidiation of F. graminearum with an inhibition of 57.49 to 83.83% in the medium and 64.04 to 85.89% in plants. Different concentrations of SCF reduced conidia germination by 47.33 to 67.67%. Two percent (vol/vol) SCF suppressed perithecia formation of F. graminearum by 84 and 81% in the laboratory and under simulated natural conditions, respectively. The S10 also reduced the pathogenicity and penetration ability of F. graminearum by suppressing ATP production. Collectively, these findings indicate that S. pratensis S10 should be explored further for efficacy at controlling FHB.
Collapse
Affiliation(s)
- Lifang Hu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Ruimin Jia
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yan Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jing Chen
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Na Chen
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jing Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570100, P.R. China
| | - Yang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
28
|
Comparative Transcriptomics of Fusarium graminearum and Magnaporthe oryzae Spore Germination Leading up To Infection. mBio 2023; 14:e0244222. [PMID: 36598191 PMCID: PMC9973345 DOI: 10.1128/mbio.02442-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For fungal plant pathogens, the germinating spore provides the first interaction with the host. Spore germlings move across the plant surface and use diverse penetration strategies for ingress into plant surfaces. Penetration strategies include pressurized melanized appressoria, which facilitate physically punching through the plant cuticle, and nonmelanized appressoria, which penetrate with the help of enzymes or cuticular damage to breach the plant surface. Two well-studied plant pathogens, Fusarium graminearum and Magnaporthe oryzae, are typical of these two modes of penetration. We applied comparative transcriptomics to Fusarium graminearum and Magnaporthe oryzae to characterize the genetic programming of the early host-pathogen interface. Four sequential stages of development following spore localization on the plant surface, from spore swelling to appressorium formation, were sampled for each species on culture medium and on barley sheaths, and transcriptomic analyses were performed. Gene expression in the prepenetration stages in both species and under both conditions was similar. In contrast, gene expression in the final stage was strongly influenced by the environment. Appressorium formation involved the greatest number of differentially expressed genes. Laser-dissection microscopy was used to perform detailed transcriptomics of initial infection points by F. graminearum. These analyses revealed new and important aspects of early fungal ingress in this species. Expression of the trichothecene genes involved in biosynthesis of deoxynivalenol by F. graminearum implies that toxisomes are not fully functional until after penetration and indicates that deoxynivalenol is not essential for penetration under our conditions. The use of comparative gene expression of divergent fungi promises to advance highly effective targets for antifungal strategies. IMPORTANCE Fusarium graminearum and Magnaporthe oryzae are two of the most important pathogens of cereal grains worldwide. Despite years of research, strong host resistance has not been identified for F. graminearum, so other methods of control are essential. The pathogen takes advantage of multiple entry points to infect the host, including breaches in the florets due to senescence of flower parts and penetration of the weakened trichome bases to breach the epidermis. In contrast, M. oryzae directly punctures leaves that it infects, and resistant cultivars have been characterized. The threat of either pathogen causing a major disease outbreak is ever present. Comparative transcriptomics demonstrated its potential to reveal novel and effective disease prevention strategies that affect the initial stages of disease. Shedding light on the basis of this diversity of infection strategies will result in development of increasingly specific control strategies.
Collapse
|
29
|
Wei X, Chan TK, Kong CTD, Matsuda Y. Biosynthetic Characterization, Heterologous Production, and Genomics-Guided Discovery of GABA-Containing Fungal Heptapeptides. JOURNAL OF NATURAL PRODUCTS 2023; 86:416-422. [PMID: 36715406 DOI: 10.1021/acs.jnatprod.2c01065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The biosynthetic gene cluster of γ-aminobutyric acid (GABA)-containing fungal cyclic heptapeptides unguisins A (1) and B (2) was identified in the fungus Aspergillus violaceofuscus CBS 115571. In vitro enzymatic reactions and gene deletion experiments revealed that the unguisin pathway involves the alanine racemase UngC to provide d-alanine, which is then accepted by the first adenylation domain of the nonribosomal peptide synthetase (NRPS) UngA. Intriguingly, the hydrolase UngD was found to transform unguisins into previously undescribed linear peptides. Subsequently, heterologous production of these peptides in Aspergillus oryzae was achieved, in which we established a methodology to readily introduce a large NRPS gene into the fungal host. Finally, genome mining revealed new unguisin congeners, each containing a (2R,3R)-β-methylphenylalanine residue.
Collapse
Affiliation(s)
- Xingxing Wei
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Tsz Ki Chan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Che Tung Derek Kong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
30
|
Chemical Investigation of Endophytic Diaporthe unshiuensis YSP3 Reveals New Antibacterial and Cytotoxic Agents. J Fungi (Basel) 2023; 9:jof9020136. [PMID: 36836251 PMCID: PMC9963169 DOI: 10.3390/jof9020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Chemical investigation of the plant-derived endophytic fungus Diaporthe unshiuensis YSP3 led to the isolation of four new compounds (1-4), including two new xanthones (phomopthane A and B, 1 and 2), one new alternariol methyl ether derivative (3) and one α-pyrone derivative (phomopyrone B, 4), together with eight known compounds (5-12). The structures of new compounds were interpreted on the basis of spectroscopic data and single-crystal X-ray diffraction analysis. All new compounds were assessed for their antimicrobial and cytotoxic potential. Compound 1 showed cytotoxic activity against HeLa and MCF-7 cells with IC50 values of 5.92 µM and 7.50 µM, respectively, while compound 3 has an antibacterial effect on Bacillus subtilis (MIC value 16 μg/mL).
Collapse
|
31
|
Tu Q, Wang L, An Q, Shuai J, Xia X, Dong Y, Zhang X, Li G, He Y. Comparative transcriptomics identifies the key in planta-expressed genes of Fusarium graminearum during infection of wheat varieties. Front Genet 2023; 14:1166832. [PMID: 37144121 PMCID: PMC10151574 DOI: 10.3389/fgene.2023.1166832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Fusarium head blight (FHB), caused mainly by the fungus Fusarium graminearum, is one of the most devastating diseases in wheat, which reduces the yield and quality of grain. Fusarium graminearum infection of wheat cells triggers dynamic changes of gene expression in both F. graminearum and wheat, leading to molecular interactions between pathogen and host. The wheat plant in turn activates immune signaling or host defense pathways against FHB. However, the mechanisms by which F. graminearum infects wheat varieties with different levels of host resistance are largely limited. In this study, we conducted a comparative analysis of the F. graminearum transcriptome in planta during the infection of susceptible and resistant wheat varieties at three timepoints. A total of 6,106 F. graminearum genes including those functioning in cell wall degradation, synthesis of secondary metabolites, virulence, and pathogenicity were identified during the infection of different hosts, which were regulated by hosts with different genetic backgrounds. Genes enriched with metabolism of host cell wall components and defense response processes were specifically dynamic during the infection with different hosts. Our study also identified F. graminearum genes that were specifically suppressed by signals derived from the resistant plant host. These genes may represent direct targets of the plant defense against infection by this fungus. Briefly, we generated databases of in planta-expressed genes of F. graminearum during infection of two different FHB resistance level wheat varieties, highlighted their dynamic expression patterns and functions of virulence, invasion, defense response, metabolism, and effector signaling, providing valuable insight into the interactions between F. graminearum and susceptible/resistant wheat varieties.
Collapse
Affiliation(s)
- Qiang Tu
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Lirong Wang
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Qi An
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Jie Shuai
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xiaobo Xia
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yifan Dong
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xu Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Gang Li, ; Yi He,
| | - Yi He
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- *Correspondence: Gang Li, ; Yi He,
| |
Collapse
|
32
|
Yang Y, Yu L, Qiu X, Xiong D, Tian C. A putative terpene cyclase gene ( CcPtc1) is required for fungal development and virulence in Cytospora chrysosperma. Front Microbiol 2023; 14:1084828. [PMID: 36891381 PMCID: PMC9986285 DOI: 10.3389/fmicb.2023.1084828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Cytospora chrysosperma is a destructive plant pathogenic fungus, which causes canker disease on numerous woody plants. However, knowledge concerning the interaction between C. chrysosperma and its host remains limited. Secondary metabolites produced by phytopathogens often play important roles in their virulence. Terpene cyclases (TC), polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) are the key components for the synthesis of secondary metabolites. Here, we characterized the functions of a putative terpene type secondary metabolite biosynthetic core gene CcPtc1 in C. chrysosperma, which was significantly up-regulated in the early stages of infection. Importantly, deletion of CcPtc1 greatly reduced fungal virulence to the poplar twigs and they also showed significantly reduced fungal growth and conidiation compared with the wild-type (WT) strain. Furthermore, toxicity test of the crude extraction from each strain showed that the toxicity of crude extraction secreted by ΔCcPtc1 were strongly compromised in comparison with the WT strain. Subsequently, the untargeted metabolomics analyses between ΔCcPtc1 mutant and WT strain were conducted, which revealed 193 significantly different abundant metabolites (DAMs) inΔCcPtc1 mutant compared to the WT strain, including 90 significantly downregulated metabolites and 103 significantly up-regulated metabolites, respectively. Among them, four key metabolic pathways that reported to be important for fungal virulence were enriched, including pantothenate and coenzyme A (CoA) biosynthesis. Moreover, we also detected significant alterations in a series of terpenoids, among which (+)-ar-turmerone, pulegone, ethyl chrysanthemumate, and genipin were significantly down-regulated, while cuminaldehyde and (±)-abscisic acid were significantly up-regulated. In conclusion, our results demonstrated that CcPtc1 acts as a virulence-related secondary metabolism factor and provides new insights into the pathogenesis of C. chrysosperma.
Collapse
Affiliation(s)
- Yuchen Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Lu Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Xiaolin Qiu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
33
|
Zuo N, Bai WZ, Wei WQ, Yuan TL, Zhang D, Wang YZ, Tang WH. Fungal CFEM effectors negatively regulate a maize wall-associated kinase by interacting with its alternatively spliced variant to dampen resistance. Cell Rep 2022; 41:111877. [PMID: 36577386 DOI: 10.1016/j.celrep.2022.111877] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
The fungus Fusarium graminearum causes a devastating disease Gibberella stalk rot of maize. Our knowledge of molecular interactions between F. graminearum effectors and maize immunity factors is lacking. Here, we show that a group of cysteine-rich common in fungal extracellular membrane (CFEM) domain proteins of F. graminearum are required for full virulence in maize stalk infection and that they interact with two secreted maize proteins, ZmLRR5 and ZmWAK17ET. ZmWAK17ET is an alternative splicing isoform of a wall-associated kinase ZmWAK17. Both ZmLRR5 and ZmWAK17ET interact with the extracellular domain of ZmWAK17. Transgenic maize overexpressing ZmWAK17 shows increased resistance to F. graminearum, while ZmWAK17 mutants exhibit enhanced susceptibility to F. graminearum. Transient expression of ZmWAK17 in Nicotiana benthamiana triggers hypersensitive cell death, whereas co-expression of CFEMs with ZmWAK17ET or ZmLRR5 suppresses the ZmWAK17-triggered cell death. Our results show that ZmWAK17 mediates stalk rot resistance and that F. graminearum delivers apoplastic CFEMs to compromise ZmWAK17-mediated resistance.
Collapse
Affiliation(s)
- Ni Zuo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Zhen Bai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Qian Wei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Lu Yuan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Zhang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Mapuranga J, Chang J, Zhang L, Zhang N, Yang W. Fungal Secondary Metabolites and Small RNAs Enhance Pathogenicity during Plant-Fungal Pathogen Interactions. J Fungi (Basel) 2022; 9:4. [PMID: 36675825 PMCID: PMC9862911 DOI: 10.3390/jof9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Fungal plant pathogens use proteinaceous effectors as well as newly identified secondary metabolites (SMs) and small non-coding RNA (sRNA) effectors to manipulate the host plant's defense system via diverse plant cell compartments, distinct organelles, and many host genes. However, most molecular studies of plant-fungal interactions have focused on secreted effector proteins without exploring the possibly equivalent functions performed by fungal (SMs) and sRNAs, which are collectively known as "non-proteinaceous effectors". Fungal SMs have been shown to be generated throughout the plant colonization process, particularly in the early biotrophic stages of infection. The fungal repertoire of non-proteinaceous effectors has been broadened by the discovery of fungal sRNAs that specifically target plant genes involved in resistance and defense responses. Many RNAs, particularly sRNAs involved in gene silencing, have been shown to transmit bidirectionally between fungal pathogens and their hosts. However, there are no clear functional approaches to study the role of these SM and sRNA effectors. Undoubtedly, fungal SM and sRNA effectors are now a treasured land to seek. Therefore, understanding the role of fungal SM and sRNA effectors may provide insights into the infection process and identification of the interacting host genes that are targeted by these effectors. This review discusses the role of fungal SMs and sRNAs during plant-fungal interactions. It will also focus on the translocation of sRNA effectors across kingdoms, the application of cross-kingdom RNA interference in managing plant diseases and the tools that can be used to predict and study these non-proteinaceous effectors.
Collapse
Affiliation(s)
| | | | | | | | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
35
|
Xu Q, Hu S, Jin M, Xu Y, Jiang Q, Ma J, Zhang Y, Qi P, Chen G, Jiang Y, Zheng Y, Wei Y. The N-terminus of a Fusarium graminearum-secreted protein enhances broad-spectrum disease resistance in plants. MOLECULAR PLANT PATHOLOGY 2022; 23:1751-1764. [PMID: 35998056 PMCID: PMC9644276 DOI: 10.1111/mpp.13262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Fusarium head blight is a destructive disease caused by Fusarium species. Little is known about the pathogenic molecular weapons of Fusarium graminearum. The gene encoding a small secreted protein, Fg02685, in F. graminearum was found to be upregulated during wheat head infection. Knockout mutation of Fg02685 reduced the growth and development of Fusarium in wheat spikes. Transient expression of Fg02685 or recombinant protein led to plant cell death in a BAK1- and SOBIR1-independent system. Fg02685 was found to trigger plant basal immunity by increasing the deposition of callose, the accumulation of reactive oxygen species (ROS), and the expression of defence-related genes. The Fg02685 signal peptide was required for the plant's apoplast accumulation and induces cell death, indicating Fg02685 is a novel conserved pathogen-associated molecular pattern. Moreover, its homologues are widely distributed in oomycetes and fungal pathogens and induced cell death in tobacco. The conserved α-helical motif at the N-terminus was necessary for the induction of cell death. Moreover, a 32-amino-acid peptide, Fg02685 N-terminus peptide 32 (FgNP32), was essential for the induction of oxidative burst, callose deposition, and mitogen-activated protein kinase signal activation in plants. Prolonged exposure to FgNP32 enhanced the plant's resistance to Fusarium and Phytophthora. This study provides new approaches for an environment-friendly control strategy for crop diseases by applying plant immune inducers to strengthen broad-spectrum disease resistance in crops.
Collapse
Affiliation(s)
- Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Su Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Minxia Jin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yangjie Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| |
Collapse
|
36
|
Chu L, Cheng J, Zhou C, Mo T, Ji X, Zhu T, Chen J, Ma S, Gao J, Zhang Q. Hijacking a Linaridin Biosynthetic Intermediate for Lanthipeptide Production. ACS Chem Biol 2022; 17:3198-3206. [PMID: 36288500 DOI: 10.1021/acschembio.2c00657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Linaridins and lanthipeptides are two classes of natural products belonging to the ribosomally synthesized and posttranslationally modified peptide (RiPP) superfamily. Although these two RiPP classes share similar structural motifs such as dehydroamino acids and thioether-based cross-links, the biosynthesis of linaridins and lanthipeptides involved distinct sets of enzymes. Here, we report the identification of a novel lanthipeptide cypepeptin from a recombinant strain of Streptomyces lividans, which harbors most of the cypemycin (a prototypic linaridin) biosynthetic gene cluster but lacks the decarboxylase gene cypD. In contrast to the generally believed structure of cypemycin, multiple d-amino acids and Z-dehydrobutyrines were observed in both cypepeptin and cypemycin, and the stereochemistry of each amino acid was established by the extensive structural analysis in combination with genetic knockout and mutagenesis studies. Comparative analysis of cypemycin and cypepeptin showed that the aminovinyl-cysteine (AviCys) moiety of cypemycin plays an essential role in disrupting the cell integrity of M. luteus, which cannot be functionally substituted by the structurally similar lanthionine moiety.
Collapse
Affiliation(s)
- Leixia Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Jinduo Cheng
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Chengzeng Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Tianlu Mo
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Taoting Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Jie Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Suze Ma
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jiangtao Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
37
|
Bai R, Bai C, Han X, Liu Y, Yong JWH. The significance of calcium-sensing receptor in sustaining photosynthesis and ameliorating stress responses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1019505. [PMID: 36304398 PMCID: PMC9594963 DOI: 10.3389/fpls.2022.1019505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Calcium ions (Ca2+) regulate plant growth and development during exposure to multiple biotic and abiotic stresses as the second signaling messenger in cells. The extracellular calcium-sensing receptor (CAS) is a specific protein spatially located on the thylakoid membrane. It regulates the intracellular Ca2+ responses by sensing changes in extracellular Ca2+ concentration, thereby affecting a series of downstream signal transduction processes and making plants more resilient to respond to stresses. Here, we summarized the discovery process, structure, and location of CAS in plants and the effects of Ca2+ and CAS on stomatal functionality, photosynthesis, and various environmental adaptations. Under changing environmental conditions and global climate, our study enhances the mechanistic understanding of calcium-sensing receptors in sustaining photosynthesis and mediating abiotic stress responses in plants. A better understanding of the fundamental mechanisms of Ca2+ and CAS in regulating stress responses in plants may provide novel mitigation strategies for improving crop yield in a world facing more extreme climate-changed linked weather events with multiple stresses during cultivation.
Collapse
Affiliation(s)
- Rui Bai
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- National Sorghum Improvement Center, Liaoning Academy of Agricultural Sciences, Shenyang, China
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
38
|
Seidl B, Rehak K, Bueschl C, Parich A, Buathong R, Wolf B, Doppler M, Mitterbauer R, Adam G, Khewkhom N, Wiesenberger G, Schuhmacher R. Gramiketides, Novel Polyketide Derivatives of Fusarium graminearum, Are Produced during the Infection of Wheat. J Fungi (Basel) 2022; 8:1030. [PMID: 36294594 PMCID: PMC9605136 DOI: 10.3390/jof8101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
The plant pathogen Fusarium graminearum is a proficient producer of mycotoxins and other in part still unknown secondary metabolites, some of which might act as virulence factors on wheat. The PKS15 gene is expressed only in planta, so far hampering the identification of an associated metabolite. Here we combined the activation of silent gene clusters by chromatin manipulation (kmt6) with blocking the metabolic flow into the competing biosynthesis of the two major mycotoxins deoxynivalenol and zearalenone. Using an untargeted metabolomics approach, two closely related metabolites were found in triple mutants (kmt6 tri5 pks4,13) deficient in production of the major mycotoxins deoxynivalenol and zearalenone, but not in strains with an additional deletion in PKS15 (kmt6 tri5 pks4,13 pks15). Characterization of the metabolites, by LC-HRMS/MS in combination with a stable isotope-assisted tracer approach, revealed that they are likely hybrid polyketides comprising a polyketide part consisting of malonate-derived acetate units and a structurally deviating part. We propose the names gramiketide A and B for the two metabolites. In a biological experiment, both gramiketides were formed during infection of wheat ears with wild-type but not with pks15 mutants. The formation of the two gramiketides during infection correlated with that of the well-known virulence factor deoxynivalenol, suggesting that they might play a role in virulence.
Collapse
Affiliation(s)
- Bernhard Seidl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Katrin Rehak
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Alexandra Parich
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Raveevatoo Buathong
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Ngamwongwan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Bernhard Wolf
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Maria Doppler
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
- Core Facility Bioactive Molecules: Screening and Analysis, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Rudolf Mitterbauer
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Netnapis Khewkhom
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Ngamwongwan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| |
Collapse
|
39
|
Shinkado S, Saito H, Yamazaki M, Kotera S, Arazoe T, Arie T, Kamakura T. Genome editing using a versatile vector-based CRISPR/Cas9 system in Fusarium species. Sci Rep 2022; 12:16243. [PMID: 36171473 PMCID: PMC9519947 DOI: 10.1038/s41598-022-20697-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
Fusarium species include important filamentous fungal pathogens that can infect plants, animals, and humans. Meanwhile, some nonpathogenic Fusarium species are promising biocontrol agents against plant pathogens. Here, we developed a genome editing technology using a vector-based CRISPR/Cas9 system for Fusarium oxysporum f. sp. lycopersici (Fol). This optimized CRISPR/Cas9 system, harboring an endogenous U6 small nuclear RNA promoter for the expression of single-guide RNA and an endogenous H2B nuclear localization signal for the localization of Cas9, enabled efficient targeted gene knock-out, including in the accessory chromosomal regions in Fol. We further demonstrated single crossover-mediated targeted base editing and endogenous gene tagging. This system was also applicable for genome editing in F. oxysporum f. sp. spinaciae and F. commune without any modifications, suggesting that this CRISPR/Cas9 vector has a potential application for a broad range of researches on other Fusarium species.
Collapse
Affiliation(s)
- Sota Shinkado
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroki Saito
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-0054, Japan
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Masaya Yamazaki
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Shunsuke Kotera
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-0054, Japan
| | - Takayuki Arazoe
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Tsutomu Arie
- Faculty of Agriculture, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-0054, Japan.
| | - Takashi Kamakura
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
40
|
Schüller A, Studt-Reinhold L, Strauss J. How to Completely Squeeze a Fungus-Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics 2022; 14:1837. [PMID: 36145585 PMCID: PMC9505985 DOI: 10.3390/pharmaceutics14091837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal species have the capability of producing an overwhelming diversity of bioactive substances that can have beneficial but also detrimental effects on human health. These so-called secondary metabolites naturally serve as antimicrobial "weapon systems", signaling molecules or developmental effectors for fungi and hence are produced only under very specific environmental conditions or stages in their life cycle. However, as these complex conditions are difficult or even impossible to mimic in laboratory settings, only a small fraction of the true chemical diversity of fungi is known so far. This also implies that a large space for potentially new pharmaceuticals remains unexplored. We here present an overview on current developments in advanced methods that can be used to explore this chemical space. We focus on genetic and genomic methods, how to detect genes that harbor the blueprints for the production of these compounds (i.e., biosynthetic gene clusters, BGCs), and ways to activate these silent chromosomal regions. We provide an in-depth view of the chromatin-level regulation of BGCs and of the potential to use the CRISPR/Cas technology as an activation tool.
Collapse
Affiliation(s)
| | | | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, A-3430 Tulln/Donau, Austria
| |
Collapse
|
41
|
Wang L, Ge S, Liang W, Liao W, Li W, Jiao G, Wei X, Shao G, Xie L, Sheng Z, Hu S, Tang S, Hu P. Genome-Wide Characterization Reveals Variation Potentially Involved in Pathogenicity and Mycotoxins Biosynthesis of Fusarium proliferatum Causing Spikelet Rot Disease in Rice. Toxins (Basel) 2022; 14:toxins14080568. [PMID: 36006230 PMCID: PMC9414198 DOI: 10.3390/toxins14080568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Fusarium proliferatum is the primary cause of spikelet rot disease in rice (Oryza sativa L.) in China. The pathogen not only infects a wide range of cereals, causing severe yield losses but also contaminates grains by producing various mycotoxins that are hazardous to humans and animals. Here, we firstly reported the whole-genome sequence of F. proliferatum strain Fp9 isolated from the rice spikelet. The genome was approximately 43.9 Mb with an average GC content of 48.28%, and it was assembled into 12 scaffolds with an N50 length of 4,402,342 bp. There is a close phylogenetic relationship between F. proliferatum and Fusarium fujikuroi, the causal agent of the bakanae disease of rice. The expansion of genes encoding cell wall-degrading enzymes and major facilitator superfamily (MFS) transporters was observed in F. proliferatum relative to other fungi with different nutritional lifestyles. Species-specific genes responsible for mycotoxins biosynthesis were identified among F. proliferatum and other Fusarium species. The expanded and unique genes were supposed to promote F. proliferatum adaptation and the rapid response to the host's infection. The high-quality genome of F. proliferatum strain Fp9 provides a valuable resource for deciphering the mechanisms of pathogenicity and secondary metabolism, and therefore shed light on development of the disease management strategies and detoxification of mycotoxins contamination for spikelet rot disease in rice.
Collapse
|
42
|
Wang X, Yao Y, Wang G, Lu H, Ma J, Zhang M, Chen X, Yin C, Mao Z. Controlled-Release Diammonium Phosphate Alleviates Apple Replant Disease: An Integrated Analysis of Soil Properties, Plant Growth, and the Soil Microbiome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8942-8954. [PMID: 35835727 DOI: 10.1021/acs.jafc.2c01630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exogenous application of nitrogen (N) and phosphate (P) has been demonstrated to alleviate apple replant disease (ARD). Yet, the effect of controlled-release diammonium phosphate (C-DAP), which continuously supply N and P for ARD control, is still poorly understood. Applying C-DAP markedly alleviated the typical symptoms of ARD. C-DAP maintained soil N and P at relatively high and stable levels during the entire growth period of the replanted seedlings, thus, limiting the copy number of the four key pathogenic Fusarium species that cause ARD. Particularly, continuously supplying N and P by C-DAP established a higher fungal diversity than that of conventional diammonium phosphate and induced the fungal community to be more similar to fumigated soil. The positive effect of C-DAP originated from the synergistic effects of regulating microorganisms and enhancing the resistance of the plant caused by a continuous nutrient supply. These findings provide a new perspective in the management of soil-borne diseases.
Collapse
Affiliation(s)
- Xiaoqi Wang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Yuanyuan Yao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Guiwei Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Hao Lu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jinzhao Ma
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou 256600, China
| | - Min Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Xuesen Chen
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Chengmiao Yin
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Zhiquan Mao
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
43
|
Hu C, Chen P, Zhou X, Li Y, Ma K, Li S, Liu H, Li L. Arms Race between the Host and Pathogen Associated with Fusarium Head Blight of Wheat. Cells 2022; 11:2275. [PMID: 35892572 PMCID: PMC9332245 DOI: 10.3390/cells11152275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium head blight (FHB), or scab, caused by Fusarium species, is an extremely destructive fungal disease in wheat worldwide. In recent decades, researchers have made unremitting efforts in genetic breeding and control technology related to FHB and have made great progress, especially in the exploration of germplasm resources resistant to FHB; identification and pathogenesis of pathogenic strains; discovery and identification of disease-resistant genes; biochemical control, and so on. However, FHB burst have not been effectively controlled and thereby pose increasingly severe threats to wheat productivity. This review focuses on recent advances in pathogenesis, resistance quantitative trait loci (QTLs)/genes, resistance mechanism, and signaling pathways. We identify two primary pathogenetic patterns of Fusarium species and three significant signaling pathways mediated by UGT, WRKY, and SnRK1, respectively; many publicly approved superstar QTLs and genes are fully summarized to illustrate the pathogenetic patterns of Fusarium species, signaling behavior of the major genes, and their sophisticated and dexterous crosstalk. Besides the research status of FHB resistance, breeding bottlenecks in resistant germplasm resources are also analyzed deeply. Finally, this review proposes that the maintenance of intracellular ROS (reactive oxygen species) homeostasis, regulated by several TaCERK-mediated theoretical patterns, may play an important role in plant response to FHB and puts forward some suggestions on resistant QTL/gene mining and molecular breeding in order to provide a valuable reference to contain FHB outbreaks in agricultural production and promote the sustainable development of green agriculture.
Collapse
Affiliation(s)
- Chunhong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Peng Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Xinhui Zhou
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Yangchen Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Keshi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Shumei Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Huaipan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466000, China
| |
Collapse
|
44
|
Kuhnert E, Collemare J. A genomic journey in the secondary metabolite diversity of fungal plant and insect pathogens: from functional to population genomics. Curr Opin Microbiol 2022; 69:102178. [PMID: 35870224 DOI: 10.1016/j.mib.2022.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/03/2022]
Abstract
Fungal pathogens produce a broad array of secondary metabolites (SMs), which allow the fungus to thrive in its natural habitat and gain competitive advantage. Analysis of the genetically encoded blueprints for SM assembly highlighted that only a small portion of the SMs these fungi are capable of producing are known, and even fewer have been investigated for their natural function. Using molecular tools, a lot of progress has been made recently in identifying the blueprint products and linking them to their ecological purpose such as the peptide virulence factor fusaoctaxin A released by Fusarium graminearum during infection of wheat or the F. oxysporum polyketide bikaverin that provides competitive advantage against bacteria in tomato. In addition, population genomics have given particularly important insights into the species-specific plasticity of the SM blueprint arsenal, showcasing the ongoing evolution and adaptation of fungal pathogens. This approach holds promise in inferring roles in pathogenicity of many more fungal SMs.
Collapse
Affiliation(s)
- Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany.
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
45
|
Li K, Yu D, Yan Z, Liu N, Fan Y, Wang C, Wu A. Exploration of Mycotoxin Accumulation and Transcriptomes of Different Wheat Cultivars during Fusarium graminearum Infection. Toxins (Basel) 2022; 14:toxins14070482. [PMID: 35878220 PMCID: PMC9318452 DOI: 10.3390/toxins14070482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium graminearum is one of the most devastating diseases of wheat worldwide, and can cause Fusarium head blight (FHB). F. graminearum infection and mycotoxin production mainly present in wheat and can be influenced by environmental factors and wheat cultivars. The objectives of this study were to examine the effect of wheat cultivars and interacting conditions of temperature and water activity (aw) on mycotoxin production by two strains of F. graminearum and investigate the response mechanisms of different wheat cultivars to F. graminearum infection. In this regard, six cultivars of wheat spikes under field conditions and three cultivars of post-harvest wheat grains under three different temperature conditions combined with five water activity (aw) conditions were used for F. graminearum infection in our studies. Liquid chromatography tandem mass spectrometry (LC–MS/MS) analysis showed significant differences in the concentration of Fusarium mycotoxins deoxynivalenol (DON) and its derivative deoxynivalenol-3-glucoside (D3G) resulting from wheat cultivars and environmental factors. Transcriptome profiles of wheat infected with F. graminearum revealed the lower expression of disease defense-factor-related genes, such as mitogen-activated protein kinases (MAPK)-encoding genes and hypersensitivity response (HR)-related genes of infected Annong 0711 grains compared with infected Sumai 3 grains. These findings demonstrated the optimal temperature and air humidity resulting in mycotoxin accumulation, which will be beneficial in determining the conditions of the relative level of risk of contamination with FHB and mycotoxins. More importantly, our transcriptome profiling illustrated differences at the molecular level between wheat cultivars with different FHB resistances, which will lay the foundation for further research on mycotoxin biosynthesis of F. graminearum and regulatory mechanisms of wheat to F. graminearum.
Collapse
Affiliation(s)
- Kailin Li
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (K.L.); (D.Y.); (Z.Y.); (N.L.)
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (K.L.); (D.Y.); (Z.Y.); (N.L.)
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (K.L.); (D.Y.); (Z.Y.); (N.L.)
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (K.L.); (D.Y.); (Z.Y.); (N.L.)
| | - Yingying Fan
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China; (Y.F.); (C.W.)
| | - Cheng Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China; (Y.F.); (C.W.)
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (K.L.); (D.Y.); (Z.Y.); (N.L.)
- Correspondence: ; Tel.: +86-21-54920716
| |
Collapse
|
46
|
Lu Z, Wang S, Dou K, Ren J, Chen J. The Interpretation of the Role of a Polyketide Synthase ClPKS18 in the Pathogenicity of Curvularia lunata. Front Microbiol 2022; 13:853140. [PMID: 35685932 PMCID: PMC9171202 DOI: 10.3389/fmicb.2022.853140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Plant pathogenic fungus Curvularia lunata (Wakker) Boedijn causes leaf spot diseases in several plants such as Oryza sativa, Sorghum bicolor (L.) Moench, and Capsicum frutescens. It has been spread worldwide, specifically in maize-growing regions. The polyketide synthase (PKS) plays a significant role in secondary metabolite production and its effect on virulence. The Clpks18 of C. lunata strongly correlated with its pathogenicity. The role of Clpks18 gene on the pathogenic activity of C. lunata remains unclear. Hence, in this study, we analyzed the importance of Clpks18 gene on the hyphae and conidial melanization and on the sporulation and hyphal growth. The deletion of Clpks18 gene reduced the production of methyl 5-(hydroxymethyl)furan-2-carboxylate toxin. The virulence of ΔClpks18 mutant was significantly reduced compared with the wild type. The metabolomics data revealed that (R)-(-)-mellein was a vital factor in the virulence of C. lunata. The (R)-(-)-mellein and the toxin produced by C. lunata were detected in the maize leaves during its infestation. In addition, the metabolomic analysis showed that the Clpks18 gene influences glycerolipid, non-ribosomal peptide biosynthesis, and its metabolism. This study demonstrates that the Clpks18 gene is important for the pathogenicity of C. lunata by influencing the complex metabolic network.
Collapse
Affiliation(s)
- Zhixiang Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoqing Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Dou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhong Ren
- Suzhou PANOMIX Biomedical Tech Co., Ltd., Suzhou, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jie Chen,
| |
Collapse
|
47
|
Ding Y, Gardiner DM, Kazan K. Transcriptome analysis reveals infection strategies employed by Fusarium graminearum as a root pathogen. Microbiol Res 2021; 256:126951. [PMID: 34972022 DOI: 10.1016/j.micres.2021.126951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/27/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
The fungal pathogen Fusarium graminearum (Fg) infects both heads and roots of cereal crops causing several economically important diseases such as head blight, seedling blight, crown rot and root rot. Trichothecene mycotoxins such as deoxynivalenol (DON), a well-known virulence factor, produced by Fg during disease development is also an important health concern. Although how Fg infects above-ground tissues is relatively well studied, very little is known about molecular processes employed by the pathogen during below-ground infection. Also unknown is the role of DON during root infection. In the present study, we analyzed the transcriptome of Fg during root infection of the model cereal Brachypodium distachyon (Bd). We also compared our Fg transcriptome data obtained during Bd root infection with those reported during wheat head infection. These analyses suggested that both shared and unique infection strategies were employed by the pathogen during colonization of different host tissues. Several metabolite biosynthesis genes induced in Fg during root infection could be linked to phytohormone production, implying that the pathogen likely interferes with root specific defenses. In addition, to understand the role of DON in Fg root infection, we analyzed the transcriptome of the DON deficient Tri5 mutant. These analyses showed that the absence of DON had a significant effect on fungal transcriptional responses. Although DON was produced in infected roots, this mycotoxin did not act as a Fg virulence factor during root infection. Our results reveal new mechanistic insights into the below-ground strategies employed by Fg that may benefit the development of new genetic tools to combat this important cereal pathogen.
Collapse
Affiliation(s)
- Yi Ding
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, 2570, New South Wales, Australia; Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 306 Carmody Road, St Lucia, 4067, Queensland, Australia.
| | - Donald M Gardiner
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, St Lucia, 4067, Queensland, Australia; Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 306 Carmody Road, St Lucia, 4067, Queensland, Australia
| | - Kemal Kazan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, St Lucia, 4067, Queensland, Australia; Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 306 Carmody Road, St Lucia, 4067, Queensland, Australia.
| |
Collapse
|
48
|
Shahi A, Mafu S. Specialized metabolites as mediators for plant-fungus crosstalk and their evolving roles. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102141. [PMID: 34814027 PMCID: PMC8671350 DOI: 10.1016/j.pbi.2021.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Plants, fungi, and bacteria produce numerous natural products with bioactive properties essential for ecological adaptation. Because of their chemical complexity, these natural products have been adapted for diverse applications in industry. The discovery of their biosynthetic pathways has been accelerated due to improved 'omics' approaches, metabolic engineering, and the availability of genetic manipulation techniques. Ongoing research into these metabolites is not only resolving the enzymatic diversity underlying their biosynthesis but also delving into the physiological and mechanistic basis of their modes of action. This review highlights progress made in the elucidation of biosynthetic pathways and biological roles of specialized metabolites, focusing on some that play important roles at the interface of plant-fungus interactions.
Collapse
Affiliation(s)
- Ayousha Shahi
- Plant Biology Graduate Program, University of Massachusetts-Amherst, 240 Thatcher Way, Life Science Laboratories, Amherst, MA 01003, USA
| | - Sibongile Mafu
- Plant Biology Graduate Program, University of Massachusetts-Amherst, 240 Thatcher Way, Life Science Laboratories, Amherst, MA 01003, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts - Amherst, 240 Thatcher Way, Life Science Laboratories, Amherst, MA 01003, USA.
| |
Collapse
|
49
|
Tang Z, Tang H, Wang W, Xue Y, Chen D, Tang W, Liu W. Biosynthesis of a New Fusaoctaxin Virulence Factor in Fusarium graminearum Relies on a Distinct Path To Form a Guanidinoacetyl Starter Unit Priming Nonribosomal Octapeptidyl Assembly. J Am Chem Soc 2021; 143:19719-19730. [PMID: 34784713 DOI: 10.1021/jacs.1c07770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fusarium graminearum is a pathogenic fungus causing huge economic losses worldwide via crop infection leading to yield reduction and grain contamination. The process through which the fungal invasion occurs remains poorly understood. We recently characterized fusaoctaxin A in F. graminearum, where this octapeptide virulence factor results from an assembly line encoded in fg3_54, a gene cluster proved to be involved in fungal pathogenicity and host adaptation. Focusing on genes in this cluster that are related to fungal invasiveness but not to the biosynthesis of fusaoctaxin A, we here report the identification and characterization of fusaoctaxin B, a new octapeptide virulence factor with comparable activity in wheat infection. Fusaoctaxin B differs from fusaoctaxin A at the N-terminus by possessing a guanidinoacetic acid (GAA) unit, formation of which depends on the combined activities of the protein products of fgm1-3. Fgm1 is a cytochrome P450 protein that oxygenates l-Arg to 4(R)-hydroxyl-l-Arg in a regio- and stereoselective manner. Then, Cβ-Cγ bond cleavage proceeds in the presence of Fgm3, a pyridoxal-5'-phosphate-dependent lyase, giving guanidinoacetaldehyde and l-Ala. Rather than being directly oxidized to GAA, the guanidine-containing aldehyde undergoes spontaneous cyclization and subsequent enzymatic dehydrogenation to provide glycociamidine, which is linearized by Fgm2, a metallo-dependent amidohydrolase. The GAA path in F. graminearum is distinct from that previously known to involve l-Arg:l-Gly aminidotransferase activity. To provide this nonproteinogenic starter unit that primes nonribosomal octapeptidyl assembly, F. graminearum employs new chemistry to process l-Arg through inert C-H bond activation, selective C-C bond cleavage, cyclization-based alcohol dehydrogenation, and amidohydrolysis-associated linearization.
Collapse
Affiliation(s)
- Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Haoyu Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wanqiu Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Yufeng Xue
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Dandan Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Weihua Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
50
|
Xiang L, Wang M, Jiang W, Wang Y, Chen X, Yin C, Mao Z. Key indicators for renewal and reconstruction of perennial trees soil: Microorganisms and phloridzin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112723. [PMID: 34481354 DOI: 10.1016/j.ecoenv.2021.112723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 05/25/2023]
Abstract
Perennial tree soil inhibits the growth of replanting apples, but the mechanism that underlies this inhibition is poorly understood. A total of 57 perennial tree soils were selected for the collection of soil samples in the Bohai Bay in May 2018. The severity of apple replant disease (ARD) for each soil was determined by calculating the rate of inhibition of growth replanted apple trees. A high-throughput sequencing analysis of internal transcribed spacer (ITS) was used to determine the soil fungal community. A correlation analysis was used to determine the relationship between the rate of inhibition of apple growth and soil factors. The degree of inhibition of plant growth varied substantially among the 57 soil samples examined. Different perennial tree soils have varying degrees of ARD. There was no significant difference in the composition of fungal community at the phylum level, but the genus level differed substantially. The abundances of Fusarium and Mortierella species and the contents of phloridin in the soil and soil organic matter (SOM) were significantly correlated with ARD severity. Structural equation modeling also emphasized that the degree of occurrence of ARD was directly or indirectly affected by Fusarium, Mortierella, phloridin and SOM. A correlation analysis can only be used as an indicator, and further research is merited to reveal how soil parameters affect ARD.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Mei Wang
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Weitao Jiang
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yanfang Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Chengmiao Yin
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Zhiquan Mao
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|