1
|
Wu J, Yang J, Yuan Z, Zhang J, Zhang Z, Qin T, Li X, Deng H, Gong L. Functional connectome gradient predicts clinical symptoms of chronic insomnia disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111120. [PMID: 39154930 DOI: 10.1016/j.pnpbp.2024.111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Insomnia is the second most prevalent psychiatric disorder worldwide, but the understanding of the pathophysiology of insomnia remains fragmented. In this study, we calculated the connectome gradient in 50 chronic insomnia disorder (CID) patients and 38 healthy controls (HC) to assess changes due to insomnia and utilized these gradients in a connectome-based predictive modeling (CPM) to predict clinical symptoms associated with insomnia. The results suggested that insomnia led to significant alterations in the functional gradients of some brain areas. Specifically, the gradient scores in the middle frontal gyrus, superior anterior cingulate gyrus, and right nucleus accumbens were significantly higher in the CID patients than in the HC group, whereas the scores in the middle occipital gyrus, right fusiform gyrus, and right postcentral gyrus were significantly lower than in the HC group. Further correlation analysis revealed that the right middle frontal gyrus is positively correlated with the self-rating anxiety scale (r=0.3702). Additionally, the prediction model built with functional gradients could well predict the sleep quality (r=0.5858), anxiety (r=0.6150), and depression (r=0.4022) levels of insomnia patients. This offers an objective depiction of the clinical diagnosis of insomnia, yielding a beneficial impact on the identification of effective biomarkers and the comprehension of insomnia.
Collapse
Affiliation(s)
- Jiahui Wu
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
| | - Jianbo Yang
- Sichuan University of Science and Engineering, Zigong, China
| | - Zhen Yuan
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Macau, SAR China
| | - Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China.
| | - Zhiwei Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Tianwei Qin
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Xiaoxuan Li
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Hanbin Deng
- Sichuan Institute of Computer Sciences, Chengdu, China.
| | - Liang Gong
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, China.
| |
Collapse
|
2
|
Czajko S, Zorn J, Daumail L, Chetelat G, Margulies DS, Lutz A. Exploring the Embodied Mind: Functional Connectome Fingerprinting of Meditation Expertise. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100372. [PMID: 39309211 PMCID: PMC11414651 DOI: 10.1016/j.bpsgos.2024.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 09/25/2024] Open
Abstract
Background Short mindfulness-based interventions have gained traction in research due to their positive impact on well-being, cognition, and clinical symptoms across various settings. However, these short-term trainings are viewed as preliminary steps within a more extensive transformative path, presumably leading to long-lasting trait changes. Despite this, little is still known about the brain correlates of these meditation traits. Methods To address this gap, we investigated the neural correlates of meditation expertise in long-term Buddhist practitioners, comparing the large-scale brain functional connectivity of 28 expert meditators with 47 matched novices. Our hypothesis posited that meditation expertise would be associated with specific and enduring patterns of functional connectivity present during both meditative (open monitoring/open presence and loving-kindness and compassion meditations) and nonmeditative resting states, as measured by connectivity gradients. Results Applying a support vector classifier to states not included in training, we successfully decoded expertise as a trait, demonstrating its non-state-dependent nature. The signature of expertise was further characterized by an increased integration of large-scale brain networks, including the dorsal and ventral attention, limbic, frontoparietal, and somatomotor networks. The latter correlated with a higher ability to create psychological distance from thoughts and emotions. Conclusions Such heightened integration of bodily maps with affective and attentional networks in meditation experts could point toward a signature of the embodied cognition cultivated in these contemplative practices.
Collapse
Affiliation(s)
- Sébastien Czajko
- EDUWELL team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR 5292, Lyon 1 University, Lyon, France
| | - Jelle Zorn
- EDUWELL team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR 5292, Lyon 1 University, Lyon, France
| | - Loïc Daumail
- Department of Psychology, College of Arts and Sciences, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee
| | - Gael Chetelat
- Normandie University, UNICAEN, INSERM, U1237, NeuroPresage Team, Cyceron, Caen, France
| | - Daniel S. Margulies
- Centre National de la Recherche Scientifique and Université de Paris, INCC UMR 8002, Paris, France
| | - Antoine Lutz
- EDUWELL team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR 5292, Lyon 1 University, Lyon, France
| |
Collapse
|
3
|
Kim S, Kim M, Lee JE, Park BY, Park H. Prognostic model for predicting Alzheimer's disease conversion using functional connectome manifolds. Alzheimers Res Ther 2024; 16:217. [PMID: 39385241 PMCID: PMC11465528 DOI: 10.1186/s13195-024-01589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Early detection of Alzheimer's disease (AD) is essential for timely management and consideration of therapeutic options; therefore, detecting the risk of conversion from mild cognitive impairment (MCI) to AD is crucial during neurodegenerative progression. Existing neuroimaging studies have mostly focused on group differences between individuals with MCI (or AD) and cognitively normal (CN), discarding the temporal information of conversion time. Here, we aimed to develop a prognostic model for AD conversion using functional connectivity (FC) and Cox regression suitable for conversion event modeling. METHODS We developed a prognostic model using a large-scale Alzheimer's Disease Neuroimaging Initiative dataset, and it was validated using external data obtained from the Open Access Series of Imaging Studies. We considered individuals who were initially CN or had MCI but progressed to AD and those with MCI with no progression to AD during the five-year follow-up period. As the exact conversion time to AD is unknown, we inferred this information using imputation approaches. We generated cortex-wide principal FC gradients using manifold learning techniques and computed subcortical-weighted manifold degrees from baseline functional magnetic resonance imaging data. A penalized Cox regression model with an elastic net penalty was adopted to define a risk score predicting the risk of conversion to AD, using FC gradients and clinical factors as regressors. RESULTS Our prognostic model predicted the conversion risk and confirmed the role of imaging-derived manifolds in the conversion risk. The brain regions that largely contributed to predicting AD conversion were the heteromodal association and visual cortices, as well as the caudate and hippocampus. Our risk score based on Cox regression was consistent with the expected disease trajectories and correlated with positron emission tomography tracer uptake and symptom severity, reinforcing its clinical usefulness. Our findings were validated using an independent dataset. The cross-sectional application of our model showed a higher risk for AD than that for MCI, which correlated with symptom severity scores in the validation dataset. CONCLUSION We proposed a prognostic model predicting the risk of conversion to AD. The associated risk score may provide insights for early intervention in individuals at risk of AD conversion.
Collapse
Affiliation(s)
- Sunghun Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Mansu Kim
- Department of Artificial Intelligence, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jong-Eun Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
4
|
He R, Alonso‐Sánchez MF, Sepulcre J, Palaniyappan L, Hinzen W. Changes in the structure of spontaneous speech predict the disruption of hierarchical brain organization in first-episode psychosis. Hum Brain Mapp 2024; 45:e70030. [PMID: 39301700 PMCID: PMC11413563 DOI: 10.1002/hbm.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
Psychosis implicates changes across a broad range of cognitive functions. These functions are cortically organized in the form of a hierarchy ranging from primary sensorimotor (unimodal) to higher-order association cortices, which involve functions such as language (transmodal). Language has long been documented as undergoing structural changes in psychosis. We hypothesized that these changes as revealed in spontaneous speech patterns may act as readouts of alterations in the configuration of this unimodal-to-transmodal axis of cortical organization in psychosis. Results from 29 patients with first-episodic psychosis (FEP) and 29 controls scanned with 7 T resting-state fMRI confirmed a compression of the cortical hierarchy in FEP, which affected metrics of the hierarchical distance between the sensorimotor and default mode networks, and of the hierarchical organization within the semantic network. These organizational changes were predicted by graphs representing semantic and syntactic associations between meaningful units in speech produced during picture descriptions. These findings unite psychosis, language, and the cortical hierarchy in a single conceptual scheme, which helps to situate language within the neurocognition of psychosis and opens the clinical prospect for mental dysfunction to become computationally measurable in spontaneous speech.
Collapse
Affiliation(s)
- Rui He
- Department of Translation and Language SciencesUniversitat Pompeu FabraBarcelonaSpain
| | | | - Jorge Sepulcre
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- Department of Medical Biophysics, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
- Robarts Research Institute, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Wolfram Hinzen
- Department of Translation and Language SciencesUniversitat Pompeu FabraBarcelonaSpain
- Intitut Català de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| |
Collapse
|
5
|
Yang Y, Tang D, Wang Z, Liu Y, Chen F, Jie B, Ni T, Xu C, Li J, Wang C. Identification of high-functioning autism spectrum disorders based on gray-white matter functional network connectivity. J Psychiatr Res 2024; 178:107-113. [PMID: 39128219 DOI: 10.1016/j.jpsychires.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
In the field of autism spectrum disorder (ASD), research on functional connectivity between gray matter and white matter remains under-researched. To address this gap, this study innovatively introduced a nested cross-validation method that integrates gray-white matter functional connectivity with an F-Score algorithm. This method calculates the correlation based on signals extracted from functional magnetic resonance imaging data using gray matter and white matter brain region templates. After applying the method to a New York University Langone Medical Center dataset consisting of 55 individuals with high-functioning ASD and 52 healthy subjects, we achieved a classification accuracy of 72.94%. This study found abnormal functional connectivity, primarily involving the left anterior prefrontal cortex and right superior corona radiata, left retrosplenial cortex and left superior corona radiata, as well as the left ventral anterior cingulate cortex and body of corpus callosum. Besides, we discovered that these abnormal connections are closely related to social impairment and restrictive and repetitive behaviors in ASD. In conclusion, this study provides a gray-white matter functional connectivity perspective for the diagnosis and understanding of ASD.
Collapse
Affiliation(s)
- Yang Yang
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Detao Tang
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Zhiwei Wang
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Yifei Liu
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Fulong Chen
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China.
| | - Biao Jie
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Tianjiao Ni
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Chenglong Xu
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Jintao Li
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Chao Wang
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| |
Collapse
|
6
|
Itahashi T, Yamashita A, Takahara Y, Yahata N, Aoki YY, Fujino J, Yoshihara Y, Nakamura M, Aoki R, Okimura T, Ohta H, Sakai Y, Takamura M, Ichikawa N, Okada G, Okada N, Kasai K, Tanaka SC, Imamizu H, Kato N, Okamoto Y, Takahashi H, Kawato M, Yamashita O, Hashimoto RI. Generalizable and transportable resting-state neural signatures characterized by functional networks, neurotransmitters, and clinical symptoms in autism. Mol Psychiatry 2024:10.1038/s41380-024-02759-3. [PMID: 39342041 DOI: 10.1038/s41380-024-02759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Autism spectrum disorder (ASD) is a lifelong condition with elusive biological mechanisms. The complexity of factors, including inter-site and developmental differences, hinders the development of a generalizable neuroimaging classifier for ASD. Here, we developed a classifier for ASD using a large-scale, multisite resting-state fMRI dataset of 730 Japanese adults, aiming to capture neural signatures that reflect pathophysiology at the functional network level, neurotransmitters, and clinical symptoms of the autistic brain. Our adult ASD classifier was successfully generalized to adults in the United States, Belgium, and Japan. The classifier further demonstrated its successful transportability to children and adolescents. The classifier contained 141 functional connections (FCs) that were important for discriminating individuals with ASD from typically developing controls. These FCs and their terminal brain regions were associated with difficulties in social interaction and dopamine and serotonin, respectively. Finally, we mapped attention-deficit/hyperactivity disorder (ADHD), schizophrenia (SCZ), and major depressive disorder (MDD) onto the biological axis defined by the ASD classifier. ADHD and SCZ, but not MDD, were located proximate to ASD on the biological dimensions. Our results revealed functional signatures of the ASD brain, grounded in molecular characteristics and clinical symptoms, achieving generalizability and transportability applicable to the evaluation of the biological continuity of related diseases.
Collapse
Affiliation(s)
- Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ayumu Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuji Takahara
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Drug Discovery Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Noriaki Yahata
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Quantum Life Science, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Yuta Y Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry, Aoki Clinic, Tokyo, Japan
| | - Junya Fujino
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yujiro Yoshihara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuta Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Tsukasa Okimura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yuki Sakai
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef, Inc., Kyoto, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
- Department of Neurology, Shimane University, Shimane, Japan
| | - Naho Ichikawa
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- UTokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan
| | - Saori C Tanaka
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroshi Imamizu
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef, Inc., Kyoto, Japan
| | - Okito Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan.
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan.
| |
Collapse
|
7
|
Qu J, Zhu R, Wu Y, Xu G, Wang D. Abnormal structural‒functional coupling patterning in progressive supranuclear palsy is associated with diverse gradients and histological features. Commun Biol 2024; 7:1195. [PMID: 39341965 PMCID: PMC11439051 DOI: 10.1038/s42003-024-06877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
The anatomy of the brain supports inherent processes, fostering mental abilities and eventually facilitating adaptive behavior. Recent studies have shown that progressive supranuclear palsy (PSP) is accompanied by alterations in functional and structural networks. However, how the structure and function of PSP coordinates change is not clear, and the relationships between structural‒functional coupling (SFC) and the gradient of hierarchical structure and cellular histology remain largely unknown. Here, we use neuroimaging data from two independent cohorts and a public histological dataset to investigate the relationships among the cellular histology, hierarchical structure, and SFC of PSP patients. We find that the SFC of the entire cortex in PSP is severely disrupted, with higher coupling in the visual network (VN). Moreover, coupling differences in PSP follow a macroscopic organizational principle from unimodal to transmodal gradients. Finally, we elucidate greater laminar differentiation in VN regions sensitive to SFC changes in PSP, which is related mainly to the higher cellular density and smaller size of the internal-granular layer. In conclusion, our findings provide an interpretable framework for understanding SFC changes in PSP and provide new insights into the consistency of structural and functional changes in PSP regarding hierarchical structure and cellular histology.
Collapse
Affiliation(s)
- Junyu Qu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Rui Zhu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Yongsheng Wu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Guihua Xu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China.
- Research Institute of Shandong University: Magnetic Field-free Medicine & Functional Imaging, Jinan, China.
- Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Jinan, China.
| |
Collapse
|
8
|
Wang Y, Tang L, Wang J, Li W, Wang M, Chen Q, Yang Z, Li Z, Wang Z, Wu G, Zhang P. Disruption of network hierarchy pattern in bulimia nervosa reveals brain information integration disorder. Appetite 2024; 203:107694. [PMID: 39341080 DOI: 10.1016/j.appet.2024.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
The human brain works as a hierarchical organization that is a continuous axis spanning sensorimotor cortex to transmodal cortex (referring to cortex that integrates multimodal sensory information and participates in complex cognitive functions). Previous studies have demonstrated abnormalities in several specific networks that may account for their multiple behavioral deficits in patients with bulimia nervosa (BN), but whether and how the network hierarchical organization changes in BN remain unknown. This study aimed to investigate alterations of the hierarchy organization in BN network and their clinical relevance. Connectome gradient analyses were applied to depict the network hierarchy patterns of fifty-nine patients with BN and thirty-nine healthy controls (HCs). Then, we evaluated the network- and voxel-level gradient alterations of BN by comparing gradient values in each network and each voxel between patients with BN and HCs. Finally, the association between altered gradient values and clinical variables was explored. In the principal gradient, patients with BN exhibited reduced gradient values in dorsal attention network and increased gradient values in subcortical regions compared to HCs. In the secondary gradient, patients with BN showed decreased gradient values in ventral attention network and increased gradient values in limbic network. Regionally, the areas with altered principal or secondary gradient values in BN group were mainly located in transmodal networks, i.e., the default-mode and frontoparietal network. In BN group, the principal gradient values of right inferior frontal gyrus were negatively associated with external eating behavior. This study revealed the disordered network hierarchy patterns in patients with BN, which suggested a disturbance of brain information integration from attention network and subcortical regions to transmodal networks in these patients. These findings may provide insight into the neurobiological underpinnings of BN.
Collapse
Affiliation(s)
- Yiling Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Lirong Tang
- Beijing Anding Hospital Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China; The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China
| | - Jiani Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Weihua Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Miao Wang
- Peking University, No.5 Summer Palace Road, Haidian District, Beijing, 100871, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Zhanjiang Li
- Beijing Anding Hospital Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China; The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China.
| | - Guowei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, No.16 Lincui Road, Chaoyang District, Beijing, 100020, China.
| | - Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
9
|
Li W, Chen J, Qin Y, Jiang S, Li X, Zhang H, Luo C, Gong Q, Zhou D, An D. Limited cerebellar gradient extension in temporal lobe epilepsy with dystonic posturing. Epilepsia Open 2024. [PMID: 39325042 DOI: 10.1002/epi4.13056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
OBJECTIVE Dystonic posturing (DP) is a common semiology in temporal lobe epilepsy (TLE). We aimed to explore cerebellar gradient alterations in functional connectivity in TLE patients with and without DP. METHODS Resting-state functional MRI data were obtained in 60 TLE patients and 32 matched healthy controls. Patients were further divided into two groups: TLE with DP (TLE + DP, 31 patients) and TLE without DP (TLP-DP, 29 patients). We explored functional gradient alterations in the cerebellum based on cerebellar-cerebral functional connectivity and combined with independent component analysis to evaluate cerebellar-cerebral functional integration and reveal the contribution of the motor components to the gradient. RESULTS There were no obvious differences in clinical features and postoperative seizure outcomes between TLE + DP and TLE-DP patients. Patients and controls all showed a clear unimodal-to-transmodal gradient transition in the cerebellum, while TLE patients demonstrated an extended principal gradient in functional connectivity compared to healthy controls, which was more limited in TLE + DP patients. Gradient alterations were more widespread in TLE-DP patients, involving bilateral cerebellum, while gradient alterations in TLE + DP patients were limited in the cerebellum ipsilateral to the seizure focus. In addition, more cerebellar motor components contributed to the gradient alterations in TLE + DP patients, mainly in ipsilateral cerebellum. SIGNIFICANCE Extended cerebellar principal gradients in functional connectivity revealed excessive functional segregation between unimodal and transmodal systems in TLE. The functional connectivity gradients were more limited in TLE + DP patients. Functional connectivity in TLE patients with dystonic posturing involved more contribution of cerebellar motor function to ipsilateral cerebellar gradient. PLAIN LANGUAGE SUMMARY Dystonic posturing contralateral to epileptic focus is a common symptom in temporal lobe epilepsy, and the cerebellum may be involved in its generation. In this study, we found cerebellar gradients alterations in functional connectivity in temporal lobe epilepsy patients with and without contralateral dystonic posturing. In particular, we found that TLE patients with dystonic posturing may have more limited cerebellar gradient in functional connectivity, involving more contribution of cerebellar motor function to ipsilateral cerebellar gradient. Our study suggests a close relationship between ipsilateral cerebellum and contralateral dystonic posturing.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junxia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yingjie Qin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiuli Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Heng Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Hu S, Li C, Wang Y, Wei T, Wang X, Dong T, Yang Y, Ding Y, Qiu B, Yang W. Structural lesions and transcriptomic specializations shape gradient perturbations in Wilson disease. Brain Commun 2024; 6:fcae329. [PMID: 39372139 PMCID: PMC11450269 DOI: 10.1093/braincomms/fcae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/27/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
Functional dysregulations in multiple regions are caused by excessive copper deposition in the brain in Wilson disease (WD) patients. The genetic mechanism of WD is thought to involve the abnormal expression of ATP7B in the liver, whereas the biological and molecular processes involved in functional dysregulation within the brain remain unexplored. The objective of this study was to unravel the underpinnings of functional gradient perturbations underlying structural lesions and transcriptomic specializations in WD. In this study, we included 105 WD patients and 93 healthy controls who underwent structural and functional MRI assessments. We used the diffusion mapping embedding model to derive the functional connectome gradient and further employed gray matter volume to uncover structure-function decoupling for WD. Then, we used Neurosynth, clinical data, and whole-brain gene expression data to examine the meta-analytic cognitive function, clinical phenotypes, and transcriptomic specializations related to WD gradient alterations. Compared with controls, WD patients exhibited global topographic changes in the principal pramary-to-transmodal gradient. Meta-analytic terms and clinical characteristics were correlated with these gradient alterations in motor-related processing, higher-order cognition, neurological symptoms, and age. Spatial correlations revealed structure-function decoupling in multiple networks, especially in subcortical and visual networks. Within the cortex, the spatial association between gradient alterations and gene expression profiles has revealed transcriptomic specilizations in WD that display properties indicative of ion homeostasis, neural development, and motor control. Furthermore, for the first time, we characterized the role of the ATP7B gene in impacting subcortical function. The transcriptomic specializations of WD were also associated with other neurological and psychiatric disorders. Finally, we revealed that structural lesions and gradient perturbations may share similar transcriptomic specializations in WD. In conclusion, these findings bridged functional gradient perturbations to structural lesions and gene expression profiles in WD patients, possibly promoting our understanding of the neurobiological mechanisms underlying the emergence of complex neurological and psychiatric phenotypes.
Collapse
Affiliation(s)
- Sheng Hu
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230094, China
- School of Medical Information Engineering, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230012, China
| | - Chuanfu Li
- Medical Imaging Center, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Yanming Wang
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Taohua Wei
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Xiaoxiao Wang
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ting Dong
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Yulong Yang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Yufeng Ding
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230094, China
| | - Wenming Yang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| |
Collapse
|
11
|
Weber CF, Kebets V, Benkarim O, Lariviere S, Wang Y, Ngo A, Jiang H, Chai X, Park BY, Milham MP, Di Martino A, Valk S, Hong SJ, Bernhardt BC. Contracted functional connectivity profiles in autism. Mol Autism 2024; 15:38. [PMID: 39261969 PMCID: PMC11391747 DOI: 10.1186/s13229-024-00616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a neurodevelopmental condition that is associated with atypical brain network organization, with prior work suggesting differential connectivity alterations with respect to functional connection length. Here, we tested whether functional connectopathy in ASD specifically relates to disruptions in long- relative to short-range functional connections. Our approach combined functional connectomics with geodesic distance mapping, and we studied associations to macroscale networks, microarchitectural patterns, as well as socio-demographic and clinical phenotypes. METHODS We studied 211 males from three sites of the ABIDE-I dataset comprising 103 participants with an ASD diagnosis (mean ± SD age = 20.8 ± 8.1 years) and 108 neurotypical controls (NT, 19.2 ± 7.2 years). For each participant, we computed cortex-wide connectivity distance (CD) measures by combining geodesic distance mapping with resting-state functional connectivity profiling. We compared CD between ASD and NT participants using surface-based linear models, and studied associations with age, symptom severity, and intelligence scores. We contextualized CD alterations relative to canonical networks and explored spatial associations with functional and microstructural cortical gradients as well as cytoarchitectonic cortical types. RESULTS Compared to NT, ASD participants presented with widespread reductions in CD, generally indicating shorter average connection length and thus suggesting reduced long-range connectivity but increased short-range connections. Peak reductions were localized in transmodal systems (i.e., heteromodal and paralimbic regions in the prefrontal, temporal, and parietal and temporo-parieto-occipital cortex), and effect sizes correlated with the sensory-transmodal gradient of brain function. ASD-related CD reductions appeared consistent across inter-individual differences in age and symptom severity, and we observed a positive correlation of CD to IQ scores. LIMITATIONS Despite rigorous harmonization across the three different acquisition sites, heterogeneity in autism poses a potential limitation to the generalizability of our results. Additionally, we focussed male participants, warranting future studies in more balanced cohorts. CONCLUSIONS Our study showed reductions in CD as a relatively stable imaging phenotype of ASD that preferentially impacted paralimbic and heteromodal association systems. CD reductions in ASD corroborate previous reports of ASD-related imbalance between short-range overconnectivity and long-range underconnectivity.
Collapse
Affiliation(s)
- Clara F Weber
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Valeria Kebets
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Oualid Benkarim
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sara Lariviere
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yezhou Wang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Hongxiu Jiang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Research, Suwon, South Korea
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, USA
| | | | - Sofie Valk
- Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Research, Suwon, South Korea
- Center for the Developing Brain, Child Mind Institute, New York, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Petersen SE, Seitzman BA, Nelson SM, Wig GS, Gordon EM. Principles of cortical areas and their implications for neuroimaging. Neuron 2024; 112:2837-2853. [PMID: 38834069 DOI: 10.1016/j.neuron.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Cortical organization should constrain the study of how the brain performs behavior and cognition. A fundamental concept in cortical organization is that of arealization: that the cortex is parceled into discrete areas. In part one of this report, we review how non-human animal studies have illuminated principles of cortical arealization by revealing: (1) what defines a cortical area, (2) how cortical areas are formed, (3) how cortical areas interact with one another, and (4) what "computations" or "functions" areas perform. In part two, we discuss how these principles apply to neuroimaging research. In doing so, we highlight several examples where the commonly accepted interpretation of neuroimaging observations requires assumptions that violate the principles of arealization, including nonstationary areas that move on short time scales, large-scale gradients as organizing features, and cortical areas with singular functionality that perfectly map psychological constructs. Our belief is that principles of neurobiology should strongly guide the nature of computational explanations.
Collapse
Affiliation(s)
- Steven E Petersen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Benjamin A Seitzman
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gagan S Wig
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Serio B, Hettwer MD, Wiersch L, Bignardi G, Sacher J, Weis S, Eickhoff SB, Valk SL. Sex differences in functional cortical organization reflect differences in network topology rather than cortical morphometry. Nat Commun 2024; 15:7714. [PMID: 39231965 PMCID: PMC11375086 DOI: 10.1038/s41467-024-51942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Differences in brain size between the sexes are consistently reported. However, the consequences of this anatomical difference on sex differences in intrinsic brain function remain unclear. In the current study, we investigate whether sex differences in intrinsic cortical functional organization may be associated with differences in cortical morphometry, namely different measures of brain size, microstructure, and the geodesic distance of connectivity profiles. For this, we compute a low dimensional representation of functional cortical organization, the sensory-association axis, and identify widespread sex differences. Contrary to our expectations, sex differences in functional organization do not appear to be systematically associated with differences in total surface area, microstructural organization, or geodesic distance, despite these morphometric properties being per se associated with functional organization and differing between sexes. Instead, functional sex differences in the sensory-association axis are associated with differences in functional connectivity profiles and network topology. Collectively, our findings suggest that sex differences in functional cortical organization extend beyond sex differences in cortical morphometry.
Collapse
Affiliation(s)
- Bianca Serio
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Meike D Hettwer
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lisa Wiersch
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Brain-Based Predictive Modeling Lab, Feinstein Institutes for Medical Research, Glen Oaks, New York, NY, USA
| | - Giacomo Bignardi
- Max Planck School of Cognition, Leipzig, Germany
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Julia Sacher
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig Center for Female Health & Gender Medicine, Medical Faculty, University Clinic Leipzig, Leipzig, Germany
- Clinic for Cognitive Neurology, University Medical Center Leipzig, Leipzig, Germany
| | - Susanne Weis
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
14
|
Cao Q, Wang P, Zhang Z, Castellanos FX, Biswal BB. Compressed cerebro-cerebellar functional gradients in children and adolescents with attention-deficit/hyperactivity disorder. Hum Brain Mapp 2024; 45:e26796. [PMID: 39254180 PMCID: PMC11386319 DOI: 10.1002/hbm.26796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 09/11/2024] Open
Abstract
Both cortical and cerebellar developmental differences have been implicated in attention-deficit/hyperactivity disorder (ADHD). Recently accumulating neuroimaging studies have highlighted hierarchies as a fundamental principle of brain organization, suggesting the importance of assessing hierarchy abnormalities in ADHD. A novel gradient-based resting-state functional connectivity analysis was applied to investigate the cerebro-cerebellar disturbed hierarchy in children and adolescents with ADHD. We found that the interaction of functional gradient between diagnosis and age was concentrated in default mode network (DMN) and visual network (VN). At the same time, we also found that the opposite gradient changes of DMN and VN caused the compression of the cortical main gradient in ADHD patients, implicating the co-occurrence of both low- (visual processing) and high-order (self-related thought) cognitive dysfunction manifesting in abnormal cerebro-cerebellar organizational hierarchy in ADHD. Our study provides a neurobiological framework to better understand the co-occurrence and interaction of both low-level and high-level functional abnormalities in the cortex and cerebellum in ADHD.
Collapse
Affiliation(s)
- Qingquan Cao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Pan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ziqian Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - F. Xavier Castellanos
- Department of Child and Adolescent PsychiatryNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Nathan Kline Institute for Psychiatric ResearchOrangeburgNew YorkUSA
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| |
Collapse
|
15
|
Jang H, Dai R, Mashour GA, Hudetz AG, Huang Z. Classifying Unconscious, Psychedelic, and Neuropsychiatric Brain States with Functional Connectivity, Graph Theory, and Cortical Gradient Analysis. Brain Sci 2024; 14:880. [PMID: 39335376 PMCID: PMC11430472 DOI: 10.3390/brainsci14090880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Accurate and generalizable classification of brain states is essential for understanding their neural underpinnings and improving clinical diagnostics. Traditionally, functional connectivity patterns and graph-theoretic metrics have been utilized. However, cortical gradient features, which reflect global brain organization, offer a complementary approach. We hypothesized that a machine learning model integrating these three feature sets would effectively discriminate between baseline and atypical brain states across a wide spectrum of conditions, even though the underlying neural mechanisms vary. To test this, we extracted features from brain states associated with three meta-conditions including unconsciousness (NREM2 sleep, propofol deep sedation, and propofol general anesthesia), psychedelic states induced by hallucinogens (subanesthetic ketamine, lysergic acid diethylamide, and nitrous oxide), and neuropsychiatric disorders (attention-deficit hyperactivity disorder, bipolar disorder, and schizophrenia). We used support vector machine with nested cross-validation to construct our models. The soft voting ensemble model marked the average balanced accuracy (average of specificity and sensitivity) of 79% (62-98% across all conditions), outperforming individual base models (70-76%). Notably, our models exhibited varying degrees of transferability across different datasets, with performance being dependent on the specific brain states and feature sets used. Feature importance analysis across meta-conditions suggests that the underlying neural mechanisms vary significantly, necessitating tailored approaches for accurate classification of specific brain states. This finding underscores the value of our feature-integrated ensemble models, which leverage the strengths of multiple feature types to achieve robust performance across a broader range of brain states. While our approach offers valuable insights into the neural signatures of different brain states, future work is needed to develop and validate even more generalizable models that can accurately classify brain states across a wider array of conditions.
Collapse
Affiliation(s)
- Hyunwoo Jang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; (H.J.); (G.A.M.); (A.G.H.)
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Rui Dai
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - George A. Mashour
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; (H.J.); (G.A.M.); (A.G.H.)
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anthony G. Hudetz
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; (H.J.); (G.A.M.); (A.G.H.)
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zirui Huang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; (H.J.); (G.A.M.); (A.G.H.)
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Oh S, Kim S, Lee JE, Park BY, Hye Won J, Park H. Multimodal analysis of disease onset in Alzheimer's disease using Connectome, Molecular, and genetics data. Neuroimage Clin 2024; 43:103660. [PMID: 39197213 PMCID: PMC11393605 DOI: 10.1016/j.nicl.2024.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Alzheimer's disease (AD) and its related age at onset (AAO) are highly heterogeneous, due to the inherent complexity of the disease. They are affected by multiple factors, such as neuroimaging and genetic predisposition. Multimodal integration of various data types is necessary; however, it has been nontrivial due to the high dimensionality of each modality. We aimed to identify multimodal biomarkers of AAO in AD using an extended version of sparse canonical correlation analysis, in which we integrated two imaging modalities, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), and genetic data in the form of single-nucleotide polymorphisms (SNPs) obtained from the Alzheimer's disease neuroimaging initiative database. These three modalities cover low-to-high-level complementary information and offer multiscale insights into the AAO. We identified multivariate markers of AAO in AD using fMRI, PET, and SNP. Furthermore, the markers identified were largely consistent with those reported in the existing literature. In particular, our serial mediation analysis suggests that genetic variants influence the AAO in AD by indirectly affecting brain connectivity by mediation of amyloid-beta protein accumulation, supporting a plausible path in existing research. Our approach provides comprehensive biomarkers related to AAO in AD and offers novel multimodal insights into AD.
Collapse
Affiliation(s)
- Sewook Oh
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sunghun Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Jong-Eun Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Ji Hye Won
- Department of Computer Engineering, Pukyong National University, Busan, Republic of Korea
| | - Hyunjin Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
| |
Collapse
|
17
|
Royer J, Kebets V, Piguet C, Chen J, Ooi LQR, Kirschner M, Siffredi V, Misic B, Yeo BTT, Bernhardt BC. MULTIMODAL NEURAL CORRELATES OF CHILDHOOD PSYCHOPATHOLOGY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530821. [PMID: 39185226 PMCID: PMC11343159 DOI: 10.1101/2023.03.02.530821] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples, supporting generalizability, and robust to variations in analytical parameters. Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.
Collapse
Affiliation(s)
- Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Valeria Kebets
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Camille Piguet
- Young Adult Unit, Psychiatric Specialities Division, Geneva University Hospitals and Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Adolescent Unit, Division of General Paediatric, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals
| | - Jianzhong Chen
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Leon Qi Rong Ooi
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Matthias Kirschner
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Vanessa Siffredi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - B T Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Wu N, Xu M, Liu C, Chen Q, Gao JH, Wang Z, Lv H. Treatment outcomes in tinnitus patients are associated with brain functional network: Evidence from connectome gradient and gene expression analysis. Neuroscience 2024; 553:89-97. [PMID: 38992565 DOI: 10.1016/j.neuroscience.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
The neuroimaging mechanisms underlying differences in the outcomes of sound therapy for tinnitus patients remain unclear. We hypothesize that abnormal hierarchical architecture is the neuro-biomarker for treatment outcome explanation. We conducted functional connectome gradient analyses on resting-state functional MRI images that acquired before intervention to investigate differences among the patients with effective treatment (ET, n = 27), ineffective treatment (IT, n = 41), and healthy controls (HC, n = 59). General linear models were used to analyze the associations between intergroup differential regions and clinical characteristics. Partial least squares regression was employed to reveal correlations with gene expression. Compared to HC, both ET and IT groups displayed significant differences in the default mode network. Moreover, the ET group exhibited wider gradient range and greater gradient variance. Also, the gradient scores of the differential regions between the ET and HC groups were significantly correlated with Self-rating Anxiety Scale and Self-rating Depression Scale scores, and exhibited positive correlations with the transcriptional profiles of genes related to depression and anxiety. Our results indicated that the abnormalities of ET group, may be more relevant to psychiatric disorders, bringing a higher possible therapeutic potential due to the plasticity of the nervous system. Connectome gradient dysfunction with genetic evidence may serve as an indicator for identifying diverse treatment outcomes of the sound therapy for tinnitus patients before treatment.
Collapse
Affiliation(s)
- Ning Wu
- Department of Medical Imaging, Yanjing Medical College, Capital Medical University, Beijing 101300, China.
| | - Mingze Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Chunli Liu
- Department of Otolaryngology, The Affiliated Hospital of Chengde Medical College, Hebei 067000, China.
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
19
|
Shang G, Zhou T, Yu X, Yan X, He K, Liu B, Feng Z, Xu J, Zhang Y, Yu X. Chronic hypercortisolism disrupts the principal functional gradient in Cushing's disease: A multi-scale connectomics and transcriptomics study. Neuroimage Clin 2024; 43:103652. [PMID: 39146836 PMCID: PMC11367515 DOI: 10.1016/j.nicl.2024.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Cushing's disease (CD) represents a state of cortisol excess, serving as a model to investigate the effects of prolonged hypercortisolism on functional brain. Potential alterations in the functional connectome of the brain may explain frequently reported cognitive deficits and affective disorders in CD patients. This study aims to elucidate the effects of chronic hypercortisolism on the principal functional gradient, which represents a hierarchical architecture with gradual transitions across cognitive processes, by integrating connectomics and transcriptomics approaches. Utilizing resting-state functional magnetic resonance imaging data from 140 participants (86 CD patients, 54 healthy controls) recruited at a single center, we explored the alterations in the principal gradient in CD patients. Further, we thoroughly explored the underlying associative mechanisms of the observed characteristic alterations with cognitive function domains, biological attributes, and neuropsychiatric representations, as well as gene expression profiles. Compared to healthy controls, CD patients demonstrated changes in connectome patterns in both primary and higher-order networks, exhibiting an overall converged trend along the principal gradient axis. The gradient values in CD patients' right prefrontal cortex and bilateral sensorimotor cortices exhibited a significant correlation with cortisol levels. Moreover, the cortical regions showing gradient alterations were principally associated with sensory information processing and higher-cognitive functions, as well as correlated with the gene expression patterns which involved synaptic components and function. The findings suggest that converged alterations in the principal gradient in CD patients may mediate the relationship between hypercortisolism and cognitive impairments, potentially involving genes regulating synaptic components and function.
Collapse
Affiliation(s)
- Guosong Shang
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Tao Zhou
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China
| | - Xiaoteng Yu
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Xinyuan Yan
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kunyu He
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Bin Liu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Zhebin Feng
- Department of Neurosurgery, PLA 942 Hospital, Yinchuan, Ningxia, China
| | - Junpeng Xu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China.
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
20
|
Ruan L, Chen G, Yao M, Li C, Chen X, Luo H, Ruan J, Zheng Z, Zhang D, Liang S, Lü M. Brain functional gradient and structure features in adolescent and adult autism spectrum disorders. Hum Brain Mapp 2024; 45:e26792. [PMID: 39037170 PMCID: PMC11261594 DOI: 10.1002/hbm.26792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/16/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024] Open
Abstract
Understanding how function and structure are organized and their coupling with clinical traits in individuals with autism spectrum disorder (ASD) is a primary goal in network neuroscience research for ASD. Atypical brain functional networks and structures in individuals with ASD have been reported, but whether these associations show heterogeneous hierarchy modeling in adolescents and adults with ASD remains to be clarified. In this study, 176 adolescent and 74 adult participants with ASD without medication or comorbidities and sex, age matched healthy controls (HCs) from 19 research groups from the openly shared Autism Brain Imaging Data Exchange II database were included. To investigate the relationship between the functional gradient, structural changes, and clinical symptoms of brain networks in adolescents and adults with ASD, functional gradient and voxel-based morphometry (VBM) analyses based on 1000 parcels defined by Schaefer mapped to Yeo's seven-network atlas were performed. Pearson's correlation was calculated between the gradient scores, gray volume and density, and clinical traits. The subsystem-level analysis showed that the second gradient scores of the default mode networks and frontoparietal network in patients with ASD were relatively compressed compared to adolescent HCs. Adult patients with ASD showed an overall compression gradient of 1 in the ventral attention networks. In addition, the gray density and volumes of the subnetworks showed no significant differences between the ASD and HC groups at the adolescent stage. However, adults with ASD showed decreased gray density in the limbic network. Moreover, numerous functional gradient parameters, but not VBM parameters, in adolescents with ASD were considerably correlated with clinical traits in contrast to those in adults with ASD. Our findings proved that the atypical changes in adolescent ASD mainly involve the brain functional network, while in adult ASD, the changes are more related to brain structure, including gray density and volume. These changes in functional gradients or structures are markedly correlated with clinical traits in patients with ASD. Our study provides a novel understanding of the pathophysiology of the structure-function hierarchy in ASD.
Collapse
Affiliation(s)
- Lili Ruan
- Department of NeurologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Laboratory of Neurological Diseases and Brain FunctionLuzhouChina
| | - Guangxiang Chen
- Department of RadiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Menglin Yao
- College of Integrated MedicineSouthwest Medical UniversityLuzhouChina
| | - Cheng Li
- Department of PediatricsThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for Birth DefectsLuzhouChina
| | - Xiu Chen
- Department of NeurologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Laboratory of Neurological Diseases and Brain FunctionLuzhouChina
| | - Hua Luo
- Department of NeurologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Laboratory of Neurological Diseases and Brain FunctionLuzhouChina
| | - Jianghai Ruan
- Department of NeurologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Laboratory of Neurological Diseases and Brain FunctionLuzhouChina
| | - Zhong Zheng
- Center for Neurological Function Test and Neuromodulation, West China Xiamen HospitalSichuan UniversityXiamenChina
| | - Dechou Zhang
- Department of NeurologySouthwest Medical University Affiliated Hospital of Traditional Chinese MedicineLuzhouChina
| | - Sicheng Liang
- Department of GastroenterologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Muhan Lü
- Department of GastroenterologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
21
|
Wu X, Zhang Y, Xue M, Li J, Li X, Cui Z, Gao JH, Yang G. Heritability of functional gradients in the human subcortico-cortical connectivity. Commun Biol 2024; 7:854. [PMID: 38997510 PMCID: PMC11245549 DOI: 10.1038/s42003-024-06551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
The human subcortex plays a pivotal role in cognition and is widely implicated in the pathophysiology of many psychiatric disorders. However, the heritability of functional gradients based on subcortico-cortical functional connectivity remains elusive. Here, leveraging twin functional MRI (fMRI) data from both the Human Connectome Project (n = 1023) and the Adolescent Brain Cognitive Development study (n = 936) datasets, we construct large-scale subcortical functional gradients and delineate an increased principal functional gradient pattern from unimodal sensory/motor networks to transmodal association networks. We observed that this principal functional gradient is heritable, and the strength of heritability exhibits a heterogeneous pattern along a hierarchical unimodal-transmodal axis in subcortex for both young adults and children. Furthermore, employing a machine learning framework, we show that this heterogeneous pattern of the principal functional gradient in subcortex can accurately discern the relationship between monozygotic twin pairs and dizygotic twin pairs with an accuracy of 76.2% (P < 0.001). The heritability of functional gradients is associated with the anatomical myelin proxied by MRI-derived T1-weighted/T2-weighted (T1w/T2w) ratio mapping in subcortex. This study provides new insights into the biological basis of subcortical functional hierarchy by revealing the structural and genetic properties of the subcortical functional gradients.
Collapse
Affiliation(s)
- Xinyu Wu
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Yu Zhang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Mufan Xue
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Jinlong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- McGovern Institute for Brain Research, Peking University, Beijing, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Guoyuan Yang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China.
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
22
|
Wang X, Chen H, Wen R, Ou P, Huang Y, Deng L, Shi L, Chen W, Chen H, Wang J, He C, Liu C. Exploring functional and structural connectivity disruptions in spinocerebellar ataxia type 3: Insights from gradient analysis. CNS Neurosci Ther 2024; 30:e14842. [PMID: 39014518 PMCID: PMC11251871 DOI: 10.1111/cns.14842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 07/18/2024] Open
Abstract
AIMS Spinocerebellar Ataxia Type 3 (SCA3) is a rare genetic ataxia that impacts the entire brain and is characterized as a neurodegenerative disorder affecting the neural network. This study explores how alterations in the functional hierarchy, connectivity, and structural changes within specific brain regions significantly contribute to the heterogeneity of symptom manifestations in patients with SCA3. METHODS We prospectively recruited 51 patients with SCA3 and 59 age-and sex-matched healthy controls. All participants underwent comprehensive multimodal neuroimaging and clinical assessments. In SCA3 patients, an innovative approach utilizing gradients in resting-state functional connectivity (FC) was employed to examine atypical patterns of hierarchical processing topology from sensorimotor to supramodal regions in the cerebellum and cerebrum. Coupling analyses of abnormal FC and structural connectivity among regions of interest (ROIs) in the brain were also performed to characterize connectivity alterations. Additionally, relationships between quantitative ROI values and clinical variables were explored. RESULTS Patients with SCA3 exhibited either compression or expansion within the primary sensorimotor-to-supramodal gradient through four distinct calculation methods, along with disruptions in FC and structural connectivity coupling. A comprehensive correlation was identified between the altered gradients and the clinical manifestations observed in patients. Notably, altered fractional anisotropy values were not significantly correlated with clinical variables. CONCLUSION Abnormal gradients and connectivity in the cerebellar and cerebral cortices in SCA3 patients may contribute to disrupted motor-to-supramodal functions. Moreover, these findings support the potential utility of FCG analysis as a biomarker for diagnosing SCA3 and assessing treatment efficacy.
Collapse
Affiliation(s)
- Xingang Wang
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Hui Chen
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Ru Wen
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Peiling Ou
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yonghua Huang
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Lihua Deng
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Linfeng Shi
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Wei Chen
- MR Research Collaboration TeamSiemens Healthineers Ltd.WuhanChina
| | - Huafu Chen
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- Biomedical EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jian Wang
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Changchun He
- College of Blockchain IndustryChengdu University of Information TechnologyChengduChina
| | - Chen Liu
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
23
|
Yang D, Tan Y, Zhou Z, Ke Z, Huang L, Mo Y, Tang L, Mao C, Hu Z, Cheng Y, Shao P, Zhang B, Zhu X, Xu Y. Connectome gradient dysfunction contributes to white matter hyperintensity-related cognitive decline. CNS Neurosci Ther 2024; 30:e14843. [PMID: 38997814 PMCID: PMC11245402 DOI: 10.1111/cns.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Although white matter hyperintensity (WMH) is closely associated with cognitive decline, the precise neurobiological mechanisms underlying this relationship are not fully elucidated. Connectome studies have identified a primary-to-transmodal gradient in functional brain networks that support the spectrum from sensation to cognition. However, whether connectome gradient structure is altered as WMH progresses and how this alteration is associated with WMH-related cognitive decline remain unknown. METHODS A total of 758 WMH individuals completed cognitive assessment and resting-state functional MRI (rs-fMRI). The functional connectome gradient was reconstructed based on rs-fMRI by using a gradient decomposition framework. Interrelations among the spatial distribution of WMH, functional gradient measures, and specific cognitive domains were explored. RESULTS As the WMH volume increased, the executive function (r = -0.135, p = 0.001) and information-processing speed (r = -0.224, p = 0.001) became poorer, the gradient range (r = -0.099, p = 0.006), and variance (r = -0.121, p < 0.001) of the primary-to-transmodal gradient reduced. A narrower gradient range (r = 0.131, p = 0.001) and a smaller gradient variance (r = 0.136, p = 0.001) corresponded to a poorer executive function. In particular, the relationship between the frontal/occipital WMH and executive function was partly mediated by gradient range/variance of the primary-to-transmodal gradient. CONCLUSIONS These findings indicated that WMH volume, the primary-to-transmodal gradient, and cognition were interrelated. The detrimental effect of the frontal/occipital WMH on executive function was partly mediated by the decreased differentiation of the connectivity pattern between the primary and transmodal areas.
Collapse
Affiliation(s)
- Dan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Tan
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - ZhiXin Zhou
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lili Huang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuting Mo
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Limoran Tang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - ChengLu Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yue Cheng
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Pengfei Shao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Hsu TT, Huang TN, Wang CY, Hsueh YP. Deep brain stimulation of the Tbr1-deficient mouse model of autism spectrum disorder at the basolateral amygdala alters amygdalar connectivity, whole-brain synchronization, and social behaviors. PLoS Biol 2024; 22:e3002646. [PMID: 39012916 PMCID: PMC11280143 DOI: 10.1371/journal.pbio.3002646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/26/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
Autism spectrum disorders (ASDs) are considered neural dysconnectivity syndromes. To better understand ASD and uncover potential treatments, it is imperative to know and dissect the connectivity deficits under conditions of autism. Here, we apply a whole-brain immunostaining and quantification platform to demonstrate impaired structural and functional connectivity and aberrant whole-brain synchronization in a Tbr1+/- autism mouse model. We express a channelrhodopsin variant oChIEF fused with Citrine at the basolateral amygdala (BLA) to outline the axonal projections of BLA neurons. By activating the BLA under blue light theta-burst stimulation (TBS), we then evaluate the effect of BLA activation on C-FOS expression at a whole brain level to represent neural activity. We show that Tbr1 haploinsufficiency almost completely disrupts contralateral BLA axonal projections and results in mistargeting in both ipsilateral and contralateral hemispheres, thereby globally altering BLA functional connectivity. Based on correlated C-FOS expression among brain regions, we further show that Tbr1 deficiency severely disrupts whole-brain synchronization in the absence of salient stimulation. Tbr1+/- and wild-type (WT) mice exhibit opposing responses to TBS-induced amygdalar activation, reducing synchronization in WT mice but enhancing it in Tbr1+/- mice. Whole-brain modular organization and intermodule connectivity are also affected by Tbr1 deficiency and amygdalar activation. Following BLA activation by TBS, the synchronizations of the whole brain and the default mode network, a specific subnetwork highly relevant to ASD, are enhanced in Tbr1+/- mice, implying a potential ameliorating effect of amygdalar stimulation on brain function. Indeed, TBS-mediated BLA activation increases nose-to-nose social interactions of Tbr1+/- mice, strengthening evidence for the role of amygdalar connectivity in social behaviors. Our high-resolution analytical platform reveals the inter- and intrahemispheric connectopathies arising from ASD. Our study emphasizes the defective synchronization at a whole-brain scale caused by Tbr1 deficiency and implies a potential beneficial effect of deep brain stimulation at the amygdala for TBR1-linked autism.
Collapse
Affiliation(s)
- Tsan-Ting Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chien-Yao Wang
- Institute of Information Science, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
25
|
Ottoy J, Kang MS, Tan JXM, Boone L, Vos de Wael R, Park BY, Bezgin G, Lussier FZ, Pascoal TA, Rahmouni N, Stevenson J, Fernandez Arias J, Therriault J, Hong SJ, Stefanovic B, McLaurin J, Soucy JP, Gauthier S, Bernhardt BC, Black SE, Rosa-Neto P, Goubran M. Tau follows principal axes of functional and structural brain organization in Alzheimer's disease. Nat Commun 2024; 15:5031. [PMID: 38866759 PMCID: PMC11169286 DOI: 10.1038/s41467-024-49300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Alzheimer's disease (AD) is a brain network disorder where pathological proteins accumulate through networks and drive cognitive decline. Yet, the role of network connectivity in facilitating this accumulation remains unclear. Using in-vivo multimodal imaging, we show that the distribution of tau and reactive microglia in humans follows spatial patterns of connectivity variation, the so-called gradients of brain organization. Notably, less distinct connectivity patterns ("gradient contraction") are associated with cognitive decline in regions with greater tau, suggesting an interaction between reduced network differentiation and tau on cognition. Furthermore, by modeling tau in subject-specific gradient space, we demonstrate that tau accumulation in the frontoparietal and temporo-occipital cortices is associated with greater baseline tau within their functionally and structurally connected hubs, respectively. Our work unveils a role for both functional and structural brain organization in pathology accumulation in AD, and supports subject-specific gradient space as a promising tool to map disease progression.
Collapse
Affiliation(s)
- Julie Ottoy
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Min Su Kang
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | | | - Lyndon Boone
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Gleb Bezgin
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Neuroinformatics for Personalized Medicine lab, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nesrine Rahmouni
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Jenna Stevenson
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Jaime Fernandez Arias
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Joseph Therriault
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Seok-Jun Hong
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bojana Stefanovic
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - JoAnne McLaurin
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Serge Gauthier
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sandra E Black
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Medicine (Division of Neurology), University of Toronto, Toronto, ON, Canada
| | - Pedro Rosa-Neto
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Maged Goubran
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Physical Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Qiao M. Deciphering the genetic code of neuronal type connectivity through bilinear modeling. eLife 2024; 12:RP91532. [PMID: 38857169 PMCID: PMC11164534 DOI: 10.7554/elife.91532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
Understanding how different neuronal types connect and communicate is critical to interpreting brain function and behavior. However, it has remained a formidable challenge to decipher the genetic underpinnings that dictate the specific connections formed between neuronal types. To address this, we propose a novel bilinear modeling approach that leverages the architecture similar to that of recommendation systems. Our model transforms the gene expressions of presynaptic and postsynaptic neuronal types, obtained from single-cell transcriptomics, into a covariance matrix. The objective is to construct this covariance matrix that closely mirrors a connectivity matrix, derived from connectomic data, reflecting the known anatomical connections between these neuronal types. When tested on a dataset of Caenorhabditis elegans, our model achieved a performance comparable to, if slightly better than, the previously proposed spatial connectome model (SCM) in reconstructing electrical synaptic connectivity based on gene expressions. Through a comparative analysis, our model not only captured all genetic interactions identified by the SCM but also inferred additional ones. Applied to a mouse retinal neuronal dataset, the bilinear model successfully recapitulated recognized connectivity motifs between bipolar cells and retinal ganglion cells, and provided interpretable insights into genetic interactions shaping the connectivity. Specifically, it identified unique genetic signatures associated with different connectivity motifs, including genes important to cell-cell adhesion and synapse formation, highlighting their role in orchestrating specific synaptic connections between these neurons. Our work establishes an innovative computational strategy for decoding the genetic programming of neuronal type connectivity. It not only sets a new benchmark for single-cell transcriptomic analysis of synaptic connections but also paves the way for mechanistic studies of neural circuit assembly and genetic manipulation of circuit wiring.
Collapse
Affiliation(s)
- Mu Qiao
- LinkedInMountain ViewUnited States
| |
Collapse
|
27
|
Hu J, Chen G, Zeng Z, Ran H, Zhang R, Yu Q, Xie Y, He Y, Wang F, Li X, Huang K, Liu H, Zhang T. Systematically altered connectome gradient in benign childhood epilepsy with centrotemporal spikes: Potential effect on cognitive function. Neuroimage Clin 2024; 43:103628. [PMID: 38850833 PMCID: PMC11201345 DOI: 10.1016/j.nicl.2024.103628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVE Benign childhood epilepsy with centrotemporal spikes (BECTS) affects brain network hierarchy and cognitive function; however, itremainsunclearhowhierarchical changeaffectscognition in patients with BECTS. A major aim of this study was to examine changes in the macro-network function hierarchy in BECTS and its potential contribution to cognitive function. METHODS Overall, the study included 50 children with BECTS and 69 healthy controls. Connectome gradient analysis was used to determine the brain network hierarchy of each group. By comparing gradient scores at each voxel level and network between groups, we assessed changes in whole-brain voxel-level and network hierarchy. Functional connectivity was used to detect the functional reorganization of epilepsy caused by these abnormal brain regions based on these aberrant gradients. Lastly, we explored the relationships between the change gradient and functional connectivity values and clinical variables and further predicted the cognitive function associated with BECTS gradient changes. RESULTS In children with BECTS, the gradient was extended at different network and voxel levels. The gradient scores frontoparietal network was increased in the principal gradient of patients with BECTS. The left precentral gyrus (PCG) and right angular gyrus gradient scores were significantly increased in the principal gradient of children with BECTS. Moreover, in regions of the brain with abnormal principal gradients, functional connectivity was disrupted. The left PCG gradient score of children with BECTS was correlated with the verbal intelligence quotient (VIQ), and the disruption of functional connectivity in brain regions with abnormal principal gradients was closely related to cognitive function. VIQ was significantly predicted by the principal gradient map of patients. SIGNIFICANCE The results indicate connectome gradient disruption in children with BECTS and its relationship to cognitive function, thereby increasing our understanding of the functional connectome hierarchy and providing potential biomarkers for cognitive function of children with BECTS.
Collapse
Affiliation(s)
- Jie Hu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China; Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guiqin Chen
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China; Department of Radiology, The Second Affiliated Hospital of Guizhou University of TCM, Guiyang 550001, China
| | - Zhen Zeng
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Haifeng Ran
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Ruoxi Zhang
- Department of Radiology, The Second Affiliated Hospital of Guizhou University of TCM, Guiyang 550001, China
| | - Qiane Yu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Yuxin Xie
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Yulun He
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Fuqin Wang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Xuhong Li
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Kexing Huang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Heng Liu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China.
| | - Tijiang Zhang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China.
| |
Collapse
|
28
|
Li J, Zhang C, Meng Y, Yang S, Xia J, Chen H, Liao W. Morphometric brain organization across the human lifespan reveals increased dispersion linked to cognitive performance. PLoS Biol 2024; 22:e3002647. [PMID: 38900742 PMCID: PMC11189252 DOI: 10.1371/journal.pbio.3002647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/26/2024] [Indexed: 06/22/2024] Open
Abstract
The human brain is organized as segregation and integration units and follows complex developmental trajectories throughout life. The cortical manifold provides a new means of studying the brain's organization in a multidimensional connectivity gradient space. However, how the brain's morphometric organization changes across the human lifespan remains unclear. Here, leveraging structural magnetic resonance imaging scans from 1,790 healthy individuals aged 8 to 89 years, we investigated age-related global, within- and between-network dispersions to reveal the segregation and integration of brain networks from 3D manifolds based on morphometric similarity network (MSN), combining multiple features conceptualized as a "fingerprint" of an individual's brain. Developmental trajectories of global dispersion unfolded along patterns of molecular brain organization, such as acetylcholine receptor. Communities were increasingly dispersed with age, reflecting more disassortative morphometric similarity profiles within a community. Increasing within-network dispersion of primary motor and association cortices mediated the influence of age on the cognitive flexibility of executive functions. We also found that the secondary sensory cortices were decreasingly dispersed with the rest of the cortices during aging, possibly indicating a shift of secondary sensory cortices across the human lifespan from an extreme to a more central position in 3D manifolds. Together, our results reveal the age-related segregation and integration of MSN from the perspective of a multidimensional gradient space, providing new insights into lifespan changes in multiple morphometric features of the brain, as well as the influence of such changes on cognitive performance.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Chao Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Xia
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
29
|
Wang L, Qin Y, Yang S, Jin D, Zhu Y, Li X, Li W, Wang Y, Jin C. Posterior default mode network is associated with the social performance in male children with autism spectrum disorder: A dynamic causal modeling analysis based on triple-network model. Hum Brain Mapp 2024; 45:e26750. [PMID: 38853710 PMCID: PMC11163228 DOI: 10.1002/hbm.26750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
The triple-network model has been widely applied in neuropsychiatric disorders including autism spectrum disorder (ASD). However, the mechanism of causal regulations within the triple-network and their relations with symptoms of ASD remains unclear. 81 male ASD and 80 well matched typically developing control (TDC) were included in this study, recruited from Autism Brain Image Data Exchange-I datasets. Spatial reference-based independent component analysis was used to identify the anterior and posterior part of default-mode network (aDMN and pDMN), salience network (SN), and bilateral executive-control network (ECN) from resting-state functional magnetic resonance imaging data. Spectral dynamic causal model and parametric empirical Bayes with Bayesian model reduction/average were adopted to explore the effective connectivity (EC) within triple-network and the relationship between EC and autism diagnostic observation schedule (ADOS) scores. After adjusting for age and site effect, ASD and TDC groups both showed inhibition patterns. Compared with TDC, ASD group showed weaker self-inhibition in aDMN and pDMN, stronger inhibition in pDMN→aDMN, weaker inhibition in aDMN→LECN, pDMN→SN, LECN→SN, and LECN→RECN. Furthermore, negative relationships between ADOS scores and pDMN self-inhibition strength, as well as with the EC of pDMN→aDMN were observed in ASD group. The present study reveals imbalanced effective connections within triple-networks in ASD children. More attentions should be focused at the pDMN, which modulates the core symptoms of ASD and may serve as an important region for ASD diagnosis and the target region for ASD treatments.
Collapse
Affiliation(s)
- Lei Wang
- Department of RadiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of RadiologyXi'an Daxing HospitalXi'anChina
| | - Yue Qin
- Department of RadiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of RadiologyXi'an Daxing HospitalXi'anChina
| | - Shuhan Yang
- Department of Disease Control and PreventionNinth Hospital of Xi'anXi'anChina
| | - Dayong Jin
- Department of RadiologyXi'an Daxing HospitalXi'anChina
| | - Yinhu Zhu
- Department of RadiologyXi'an Daxing HospitalXi'anChina
| | - Xin Li
- Department of RadiologyXi'an Daxing HospitalXi'anChina
| | - Wei Li
- Department of Radiology, Tangdu HospitalAir Force Military Medical UniversityXi'anChina
| | - Yarong Wang
- Department of RadiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Chenwang Jin
- Department of RadiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
30
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Arafat T, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. Prog Neurobiol 2024; 236:102604. [PMID: 38604584 DOI: 10.1016/j.pneurobio.2024.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Thaera Arafat
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Department of Neurology, Duke University School of Medicine and Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27705, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3 BG, United Kingdom
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Queretaro, Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
31
|
Park Y, Lee MJ, Yoo S, Kim CY, Namgung JY, Park Y, Park H, Lee EC, Yoon YD, Paquola C, Bernhardt BC, Park BY. GAN-MAT: Generative adversarial network-based microstructural profile covariance analysis toolbox. Neuroimage 2024; 291:120595. [PMID: 38554782 DOI: 10.1016/j.neuroimage.2024.120595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Multimodal magnetic resonance imaging (MRI) provides complementary information for investigating brain structure and function; for example, an in vivo microstructure-sensitive proxy can be estimated using the ratio between T1- and T2-weighted structural MRI. However, acquiring multiple imaging modalities is challenging in patients with inattentive disorders. In this study, we proposed a comprehensive framework to provide multiple imaging features related to the brain microstructure using only T1-weighted MRI. Our toolbox consists of (i) synthesizing T2-weighted MRI from T1-weighted MRI using a conditional generative adversarial network; (ii) estimating microstructural features, including intracortical covariance and moment features of cortical layer-wise microstructural profiles; and (iii) generating a microstructural gradient, which is a low-dimensional representation of the intracortical microstructure profile. We trained and tested our toolbox using T1- and T2-weighted MRI scans of 1,104 healthy young adults obtained from the Human Connectome Project database. We found that the synthesized T2-weighted MRI was very similar to the actual image and that the synthesized data successfully reproduced the microstructural features. The toolbox was validated using an independent dataset containing healthy controls and patients with episodic migraine as well as the atypical developmental condition of autism spectrum disorder. Our toolbox may provide a new paradigm for analyzing multimodal structural MRI in the neuroscience community and is openly accessible at https://github.com/CAMIN-neuro/GAN-MAT.
Collapse
Affiliation(s)
- Yeongjun Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Mi Ji Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Chae Yeon Kim
- Department of Data Science, Inha University, Incheon, South Korea
| | | | - Yunseo Park
- Department of Data Science, Inha University, Incheon, South Korea
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | | | | | - Casey Paquola
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; Department of Statistics and Data Science, Inha University, Incheon, South Korea.
| |
Collapse
|
32
|
He R, Al-Tamimi J, Sánchez-Benavides G, Montaña-Valverde G, Domingo Gispert J, Grau-Rivera O, Suárez-Calvet M, Minguillon C, Fauria K, Navarro A, Hinzen W. Atypical cortical hierarchy in Aβ-positive older adults and its reflection in spontaneous speech. Brain Res 2024; 1830:148806. [PMID: 38365129 DOI: 10.1016/j.brainres.2024.148806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Abnormal deposition of Aβ amyloid is an early neuropathological marker of Alzheimer's disease (AD), arising long ahead of clinical symptoms. Non-invasive measures of associated early neurofunctional changes, together with easily accessible behavioral readouts of these changes, could be of great clinical benefit. We pursued this aim by investigating large-scale cortical gradients of functional connectivity with functional MRI, which capture the hierarchical integration of cortical functions, together with acoustic-prosodic features from spontaneous speech, in cognitively unimpaired older adults with and without Aβ positivity (total N = 188). We predicted distortions of the cortical hierarchy associated with prosodic changes in the Aβ + group. Results confirmed substantially altered cortical hierarchies and less variability in these in the Aβ + group, together with an increase in quantitative prosodic measures, which correlated with gradient variability as well as digit span test scores. Overall, these findings confirm that long before the clinical stage and objective cognitive impairment, increased risk of cognitive decline as indexed by Aβ accumulation is marked by neurofunctional changes in the cortical hierarchy, which are related to automatically extractable speech patterns and alterations in working memory functions.
Collapse
Affiliation(s)
- Rui He
- Department of Translation & Language Sciences, Universitat Pompeu Fabra, 08018 Barcelona, Spain.
| | - Jalal Al-Tamimi
- Université Paris Cité, Laboratoire de Linguistique Formelle (LLF), CNRS, 75013 Paris, France
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; Neurosciences Department, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; Neurosciences Department, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; Neurosciences Department, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; Servei de Neurologia, Hospital del Mar, 08003 Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; Neurosciences Department, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; Servei de Neurologia, Hospital del Mar, 08003 Barcelona, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; Neurosciences Department, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Arcadi Navarro
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain; Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08003 Barcelona, Spain; CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Wolfram Hinzen
- Department of Translation & Language Sciences, Universitat Pompeu Fabra, 08018 Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
33
|
Yang Y, Zhen Y, Wang X, Liu L, Zheng Y, Zheng Z, Zheng H, Tang S. Altered asymmetry of functional connectome gradients in major depressive disorder. Front Neurosci 2024; 18:1385920. [PMID: 38745933 PMCID: PMC11092381 DOI: 10.3389/fnins.2024.1385920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Major depressive disorder (MDD) is a debilitating disease involving sensory and higher-order cognitive dysfunction. Previous work has shown altered asymmetry in MDD, including abnormal lateralized activation and disrupted hemispheric connectivity. However, it remains unclear whether and how MDD affects functional asymmetries in the context of intrinsic hierarchical organization. Methods Here, we evaluate intra- and inter-hemispheric asymmetries of the first three functional gradients, characterizing unimodal-transmodal, visual-somatosensory, and somatomotor/default mode-multiple demand hierarchies, to study MDD-related alterations in overarching system-level architecture. Results We find that, relative to the healthy controls, MDD patients exhibit alterations in both primary sensory regions (e.g., visual areas) and transmodal association regions (e.g., default mode areas). We further find these abnormalities are woven in heterogeneous alterations along multiple functional gradients, associated with cognitive terms involving mind, memory, and visual processing. Moreover, through an elastic net model, we observe that both intra- and inter-asymmetric features are predictive of depressive traits measured by BDI-II scores. Discussion Altogether, these findings highlight a broad and mixed effect of MDD on functional gradient asymmetry, contributing to a richer understanding of the neurobiological underpinnings in MDD.
Collapse
Affiliation(s)
- Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Xin Wang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Longzhao Liu
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Zhiming Zheng
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing, China
| | - Shaoting Tang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| |
Collapse
|
34
|
Zhou B, Zhao Y, Wu X. Differences of individual gray matter networks between MCI patients who converted to AD within 3 Years and nonconverters. Heliyon 2024; 10:e28874. [PMID: 38623255 PMCID: PMC11016615 DOI: 10.1016/j.heliyon.2024.e28874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Objective Here we aimed to explore the differences in individual gray matter (GM) networks at baseline in mild cognitive impairment patients who converted to Alzheimer's disease (AD) within 3 years (MCI-C) and nonconverters (MCI-NC). Materials and methods Data from 461 MCI patients (180 MCI-C and 281 MCI-NC) were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). For each subject, a GM network was constructed using 3D-T1 imaging and the Kullback-Leibler divergence method. Gradient and topological analyses of individual GM networks were performed, and partial correlations were calculated to evaluate relationships among network properties, cognitive function, and apolipoprotein E (APOE) €4 alleles. Subsequently, a support vector machine (SVM) model was constructed to discriminate the MCI-C and MCI-NC patients at baseline. Results The gradient analysis revealed that the principal gradient score distribution was more compressed in the MCI-C group than in the MCI-NC group, with scores for the left lingual gyrus, right fusiform gyrus and left middle temporal gyrus being increased in the MCI-C group (p < 0.05, FDR corrected). The topological analysis showed significant differences in nodal efficiency in four nodes between the two groups. Furthermore, the regional gradient scores or nodal efficiency were found to be significantly related to the neuropsychological test scores, and the left middle temporal gyrus gradient scores were positively associated with the number of APOE €4 alleles (r = 0.192, p = 0.002). Ultimately, the SVM model achieved a balanced accuracy of 79.4% in classifying MCI-C and MCI-NC patients (p < 0.001). Conclusion The whole-brain GM network hierarchy in the MCI-C group was more compressed than that in the MCI-NC group, suggesting more serious cognitive impairments in the MCI-C group. The left middle temporal gyrus gradient scores were related to both cognitive function and APOE €4 alleles, thus serving as potential biomarkers distinguishing MCI-C from MCI-NC at baseline.
Collapse
Affiliation(s)
- Baiwan Zhou
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yueqi Zhao
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojia Wu
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
35
|
Osaki T, Duenki T, Chow SYA, Ikegami Y, Beaubois R, Levi T, Nakagawa-Tamagawa N, Hirano Y, Ikeuchi Y. Complex activity and short-term plasticity of human cerebral organoids reciprocally connected with axons. Nat Commun 2024; 15:2945. [PMID: 38600094 PMCID: PMC11006899 DOI: 10.1038/s41467-024-46787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
An inter-regional cortical tract is one of the most fundamental architectural motifs that integrates neural circuits to orchestrate and generate complex functions of the human brain. To understand the mechanistic significance of inter-regional projections on development of neural circuits, we investigated an in vitro neural tissue model for inter-regional connections, in which two cerebral organoids are connected with a bundle of reciprocally extended axons. The connected organoids produced more complex and intense oscillatory activity than conventional or directly fused cerebral organoids, suggesting the inter-organoid axonal connections enhance and support the complex network activity. In addition, optogenetic stimulation of the inter-organoid axon bundles could entrain the activity of the organoids and induce robust short-term plasticity of the macroscopic circuit. These results demonstrated that the projection axons could serve as a structural hub that boosts functionality of the organoid-circuits. This model could contribute to further investigation on development and functions of macroscopic neuronal circuits in vitro.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Tomoya Duenki
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
- LIMMS/CNRS, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yasuhiro Ikegami
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Romain Beaubois
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- LIMMS/CNRS, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- IMS Laboratory, UMR5218, University of Bordeaux, Talence, France
| | - Timothée Levi
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- LIMMS/CNRS, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- IMS Laboratory, UMR5218, University of Bordeaux, Talence, France
| | - Nao Nakagawa-Tamagawa
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoji Hirano
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan.
- Institute for AI and Beyond, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan.
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan.
- LIMMS/CNRS, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
36
|
Kang E, Heo DW, Lee J, Suk HI. A Learnable Counter-Condition Analysis Framework for Functional Connectivity-Based Neurological Disorder Diagnosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1377-1387. [PMID: 38019623 DOI: 10.1109/tmi.2023.3337074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
To understand the biological characteristics of neurological disorders with functional connectivity (FC), recent studies have widely utilized deep learning-based models to identify the disease and conducted post-hoc analyses via explainable models to discover disease-related biomarkers. Most existing frameworks consist of three stages, namely, feature selection, feature extraction for classification, and analysis, where each stage is implemented separately. However, if the results at each stage lack reliability, it can cause misdiagnosis and incorrect analysis in afterward stages. In this study, we propose a novel unified framework that systemically integrates diagnoses (i.e., feature selection and feature extraction) and explanations. Notably, we devised an adaptive attention network as a feature selection approach to identify individual-specific disease-related connections. We also propose a functional network relational encoder that summarizes the global topological properties of FC by learning the inter-network relations without pre-defined edges between functional networks. Last but not least, our framework provides a novel explanatory power for neuroscientific interpretation, also termed counter-condition analysis. We simulated the FC that reverses the diagnostic information (i.e., counter-condition FC): converting a normal brain to be abnormal and vice versa. We validated the effectiveness of our framework by using two large resting-state functional magnetic resonance imaging (fMRI) datasets, Autism Brain Imaging Data Exchange (ABIDE) and REST-meta-MDD, and demonstrated that our framework outperforms other competing methods for disease identification. Furthermore, we analyzed the disease-related neurological patterns based on counter-condition analysis.
Collapse
|
37
|
Wang X, Lin J, Lu H, Xiong Y, Duan C, Zhang D, Huang J, Deng L, Li C, Li R, Zhang D, Bian X, Zhou J, Pan L, Lou X. Alteration of White Matter Connectivity for MR-Guided Focused Ultrasound in the Treatment of Essential Tremor. J Magn Reson Imaging 2024; 59:1358-1370. [PMID: 37491872 DOI: 10.1002/jmri.28896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy has been implemented as a therapeutic alternative for the treatment of drug-refractory essential tremor (ET). However, its impact on the brain structural network is still unclear. PURPOSE To investigate both global and local alterations of the white matter (WM) connectivity network in ET after MRgFUS thalamotomy. STUDY TYPE Retrospective. SUBJECTS Twenty-seven ET patients (61 ± 11 years, 19 males) with MRgFUS thalamotomy and 28 healthy controls (HC) (61 ± 11 years, 20 males) were recruited for comparison. FIELD STRENGTH/SEQUENCE A 3 T/single shell diffusion tensor imaging by using spin-echo-based echo-planar imaging, three-dimensional T1 weighted imaging by using gradient-echo-based sequence. ASSESSMENT Patients were undergoing MRgFUS thalamotomy and their clinical data were collected from pre-operation to 6-month post-operation. Network topological metrics, including rich-club organization, small-world, and efficiency properties were calculated. Correlation between the topological metrics and tremor scores in ET groups was also calculated to assess the role of neural remodeling in the brain. STATISTICAL TESTS Two-sample independent t-tests, chi-squared test, ANOVA, Bonferroni test, and Spearman's correlation. Statistical significance was set at P < 0.05. RESULTS For ET patients, the strength of rich-club connection and clustering coefficient significantly increased vs. characteristic path length decreased at 6-month post-operation compared with pre-operation. The distribution pattern of rich-club regions was different in ET groups. Specifically, the order of the rich-club regions was changed according to the network degree value after MRgFUS thalamotomy. Moreover, the altered nodal efficiency in the right temporal pole of the superior temporal gyrus (R = 0.434-0.596) and right putamen (R = 0.413-0.436) was positively correlated with different tremor improvement. DATA CONCLUSION These findings might improve understanding of treatment-induced modulation from a network perspective and may work as an objective marker in the assessment of ET tremor control with MRgFUS thalamotomy. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Medicine, Nankai University, Tianjin, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jiaji Lin
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Haoxuan Lu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Yongqin Xiong
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Caohui Duan
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Dong Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jiayu Huang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Linlin Deng
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Chenxi Li
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Runze Li
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Dekang Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xiangbing Bian
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jiayou Zhou
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Longsheng Pan
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xin Lou
- School of Medicine, Nankai University, Tianjin, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
38
|
Yin X, Yang J, Xiang Q, Peng L, Song J, Liang S, Wu J. Brain network hierarchy reorganization in subthreshold depression. Neuroimage Clin 2024; 42:103594. [PMID: 38518552 PMCID: PMC10973537 DOI: 10.1016/j.nicl.2024.103594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Hierarchy is the organizing principle of human brain network. How network hierarchy changes in subthreshold depression (StD) is unclear. The aim of this study was to investigate the altered brain network hierarchy and its clinical significance in patients with StD. METHODS A total of 43 patients with StD and 43 healthy controls matched for age, gender and years of education participated in this study. Alterations in the hierarchy of StD brain networks were depicted by connectome gradient analysis. We assessed changes in network hierarchy by comparing gradient scores in each network in patients with StD and healthy controls. The study compared different brain subdivisions if there was a different network. Finally, we analysed the relationship between the altered gradient scores and clinical characteristics. RESULTS Patients with StD had contracted network hierarchy and suppressed cortical range gradients. In the principal gradient, the gradient scores of default mode network were significantly reduced in patients with StD compared to controls. In the default network, the subdivisions of reduced gradient scores were mainly located in the precuneus, superior temporal gyrus, and anterior and posterior cingulate gyrus. Reduced gradient scores in the default mode network, the anterior and posterior cingulate gyrus were correlated with severity of depression. CONCLUSIONS The network hierarchy of the StD changed and was significantly correlated with depressive symptoms and severity. These results provided new insights into further understanding of the neural mechanisms of StD.
Collapse
Affiliation(s)
- Xiaolong Yin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Junchao Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Qing Xiang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lixin Peng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jian Song
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Jingsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
39
|
Yoo S, Jang Y, Hong SJ, Park H, Valk SL, Bernhardt BC, Park BY. Whole-brain structural connectome asymmetry in autism. Neuroimage 2024; 288:120534. [PMID: 38340881 DOI: 10.1016/j.neuroimage.2024.120534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Autism spectrum disorder is a common neurodevelopmental condition that manifests as a disruption in sensory and social skills. Although it has been shown that the brain morphology of individuals with autism is asymmetric, how this differentially affects the structural connectome organization of each hemisphere remains under-investigated. We studied whole-brain structural connectivity-based brain asymmetry in individuals with autism using diffusion magnetic resonance imaging obtained from the Autism Brain Imaging Data Exchange initiative. By leveraging dimensionality reduction techniques, we constructed low-dimensional representations of structural connectivity and calculated their asymmetry index. Comparing the asymmetry index between individuals with autism and neurotypical controls, we found atypical structural connectome asymmetry in the sensory and default-mode regions, particularly showing weaker asymmetry towards the right hemisphere in autism. Network communication provided topological underpinnings by demonstrating that the inferior temporal cortex and limbic and frontoparietal regions showed reduced global network communication efficiency and decreased send-receive network navigation in the inferior temporal and lateral visual cortices in individuals with autism. Finally, supervised machine learning revealed that structural connectome asymmetry could be used as a measure for predicting communication-related autistic symptoms and nonverbal intelligence. Our findings provide insights into macroscale structural connectome alterations in autism and their topological underpinnings.
Collapse
Affiliation(s)
- Seulki Yoo
- Convergence Research Institute, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yurim Jang
- Artificial Intelligence Convergence Research Center, Inha University, Incheon, Republic of Korea
| | - Seok-Jun Hong
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sofie L Valk
- Forschungszentrum Julich, Germany; Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Systems Neuroscience, Heinrich Heine University, Duesseldorf, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Data Science, Inha University, Incheon, Republic of Korea; Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
40
|
Wu J, Ma L, Luo D, Jin Z, Wang L, Wang L, Li T, Zhang J, Liu T, Lv D, Yan T, Fang B. Functional and structural gradients reveal atypical hierarchical organization of Parkinson's disease. Hum Brain Mapp 2024; 45:e26647. [PMID: 38488448 PMCID: PMC10941507 DOI: 10.1002/hbm.26647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024] Open
Abstract
Parkinson's disease (PD) patients exhibit deficits in primary sensorimotor and higher-order executive functions. The gradient reflects the functional spectrum in sensorimotor-associated areas of the brain. We aimed to determine whether the gradient is disrupted in PD patients and how this disruption is associated with treatment outcome. Seventy-six patients (mean age, 59.2 ± 12.4 years [standard deviation], 44 women) and 34 controls participants (mean age, 58.1 ± 10.0 years [standard deviation], 19 women) were evaluated. We explored functional and structural gradients in PD patients and control participants. Patients were followed during 2 weeks of multidisciplinary intensive rehabilitation therapy (MIRT). The Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) was administered to patients before and after treatment. We investigated PD-related alterations in the principal functional and structural gradients. We further used a support vector machine (SVM) and correlation analysis to assess the classification ability and treatment outcomes related to PD gradient alterations, respectively. The gradients showed significant differences between patients and control participants, mainly in somatosensory and visual networks involved in primary function, and higher-level association networks (dorsal attentional network (DAN) and default mode network (DMN)) related to motor control and execution. On the basis of the combined functional and structural gradient features of these networks, the SVM achieved an accuracy of 91.2% in discriminating patients from control participants. Treatment reduced the gradient difference. The altered gradient exhibited a significant correlation with motor improvement and was mainly distributed across the visual network, DAN and DMN. This study revealed damage to gradients in the brain characterized by sensorimotor and executive control deficits in PD patients. The application of gradient features to neurological disorders could lead to the development of potential diagnostic and treatment markers for PD.
Collapse
Affiliation(s)
- Jinglong Wu
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Lihua Ma
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Di Luo
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Zhaohui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical UniversityBeijingChina
| | - Li Wang
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Luyao Wang
- School of Life Science, Shanghai UniversityShanghaiChina
| | - Ting Li
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Jian Zhang
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Tiantian Liu
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Diyang Lv
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical UniversityBeijingChina
| | - Tianyi Yan
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
41
|
Wei Q, Lin S, Xu S, Zou J, Chen J, Kang M, Hu J, Liao X, Wei H, Ling Q, Shao Y, Yu Y. Graph theoretical analysis and independent component analysis of diabetic optic neuropathy: A resting-state functional magnetic resonance imaging study. CNS Neurosci Ther 2024; 30:e14579. [PMID: 38497532 PMCID: PMC10945884 DOI: 10.1111/cns.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/06/2023] [Accepted: 12/14/2023] [Indexed: 03/19/2024] Open
Abstract
AIMS This study aimed to investigate the resting-state functional connectivity and topologic characteristics of brain networks in patients with diabetic optic neuropathy (DON). METHODS Resting-state functional magnetic resonance imaging scans were performed on 23 patients and 41 healthy control (HC) subjects. We used independent component analysis and graph theoretical analysis to determine the topologic characteristics of the brain and as well as functional network connectivity (FNC) and topologic properties of brain networks. RESULTS Compared with HCs, patients with DON showed altered global characteristics. At the nodal level, the DON group had fewer nodal degrees in the thalamus and insula, and a greater number in the right rolandic operculum, right postcentral gyrus, and right superior temporal gyrus. In the internetwork comparison, DON patients showed significantly increased FNC between the left frontoparietal network (FPN-L) and ventral attention network (VAN). Additionally, in the intranetwork comparison, connectivity between the left medial superior frontal gyrus (MSFG) of the default network (DMN) and left putamen of auditory network was decreased in the DON group. CONCLUSION DON patients altered node properties and connectivity in the DMN, auditory network, FPN-L, and VAN. These results provide evidence of the involvement of specific brain networks in the pathophysiology of DON.
Collapse
Affiliation(s)
- Qian Wei
- Department of Endocrine and MetabolicThe First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Jiangxi Branch of National Clinical Research Center for Metabolic DiseaseNanchangJiangxiChina
- Queen Mary SchoolThe Nanchang UniversityNanchangJiangxiChina
| | - Si‐Min Lin
- Department of RadiologyXiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenFujianChina
| | - San‐Hua Xu
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jie Zou
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jun Chen
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Min Kang
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jin‐Yu Hu
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Xu‐Lin Liao
- Department of Ophthalmology and Visual SciencesThe Chinese University of Hong KongHong KongChina
| | - Hong Wei
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Qian Ling
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Yi Shao
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
- Department of OphthalmologyEye & ENT Hospital of Fudan UniversityShanghaiChina
| | - Yao Yu
- Department of Endocrine and MetabolicThe First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Jiangxi Branch of National Clinical Research Center for Metabolic DiseaseNanchangJiangxiChina
| |
Collapse
|
42
|
Liu X, Guo J, Jiang Z, Liu X, Chen H, Zhang Y, Wang J, Liu C, Gao Q, Chen H. Compressed cerebellar functional connectome hierarchy in spinocerebellar ataxia type 3. Hum Brain Mapp 2024; 45:e26624. [PMID: 38376240 PMCID: PMC10878347 DOI: 10.1002/hbm.26624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an inherited movement disorder characterized by a progressive decline in motor coordination. Despite the extensive functional connectivity (FC) alterations reported in previous SCA3 studies in the cerebellum and cerebellar-cerebral pathways, the influence of these FC disturbances on the hierarchical organization of cerebellar functional regions remains unclear. Here, we compared 35 SCA3 patients with 48 age- and sex-matched healthy controls using a combination of voxel-based morphometry and resting-state functional magnetic resonance imaging to investigate whether cerebellar hierarchical organization is altered in SCA3. Utilizing connectome gradients, we identified the gradient axis of cerebellar hierarchical organization, spanning sensorimotor to transmodal (task-unfocused) regions. Compared to healthy controls, SCA3 patients showed a compressed hierarchical organization in the cerebellum at both voxel-level (p < .05, TFCE corrected) and network-level (p < .05, FDR corrected). This pattern was observed in both intra-cerebellar and cerebellar-cerebral gradients. We observed that decreased intra-cerebellar gradient scores in bilateral Crus I/II both negatively correlated with SARA scores (left/right Crus I/II: r = -.48/-.50, p = .04/.04, FDR corrected), while increased cerebellar-cerebral gradients scores in the vermis showed a positive correlation with disease duration (r = .48, p = .04, FDR corrected). Control analyses of cerebellar gray matter atrophy revealed that gradient alterations were associated with cerebellar volume loss. Further FC analysis showed increased functional connectivity in both unimodal and transmodal areas, potentially supporting the disrupted cerebellar functional hierarchy uncovered by the gradients. Our findings provide novel evidence regarding alterations in the cerebellar functional hierarchy in SCA3.
Collapse
Affiliation(s)
- Xinyuan Liu
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jing Guo
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhouyu Jiang
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xingli Liu
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hui Chen
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yuhan Zhang
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jian Wang
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Chen Liu
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Qing Gao
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Huafu Chen
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
43
|
Tan JB, Müller EJ, Orlando IF, Taylor NL, Margulies DS, Szeto J, Lewis SJG, Shine JM, O'Callaghan C. Abnormal higher-order network interactions in Parkinson's disease visual hallucinations. Brain 2024; 147:458-471. [PMID: 37677056 DOI: 10.1093/brain/awad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Visual hallucinations in Parkinson's disease can be viewed from a systems-level perspective, whereby dysfunctional communication between brain networks responsible for perception predisposes a person to hallucinate. To this end, abnormal functional interactions between higher-order and primary sensory networks have been implicated in the pathophysiology of visual hallucinations in Parkinson's disease, however the precise signatures remain to be determined. Dimensionality reduction techniques offer a novel means for simplifying the interpretation of multidimensional brain imaging data, identifying hierarchical patterns in the data that are driven by both within- and between-functional network changes. Here, we applied two complementary non-linear dimensionality reduction techniques-diffusion-map embedding and t-distributed stochastic neighbour embedding (t-SNE)-to resting state functional MRI data, in order to characterize the altered functional hierarchy associated with susceptibility to visual hallucinations. Our study involved 77 people with Parkinson's disease (31 with hallucinations; 46 without hallucinations) and 19 age-matched healthy control subjects. In patients with visual hallucinations, we found compression of the unimodal-heteromodal gradient consistent with increased functional integration between sensory and higher order networks. This was mirrored in a traditional functional connectivity analysis, which showed increased connectivity between the visual and default mode networks in the hallucinating group. Together, these results suggest a route by which higher-order regions may have excessive influence over earlier sensory processes, as proposed by theoretical models of hallucinations across disorders. By contrast, the t-SNE analysis identified distinct alterations in prefrontal regions, suggesting an additional layer of complexity in the functional brain network abnormalities implicated in hallucinations, which was not apparent in traditional functional connectivity analyses. Together, the results confirm abnormal brain organization associated with the hallucinating phenotype in Parkinson's disease and highlight the utility of applying convergent dimensionality reduction techniques to investigate complex clinical symptoms. In addition, the patterns we describe in Parkinson's disease converge with those seen in other conditions, suggesting that reduced hierarchical differentiation across sensory-perceptual systems may be a common transdiagnostic vulnerability in neuropsychiatric disorders with perceptual disturbances.
Collapse
Affiliation(s)
- Joshua B Tan
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Eli J Müller
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
- Centre for Complex Systems, School of Physics, University of Sydney, Sydney 2050, Australia
| | - Isabella F Orlando
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Natasha L Taylor
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Center National de la Recherche Scientifique (CNRS) and Université de Paris, 75006 Paris, France
| | - Jennifer Szeto
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Simon J G Lewis
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - James M Shine
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
- Centre for Complex Systems, School of Physics, University of Sydney, Sydney 2050, Australia
| | - Claire O'Callaghan
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| |
Collapse
|
44
|
Luo J, Qin P, Bi Q, Wu K, Gong G. Individual variability in functional connectivity of human auditory cortex. Cereb Cortex 2024; 34:bhae007. [PMID: 38282455 DOI: 10.1093/cercor/bhae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/30/2024] Open
Abstract
Individual variability in functional connectivity underlies individual differences in cognition and behaviors, yet its association with functional specialization in the auditory cortex remains elusive. Using resting-state functional magnetic resonance imaging data from the Human Connectome Project, this study was designed to investigate the spatial distribution of auditory cortex individual variability in its whole-brain functional network architecture. An inherent hierarchical axis of the variability was discerned, which radiates from the medial to lateral orientation, with the left auditory cortex demonstrating more pronounced variations than the right. This variability exhibited a significant correlation with the variations in structural and functional metrics in the auditory cortex. Four auditory cortex subregions, which were identified from a clustering analysis based on this variability, exhibited unique connectional fingerprints and cognitive maps, with certain subregions showing specificity to speech perception functional activation. Moreover, the lateralization of the connectional fingerprint exhibited a U-shaped trajectory across the subregions. These findings emphasize the role of individual variability in functional connectivity in understanding cortical functional organization, as well as in revealing its association with functional specialization from the activation, connectome, and cognition perspectives.
Collapse
Affiliation(s)
- Junhao Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Peipei Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qiuhui Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
| | - Ke Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
45
|
Jang Y, Choi H, Yoo S, Park H, Park BY. Structural connectome alterations between individuals with autism and neurotypical controls using feature representation learning. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:2. [PMID: 38267953 PMCID: PMC10807082 DOI: 10.1186/s12993-024-00228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Autism spectrum disorder is one of the most common neurodevelopmental conditions associated with sensory and social communication impairments. Previous neuroimaging studies reported that atypical nodal- or network-level functional brain organization in individuals with autism was associated with autistic behaviors. Although dimensionality reduction techniques have the potential to uncover new biomarkers, the analysis of whole-brain structural connectome abnormalities in a low-dimensional latent space is underinvestigated. In this study, we utilized autoencoder-based feature representation learning for diffusion magnetic resonance imaging-based structural connectivity in 80 individuals with autism and 61 neurotypical controls that passed strict quality controls. We generated low-dimensional latent features using the autoencoder model for each group and adopted an integrated gradient approach to assess the contribution of the input data for predicting latent features during the encoding process. Subsequently, we compared the integrated gradient values between individuals with autism and neurotypical controls and observed differences within the transmodal regions and between the sensory and limbic systems. Finally, we identified significant associations between integrated gradient values and communication abilities in individuals with autism. Our findings provide insights into the whole-brain structural connectome in autism and may help identify potential biomarkers for autistic connectopathy.
Collapse
Affiliation(s)
- Yurim Jang
- Artificial Intelligence Convergence Research Center, Inha University, Incheon, Republic of Korea
| | - Hyoungshin Choi
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Seulki Yoo
- Convergence Research Institute, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
- Department of Data Science, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
46
|
Huang Z, Mashour GA, Hudetz AG. Propofol Disrupts the Functional Core-Matrix Architecture of the Thalamus in Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576934. [PMID: 38328136 PMCID: PMC10849566 DOI: 10.1101/2024.01.23.576934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Research into the role of thalamocortical circuits in anesthesia-induced unconsciousness is difficult due to anatomical and functional complexity. Prior neuroimaging studies have examined either the thalamus as a whole or focused on specific subregions, overlooking the distinct neuronal subtypes like core and matrix cells. We conducted a study of heathy volunteers and functional magnetic resonance imaging during conscious baseline, deep sedation, and recovery. We advanced the functional gradient mapping technique to delineate the functional geometry of thalamocortical circuits, within a framework of the unimodal-transmodal functional axis of the cortex. We observed a significant shift in this geometry during unconsciousness, marked by the dominance of unimodal over transmodal geometry. This alteration was closely linked to the spatial variations in the density of matrix cells within the thalamus. This research bridges cellular and systems-level understanding, highlighting the crucial role of thalamic core-matrix functional architecture in understanding the neural mechanisms of states of consciousness.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anthony G Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
47
|
Wang X, Huang CC, Tsai SJ, Lin CP, Cai Q. The aging trajectories of brain functional hierarchy and its impact on cognition across the adult lifespan. Front Aging Neurosci 2024; 16:1331574. [PMID: 38313436 PMCID: PMC10837851 DOI: 10.3389/fnagi.2024.1331574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction The hierarchical network architecture of the human brain, pivotal to cognition and behavior, can be explored via gradient analysis using restingstate functional MRI data. Although it has been employed to understand brain development and disorders, the impact of aging on this hierarchical architecture and its link to cognitive decline remains elusive. Methods This study utilized resting-state functional MRI data from 350 healthy adults (aged 20-85) to investigate the functional hierarchical network using connectome gradient analysis with a cross-age sliding window approach. Gradient-related metrics were estimated and correlated with age to evaluate trajectory of gradient changes across lifespan. Results The principal gradient (unimodal-to-transmodal) demonstrated a significant non-linear relationship with age, whereas the secondary gradient (visual-to-somatomotor) showed a simple linear decreasing pattern. Among the principal gradient, significant age-related changes were observed in the somatomotor, dorsal attention, limbic and default mode networks. The changes in the gradient scores of both the somatomotor and frontal-parietal networks were associated with greater working memory and visuospatial ability. Gender differences were found in global gradient metrics and gradient scores of somatomotor and default mode networks in the principal gradient, with no interaction with age effect. Discussion Our study delves into the aging trajectories of functional connectome gradient and its cognitive impact across the adult lifespan, providing insights for future research into the biological underpinnings of brain function and pathological models of atypical aging processes.
Collapse
Affiliation(s)
- Xiao Wang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
| | - Shih-Jen Tsai
- Brain Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Ching-Po Lin
- Brain Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Institute of Neuroscience, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Qing Cai
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
| |
Collapse
|
48
|
Park BY, Benkarim O, Weber CF, Kebets V, Fett S, Yoo S, Martino AD, Milham MP, Misic B, Valk SL, Hong SJ, Bernhardt BC. Connectome-wide structure-function coupling models implicate polysynaptic alterations in autism. Neuroimage 2024; 285:120481. [PMID: 38043839 DOI: 10.1016/j.neuroimage.2023.120481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is one of the most common neurodevelopmental diagnoses. Although incompletely understood, structural and functional network alterations are increasingly recognized to be at the core of the condition. We utilized multimodal imaging and connectivity modeling to study structure-function coupling in ASD and probed mono- and polysynaptic mechanisms on structurally-governed network function. We examined multimodal magnetic resonance imaging data in 80 ASD and 61 neurotypical controls from the Autism Brain Imaging Data Exchange (ABIDE) II initiative. We predicted intrinsic functional connectivity from structural connectivity data in each participant using a Riemannian optimization procedure that varies the times that simulated signals can unfold along tractography-derived personalized connectomes. In both ASD and neurotypical controls, we observed improved structure-function prediction at longer diffusion time scales, indicating better modeling of brain function when polysynaptic mechanisms are accounted for. Prediction accuracy differences (∆prediction accuracy) were marked in transmodal association systems, such as the default mode network, in both neurotypical controls and ASD. Differences were, however, lower in ASD in a polysynaptic regime at higher simulated diffusion times. We compared regional differences in ∆prediction accuracy between both groups to assess the impact of polysynaptic communication on structure-function coupling. This analysis revealed that between-group differences in ∆prediction accuracy followed a sensory-to-transmodal cortical hierarchy, with an increased gap between controls and ASD in transmodal compared to sensory/motor systems. Multivariate associative techniques revealed that structure-function differences reflected inter-individual differences in autistic symptoms and verbal as well as non-verbal intelligence. Our network modeling approach sheds light on atypical structure-function coupling in autism, and suggests that polysynaptic network mechanisms are implicated in the condition and that these can help explain its wide range of associated symptoms.
Collapse
Affiliation(s)
- Bo-Yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Department of Data Science, Inha University, Incheon, South Korea; Department of Statistics and Data Science, Inha University, Incheon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.
| | - Oualid Benkarim
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Clara F Weber
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Valeria Kebets
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Serena Fett
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Seulki Yoo
- Convergence Research Institute, Sungkyunkwan University, Suwon, South Korea
| | - Adriana Di Martino
- Center for the Developing Brain, Child Mind Institute, New York, United States
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, United States
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Sofie L Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Seok-Jun Hong
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; Center for the Developing Brain, Child Mind Institute, New York, United States; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
49
|
Del Río M, Racey C, Ren Z, Qiu J, Wang HT, Ward J. Higher Sensory Sensitivity is Linked to Greater Expansion Amongst Functional Connectivity Gradients. J Autism Dev Disord 2024; 54:56-74. [PMID: 36227443 DOI: 10.1007/s10803-022-05772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Insofar as the autistic-like phenotype presents in the general population, it consists of partially dissociable traits, such as social and sensory issues. Here, we investigate individual differences in cortical organisation related to autistic-like traits. Connectome gradient decomposition based on resting state fMRI data reliably reveals a principal gradient spanning from unimodal to transmodal regions, reflecting the transition from perception to abstract cognition. In our non-clinical sample, this gradient's expansion, indicating less integration between visual and default mode networks, correlates with subjective sensory sensitivity (measured using the Glasgow Sensory Questionnaire, GSQ), but not other autistic-like traits (measured using the Autism Spectrum Quotient, AQ). This novel brain-based correlate of the GSQ demonstrates sensory issues can be disentangled from the wider autistic-like phenotype.
Collapse
Affiliation(s)
| | - Chris Racey
- School of Psychology, University of Sussex, Brighton, UK
- Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Zhiting Ren
- School of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, China
| | - Hao-Ting Wang
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
- Laboratory for Brain Simulation and Exploration (SIMEXP), Montreal Geriatrics Institute (CRIUGM), University of Montreal, Montreal, Canada
| | - Jamie Ward
- School of Psychology, University of Sussex, Brighton, UK
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
- Sussex Neuroscience, University of Sussex, Brighton, UK
| |
Collapse
|
50
|
Nguyen TT, Qian X, Ng EKK, Ong MQW, Ngoh ZM, Yeo SSP, Lau JM, Tan AP, Broekman BFP, Law EC, Gluckman PD, Chong YS, Cortese S, Meaney MJ, Zhou JH. Variations in Cortical Functional Gradients Relate to Dimensions of Psychopathology in Preschool Children. J Am Acad Child Adolesc Psychiatry 2024; 63:80-89. [PMID: 37394176 DOI: 10.1016/j.jaac.2023.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/26/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVE It is unclear how the functional brain hierarchy is organized in preschool-aged children, and whether alterations in the brain organization are linked to mental health in this age group. Here, we assessed whether preschool-aged children exhibit a brain organizational structure similar to that of older children, how this structure might change over time, and whether it might reflect mental health. METHOD This study derived functional gradients using diffusion embedding from resting state functional magnetic resonance imaging data of 4.5-year-old children (N = 100, 42 male participants) and 6.0-year-old children (N = 133, 62 male participants) from the longitudinal Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort. We then conducted partial least-squares correlation analyses to identify the association between the impairment ratings of different mental disorders and network gradient values. RESULTS The main organizing axis of functional connectivity (ie, principal gradient) separated the visual and somatomotor regions (ie, unimodal) in preschool-aged children, whereas the second axis delineated the unimodal-transmodal gradient. This pattern of organization was stable from 4.5 to 6 years of age. The second gradient separating the high- and low-order networks exhibited a diverging pattern across mental health severity, differentiating dimensions related to attention-deficit/hyperactivity disorder and phobic disorders. CONCLUSION This study characterized, for the first time, the functional brain hierarchy in preschool-aged children. A divergence in functional gradient pattern across different disease dimensions was found, highlighting how perturbations in functional brain organization can relate to the severity of different mental health disorders.
Collapse
Affiliation(s)
- Thuan Tinh Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Xing Qian
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eric Kwun Kei Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Marcus Qin Wen Ong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhen Ming Ngoh
- Singapore Institute for Clinical Sciences (SICS), A∗STAR Research Entities (ARES), Singapore
| | - Shayne S P Yeo
- Singapore Institute for Clinical Sciences (SICS), A∗STAR Research Entities (ARES), Singapore
| | - Jia Ming Lau
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences (SICS), A∗STAR Research Entities (ARES), Singapore; National University Hospital, Singapore, Singapore
| | - Birit F P Broekman
- OLVG, Amsterdam, the Netherlands, and Amsterdam University Medical Centre, Vrije Universiteit, Amsterdam, the Netherlands
| | - Evelyn C Law
- Singapore Institute for Clinical Sciences (SICS), A∗STAR Research Entities (ARES), Singapore; National University Health System, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences (SICS), A∗STAR Research Entities (ARES), Singapore; Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Yap-Seng Chong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Singapore Institute for Clinical Sciences (SICS), A∗STAR Research Entities (ARES), Singapore; National University Health System, Singapore
| | - Samuele Cortese
- Liggins Institute, University of Auckland, Auckland, New Zealand; School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences (CNS and Psychiatry), University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, New York; University of Nottingham, Nottingham, United Kingdom
| | - Michael J Meaney
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Singapore Institute for Clinical Sciences (SICS), A∗STAR Research Entities (ARES), Singapore; Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada, and the Strategic Research Program, A∗STAR Research Entities (ARES), Singapore
| | - Juan Helen Zhou
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School, National University of Singapore, Singapore, Singapore.
| |
Collapse
|