1
|
Ross AD, Hait D, Scutelnic V, Neumark DM, Head-Gordon M, Leone SR. Measurement of coherent vibrational dynamics with X-ray Transient Absorption Spectroscopy simultaneously at the Carbon K- and Chlorine L 2,3- edges. COMMUNICATIONS PHYSICS 2024; 7:304. [PMID: 39281307 PMCID: PMC11399099 DOI: 10.1038/s42005-024-01794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
X-ray Transient Absorption Spectroscopy (XTAS) is a powerful probe for ultrafast molecular dynamics. The evolution of XTAS signal is controlled by the shapes of potential energy surfaces of the associated core-excited states, which are difficult to directly measure. Here, we study the vibrational dynamics of Raman activated CCl4 with XTAS targeting the C 1s and Cl 2p electrons. The totally symmetric stretching mode leads to concerted elongation or contraction in bond lengths, which in turn induce an experimentally measurable red or blue shift in the X-ray absorption energies associated with inner-shell electron excitations to the valence antibonding levels. The ratios between slopes of different core-excited potential energy surfaces (CEPESs) thereby extracted agree very well with Restricted Open-Shell Kohn-Sham calculations. The other, asymmetric, modes do not measurably contribute to the XTAS signal. The results highlight the ability of XTAS to reveal coherent nuclear dynamics involving < 0.01 Å atomic displacements and also provide direct measurement of forces on CEPESs.
Collapse
Affiliation(s)
- Andrew D Ross
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Present Address: Toptica Photonics, Inc., Pittsford, NY 14534 USA
| | - Diptarka Hait
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Present Address: Department of Chemistry and PULSE Institute, Stanford University, Stanford, CA 94305 USA
| | - Valeriu Scutelnic
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Daniel M Neumark
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Stephen R Leone
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Physics, University of California Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
2
|
Eronen EA, Vladyka A, Sahle CJ, Niskanen J. Structural descriptors and information extraction from X-ray emission spectra: aqueous sulfuric acid. Phys Chem Chem Phys 2024; 26:22752-22761. [PMID: 39162056 DOI: 10.1039/d4cp02454k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Machine learning can reveal new insights into X-ray spectroscopy of liquids when the local atomistic environment is presented to the model in a suitable way. Many unique structural descriptor families have been developed for this purpose. We benchmark the performance of six different descriptor families using a computational data set of 24 200 sulfur Kβ X-ray emission spectra of aqueous sulfuric acid simulated at six different concentrations. We train a feed-forward neural network to predict the spectra from the corresponding descriptor vectors and find that the local many-body tensor representation, smooth overlap of atomic positions and atom-centered symmetry functions excel in this comparison. We found a similar hierarchy when applying the emulator-based component analysis to identify and separate the spectrally relevant structural characteristics from the irrelevant ones. In this case, the spectra were dominantly dependent on the concentration of the system, whereas adding the second most significant degree of freedom in the decomposition allowed for distinction of the protonation state of the acid molecule.
Collapse
Affiliation(s)
- E A Eronen
- Department of Physics and Astronomy, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - A Vladyka
- Department of Physics and Astronomy, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - Ch J Sahle
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - J Niskanen
- Department of Physics and Astronomy, University of Turku, FI-20014 Turun yliopisto, Finland.
| |
Collapse
|
3
|
Esmailzadeh F, Taheri-Ledari R, Salehi MM, Zarei-Shokat S, Ganjali F, Mohammadi A, Zare I, Kashtiaray A, Jalali F, Maleki A. Bonding states of gold/silver plasmonic nanostructures and sulfur-containing active biological ingredients in biomedical applications: a review. Phys Chem Chem Phys 2024; 26:16407-16437. [PMID: 38807475 DOI: 10.1039/d3cp04131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs). Hence, it is essential to investigate Au/Ag-S interfaces precisely and determine the exact bonding states in the active nanobiomaterials. This study intends to provide useful insights into the interactions between Au/Ag NPs and thiol groups that exist in the structure of biomaterials. In this regard, the modeling of Au/Ag-S bonding in active biological ingredients is precisely reviewed. Then, the physiological stability of Au/Ag-based plasmonic nanobioconjugates in real physiological environments (pharmacokinetics) is discussed. Recent experimental validation and achievements of plasmonic theranostics and radiolabelled nanomaterials based on Au/Ag-S conjugation are also profoundly reviewed. This study will also help researchers working on biosensors in which plasmonic devices deal with the thiol-containing biomaterials (e.g., antibodies) inside blood serum and living cells.
Collapse
Affiliation(s)
- Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd, Shiraz 7178795844, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
4
|
Folkestad SD, Paul AC, Paul Née Matveeva R, Coriani S, Odelius M, Iannuzzi M, Koch H. Understanding X-ray absorption in liquid water using triple excitations in multilevel coupled cluster theory. Nat Commun 2024; 15:3551. [PMID: 38670938 PMCID: PMC11053016 DOI: 10.1038/s41467-024-47690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
X-ray absorption (XA) spectroscopy is an essential experimental tool to investigate the local structure of liquid water. Interpretation of the experiment poses a significant challenge and requires a quantitative theoretical description. High-quality theoretical XA spectra require reliable molecular dynamics simulations and accurate electronic structure calculations. Here, we present the first successful application of coupled cluster theory to model the XA spectrum of liquid water. We overcome the computational limitations on system size by employing a multilevel coupled cluster framework for large molecular systems. Excellent agreement with the experimental spectrum is achieved by including triple excitations in the wave function and using molecular structures from state-of-the-art path-integral molecular dynamics. We demonstrate that an accurate description of the electronic structure within the first solvation shell is sufficient to successfully model the XA spectrum of liquid water within the multilevel framework. Furthermore, we present a rigorous charge transfer analysis of the XA spectrum, which is reliable due to the accuracy and robustness of the electronic structure methodology. This analysis aligns with previous studies regarding the character of the prominent features of the XA spectrum of liquid water.
Collapse
Affiliation(s)
- Sarai Dery Folkestad
- Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Alexander C Paul
- Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Regina Paul Née Matveeva
- Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, DTU, 2800, Kongens Lyngby, Denmark
| | - Michael Odelius
- Department of Physics, Stockholm University, 10691, Stockholm, Sweden
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, 8057, Zürich, Switzerland
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.
| |
Collapse
|
5
|
DFT and TD-DFT study of hydrogen bonded complexes of aspartic acid and n water (n = 1 and 2). J Mol Model 2023; 29:94. [PMID: 36905452 DOI: 10.1007/s00894-023-05500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
CONTEXT Hydrogen bonds (HB) influence the conformational preferences of biomolecules and their optical and electronic properties. The directional interaction of molecules of water can be a prototype to understand the effects of HBs on biomolecules. Among the neurotransmitters (NT), L-aspartic acid (ASP) stands out due to its importance in health and as a precursor of several biomolecules. As it presents different functional groups and readily forms inter- and intramolecular HBs, ASP can be considered a prototype for understanding the behavior of NTs when interacting by HB with other substances. Although several theoretical studies have been performed in the past on isolated ASP and its formed complexes with water, both in gas and liquid phases, using DFT and TD-DFT formalisms, these works did not perform large basis set calculations or study electronic transitions of ASP-water complexes. We investigated the HB interactions in complexes of ASP and water molecules. The results show that the interactions between the carboxylic groups of ASP with water molecules, forming cyclic structures with two HBs, lead to more stable and less polar complexes than other conformers formed between water and the NH2 group. It was observed that there is a relationship between the deviation in the UV-Vis absorption band of the ASP and the interactions of water with the HOMO and LUMO orbitals with the stabilization/destabilization of the S1 state to the S0 of the complexes. However, in some cases, such as 1:1 complex ASP-W2, this analysis may be inaccurate due to small changes in ΔE. METHODS We studied the landscapes of the ground state surface of different conformers of isolated L-ASP and the L-ASP-(H2O)n complexes (n = 1 and 2) using the DFT formalism, with the B3LYP functional, and six different basis sets: 6-31 + + G(d,p), 6-311 + + G(d,p), D95 + + (d,p), D95V + + (d,p), cc-pVDZ, and, cc-pVTZ basis sets. The cc-pVTZ basis set provides the minimum energy of all conformers, and therefore, we performed the analysis with this basis set. We evaluated the stabilization of the ASP and complexes using the minimum ground state energy, corrected by the zero point energy and the interaction energy between the ASP and the water molecules. We also calculated the vertical electronic transitions S1 ← S0, and their properties using the TD-DFT formalism at B3LYP/cc-pVTZ level with the optimized geometries for S0 state with the same basis set. For the analysis of the vertical transitions of isolated ASP and the ASP-(H2O)n complexes, we calculated the electrostatic energy in the S0 and S1 states. We performed the calculations with the Gaussian 09 software package. We used the VMD software package to visualize the geometries and shapes of the molecule and complexes.
Collapse
|
6
|
Vladyka A, Sahle CJ, Niskanen J. Towards structural reconstruction from X-ray spectra. Phys Chem Chem Phys 2023; 25:6707-6713. [PMID: 36804587 DOI: 10.1039/d2cp05420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We report a statistical analysis of Ge K-edge X-ray emission spectra simulated for amorphous GeO2 at elevated pressures. We find that employing machine learning approaches we can reliably predict the statistical moments of the Kβ'' and Kβ2 peaks in the spectrum from the Coulomb matrix descriptor with a training set of ∼ 104 samples. Spectral-significance-guided dimensionality reduction techniques allow us to construct an approximate inverse mapping from spectral moments to pseudo-Coulomb matrices. When applying this to the moments of the ensemble-mean spectrum, we obtain distances from the active site that match closely to those of the ensemble mean and which moreover reproduce the pressure-induced coordination change in amorphous GeO2. With this approach utilizing emulator-based component analysis, we are able to filter out the artificially complete structural information available from simulated snapshots, and quantitatively analyse structural changes that can be inferred from the changes in the Kβ emission spectrum alone.
Collapse
Affiliation(s)
- Anton Vladyka
- University of Turku, Department of Physics and Astronomy, 20014 Turun yliopisto, Finland.
| | - Christoph J Sahle
- European Synchrotron Radiation Source, 71 Avenue des Martyrs, 38000 Grenoble, France.
| | - Johannes Niskanen
- University of Turku, Department of Physics and Astronomy, 20014 Turun yliopisto, Finland.
| |
Collapse
|
7
|
Takahashi O, Pettersson LGM. Dynamical and interference effects in X-ray emission spectroscopy of H-bonded water – origin of the split lone-pair peaks. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2170686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Osamu Takahashi
- Basic Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Lars G. M. Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Ammann M, Artiglia L. Solvation, Surface Propensity, and Chemical Reactions of Solutes at Atmospheric Liquid-Vapor Interfaces. Acc Chem Res 2022; 55:3641-3651. [PMID: 36472357 PMCID: PMC9774673 DOI: 10.1021/acs.accounts.2c00604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 12/12/2022]
Abstract
surface is covered by oceans, a large number of liquid aerosol particles fill the air, and clouds hold a tiny but critical fraction of Earth's water in the air to influence our climate and hydrology, enabling the lives of humans and ecosystems. The surfaces of these liquids provide the interface for the transfer of gases, for nucleation processes, and for catalyzing important chemical reactions. Coupling a range of spectroscopic tools to liquid microjets has become an important approach to better understanding dynamics, structure, and chemistry at liquid interfaces. Liquid microjets offer stability in vacuum and ambient pressure environments, thus also allowing X-ray photoelectron spectroscopy (XPS) with manageable efforts in terms of differential pumping. Liquid microjets are operated at speeds sufficient to allow for a locally equilibrated surface in terms of water dynamics and solute surface partitioning. XPS is based on the emission of core-level electrons, the binding energy of which is selective for the element and its chemical environment. Inelastic scattering of electrons establishes the probing depth of XPS in the nanometer range and thus its surface sensitivity.In this Account, we focus on aqueous solutions relevant to the surface of oceans, aqueous aerosols, or cloudwater. We are interested in understanding solvation and acid dissociation at the interface, interfacial aspects of reactions with gas-phase reactants, and the interplay of ions with organic molecules at the interface. The strategy is to obtain a link between the molecular-level picture and macroscopic properties and reactivity in the atmospheric context.We show consistency between surface tension and XPS for a range of surface-active organic species as an important proof for interrogating an equilibrated liquid surface. Measurements with organic acids and amines offer important insight into the question of apparent acidity or basicity at the interface. Liquid microjet XPS has settled the debate of the surface enhancement of halide ions, shown using the example of bromide and its oxidation products. Despite the absence of a strong enhancement for the bromide ion, its rate of oxidation by ozone is surface catalyzed through the stabilization of the bromide ozonide intermediate at the interface. In another reaction system, the one between Fe2+ and H2O2, a similar intermediate in the form of highly valent iron species could not be detected by XPS under the experimental conditions employed, shedding light on the abundance of this intermediate in the environment but also on the constraints within which surface species can be detected. Emphasizing the importance of electrostatic effects, we show how a cationic surfactant attracts charged bromide anions to the interface, accompanied by enhanced oxidation rates by ozone, overriding the role of surfactants as a barrier for the access of gas-phase reactants. The reactivity and structure at interfaces thus result from a subtle balance between hygroscopic and hydrophobic interactions, electrostatic effects, and the structural properties of both liquids and solutes.
Collapse
Affiliation(s)
- Markus Ammann
- Laboratory of Environmental
Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Luca Artiglia
- Laboratory of Environmental
Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
9
|
Cuts through the manifold of molecular H 2O potential energy surfaces in liquid water at ambient conditions. Proc Natl Acad Sci U S A 2022; 119:e2118101119. [PMID: 35787045 PMCID: PMC9282235 DOI: 10.1073/pnas.2118101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Liquid water at ambient conditions is ubiquitous in chemistry and biology as well as in technology, energy, and atmospheric processes. Since parts of the phase diagram of water are unsettled—most notably the supercooled liquid homogeneous nucleation region—repercussions thereof on our molecular-level understanding for even the common ambient conditions remain. Breathtaking advances in X-ray–based approaches over the last decade give us now the tools to derive molecular potential energy surfaces as a quantitative view on the molecular manifold within the fluctuating hydrogen bonding network. With selective cuts along the local asymmetric O–H bond coordinate and the symmetric normal mode excitations an experimental foundation to benchmark competing molecular-level models of water has been achieved. The fluctuating hydrogen bridge bonded network of liquid water at ambient conditions entails a varied ensemble of the underlying constituting H2O molecular moieties. This is mirrored in a manifold of the H2O molecular potentials. Subnatural line width resonant inelastic X-ray scattering allowed us to quantify the manifold of molecular potential energy surfaces along the H2O symmetric normal mode and the local asymmetric O–H bond coordinate up to 1 and 1.5 Å, respectively. The comparison of the single H2O molecular potentials and spectroscopic signatures with the ambient conditions liquid phase H2O molecular potentials is done on various levels. In the gas phase, first principles, Morse potentials, and stepwise harmonic potential reconstruction have been employed and benchmarked. In the liquid phase the determination of the potential energy manifold along the local asymmetric O–H bond coordinate from resonant inelastic X-ray scattering via the bound state oxygen 1s to 4a1 resonance is treated within these frameworks. The potential energy surface manifold along the symmetric stretch from resonant inelastic X-ray scattering via the oxygen 1s to 2b2 resonance is based on stepwise harmonic reconstruction. We find in liquid water at ambient conditions H2O molecular potentials ranging from the weak interaction limit to strongly distorted potentials which are put into perspective to established parameters, i.e., intermolecular O–H, H–H, and O–O correlation lengths from neutron scattering.
Collapse
|
10
|
Niskanen J, Vladyka A, Niemi J, Sahle C. Emulator-based decomposition for structural sensitivity of core-level spectra. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220093. [PMID: 35706659 PMCID: PMC9174725 DOI: 10.1098/rsos.220093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 05/03/2023]
Abstract
We explore the sensitivity of several core-level spectroscopic methods to the underlying atomistic structure by using the water molecule as our test system. We first define a metric that measures the magnitude of spectral change as a function of the structure, which allows for identifying structural regions with high spectral sensitivity. We then apply machine-learning-emulator-based decomposition of the structural parameter space for maximal explained spectral variance, first on overall spectral profile and then on chosen integrated regions of interest therein. The presented method recovers more spectral variance than partial least-squares fitting and the observed behaviour is well in line with the aforementioned metric for spectral sensitivity. The analysis method is able to independently identify spectroscopically dominant degrees of freedom, and to quantify their effect and significance.
Collapse
Affiliation(s)
- J. Niskanen
- Department of Physics and Astronomy, University of Turku, 20014 Turun yliopisto, Finland
| | - A. Vladyka
- Department of Physics and Astronomy, University of Turku, 20014 Turun yliopisto, Finland
| | - J. Niemi
- Department of Physics and Astronomy, University of Turku, 20014 Turun yliopisto, Finland
| | - C.J. Sahle
- European Synchrotron Radiation Source, 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
11
|
Uemura Y, Ismail ASM, Park SH, Kwon S, Kim M, Elnaggar H, Frati F, Wadati H, Hirata Y, Zhang Y, Yamagami K, Yamamoto S, Matsuda I, Halisdemir U, Koster G, Milne C, Ammann M, Weckhuysen BM, de Groot FMF. Hole Dynamics in Photoexcited Hematite Studied with Femtosecond Oxygen K-edge X-ray Absorption Spectroscopy. J Phys Chem Lett 2022; 13:4207-4214. [PMID: 35512383 PMCID: PMC9125685 DOI: 10.1021/acs.jpclett.2c00295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/05/2022] [Indexed: 05/21/2023]
Abstract
Hematite (α-Fe2O3) is a photoelectrode for the water splitting process because of its relatively narrow bandgap and abundance in the earth's crust. In this study, the photoexcited state of a hematite thin film was investigated with femtosecond oxygen K-edge X-ray absorption spectroscopy (XAS) at the PAL-XFEL in order to follow the dynamics of its photoexcited states. The 200 fs decay time of the hole state in the valence band was observed via its corresponding XAS feature.
Collapse
Affiliation(s)
- Yohei Uemura
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
- Laboratory
of Environmental Chemistry, Energy and Environment Research Division, Paul Scherrer Institut, Villigen, 5232, Switzerland
- European
XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
| | - Ahmed S. M. Ismail
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
| | - Sang Han Park
- PAL-XFEL, Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Soonnam Kwon
- PAL-XFEL, Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Minseok Kim
- PAL-XFEL, Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Hebatalla Elnaggar
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
| | - Federica Frati
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
| | - Hiroki Wadati
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Graduate
School of Material Science, University of
Hyogo, Kamigori, Hyogo 678-1297, Japan
| | - Yasuyuki Hirata
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Yujun Zhang
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Kohei Yamagami
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Susumu Yamamoto
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Iwao Matsuda
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Ufuk Halisdemir
- Faculty
of
Science and Technology and MESA + Institute for Nanotechnology, University of Twente, P.O. Box 2171, Enschede, 7500 AE, The Netherlands
| | - Gertjan Koster
- Faculty
of
Science and Technology and MESA + Institute for Nanotechnology, University of Twente, P.O. Box 2171, Enschede, 7500 AE, The Netherlands
| | - Christopher Milne
- European
XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
- SwissFEL, Paul
Scherrer Institut, Villigen, 5232, Switzerland
| | - Markus Ammann
- Laboratory
of Environmental Chemistry, Energy and Environment Research Division, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
| | - Frank M. F. de Groot
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, Utrecht, 3584 CG, The Netherlands
| |
Collapse
|
12
|
Vaz da Cruz V, Büchner R, Fondell M, Pietzsch A, Eckert S, Föhlisch A. Targeting Individual Tautomers in Equilibrium by Resonant Inelastic X-ray Scattering. J Phys Chem Lett 2022; 13:2459-2466. [PMID: 35266716 PMCID: PMC8935368 DOI: 10.1021/acs.jpclett.1c03453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Tautomerism is one of the most important forms of isomerism, owing to the facile interconversion between species and the large differences in chemical properties introduced by the proton transfer connecting the tautomers. Spectroscopic techniques are often used for the characterization of tautomers. In this context, separating the overlapping spectral response of coexisting tautomers is a long-standing challenge in chemistry. Here, we demonstrate that by using resonant inelastic X-ray scattering tuned to the core excited states at the site of proton exchange between tautomers one is able to experimentally disentangle the manifold of valence excited states of each tautomer in a mixture. The technique is applied to the prototypical keto-enol equilibrium of 3-hydroxypyridine in aqueous solution. We detect transitions from the occupied orbitals into the LUMO for each tautomer in solution, which report on intrinsic and hydrogen-bond-induced orbital polarization within the π and σ manifolds at the proton-transfer site.
Collapse
Affiliation(s)
- Vinícius Vaz da Cruz
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Robby Büchner
- Universität
Potsdam, Institut für Physik und Astronomie, 14476 Potsdam, Germany
| | - Mattis Fondell
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Annette Pietzsch
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Sebastian Eckert
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Alexander Föhlisch
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| |
Collapse
|
13
|
Takahashi O, Yamamura R, Tokushima T, Harada Y. Interpretation of the X-Ray Emission Spectra of Liquid Water through Temperature and Isotope Dependence. PHYSICAL REVIEW LETTERS 2022; 128:086002. [PMID: 35275678 DOI: 10.1103/physrevlett.128.086002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The interpretation of x-ray emission spectroscopy (XES) spectra in terms of their sensitivity to the hydrogen bonding and the consequent microheterogeneity in liquid water has been debated over a decade. To shed a light on this problem, we report the theoretical reproduction of the debated 1b_{1} peaks observed in the XES spectra of liquid water using semiclassical Kramers-Heisenberg formula. The essence of the temperature and isotope dependence of the 1b_{1} double peaks is explained by molecular dynamics simulations including full vibrational (O─H stretching, bending, and) modes, rotational combined with the density functional theory and core-hole induced dynamics. Some inconsistencies exist with the experimental XES profile, which illustrates the need to employ a more precise theoretical calculations for both geometry sampling and electronic structure using a more sophisticated procedure.
Collapse
Affiliation(s)
- Osamu Takahashi
- Basic Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ryosuke Yamamura
- Department of Chemistry, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takashi Tokushima
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Yoshihisa Harada
- Institute for Solid State Physics (ISSP), University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- Synchrotron Radiation Research Organization, University of Tokyo, Sayo-cho, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
14
|
Yamamura R, Yamazoe K, Miyawaki J, Harada Y, Takahashi O. Identification of Valence Electronic States Reflecting the Hydrogen Bonding in Liquid Ethanol. J Phys Chem B 2022; 126:1101-1107. [PMID: 35104123 DOI: 10.1021/acs.jpcb.1c09272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The temperature-dependent X-ray emission spectra of liquid ethanol were calculated theoretically using a semi-classical approximation to the Kramers-Heisenberg formula, which includes the dynamical effects induced by a core-hole. Soft X-ray emission spectroscopic measurements were performed to discern the changes in the hydrogen bonding (h-bonding) structure of liquid ethanol using a temperature-controlled liquid cell at 241 and 313 K. The relative intensities of the peaks at approximately 526.5 and 527.1 eV varied with temperature, and the corresponding behavior was reproduced theoretically, although the variation with temperature in the calculated spectra were more enhanced than that in the experiment. The two peaks can be attributed to the 3a″ + 10a' mixed state and pure 3a″ state, respectively, depending on the behavior of the local h-bonding structure. The splitting of the 3a″ component occurred because of the h-bonding behavior of liquid ethanol. Furthermore, the size of the ethanol cluster decreased with an increase in temperature, mainly due to the breaking of the one-donor/one-acceptor type h-bonding. Our studies suggest that the electronic state of liquid ethanol reflects several types of h-bonding structures, and the ratios of these h-bonding types vary with temperature.
Collapse
Affiliation(s)
- Ryosuke Yamamura
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Kosuke Yamazoe
- Institute for Solid State Physics (ISSP), University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.,Synchrotron Radiation Research Organization, University of Tokyo, Sayo-cho, Sayo, Hyogo 679-5198, Japan
| | - Jun Miyawaki
- Institute for Solid State Physics (ISSP), University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.,Synchrotron Radiation Research Organization, University of Tokyo, Sayo-cho, Sayo, Hyogo 679-5198, Japan
| | - Yoshihisa Harada
- Institute for Solid State Physics (ISSP), University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.,Synchrotron Radiation Research Organization, University of Tokyo, Sayo-cho, Sayo, Hyogo 679-5198, Japan
| | - Osamu Takahashi
- Basic Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
15
|
Jay RM, Kunnus K, Wernet P, Gaffney KJ. Capturing Atom-Specific Electronic Structural Dynamics of Transition-Metal Complexes with Ultrafast Soft X-Ray Spectroscopy. Annu Rev Phys Chem 2022; 73:187-208. [DOI: 10.1146/annurev-physchem-082820-020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The atomic specificity of X-ray spectroscopies provides a distinct perspective on molecular electronic structure. For 3 d metal coordination and organometallic complexes, the combination of metal- and ligand-specific X-ray spectroscopies directly interrogates metal–ligand covalency—the hybridization of metal and ligand electronic states. Resonant inelastic X-ray scattering (RIXS), the X-ray analog of resonance Raman scattering, provides access to all classes of valence excited states in transition-metal complexes, making it a particularly powerful means of characterizing the valence electronic structure of 3 d metal complexes. Recent advances in X-ray free-electron laser sources have enabled RIXS to be extended to the ultrafast time domain. We review RIXS studies of two archetypical photochemical processes: charge-transfer excitation in ferricyanide and ligand photodissociation in iron pentacarbonyl. These studies demonstrate femtosecond-resolution RIXS can directly characterize the time-evolving electronic structure, including the evolution of the metal–ligand covalency. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Raphael M. Jay
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden;,
| | - Kristjan Kunnus
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden;,
| | - Kelly J. Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, California, USA
| |
Collapse
|
16
|
Xu S, Lukes P. Gas-liquid interface influencing electronic structure of phenol based on molecular dynamics simulations and theoretical X-ray absorption spectroscopy. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Atamas N, Gavryushenko D, Yablochkova K, Lazarenko M, Taranyik G. Temperature and temporal heterogeneities of water dynamics in the physiological temperature range. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Eckert S, Vaz da Cruz V, Ochmann M, von Ahnen I, Föhlisch A, Huse N. Breaking the Symmetry of Pyrimidine: Solvent Effects and Core-Excited State Dynamics. J Phys Chem Lett 2021; 12:8637-8643. [PMID: 34472857 PMCID: PMC8436212 DOI: 10.1021/acs.jpclett.1c01865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Symmetry and its breaking crucially define the chemical properties of molecules and their functionality. Resonant inelastic X-ray scattering is a local electronic structure probe reporting on molecular symmetry and its dynamical breaking within the femtosecond scattering duration. Here, we study pyrimidine, a system from the C2v point group, in an aqueous solution environment, using scattering though its 2a2 resonance. Despite the absence of clean parity selection rules for decay transitions from in-plane orbitals, scattering channels including decay from the 7b2 and 11a1 orbitals with nitrogen lone pair character are a direct probe for molecular symmetry. Computed spectra of explicitly solvated molecules sampled from a molecular dynamics simulation are combined with the results of a quantum dynamical description of the X-ray scattering process. We observe dominant signatures of core-excited Jahn-Teller induced symmetry breaking for resonant excitation. Solvent contributions are separable by shortening of the effective scattering duration through excitation energy detuning.
Collapse
Affiliation(s)
- Sebastian Eckert
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Vinícius Vaz da Cruz
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Miguel Ochmann
- Center
for Free-Electron Laser Science, Institute for Nanostructure and Solid
State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Inga von Ahnen
- Center
for Free-Electron Laser Science, Institute for Nanostructure and Solid
State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Alexander Föhlisch
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
- Institut
für Physik und Astronomie,Universität
Potsdam, 14476 Potsdam, Germany
| | - Nils Huse
- Center
for Free-Electron Laser Science, Institute for Nanostructure and Solid
State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
19
|
Bruce JP, Zhang K, Balasubramani SG, Haines AR, Galhenage RP, Voora VK, Furche F, Hemminger JC. Exploring the Solvation of Acetic Acid in Water Using Liquid Jet X-ray Photoelectron Spectroscopy and Core Level Electron Binding Energy Calculations. J Phys Chem B 2021; 125:8862-8868. [PMID: 34339193 DOI: 10.1021/acs.jpcb.1c03520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid jet X-ray photoelectron spectroscopy was used to investigate changes in the local electronic structure of acetic acid in the bulk of aqueous solutions induced by solvation effects. These effects manifest themselves as shifts in the difference in the carbon 1s binding energy (ΔBE) between the methyl and carboxyl carbons of acetic acid. Furthermore, molecular dynamics simulations, coupled with correlated electronic structure calculations of the first solvation sphere, provide insight into the number of water molecules directly interacting with the carboxyl group that are required to match the ΔBE from the photoelectron spectroscopy experiments. This comparison shows that a single water molecule in the first solvation shell describes the photoelectron ΔBE of acetic acid while at least 20 water molecules are required for the conjugate base, acetate, in aqueous solutions.
Collapse
Affiliation(s)
- Jared P Bruce
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Kimberly Zhang
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | | | - Amanda R Haines
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Randima P Galhenage
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Vamsee K Voora
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - John C Hemminger
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
20
|
Ahmed M, Blum M, Crumlin EJ, Geissler PL, Head-Gordon T, Limmer DT, Mandadapu KK, Saykally RJ, Wilson KR. Molecular Properties and Chemical Transformations Near Interfaces. J Phys Chem B 2021; 125:9037-9051. [PMID: 34365795 DOI: 10.1021/acs.jpcb.1c03756] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The properties of bulk water and aqueous solutions are known to change in the vicinity of an interface and/or in a confined environment, including the thermodynamics of ion selectivity at interfaces, transition states and pathways of chemical reactions, and nucleation events and phase growth. Here we describe joint progress in identifying unifying concepts about how air, liquid, and solid interfaces can alter molecular properties and chemical reactivity compared to bulk water and multicomponent solutions. We also discuss progress made in interfacial chemistry through advancements in new theory, molecular simulation, and experiments.
Collapse
Affiliation(s)
- Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Monika Blum
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ethan J Crumlin
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Phillip L Geissler
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David T Limmer
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kranthi K Mandadapu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Richard J Saykally
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Brumboiu IE, Rehn DR, Dreuw A, Rhee YM, Norman P. Analytical gradients for core-excited states in the algebraic diagrammatic construction (ADC) framework. J Chem Phys 2021; 155:044106. [PMID: 34340367 DOI: 10.1063/5.0058221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Expressions for analytical molecular gradients of core-excited states have been derived and implemented for the hierarchy of algebraic diagrammatic construction (ADC) methods up to extended second-order within the core-valence separation (CVS) approximation. We illustrate the use of CVS-ADC gradients by determining relaxed core-excited state potential energy surfaces and optimized geometries for water, formic acid, and benzene. For water, our results show that in the dissociative lowest core-excited state, a linear configuration is preferred. For formic acid, we find that the O K-edge lowest core-excited state is non-planar, a fact that is not captured by the equivalent core approximation where the core-excited atom with its hole is replaced by the "Z + 1" neighboring atom in the periodic table. For benzene, the core-excited state gradients are presented along the Jahn-Teller distorted geometry of the 1s → π* excited state. Our development may pave a new path to studying the dynamics of molecules in their core-excited states.
Collapse
Affiliation(s)
- Iulia Emilia Brumboiu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 37673 Pohang, Republic of Korea
| | - Dirk R Rehn
- Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| |
Collapse
|
22
|
Savchenko V, Ekholm V, Brumboiu IE, Norman P, Pietzsch A, Föhlisch A, Rubensson JE, Gråsjö J, Björneholm O, Såthe C, Dong M, Schmitt T, McNally D, Lu X, Krasnov P, Polyutov SP, Gel'mukhanov F, Odelius M, Kimberg V. Hydrogen bond effects in multimode nuclear dynamics of acetic acid observed via resonant x-ray scattering. J Chem Phys 2021; 154:214304. [PMID: 34240997 DOI: 10.1063/5.0049966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A theoretical and experimental study of the gas phase and liquid acetic acid based on resonant inelastic x-ray scattering (RIXS) spectroscopy is presented. We combine and compare different levels of theory for an isolated molecule for a comprehensive analysis, including electronic and vibrational degrees of freedom. The excitation energy scan over the oxygen K-edge absorption reveals nuclear dynamic effects in the core-excited and final electronic states. The theoretical simulations for the monomer and two different forms of the dimer are compared against high-resolution experimental data for pure liquid acetic acid. We show that the theoretical model based on a dimer describes the hydrogen bond formation in the liquid phase well and that this bond formation sufficiently alters the RIXS spectra, allowing us to trace these effects directly from the experiment. Multimode vibrational dynamics is accounted for in our simulations by using a hybrid time-dependent stationary approach for the quantum nuclear wave packet simulations, showing the important role it plays in RIXS.
Collapse
Affiliation(s)
- Viktoriia Savchenko
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Victor Ekholm
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Iulia Emilia Brumboiu
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Annette Pietzsch
- Institute for Methods and Instrumentation in Synchrotron Radiation Research PS-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, Berlin 12489, Germany
| | - Alexander Föhlisch
- Institute for Methods and Instrumentation in Synchrotron Radiation Research PS-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, Berlin 12489, Germany
| | - Jan-Erik Rubensson
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Johan Gråsjö
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Olle Björneholm
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Conny Såthe
- MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Minjie Dong
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Thorsten Schmitt
- Swiss Light Source, Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Daniel McNally
- Swiss Light Source, Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Xingye Lu
- Swiss Light Source, Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Pavel Krasnov
- International Research Center of Spectroscopy and Quantum Chemistry-IRC SQC, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Sergey P Polyutov
- International Research Center of Spectroscopy and Quantum Chemistry-IRC SQC, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Faris Gel'mukhanov
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Victor Kimberg
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
23
|
Wilks RG, Erbing A, Sadoughi G, Starr DE, Handick E, Meyer F, Benkert A, Iannuzzi M, Hauschild D, Yang W, Blum M, Weinhardt L, Heske C, Snaith HJ, Odelius M, Bär M. Dynamic Effects and Hydrogen Bonding in Mixed-Halide Perovskite Solar Cell Absorbers. J Phys Chem Lett 2021; 12:3885-3890. [PMID: 33856793 DOI: 10.1021/acs.jpclett.1c00745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The organic component (methylammonium) of CH3NH3PbI3-xClx-based perovskites shows electronic hybridization with the inorganic framework via H-bonding between N and I sites. Femtosecond dynamics induced by core excitation are shown to strongly influence the measured X-ray emission spectra and the resonant inelastic soft X-ray scattering of the organic components. The N K core excitation leads to a greatly increased N-H bond length that modifies and strengthens the interaction with the inorganic framework compared to that in the ground state. The study indicates that excited-state dynamics must be accounted for in spectroscopic studies of this perovskite solar cell material, and the organic-inorganic hybridization interaction suggests new avenues for probing the electronic structure of this class of materials. It is incidentally shown that beam damage to the methylamine component can be avoided by moving the sample under the soft X-ray beam to minimize exposure and that this procedure is necessary to prevent the creation of experimental artifacts.
Collapse
Affiliation(s)
- Regan G Wilks
- Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 14109 Berlin, Germany
| | - Axel Erbing
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Golnaz Sadoughi
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PJ, U.K
| | - David E Starr
- Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 14109 Berlin, Germany
| | - Evelyn Handick
- Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 14109 Berlin, Germany
| | - Frank Meyer
- Experimental Physics 7, University of Würzburg, 97074 Würzburg, Germany
| | - Andreas Benkert
- Experimental Physics 7, University of Würzburg, 97074 Würzburg, Germany
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Marcella Iannuzzi
- Physical Chemistry Institute, University of Zürich, 8057 Zürich, Switzerland
| | - Dirk Hauschild
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Monika Blum
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8176, United States
| | - Lothar Weinhardt
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Clemens Heske
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Henry J Snaith
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PJ, U.K
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Marcus Bär
- Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 14109 Berlin, Germany
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), 90429 Nürnberg, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| |
Collapse
|
24
|
Sterling CM, Kamal C, Man GJ, Nayak PK, Simonov KA, Svanström S, García-Fernández A, Huthwelker T, Cappel UB, Butorin SM, Rensmo H, Odelius M. Sensitivity of Nitrogen K-Edge X-ray Absorption to Halide Substitution and Thermal Fluctuations in Methylammonium Lead-Halide Perovskites. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:8360-8368. [PMID: 34084262 PMCID: PMC8162417 DOI: 10.1021/acs.jpcc.1c02017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The performance of hybrid perovskite materials in solar cells crucially depends on their electronic properties, and it is important to investigate contributions to the total electronic structure from specific components in the material. In a combined theoretical and experimental study of CH3NH3PbI3-methylammonium lead triiodide (MAPI)-and its bromide cousin CH3NH3PbBr3 (MAPB), we analyze nitrogen K-edge (N 1s-to-2p*) X-ray absorption (XA) spectra measured in MAPI and MAPB single crystals. This permits comparison of spectral features to the local character of unoccupied molecular orbitals on the CH3NH3 + (MA+) counterions and allows us to investigate how thermal fluctuations, hydrogen bonding, and halide-ion substitution influence the XA spectra as a measure of the local electronic structure. In agreement with the experiment, the simulated spectra for MAPI and MAPB show close similarity, except that the MAPB spectral features are blue-shifted by +0.31 eV. The shift is shown to arise from the intrinsic difference in the electronic structure of the two halide atoms rather than from structural differences between the materials. In addition, from the spectral sampling analysis of molecular dynamics simulations, clear correlations between geometric descriptors (N-C, N-H, and H···I/Br distances) and spectral features are identified and used to explain the spectral shapes.
Collapse
Affiliation(s)
- Cody M. Sterling
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Chinnathambi Kamal
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
- Theory
and Simulations Laboratory, HRDS, Raja Ramanna
Centre for Advanced Technology, 452013 Indore, India
| | - Gabriel J. Man
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Pabitra K. Nayak
- TIFR
Centre for Interdisciplinary Sciences, Tata
Institute of Fundamental Research, 36/P,
Gopanpally Village, Serilingampally Mandal, 500046 Hyderabad, India
| | - Konstantin A. Simonov
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Sebastian Svanström
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Alberto García-Fernández
- Division
of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Thomas Huthwelker
- Swiss Light
Source, Paul Scherrer Institut, WLGA/212, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Ute B. Cappel
- Division
of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Sergei M. Butorin
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Håkan Rensmo
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Michael Odelius
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
25
|
|
26
|
Vibrational resonant inelastic X-ray scattering in liquid acetic acid: a ruler for molecular chain lengths. Sci Rep 2021; 11:4098. [PMID: 33602972 PMCID: PMC7893077 DOI: 10.1038/s41598-021-83248-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/01/2021] [Indexed: 11/08/2022] Open
Abstract
Quenching of vibrational excitations in resonant inelastic X-ray scattering (RIXS) spectra of liquid acetic acid is observed. At the oxygen core resonance associated with localized excitations at the O-H bond, the spectra lack the typical progression of vibrational excitations observed in RIXS spectra of comparable systems. We interpret this phenomenon as due to strong rehybridization of the unoccupied molecular orbitals as a result of hydrogen bonding, which however cannot be observed in x-ray absorption but only by means of RIXS. This allows us to address the molecular structure of the liquid, and to determine a lower limit for the average molecular chain length.
Collapse
|
27
|
Dupuy R, Richter C, Winter B, Meijer G, Schlögl R, Bluhm H. Core level photoelectron spectroscopy of heterogeneous reactions at liquid-vapor interfaces: Current status, challenges, and prospects. J Chem Phys 2021; 154:060901. [PMID: 33588531 DOI: 10.1063/5.0036178] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Liquid-vapor interfaces, particularly those between aqueous solutions and air, drive numerous important chemical and physical processes in the atmosphere and in the environment. X-ray photoelectron spectroscopy is an excellent method for the investigation of these interfaces due to its surface sensitivity, elemental and chemical specificity, and the possibility to obtain information on the depth distribution of solute and solvent species in the interfacial region. In this Perspective, we review the progress that was made in this field over the past decades and discuss the challenges that need to be overcome for investigations of heterogeneous reactions at liquid-vapor interfaces under close-to-realistic environmental conditions. We close with an outlook on where some of the most exciting and promising developments might lie in this field.
Collapse
Affiliation(s)
- Rémi Dupuy
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Clemens Richter
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Bernd Winter
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Gerard Meijer
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Robert Schlögl
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Hendrik Bluhm
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
| |
Collapse
|
28
|
Wang CW, Wang J, Liu YS, Li J, Peng XL, Jia CS, Zhang LH, Yi LZ, Liu JY, Li CJ, Jia X. Prediction of the ideal-gas thermodynamic properties for water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114912] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Vaz da Cruz V, Eckert S, Föhlisch A. TD-DFT simulations of K-edge resonant inelastic X-ray scattering within the restricted subspace approximation. Phys Chem Chem Phys 2021; 23:1835-1848. [DOI: 10.1039/d0cp04726k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Truncation of orbital subspaces in TD-DFT yields an accurate description of RIXS spectra for soft X-ray K-edges.
Collapse
Affiliation(s)
- Vinícius Vaz da Cruz
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
- Institute for Methods and Instrumentation for Synchrotron Radiation Research
- 12489 Berlin
- Germany
| | - Sebastian Eckert
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
- Institute for Methods and Instrumentation for Synchrotron Radiation Research
- 12489 Berlin
- Germany
| | - Alexander Föhlisch
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
- Institute for Methods and Instrumentation for Synchrotron Radiation Research
- 12489 Berlin
- Germany
- Universität Potsdam
| |
Collapse
|
30
|
Humphries OS, Marjoribanks RS, van den Berg QY, Galtier EC, Kasim MF, Lee HJ, Miscampbell AJF, Nagler B, Royle R, Wark JS, Vinko SM. Probing the Electronic Structure of Warm Dense Nickel via Resonant Inelastic X-Ray Scattering. PHYSICAL REVIEW LETTERS 2020; 125:195001. [PMID: 33216608 DOI: 10.1103/physrevlett.125.195001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The development of bright free-electron lasers (FEL) has revolutionized our ability to create and study matter in the high-energy-density (HED) regime. Current diagnostic techniques have been successful in yielding information on fundamental thermodynamic plasma properties, but provide only limited or indirect information on the detailed quantum structure of these systems, and on how it is affected by ionization dynamics. Here we show how the valence electronic structure of solid-density nickel, heated to temperatures of around 10 of eV on femtosecond timescales, can be probed by single-shot resonant inelastic x-ray scattering (RIXS) at the Linac Coherent Light Source FEL. The RIXS spectrum provides a wealth of information on the HED system that goes well beyond what can be extracted from x-ray absorption or emission spectroscopy alone, and is particularly well suited to time-resolved studies of electronic-structure dynamics.
Collapse
Affiliation(s)
- O S Humphries
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - R S Marjoribanks
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada
| | - Q Y van den Berg
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - E C Galtier
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - M F Kasim
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - H J Lee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - A J F Miscampbell
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - B Nagler
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - R Royle
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - J S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - S M Vinko
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
31
|
Vidal ML, Epshtein M, Scutelnic V, Yang Z, Xue T, Leone SR, Krylov AI, Coriani S. Interplay of Open-Shell Spin-Coupling and Jahn-Teller Distortion in Benzene Radical Cation Probed by X-ray Spectroscopy. J Phys Chem A 2020; 124:9532-9541. [PMID: 33103904 DOI: 10.1021/acs.jpca.0c08732] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report a theoretical investigation and elucidation of the X-ray absorption spectra of neutral benzene and of the benzene cation. The generation of the cation by multiphoton ultraviolet (UV) ionization and the measurement of the carbon K-edge spectra of both species using a table-top high-harmonic generation source are described in the companion experimental paper [Epshtein, M.; et al. J. Phys. Chem. A http://dx.doi.org/10.1021/acs.jpca.0c08736]. We show that the 1sC → π transition serves as a sensitive signature of the transient cation formation, as it occurs outside of the spectral window of the parent neutral species. Moreover, the presence of the unpaired (spectator) electron in the π-subshell of the cation and the high symmetry of the system result in significant differences relative to neutral benzene in the spectral features associated with the 1sC → π* transitions. High-level calculations using equation-of-motion coupled-cluster theory provide the interpretation of the experimental spectra and insight into the electronic structure of benzene and its cation. The prominent split structure of the 1sC → π* band of the cation is attributed to the interplay between the coupling of the core → π* excitation with the unpaired electron in the π-subshell and the Jahn-Teller distortion. The calculations attribute most of the splitting (∼1-1.2 eV) to the spin coupling, which is visible already at the Franck-Condon structure, and we estimate the additional splitting due to structural relaxation to be around ∼0.1-0.2 eV. These results suggest that X-ray absorption with increased resolution might be able to disentangle electronic and structural aspects of the Jahn-Teller effect in the benzene cation.
Collapse
Affiliation(s)
- Marta L Vidal
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Michael Epshtein
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Valeriu Scutelnic
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zheyue Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tian Xue
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Physics, University of California, Berkeley, California 94720, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sonia Coriani
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
32
|
Ghasemlou M, Daver F, Ivanova EP, Brkljaca R, Adhikari B. Assessment of interfacial interactions between starch and non-isocyanate polyurethanes in their hybrids. Carbohydr Polym 2020; 246:116656. [PMID: 32747288 DOI: 10.1016/j.carbpol.2020.116656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Manufacturing of multifunctional materials through blending is a promising route for improving performance of biopolymers including starch. Non-isocyanate polyurethanes (NIPUs) are an emerging group of green materials. Understanding the mechanism of interaction between starch and NIPU not only highlights underlying chemistry but also offers an opportunity to tailor the properties and functions of starch-NIPU hybrids. We investigated the interfacial interactions between starch and NIPU to pave the way towards development of high-performance green materials. Multiple analyses revealed that NIPU interacted effectively with starch chains via intermolecular hydrogen bonds. We showed that NIPU domains can efficiently interact with the small portion of starch skeleton at interfacial region and they are only moderately miscible. Incorporation of either component above certain ratio resulted in a phase separation. This work contributes towards understanding of interfacial chemistry between starch and NIPUs and enables tailoring the interface for facile engineering of starch-NIPU hybrids.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, College of Science, Engineering & Health, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Fugen Daver
- School of Engineering, College of Science, Engineering & Health, RMIT University, Melbourne, VIC, 3000, Australia
| | - Elena P Ivanova
- School of Science, College of Science, Engineering & Health, RMIT University, Melbourne, VIC, 3000, Australia
| | - Robert Brkljaca
- Monash Biomedical Imaging, Monash University, Clayton, VIC, 3168, Australia
| | - Benu Adhikari
- School of Science, College of Science, Engineering & Health, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
33
|
Feng X, Sallis S, Shao YC, Qiao R, Liu YS, Kao LC, Tremsin AS, Hussain Z, Yang W, Guo J, Chuang YD. Disparate Exciton-Phonon Couplings for Zone-Center and Boundary Phonons in Solid-State Graphite. PHYSICAL REVIEW LETTERS 2020; 125:116401. [PMID: 32975957 DOI: 10.1103/physrevlett.125.116401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/26/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The exciton-phonon coupling in highly oriented pyrolytic graphite is studied using resonant inelastic x-ray scattering (RIXS) spectroscopy. With ∼70 meV energy resolution, multiple low energy excitations associated with coupling to phonons can be clearly resolved in the RIXS spectra. Using resonance dependence and the closed form for RIXS cross section without considering the intermediate state mixing of phonon modes, the dimensionless coupling constant g is determined to be 5 and 0.35, corresponding to the coupling strength of 0.42 eV+/-20 meV and 0.20 eV+/-20 meV, for zone center and boundary phonons, respectively. The reduced g value for the zone-boundary phonon may be related to its double resonance nature.
Collapse
Affiliation(s)
- Xuefei Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Shawn Sallis
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yu-Cheng Shao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - Ruimin Qiao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yi-Sheng Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Li Cheng Kao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anton S Tremsin
- Space Science Laboratory, University of California, Berkeley, California 94720, USA
| | - Zahid Hussain
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
34
|
Abstract
Deionized and tap water were saturated with molecular oxygen either prior to (WST), or after (WTS), treatment with low-temperature, low-pressure glow plasma of low frequency (LPGP) for 0, 5, 15, 30, 60, 90, and 120 min. Physical and physicochemical properties of the resulting liquids were characterized, involving pH, conductivity, density, dissolved molecular oxygen, active oxygen content, differential scanning calorimetry (DSC), ultraviolet-visible (UV-VIS), Fourier transformation infrared-attenuated total reflectance (FTIR-ATR), electronic spin resonance (ESR), and Raman spectroscopies. Tap WST treated with LPGP for 30 min contained the highest level of dissolved molecular oxygen, compared to original non-treated tap water (23 and 15 mg/L, respectively). Essential differences in all investigated properties of LPGP treated tap and deionized WST, compared to those for corresponding WTS, pointed to the indispensable role of dissolved oxygen molecules in building water macrostructure. In the case of tap WST, formation of niches and/or caverns hosting anions (HCO3−, SO4=) was accompanied by cations less enveloped by hydroxyl groups of water. The WST water contained niches of larger size, hosting molecules of oxygen interacting with the environment in various manners. In WTS there was a priority for single donor, single hydrogen bonded water, and free water in building the macrostructure. Such macrostructures host molecular oxygen which, depending on the LPGP treatment time, took either a singlet of triplet state.
Collapse
|
35
|
Kjellsson L, Nanda KD, Rubensson JE, Doumy G, Southworth SH, Ho PJ, March AM, Al Haddad A, Kumagai Y, Tu MF, Schaller RD, Debnath T, Bin Mohd Yusof MS, Arnold C, Schlotter WF, Moeller S, Coslovich G, Koralek JD, Minitti MP, Vidal ML, Simon M, Santra R, Loh ZH, Coriani S, Krylov AI, Young L. Resonant Inelastic X-Ray Scattering Reveals Hidden Local Transitions of the Aqueous OH Radical. PHYSICAL REVIEW LETTERS 2020; 124:236001. [PMID: 32603165 DOI: 10.1103/physrevlett.124.236001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 05/06/2023]
Abstract
Resonant inelastic x-ray scattering (RIXS) provides remarkable opportunities to interrogate ultrafast dynamics in liquids. Here we use RIXS to study the fundamentally and practically important hydroxyl radical in liquid water, OH(aq). Impulsive ionization of pure liquid water produced a short-lived population of OH(aq), which was probed using femtosecond x-rays from an x-ray free-electron laser. We find that RIXS reveals localized electronic transitions that are masked in the ultraviolet absorption spectrum by strong charge-transfer transitions-thus providing a means to investigate the evolving electronic structure and reactivity of the hydroxyl radical in aqueous and heterogeneous environments. First-principles calculations provide interpretation of the main spectral features.
Collapse
Affiliation(s)
- L Kjellsson
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
| | - K D Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, USA
| | - J-E Rubensson
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
| | - G Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - S H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - P J Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - A M March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - A Al Haddad
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Y Kumagai
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - M-F Tu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - R D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - T Debnath
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 639798
| | - M S Bin Mohd Yusof
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 639798
| | - C Arnold
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 20146 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, 22607 Hamburg, Germany
| | - W F Schlotter
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S Moeller
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - G Coslovich
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J D Koralek
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M P Minitti
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M L Vidal
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - M Simon
- Sorbonne Université and CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75252 Paris Cedex 05, France
| | - R Santra
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 20146 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, 22607 Hamburg, Germany
| | - Z-H Loh
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 639798
| | - S Coriani
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - A I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, USA
| | - L Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
36
|
Kühne TD, Iannuzzi M, Del Ben M, Rybkin VV, Seewald P, Stein F, Laino T, Khaliullin RZ, Schütt O, Schiffmann F, Golze D, Wilhelm J, Chulkov S, Bani-Hashemian MH, Weber V, Borštnik U, Taillefumier M, Jakobovits AS, Lazzaro A, Pabst H, Müller T, Schade R, Guidon M, Andermatt S, Holmberg N, Schenter GK, Hehn A, Bussy A, Belleflamme F, Tabacchi G, Glöß A, Lass M, Bethune I, Mundy CJ, Plessl C, Watkins M, VandeVondele J, Krack M, Hutter J. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. J Chem Phys 2020; 152:194103. [PMID: 33687235 DOI: 10.1063/5.0007045] [Citation(s) in RCA: 997] [Impact Index Per Article: 249.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post-Hartree-Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension.
Collapse
Affiliation(s)
- Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Mauro Del Ben
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Vladimir V Rybkin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick Seewald
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Frederick Stein
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Teodoro Laino
- IBM Research Europe, CH-8803 Rüschlikon, Switzerland
| | - Rustam Z Khaliullin
- Department of Chemistry, McGill University, CH-801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Ole Schütt
- Department of Materials, ETH Zürich, CH-8092 Zürich, Switzerland
| | | | - Dorothea Golze
- Department of Applied Physics, Aalto University, Otakaari 1, FI-02150 Espoo, Finland
| | - Jan Wilhelm
- Institute of Theoretical Physics, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sergey Chulkov
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | | | - Valéry Weber
- IBM Research Europe, CH-8803 Rüschlikon, Switzerland
| | | | | | | | | | - Hans Pabst
- Intel Extreme Computing, Software and Systems, Zürich, Switzerland
| | - Tiziano Müller
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Robert Schade
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Manuel Guidon
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Samuel Andermatt
- Integrated Systems Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Nico Holmberg
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Gregory K Schenter
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Anna Hehn
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Augustin Bussy
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Fabian Belleflamme
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Gloria Tabacchi
- Department of Science and High Technology, University of Insubria and INSTM, via Valleggio 9, I-22100 Como, Italy
| | - Andreas Glöß
- BASF SE, Carl-Bosch-Straße 38, D-67056 Ludwigshafen am Rhein, Germany
| | - Michael Lass
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Iain Bethune
- Hartree Centre, Science and Technology Facilities Council, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Christopher J Mundy
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Christian Plessl
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Matt Watkins
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | - Joost VandeVondele
- Swiss National Supercomputing Centre (CSCS), ETH Zürich, Zürich, Switzerland
| | - Matthias Krack
- Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
37
|
Ertan E, Lundberg M, Sørensen LK, Odelius M. Setting the stage for theoretical x-ray spectra of the H2S molecule with multi-configurational quantum chemical calculations of the energy landscape. J Chem Phys 2020; 152:094305. [DOI: 10.1063/1.5145139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Emelie Ertan
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Marcus Lundberg
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Lasse Kragh Sørensen
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
38
|
Ahmed M, Kostko O. From atoms to aerosols: probing clusters and nanoparticles with synchrotron based mass spectrometry and X-ray spectroscopy. Phys Chem Chem Phys 2020; 22:2713-2737. [DOI: 10.1039/c9cp05802h] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synchrotron radiation provides insight into spectroscopy and dynamics in clusters and nanoparticles.
Collapse
Affiliation(s)
- Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Oleg Kostko
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| |
Collapse
|
39
|
Schulz C, Lieutenant K, Xiao J, Hofmann T, Wong D, Habicht K. Characterization of the soft X-ray spectrometer PEAXIS at BESSY II. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:238-249. [PMID: 31868758 PMCID: PMC6927519 DOI: 10.1107/s1600577519014887] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/04/2019] [Indexed: 06/02/2023]
Abstract
The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200-1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 1012 photons s-1 within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of ∼400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106° within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to ∼100 meV at 1000 eV incident photon energy are discussed.
Collapse
Affiliation(s)
- Christian Schulz
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Klaus Lieutenant
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Jie Xiao
- Department of Highly Sensitive X-ray Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Tommy Hofmann
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Deniz Wong
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Klaus Habicht
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
- Institut für Physik und Astronomie, Universität Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
40
|
Nanda KD, Vidal ML, Faber R, Coriani S, Krylov AI. How to stay out of trouble in RIXS calculations within equation-of-motion coupled-cluster damped response theory? Safe hitchhiking in the excitation manifold by means of core–valence separation. Phys Chem Chem Phys 2020; 22:2629-2641. [DOI: 10.1039/c9cp03688a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present a novel approach with robust convergence of the response equations for computing resonant inelastic X-ray scattering (RIXS) cross sections within the equation-of-motion coupled-cluster (EOM-CC) framework.
Collapse
Affiliation(s)
- Kaushik D. Nanda
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Marta L. Vidal
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Rasmus Faber
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Sonia Coriani
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Anna I. Krylov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
- The Hamburg Centre for Ultrafast Imaging
| |
Collapse
|
41
|
Ismail ASM, Uemura Y, Park SH, Kwon S, Kim M, Elnaggar H, Frati F, Niwa Y, Wadati H, Hirata Y, Zhang Y, Yamagami K, Yamamoto S, Matsuda I, Halisdemir U, Koster G, Weckhuysen BM, de Groot FMF. Direct observation of the electronic states of photoexcited hematite with ultrafast 2p3d X-ray absorption spectroscopy and resonant inelastic X-ray scattering. Phys Chem Chem Phys 2020; 22:2685-2692. [DOI: 10.1039/c9cp03374b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ultrafast Fe L3 XAS and 2p3d RIXS elucidate the photoexcitation process of hematite.
Collapse
|
42
|
Reply to Pettersson et al.: Why X-ray spectral features are compatible to continuous distribution models in ambient water. Proc Natl Acad Sci U S A 2019; 116:17158-17159. [PMID: 31431526 PMCID: PMC6717301 DOI: 10.1073/pnas.1909551116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Temperton RH, Skowron ST, Handrup K, Gibson AJ, Nicolaou A, Jaouen N, Besley E, O'Shea JN. Resonant inelastic X-ray scattering of a Ru photosensitizer: Insights from individual ligands to the electronic structure of the complete molecule. J Chem Phys 2019; 151:074701. [PMID: 31438696 DOI: 10.1063/1.5114692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
N 1s Resonant Inelastic X-ray Scattering (RIXS) was used to probe the molecular electronic structure of the ruthenium photosensitizer complex cis-bis(isothiocyanato) bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II), known as "N3." In order to interpret these data, crystalline powder samples of the bipyridine-dicarboxylic acid ligand ("bi-isonicotinic acid") and the single ring analog "isonicotinic acid" were studied separately using the same method. Clear evidence for intermolecular hydrogen bonding is observed for each of these crystalline powders, along with clear vibronic coupling features. For bi-isonicotinic acid, these results are compared to those of a physisorbed multilayer, where no hydrogen bonding is observed. The RIXS of the "N3" dye, again prepared as a bulk powder sample, is interpreted in terms of the orbital contributions of the bi-isonicotinic acid and thiocyanate ligands by considering the two different nitrogen species. This allows direct comparison with the isolated ligand molecules where we highlight the impact of the central Ru atom on the electronic structure of the ligand. Further interpretation is provided through complementary resonant photoemission spectroscopy and density functional theory calculations. This combination of techniques allows us to confirm the localization and relative coupling of the frontier orbitals and associated vibrational losses.
Collapse
Affiliation(s)
- Robert H Temperton
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Stephen T Skowron
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Karsten Handrup
- Synchrotron Radiation Research, Department of Physics, Box 118, SE-221 00 Lund, Sweden
| | - Andrew J Gibson
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | | | - Nicolas Jaouen
- Synchrotron SOLEIL, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Elena Besley
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - James N O'Shea
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
44
|
Do X-ray spectroscopies provide evidence for continuous distribution models of water at ambient conditions? Proc Natl Acad Sci U S A 2019; 116:17156-17157. [PMID: 31431525 PMCID: PMC6717290 DOI: 10.1073/pnas.1905756116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
45
|
Camisasca G, Schlesinger D, Zhovtobriukh I, Pitsevich G, Pettersson LGM. A proposal for the structure of high- and low-density fluctuations in liquid water. J Chem Phys 2019; 151:034508. [PMID: 31325915 DOI: 10.1063/1.5100875] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Based on recent experimental data that can be interpreted as indicating the presence of specific structures in liquid water, we build and optimize two structural models which we compare with the available experimental data. To represent the proposed high-density liquid structures, we use a model consisting of chains of water molecules, and for low-density liquid, we investigate fused dodecahedra as templates for tetrahedral fluctuations. The computed infrared spectra of the models are in very good agreement with the extracted experimental spectra for the two components, while the extracted structures from molecular dynamics (MD) simulations give spectra that are intermediate between the experimentally derived spectra. Computed x-ray absorption and emission spectra as well as the O-O radial distribution functions of the proposed structures are not contradicted by experiment. The stability of the proposed dodecahedral template structures is investigated in MD simulations by seeding the starting structure, and remnants found to persist on an ∼30 ps time scale. We discuss the possible significance of such seeds in simulations and whether they can be viable candidates as templates for structural fluctuations below the compressibility minimum of liquid water.
Collapse
Affiliation(s)
- Gaia Camisasca
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Daniel Schlesinger
- Department of Environmental Science and Analytical Chemistry & Bolin Centre for Climate Research, Stockholm University, 114 18 Stockholm, Sweden
| | - Iurii Zhovtobriukh
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - George Pitsevich
- Belarusian State University, Nezavisimosti Ave., 4, 220030 Minsk, Belarus
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
46
|
Vaz da Cruz V, Ignatova N, Couto RC, Fedotov DA, Rehn DR, Savchenko V, Norman P, Ågren H, Polyutov S, Niskanen J, Eckert S, Jay RM, Fondell M, Schmitt T, Pietzsch A, Föhlisch A, Gel’mukhanov F, Odelius M, Kimberg V. Nuclear dynamics in resonant inelastic X-ray scattering and X-ray absorption of methanol. J Chem Phys 2019; 150:234301. [DOI: 10.1063/1.5092174] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Vinícius Vaz da Cruz
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Nina Ignatova
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Siberian Federal University, 660041 Krasnoyarsk, Russia
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Rafael C. Couto
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Daniil A. Fedotov
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Dirk R. Rehn
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Viktoriia Savchenko
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Siberian Federal University, 660041 Krasnoyarsk, Russia
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Hans Ågren
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Sergey Polyutov
- Siberian Federal University, 660041 Krasnoyarsk, Russia
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Johannes Niskanen
- Department of Physics and Astronomy, University of Turku, FI-20014 Turun yliopisto, Finland
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Sebastian Eckert
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Raphael M. Jay
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Mattis Fondell
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Thorsten Schmitt
- Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Annette Pietzsch
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Alexander Föhlisch
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Faris Gel’mukhanov
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Siberian Federal University, 660041 Krasnoyarsk, Russia
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Victor Kimberg
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Siberian Federal University, 660041 Krasnoyarsk, Russia
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
| |
Collapse
|
47
|
Yamazoe K, Miyawaki J, Niwa H, Nilsson A, Harada Y. Measurements of ultrafast dissociation in resonant inelastic x-ray scattering of water. J Chem Phys 2019; 150:204201. [PMID: 31153206 DOI: 10.1063/1.5081886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There has been a discussion on the interpretation of the resonant inelastic x-ray scattering (RIXS) spectra of liquid water in terms of either different structural environments or that core hole dynamics can generate well-resolved dissociative spectral components. We have used RIXS with high resolution in the OH stretch vibration energy part, at extremely high overtones going toward the continuum of full OH bond breakage, to identify the amount of dissociative contributions in the valence band RIXS spectra at different excitation energies. We observe that at low excitation energies, corresponding to population of states with strongly antibonding character, the valence band RIXS spectra have a large contribution from a well-resolved dissociative feature. Instead, at higher excitations, this spectral component diminishes and becomes a weak structure on the high-energy side of one of the spectral peaks related to the 1b1 state from tetrahedral configurations. This result brings both interpretations to be essential for the understanding of RIXS spectra of liquid water.
Collapse
Affiliation(s)
- Kosuke Yamazoe
- Institute for Solid State Physics (ISSP), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Jun Miyawaki
- Institute for Solid State Physics (ISSP), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hideharu Niwa
- Institute for Solid State Physics (ISSP), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Yoshihisa Harada
- Institute for Solid State Physics (ISSP), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|