1
|
Esfidani SM, Tadjer MJ, Folland TG. Lifetime and Molecular Coupling in Surface Phonon Polariton Resonators. ACS OMEGA 2024; 9:21136-21143. [PMID: 38764696 PMCID: PMC11097381 DOI: 10.1021/acsomega.4c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Surface phonon polariton (SPhP) modes in polar semiconductors offer a low-loss platform for infrared nanophotonics and sensing. However, the efficient design of polariton-enhanced sensors requires a quantitative understanding of how to engineer the frequency and lifetime of SPhPs in nanophotonic structures. Here, we study organ-pipe resonances in 4H-SiC trenches as a prototype system for infrared sensing. We use a transmission line framework that accounts for the field distribution within the trench, accurately predicting mode frequency and lifetime when compared against finite element method (FEM) electromagnetic calculations. Accounting for the electric field profile across the gap is critical in our model to accurately predict mode frequencies, quality factor (Q factor), and reflectance, outperforming previous circuit models developed in the literature. Beyond structural simulation, our model can provide insights into the frequency ranges in the Reststrahlen band where enhanced sensor activity should be present. The radiative lifetime is significantly enlarged close to the longitudinal optic phonon, restricting sensor efficiency at this wavelength range. This pushes the optimal frequency for sensing closer to the center of the Reststrahlen band than might be naively expected. This model ultimately demonstrates the primary challenge of designing SPhP-based sensors: only a relatively narrow region of the Reststrahlen band offers efficient sensing, guiding future designs for infrared spectroscopy.
Collapse
Affiliation(s)
| | - Marko J. Tadjer
- U.S.
Naval Research Laboratory,4555 Overlook Ave SW, Washington, District of Columbia20375,United States
| | - Thomas G. Folland
- Department
of Physics and Astronomy, The University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
2
|
Zhang Y, Xu F, Huang Y, Gao L. Temporal dynamics of surface phonon polaritons in polar dielectric nanoparticles with nonlocality. OPTICS EXPRESS 2024; 32:15136-15146. [PMID: 38859172 DOI: 10.1364/oe.519622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/27/2024] [Indexed: 06/12/2024]
Abstract
Surface phonon polaritons (SPhPs) supported by polar dielectrics have been a promising platform for nanophotonics in mid-infrared spectral range. In this work, the temporal dynamic behavior of polar dielectric nanoparticles without (or with) spatial dispersion/nonlocality driven by the ultrashort Gaussian pulses is carried out. We demonstrate that three possible scenarios for the temporal evolutions of the dipole moment including ultrafast oscillations with the decay, exponential decay, and keeping a Gaussian shape exist, when the pulse duration of the incident field is much shorter than, similar to, and much longer than the localized SPhP lifetime. Once the nonlocal effect is considered, the oscillation period becomes large slightly, and the exponential decay turns fast. Furthermore, nonlocality-induced novel temporal behavior is found such as the decay with long-period oscillations when the center frequency of the incident pulse lies at the frequency of adjacent longitudinal resonant modes. The positive and negative time-shifts of the dielectric response reveal that the excitation of the dipole moment will be delayed or advanced. These temporal evolutions can pave the way towards potential applications in the modulation of ultrafast signals for the mid-infrared optoelectronic nanodevices.
Collapse
|
3
|
Matson JR, Alam MN, Varnavides G, Sohr P, Knight S, Darakchieva V, Stokey M, Schubert M, Said A, Beechem T, Narang P, Law S, Caldwell JD. The Role of Optical Phonon Confinement in the Infrared Dielectric Response of III-V Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305106. [PMID: 38039437 DOI: 10.1002/adma.202305106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/16/2023] [Indexed: 12/03/2023]
Abstract
Polar dielectrics are key materials of interest for infrared (IR) nanophotonic applications due to their ability to host phonon-polaritons that allow for low-loss, subdiffractional control of light. The properties of phonon-polaritons are limited by the characteristics of optical phonons, which are nominally fixed for most "bulk" materials. Superlattices composed of alternating atomically thin materials offer control over crystal anisotropy through changes in composition, optical phonon confinement, and the emergence of new modes. In particular, the modified optical phonons in superlattices offer the potential for so-called crystalline hybrids whose IR properties cannot be described as a simple mixture of the bulk constituents. To date, however, studies have primarily focused on identifying the presence of new or modified optical phonon modes rather than assessing their impact on the IR response. This study focuses on assessing the impact of confined optical phonon modes on the hybrid IR dielectric function in superlattices of GaSb and AlSb. Using a combination of first principles theory, Raman, FTIR, and spectroscopic ellipsometry, the hybrid dielectric function is found to track the confinement of optical phonons, leading to optical phonon spectral shifts of up to 20 cm-1 . These results provide an alternative pathway toward designer IR optical materials.
Collapse
Affiliation(s)
- Joseph R Matson
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37212, USA
| | - Md Nazmul Alam
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Georgios Varnavides
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Patrick Sohr
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Sean Knight
- Solid State Physics and NanoLund, Lund University, Lund, 22100, Sweden
- Competence Center for III-Nitride Technology, C3NiT - Janzèn, Linköping University, Linköping, 58183, Sweden
- Terahertz Materials Analysis Center (THeMAC), Linköping University, Linköping, 58183, Sweden
| | - Vanya Darakchieva
- Solid State Physics and NanoLund, Lund University, Lund, 22100, Sweden
- Competence Center for III-Nitride Technology, C3NiT - Janzèn, Linköping University, Linköping, 58183, Sweden
- Terahertz Materials Analysis Center (THeMAC), Linköping University, Linköping, 58183, Sweden
| | - Megan Stokey
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Mathias Schubert
- Solid State Physics and NanoLund, Lund University, Lund, 22100, Sweden
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ayman Said
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Thomas Beechem
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Prineha Narang
- Physical Sciences Division, College of Letters and Science, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Stephanie Law
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Joshua D Caldwell
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37212, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
4
|
Xu S, Qian L, Sun M, Zheng G. Weyl semimetal mediated epsilon-near-zero hybrid polaritons and the induced nonreciprocal radiation. Phys Chem Chem Phys 2023; 25:32336-32344. [PMID: 37902035 DOI: 10.1039/d3cp04183b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Polaritonic excitation and management in ultra-thin polar crystals has recently received significant attention and holds new promise for epsilon-near-zero (ENZ) modes. However, manipulation of the ENZ mode via anisotropic magneto-optic (MO) material remains elusive. Herein, we provide an effective strategy for constructing an ENZ polar thin film with dependence on Weyl semimetals (WSM). The thermal radiation of the proposed device is explored with electromagnetic (EM) simulations that utilize the anisotropic rigorous coupled-wave analysis (aRCWA) method. Strong coupling of the ENZ mode to WSM polaritons has been demonstrated, and the structural parameters hold tolerance on the order of hundreds of nanometers, which is highly favorable for low-cost fabrication and high-performance application. By changing both the azimuthal angle (ϕ) and angle of incidence (θ), the nonreciprocity (η) can be effectively influenced. The distribution of η is symmetrical with ϕ = 180°, η = 0 when ϕ = 90° and ϕ = 270°. The mechanism of this proposal is owing to the hybrid polaritons supported by the polar thin film and nonreciprocal radiation of WSM, which is validated by examining the amplitude distribution of the magnetic field. The nonreciprocal emitter described herein allows simultaneous control of spectral distribution and polarization of radiation, which will facilitate the active design and application of mid-infrared (MIR) thermal emitters.
Collapse
Affiliation(s)
- Sicheng Xu
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Liming Qian
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Mengran Sun
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Gaige Zheng
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing, 210044, China
| |
Collapse
|
5
|
Navajas D, Pérez-Escudero JM, Martínez-Hernández ME, Goicoechea J, Liberal I. Addressing the Impact of Surface Roughness on Epsilon-Near-Zero Silicon Carbide Substrates. ACS PHOTONICS 2023; 10:3105-3114. [PMID: 37743935 PMCID: PMC10515697 DOI: 10.1021/acsphotonics.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 09/26/2023]
Abstract
Epsilon-near-zero (ENZ) media have been very actively investigated due to their unconventional wave phenomena and strengthened nonlinear response. However, the technological impact of ENZ media will be determined by the quality of realistic ENZ materials, including material loss and surface roughness. Here, we provide a comprehensive experimental study of the impact of surface roughness on ENZ substrates. Using silicon carbide (SiC) substrates with artificially induced roughness, we analyze samples whose roughness ranges from a few to hundreds of nanometer size scales. It is concluded that ENZ substrates with roughness in the few nanometer scale are negatively affected by coupling to longitudinal phonons and strong ENZ fields normal to the surface. On the other hand, when the roughness is in the hundreds of nanometers scale, the ENZ band is found to be more robust than dielectric and surface phonon polariton (SPhP) bands.
Collapse
Affiliation(s)
- David Navajas
- Department of Electrical,
Electronic and Communications Engineering, Institute of Smart Cities
(ISC), Public University of Navarre (UPNA), 31006 Pamplona, Spain
| | - José M. Pérez-Escudero
- Department of Electrical,
Electronic and Communications Engineering, Institute of Smart Cities
(ISC), Public University of Navarre (UPNA), 31006 Pamplona, Spain
| | - María Elena Martínez-Hernández
- Department of Electrical,
Electronic and Communications Engineering, Institute of Smart Cities
(ISC), Public University of Navarre (UPNA), 31006 Pamplona, Spain
| | - Javier Goicoechea
- Department of Electrical,
Electronic and Communications Engineering, Institute of Smart Cities
(ISC), Public University of Navarre (UPNA), 31006 Pamplona, Spain
| | - Iñigo Liberal
- Department of Electrical,
Electronic and Communications Engineering, Institute of Smart Cities
(ISC), Public University of Navarre (UPNA), 31006 Pamplona, Spain
| |
Collapse
|
6
|
John-Herpin A, Tittl A, Kühner L, Richter F, Huang SH, Shvets G, Oh SH, Altug H. Metasurface-Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2110163. [PMID: 35638248 DOI: 10.1002/adma.202110163] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Infrared spectroscopy provides unique information on the composition and dynamics of biochemical systems by resolving the characteristic absorption fingerprints of their constituent molecules. Based on this inherent chemical specificity and the capability for label-free, noninvasive, and real-time detection, infrared spectroscopy approaches have unlocked a plethora of breakthrough applications for fields ranging from environmental monitoring and defense to chemical analysis and medical diagnostics. Nanophotonics has played a crucial role for pushing the sensitivity limits of traditional far-field spectroscopy by using resonant nanostructures to focus the incident light into nanoscale hot-spots of the electromagnetic field, greatly enhancing light-matter interaction. Metasurfaces composed of regular arrangements of such resonators further increase the design space for tailoring this nanoscale light control both spectrally and spatially, which has established them as an invaluable toolkit for surface-enhanced spectroscopy. Starting from the fundamental concepts of metasurface-enhanced infrared spectroscopy, a broad palette of resonator geometries, materials, and arrangements for realizing highly sensitive metadevices is showcased, with a special focus on emerging systems such as phononic and 2D van der Waals materials, and integration with waveguides for lab-on-a-chip devices. Furthermore, advanced sensor functionalities of metasurface-based infrared spectroscopy, including multiresonance, tunability, dielectrophoresis, live cell sensing, and machine-learning-aided analysis are highlighted.
Collapse
Affiliation(s)
- Aurelian John-Herpin
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Lucca Kühner
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Felix Richter
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Steven H Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
7
|
Della Sala F, Pachter R, Sukharev M. Advances in modeling plasmonic systems. J Chem Phys 2022; 157:190401. [DOI: 10.1063/5.0130790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Fabio Della Sala
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano, LE, Italy
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
| | - Ruth Pachter
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Maxim Sukharev
- College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, USA
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
8
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Larciprete MC, Dereshgi SA, Centini M, Aydin K. Tuning and hybridization of surface phonon polaritons in α-MoO 3 based metamaterials. OPTICS EXPRESS 2022; 30:12788-12796. [PMID: 35472908 DOI: 10.1364/oe.453726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
We propose an effective medium approach to tune and control surface phonon polariton dispersion relations along the three main crystallographic directions of α-phase molybdenum trioxide. We show that a metamaterial consisting of subwavelength air inclusions into the α-MoO3 matrix displays new absorption modes producing a split of the Reststrahlen bands of the crystal and creating new branches of phonon polaritons. In particular, we report hybridization of bulk and surface polariton modes by tailoring metamaterials' structural parameters. Theoretical predictions obtained with the effective medium approach are validated by full-field electromagnetic simulations using finite difference time domain method. Our study sheds light on the use of effective medium theory for modeling and predicting wavefront polaritons. Our simple yet effective approach could potentially enable different functionalities for hyperbolic infrared metasurface devices and circuits on a single compact platform for on-chip infrared photonics.
Collapse
|
10
|
Liu K, Huang G, Li X, Zhu G, Du W, Wang T. Vibrational Strong Coupling between Surface Phonon Polaritons and Organic Molecules via Single Quartz Micropillars. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109088. [PMID: 34902196 DOI: 10.1002/adma.202109088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Vibrational strong coupling (VSC), the strong coupling between optical resonances and the dipolar absorption of molecular vibrations at mid-infrared frequencies, holds the great potential for the development of ultrasensitive infrared spectroscopy, the modification of chemical properties of molecules, and the control of chemical reactions. In the realm of ultracompact VSC, there is a need to scale down the size of mid-infrared optical resonators and to elevate their optical field strength. Herein, by using single quartz micropillars as mid-infrared optical resonators, the strong coupling is demonstrated between surface phonon polariton (SPhP) resonances and molecular vibrations from far-field observation. The single quartz micropillars support sharp SPhP resonances with an ultrasmall mode volume, which strongly couples with the molecular vibrations of 4-nitrobenzyl alcohol (C7 H7 NO3 ) molecules featuring pronounced mode splitting and anticrossing dispersion. The coupling strength depends on the molecular concentration and reaches the strong coupling regime with only 7300 molecules. The findings pave the way for promoting the VSC sensitivity, miniaturing the VSC devices, and will boost the development of ultracompact mid-infrared spectroscopy and chemical reaction control devices.
Collapse
Affiliation(s)
- Kaizhen Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Guangyan Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Guangpeng Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Wei Du
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Tao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai, 200083, P. R. China
| |
Collapse
|
11
|
Lu G, Gubbin CR, Nolen JR, Folland TG, Diaz-Granados K, Kravchenko II, Spencer JA, Tadjer MJ, Glembocki OJ, De Liberato S, Caldwell JD. Collective Phonon-Polaritonic Modes in Silicon Carbide Subarrays. ACS NANO 2022; 16:963-973. [PMID: 34957830 DOI: 10.1021/acsnano.1c08557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Localized surface phonon polaritons (LSPhPs) can be implemented to engineer light-matter interactions through nanoscale patterning for a range of midinfrared application spaces. However, the polar material systems studied to date have mainly focused on simple designs featuring a single element in the periodic unit cell. Increasing the complexity of the unit cell can serve to modify the resonant near-fields and intra- and inter-unit-cell coupling as well as to dictate spectral tuning in the far-field. In this work, we exploit more complicated unit-cell structures to realize LSPhP modes with additional degrees of design freedom, which are largely unexplored. Collectively excited LSPhP modes with distinctly symmetric and antisymmetric near-fields are supported in these subarray designs, which are based on nanopillars that are scaled by the number of subarray elements to ensure a constant unit-cell size. Moreover, we observe an anomalous mode-matching of the collective symmetric mode in our fabricated subarrays that is robust to changing numbers of pillars within the subarrays as well as to defects intentionally introduced in the form of missing pillars. This work therefore illustrates the hierarchical design of tailored LSPhP resonances and modal near-field profiles simultaneously for a variety of IR applications such as surface-enhanced spectroscopies and biochemical sensing.
Collapse
Affiliation(s)
- Guanyu Lu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Christopher R Gubbin
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - J Ryan Nolen
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Thomas G Folland
- School of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Katja Diaz-Granados
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Ivan I Kravchenko
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Joseph A Spencer
- US Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Marko J Tadjer
- US Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Orest J Glembocki
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Simone De Liberato
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
12
|
Gubbin CR, De Liberato S. Polaritonic quantization in nonlocal polar materials. J Chem Phys 2022; 156:024111. [PMID: 35032993 DOI: 10.1063/5.0076234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the Reststrahlen region, between the transverse and longitudinal phonon frequencies, polar dielectric materials respond metallically to light, and the resulting strong light-matter interactions can lead to the formation of hybrid quasiparticles termed surface phonon polaritons. Recent works have demonstrated that when an optical system contains nanoscale polar elements, these excitations can acquire a longitudinal field component as a result of the material dispersion of the lattice, leading to the formation of secondary quasiparticles termed longitudinal-transverse polaritons. In this work, we build on previous macroscopic electromagnetic theories, developing a full second-quantized theory of longitudinal-transverse polaritons. Beginning from the Hamiltonian of the light-matter system, we treat distortion to the lattice, introducing an elastic free energy. We then diagonalize the Hamiltonian, demonstrating that the equations of motion for the polariton are equivalent to those of macroscopic electromagnetism and quantize the nonlocal operators. Finally, we demonstrate how to reconstruct the electromagnetic fields in terms of the polariton states and explore polariton induced enhancements of the Purcell factor. These results demonstrate how nonlocality can narrow, enhance, and spectrally tune near-field emission with applications in mid-infrared sensing.
Collapse
Affiliation(s)
- Christopher R Gubbin
- Department of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
| | - Simone De Liberato
- Department of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
13
|
Cheng L, Li H, Lin G, Yan J, Zhang L, Yang C, Tong W, Ren Z, Zhu W, Cong X, Gao J, Tan P, Luo X, sun Y, Zhu W, Sheng Z. Phonon-Related Monochromatic THz Radiation and its Magneto-Modulation in 2D Ferromagnetic Cr 2 Ge 2 Te 6. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103229. [PMID: 34716689 PMCID: PMC8728850 DOI: 10.1002/advs.202103229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/23/2021] [Indexed: 05/30/2023]
Abstract
Searching multiple types of terahertz (THz) irradiation source is crucial for the THz technology. In addition to the conventional fermionic cases, bosonic quasi-/particles also promise energy-efficient THz wave emission. Here, by utilizing a 2D ferromagnetic Cr2 Ge2 Te6 crystal, first a phonon-related magneto-tunable monochromatic THz irradiation source is demonstrated. With a low-photonic-energy broadband THz pump, a strong THz irradiation with frequency ≈0.9 THz and bandwidth ≈0.25 THz can be generated and its conversion efficiency could even reach 2.1% at 160 K. Moreover, it is intriguing to find that such monochromatic THz irradiation can be efficiently modulated by external magnetic field below 160 K. According to both experimental and theoretical analyses, the emergent THz irradiation is identified as the emission from the phonon-polariton and its temperature and magnetic field dependent behaviors confirm the large spin-lattice coupling in this 2D ferromagnetic crystal. These observations provide a new route for the creation of tunable monochromatic THz source which may have great practical interests in future applications in photonic and spintronic devices.
Collapse
Affiliation(s)
- Long Cheng
- Anhui Key Laboratory of Condensed Matter Physics at Extreme ConditionsHigh Magnetic Field Laboratory, HFIPS, AnhuiChinese Academy of SciencesShushanhu Road 350Hefei230031China
| | - Huiping Li
- ICQDHefei National Laboratory for Physical Sciences at the Microscaleand Key Laboratory of Strongly‐Coupled Quantum Matter PhysicsChinese Academy of SciencesSchool of Physical SciencesUniversity of Science and Technology of ChinaNo. 96, JinZhai Road, Baohe DistrictHefeiAnhui230026China
| | - Gaoting Lin
- Key Laboratory of Materials PhysicsInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesShushanhu Road 350HefeiAnhui230031China
| | - Jian Yan
- Key Laboratory of Materials PhysicsInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesShushanhu Road 350HefeiAnhui230031China
| | - Lei Zhang
- Anhui Key Laboratory of Condensed Matter Physics at Extreme ConditionsHigh Magnetic Field Laboratory, HFIPS, AnhuiChinese Academy of SciencesShushanhu Road 350Hefei230031China
| | - Cheng Yang
- Key Laboratory of Materials PhysicsInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesShushanhu Road 350HefeiAnhui230031China
| | - Wei Tong
- Anhui Key Laboratory of Condensed Matter Physics at Extreme ConditionsHigh Magnetic Field Laboratory, HFIPS, AnhuiChinese Academy of SciencesShushanhu Road 350Hefei230031China
| | - Zhuang Ren
- Anhui Key Laboratory of Condensed Matter Physics at Extreme ConditionsHigh Magnetic Field Laboratory, HFIPS, AnhuiChinese Academy of SciencesShushanhu Road 350Hefei230031China
| | - Wang Zhu
- Anhui Key Laboratory of Condensed Matter Physics at Extreme ConditionsHigh Magnetic Field Laboratory, HFIPS, AnhuiChinese Academy of SciencesShushanhu Road 350Hefei230031China
| | - Xin Cong
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesNo. A35, QingHua East Road, Haidian DistrictBeijing100083China
| | - Jingjing Gao
- Key Laboratory of Materials PhysicsInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesShushanhu Road 350HefeiAnhui230031China
| | - Pingheng Tan
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesNo. A35, QingHua East Road, Haidian DistrictBeijing100083China
| | - Xuan Luo
- Key Laboratory of Materials PhysicsInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesShushanhu Road 350HefeiAnhui230031China
| | - Yuping sun
- Anhui Key Laboratory of Condensed Matter Physics at Extreme ConditionsHigh Magnetic Field Laboratory, HFIPS, AnhuiChinese Academy of SciencesShushanhu Road 350Hefei230031China
- Key Laboratory of Materials PhysicsInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesShushanhu Road 350HefeiAnhui230031China
- Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNo. 22 Hankou Road, Gulou DistrictNanjingJiangsu210093China
| | - Wenguang Zhu
- ICQDHefei National Laboratory for Physical Sciences at the Microscaleand Key Laboratory of Strongly‐Coupled Quantum Matter PhysicsChinese Academy of SciencesSchool of Physical SciencesUniversity of Science and Technology of ChinaNo. 96, JinZhai Road, Baohe DistrictHefeiAnhui230026China
| | - Zhigao Sheng
- Anhui Key Laboratory of Condensed Matter Physics at Extreme ConditionsHigh Magnetic Field Laboratory, HFIPS, AnhuiChinese Academy of SciencesShushanhu Road 350Hefei230031China
- Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNo. 22 Hankou Road, Gulou DistrictNanjingJiangsu210093China
| |
Collapse
|
14
|
Li S, Zhou J, Du W. Configurable topological phonon polaritons in twisted hBN metasurfaces. APPLIED OPTICS 2021; 60:5735-5741. [PMID: 34263867 DOI: 10.1364/ao.428388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Phonon polaritons are hybrid excitations that originate from coupling of photons with optical phonons in polar crystals. Hexagonal boron nitride (hBN) is a representative phonon polariton material in mid-infrared that exhibits long lifetimes and ultraslow propagation. However, due to in-plane isotropic permittivities, the dispersion engineering and highly canalized ray-like propagation along the in-plane surface required in photonic and optoelectronic applications cannot be realized in a bare hBN structure. In this paper, we theoretically investigate phonon polaritons in twisted hBN metasurfaces. Due to interactions between different propagating polaritons in the top and bottom metasurfaces, configurable polaritons can be hybridized. Importantly, the hybridized polariton dispersion can be changed from the hyperbolic type to elliptical type via tuning the twisting angle. The demonstrated steerable dispersion evolution and highly canalized propagating polaritons hold promise for nano-optical applications such as in-plane hyperlensing, waveguiding, and focusing.
Collapse
|
15
|
Breslin VM, Ratchford DC, Giles AJ, Dunkelberger AD, Owrutsky JC. Hyperbolic phonon polariton resonances in calcite nanopillars. OPTICS EXPRESS 2021; 29:11760-11772. [PMID: 33984951 DOI: 10.1364/oe.417405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
We report the first experimental observation of hyperbolic phonon polariton (HP) resonances in calcite nanopillars, demonstrate that the HP modes redshift with increasing aspect ratio (AR = 0.5 to 1.1), observe a new, possibly higher order mode as the pitch is reduced, and compare the results to both numerical simulations and an analytical model. This work shows that a wide variety of polar dielectric materials can support phonon polaritons by demonstrating HPs in a new material, which is an important first step towards creating a library of materials with the appropriate phonon properties to extend phonon polariton applications throughout the infrared.
Collapse
|
16
|
Lu G, Gubbin CR, Nolen JR, Folland T, Tadjer MJ, De Liberato S, Caldwell JD. Engineering the Spectral and Spatial Dispersion of Thermal Emission via Polariton-Phonon Strong Coupling. NANO LETTERS 2021; 21:1831-1838. [PMID: 33587855 DOI: 10.1021/acs.nanolett.0c04767] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Strong coupling between optical modes can be implemented into nanophotonic design to modify the energy-momentum dispersion relation. This approach offers potential avenues for tuning the thermal emission frequency, line width, polarization, and spatial coherence. Here, we employ three-mode strong coupling between propagating and localized surface phonon polaritons, with zone-folded longitudinal optic phonons within periodic arrays of 4H-SiC nanopillars. Energy exchange, mode evolution, and coupling strength between the three polariton branches are explored experimentally and theoretically. The influence of strong coupling upon the angle-dependent thermal emission was directly measured, providing excellent agreement with theory. We demonstrate a 5-fold improvement in the spatial coherence and 3-fold enhancement of the quality factor of the polaritonic modes, with these hybrid modes also exhibiting a mixed character that could enable opportunities to realize electrically driven emission. Our results show that polariton-phonon strong coupling enables thermal emitters, which meet the requirements for a host of IR applications in a simple, lightweight, narrow-band, and yet bright emitter.
Collapse
Affiliation(s)
- Guanyu Lu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Christopher R Gubbin
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - J Ryan Nolen
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Thomas Folland
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- School of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Marko J Tadjer
- US Naval Research Laboratory, Washington, Washington, D.C. 20375, United States
| | - Simone De Liberato
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
17
|
Kim HS, Ha NY, Park JY, Lee S, Kim DS, Ahn YH. Phonon-Polaritons in Lead Halide Perovskite Film Hybridized with THz Metamaterials. NANO LETTERS 2020; 20:6690-6696. [PMID: 32786930 DOI: 10.1021/acs.nanolett.0c02572] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we demonstrated a phonon-polariton in the terahertz (THz) frequency range, generated in a crystallized lead halide perovskite film coated on metamaterials. When the metamaterial resonance was in tune with the phonon resonance of the perovskite film, Rabi splitting occurred due to the strong coupling between the resonances. The Rabi splitting energy was about 1.1 meV, which is larger than the metamaterial and phonon resonance line widths; the interaction potential estimation confirmed that the strong coupling regime was reached successfully. We were able to tune the polaritonic branches by varying the metamaterial resonance, thereby obtaining the dispersion curve with a clear anticrossing behavior. Additionally, we performed in situ THz spectroscopy as we annealed the perovskite film and studied the Rabi splitting as a function of the films' crystallization coverage. The Rabi splitting versus crystallization volume fraction exhibited a unique power-law scaling, depending on the crystal growth dimensions.
Collapse
Affiliation(s)
- Hwan Sik Kim
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Na Young Ha
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Ji-Yong Park
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Soonil Lee
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Yeong Hwan Ahn
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| |
Collapse
|
18
|
Mancini A, Gubbin CR, Berté R, Martini F, Politi A, Cortés E, Li Y, De Liberato S, Maier SA. Near-Field Spectroscopy of Cylindrical Phonon-Polariton Antennas. ACS NANO 2020; 14:8508-8517. [PMID: 32530605 DOI: 10.1021/acsnano.0c02784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface phonon polaritons (SPhPs) are hybrid light-matter states in which light strongly couples to lattice vibrations inside the Reststrahlen band of polar dielectrics at mid-infrared frequencies. Antennas supporting localized surface phonon polaritons (LSPhPs) easily outperform their plasmonic counterparts operating in the visible or near-infrared in terms of field enhancement and confinement thanks to the inherently slower phonon-phonon scattering processes governing SPhP decay. In particular, LSPhP antennas have attracted considerable interest for thermal management at the nanoscale, where the emission strongly diverts from the usual far-field blackbody radiation due to the presence of evanescent waves at the surface. However, far-field measurements cannot shed light on the behavior of antennas in the near-field region. To overcome this limitation, we employ scattering-scanning near-field optical microscopy (sSNOM) to unveil the spectral near-field response of 3C-SiC antenna arrays. We present a detailed description of the behavior of the antenna resonances by comparing far-field and near-field spectra and demonstrate the existence of a mode with no net dipole moment, absent in the far-field spectra, but of importance for applications that exploit the heightened electromagnetic near fields. Furthermore, we investigate the perturbation in the antenna response induced by the presence of the AFM tip, which can be further extended toward situations where for example strong IR emitters couple to LSPhP modes.
Collapse
Affiliation(s)
- Andrea Mancini
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maxilimians-Universität München, 80539 München, Germany
| | - Christopher R Gubbin
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Rodrigo Berté
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maxilimians-Universität München, 80539 München, Germany
| | - Francesco Martini
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom
- Istituto di Fotonica e Nanotecnologie-CNR, Via Cineto Romano 42, 00156 Roma, Italy
| | - Alberto Politi
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maxilimians-Universität München, 80539 München, Germany
| | - Yi Li
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen 518055, China
| | - Simone De Liberato
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maxilimians-Universität München, 80539 München, Germany
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
19
|
Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat Commun 2020; 11:3649. [PMID: 32686672 PMCID: PMC7371862 DOI: 10.1038/s41467-020-17424-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022] Open
Abstract
Polaritons in two-dimensional materials provide extreme light confinement that is difficult to achieve with metal plasmonics. However, such tight confinement inevitably increases optical losses through various damping channels. Here we demonstrate that hyperbolic phonon polaritons in hexagonal boron nitride can overcome this fundamental trade-off. Among two observed polariton modes, featuring a symmetric and antisymmetric charge distribution, the latter exhibits lower optical losses and tighter polariton confinement. Far-field excitation and detection of this high-momenta mode become possible with our resonator design that can boost the coupling efficiency via virtual polariton modes with image charges that we dub ‘image polaritons’. Using these image polaritons, we experimentally observe a record-high effective index of up to 132 and quality factors as high as 501. Further, our phenomenological theory suggests an important role of hyperbolic surface scattering in the damping process of hyperbolic phonon polaritons. The tight confinement of polaritons in 2D materials leads to increased optical losses. Here, the authors demonstrate image phonon polariton modes in hexagonal boron nitride with an antisymmetric charge distribution that feature quality factors of up to 501 and an effective index of 132.
Collapse
|