1
|
Hematianlarki M, Nimmerjahn F. Immunomodulatory and anti-inflammatory properties of immunoglobulin G antibodies. Immunol Rev 2024; 328:372-386. [PMID: 39340138 DOI: 10.1111/imr.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Antibodies provide an essential layer of protection from infection and reinfection with microbial pathogens. An impaired ability to produce antibodies results in immunodeficiency and necessitates the constant substitution with pooled serum antibodies from healthy donors. Among the five antibody isotypes in humans and mice, immunoglobulin G (IgG) antibodies are the most potent anti-microbial antibody isotype due to their long half-life, their ability to penetrate almost all tissues and due to their ability to trigger a wide variety of effector functions. Of note, individuals suffering from IgG deficiency frequently produce self-reactive antibodies, suggesting that a normal serum IgG level also may contribute to maintaining self-tolerance. Indeed, the substitution of immunodeficient patients with pooled serum IgG fractions from healthy donors, also referred to as intravenous immunoglobulin G (IVIg) therapy, not only protects the patient from infection but also diminishes autoantibody induced pathology, providing more direct evidence that IgG antibodies play an active role in maintaining tolerance during the steady state and during resolution of inflammation. The aim of this review is to discuss different conceptual models that may explain how serum IgG or IVIg can contribute to maintaining a balanced immune response. We will focus on pathways depending on the IgG fragment crystallizable (Fc) as pre-clinical data in various mouse model systems as well as human clinical data have demonstrated that the IgG Fc-domain recapitulates the ability of intact IVIg with respect to its ability to trigger resolution of inflammation. We will further discuss how the findings already have or are in the process of being translated to novel therapeutic approaches to substitute IVIg in treating autoimmune inflammation.
Collapse
Affiliation(s)
- Marjan Hematianlarki
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Dvorscek AR, McKenzie CI, Stäheli VC, Ding Z, White J, Fabb SA, Lim L, O'Donnell K, Pitt C, Christ D, Hill DL, Pouton CW, Burnett DL, Brink R, Robinson MJ, Tarlinton DM, Quast I. Conversion of vaccines from low to high immunogenicity by antibodies with epitope complementarity. Immunity 2024; 57:2433-2452.e7. [PMID: 39305904 DOI: 10.1016/j.immuni.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/06/2024] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Existing antibodies (Abs) have varied effects on humoral immunity during subsequent infections. Here, we leveraged in vivo systems that allow precise control of antigen-specific Abs and B cells to examine the impact of Ab dose, affinity, and specificity in directing B cell activation and differentiation. Abs competing with the B cell receptor (BCR) epitope showed affinity-dependent suppression. By contrast, Abs targeting a complementary epitope, not overlapping with the BCR, shifted B cell differentiation toward Ab-secreting cells. Such Abs allowed for potent germinal center (GC) responses to otherwise poorly immunogenic sites by promoting antigen capture and presentation by low-affinity B cells. These mechanisms jointly diversified the B cell repertoire by facilitating the recruitment of high- and low-affinity B cells into Ab-secreting cell, GC, and memory B cell fates. Incorporation of small amounts of monoclonal Abs into protein- or mRNA-based vaccines enhanced immunogenicity and facilitated sustained immune responses, with implications for vaccine design and our understanding of protective immunity.
Collapse
Affiliation(s)
- Alexandra R Dvorscek
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Craig I McKenzie
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Vera C Stäheli
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Zhoujie Ding
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Jacqueline White
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Stewart A Fabb
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Leonard Lim
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Kristy O'Donnell
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Catherine Pitt
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Danika L Hill
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Deborah L Burnett
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2010, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Marcus J Robinson
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - David M Tarlinton
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Isaak Quast
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia.
| |
Collapse
|
3
|
Sharma P, Zhang X, Ly K, Zhang Y, Hu Y, Ye AY, Hu J, Kim JH, Lou M, Wang C, Celuzza Q, Kondo Y, Furukawa K, Bundle DR, Furukawa K, Alt FW, Winau F. The lipid globotriaosylceramide promotes germinal center B cell responses and antiviral immunity. Science 2024; 383:eadg0564. [PMID: 38359115 PMCID: PMC11404827 DOI: 10.1126/science.adg0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
Influenza viruses escape immunity owing to rapid antigenic evolution, which requires vaccination strategies that allow for broadly protective antibody responses. We found that the lipid globotriaosylceramide (Gb3) expressed on germinal center (GC) B cells is essential for the production of high-affinity antibodies. Mechanistically, Gb3 bound and disengaged CD19 from its chaperone CD81, permitting CD19 to translocate to the B cell receptor complex to trigger signaling. Moreover, Gb3 regulated major histocompatibility complex class II expression to increase diversity of T follicular helper and GC B cells reactive with subdominant epitopes. In influenza infection, elevating Gb3, either endogenously or exogenously, promoted broadly reactive antibody responses and cross-protection. These data demonstrate that Gb3 determines the affinity and breadth of B cell immunity and has potential as a vaccine adjuvant.
Collapse
Affiliation(s)
- Pankaj Sharma
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Xiaolong Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kevin Ly
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yuxiang Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Yu Hu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Adam Yongxin Ye
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Jianqiao Hu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Ji Hyung Kim
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mumeng Lou
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Chong Wang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Quinton Celuzza
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Yuji Kondo
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - David R Bundle
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Florian Winau
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Sharma P, Zhang X, Ly K, Zhang Y, Hu Y, Ye AY, Hu J, Kim JH, Lou M, Wang C, Celuzza Q, Kondo Y, Furukawa K, Bundle DR, Furukawa K, Alt FW, Winau F. The lipid Gb3 promotes germinal center B cell responses and anti-viral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559132. [PMID: 37790573 PMCID: PMC10542550 DOI: 10.1101/2023.09.23.559132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Influenza viruses escape immunity due to rapid antigenic evolution, which requires vaccination strategies that allow for broadly protective antibody responses. Here, we demonstrate that the lipid globotriaosylceramide (Gb3) expressed on germinal center (GC) B cells is essential for the production of high-affinity antibodies. Mechanistically, Gb3 binds and disengages CD19 from its chaperone CD81 for subsequent translocation to the B cell receptor (BCR) complex to trigger signaling. Abundance of Gb3 amplifies the PI3-kinase/Akt/Foxo1 pathway to drive affinity maturation. Moreover, this lipid regulates MHC-II expression to increase diversity of T follicular helper (Tfh) and GC B cells reactive with subdominant epitopes. In influenza infection, Gb3 promotes broadly reactive antibody responses and cross-protection. Thus, we show that Gb3 determines affinity as well as breadth in B cell immunity and propose this lipid as novel vaccine adjuvant against viral infection. One Sentence Summary Gb3 abundance on GC B cells selects antibodies with high affinity and broad epitope reactivities, which are cross-protective against heterologous influenza infection.
Collapse
|
5
|
Telesford KM, Amezcua L, Tardo L, Horton L, Lund BT, Reder AT, Vartanian T, Monson NL. Understanding humoral immunity and multiple sclerosis severity in Black, and Latinx patients. Front Immunol 2023; 14:1172993. [PMID: 37215103 PMCID: PMC10196635 DOI: 10.3389/fimmu.2023.1172993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
People identified with Black/African American or Hispanic/Latinx ethnicity are more likely to exhibit a more severe multiple sclerosis disease course relative to those who identify as White. While social determinants of health account for some of this discordant severity, investigation into contributing immunobiology remains sparse. The limited immunologic data stands in stark contrast to the volume of clinical studies describing ethnicity-associated discordant presentation, and to advancement made in our understanding of MS immunopathogenesis over the past several decades. In this perspective, we posit that humoral immune responses offer a promising avenue to better understand underpinnings of discordant MS severity among Black/African American, and Hispanic/Latinx-identifying patients.
Collapse
Affiliation(s)
- Kiel M. Telesford
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Lilyana Amezcua
- Multiple Sclerosis Comprehensive Care Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauren Tardo
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| | - Lindsay Horton
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| | - Brett T. Lund
- Multiple Sclerosis Comprehensive Care Center, University of Southern California, Los Angeles, CA, United States
| | - Anthony T. Reder
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Timothy Vartanian
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Nancy L. Monson
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| |
Collapse
|
6
|
Virk R, Buddenbaum N, Al-Shaer A, Armstrong M, Manke J, Reisdorph N, Sergin S, Fenton JI, Wallace ED, Ehrmann BM, Lovins HB, Gowdy KM, Smith MR, Smith GJ, Kelada SN, Shaikh SR. Obesity reprograms the pulmonary polyunsaturated fatty acid-derived lipidome, transcriptome, and gene-oxylipin networks. J Lipid Res 2022; 63:100267. [PMID: 36028048 PMCID: PMC9508350 DOI: 10.1016/j.jlr.2022.100267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/27/2022] [Accepted: 08/14/2022] [Indexed: 01/13/2023] Open
Abstract
Obesity exacerbates inflammation upon lung injury; however, the mechanisms by which obesity primes pulmonary dysregulation prior to external injury are not well studied. Herein, we tested the hypothesis that obesity dysregulates pulmonary PUFA metabolism that is central to inflammation initiation and resolution. We first show that a high-fat diet (HFD) administered to C57BL/6J mice increased the relative abundance of pulmonary PUFA-containing triglycerides and the concentration of PUFA-derived oxylipins (particularly prostaglandins and hydroxyeicosatetraenoic acids), independent of an increase in total pulmonary PUFAs, prior to onset of pulmonary inflammation. Experiments with a genetic model of obesity (ob/ob) generally recapitulated the effects of the HFD on the pulmonary oxylipin signature. Subsequent pulmonary next-generation RNA sequencing identified complex and unique transcriptional regulation with the HFD. We found the HFD increased pathways related to glycerophospholipid metabolism and immunity, including a unique elevation in B cell differentiation and signaling. Furthermore, we conducted computational integration of lipidomic with transcriptomic data. These analyses identified novel HFD-driven networks between glycerophospholipid metabolism and B cell receptor signaling with specific PUFA-derived pulmonary oxylipins. Finally, we confirmed the hypothesis by demonstrating that the concentration of pulmonary oxylipins, in addition to inflammatory markers, were generally increased in mice consuming a HFD upon ozone-induced acute lung injury. Collectively, these data show that a HFD dysregulates pulmonary PUFA metabolism prior to external lung injury, which may be a mechanism by which obesity primes the lungs to respond poorly to infectious and/or inflammatory challenges.
Collapse
Affiliation(s)
- Rafia Virk
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole Buddenbaum
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abrar Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Selin Sergin
- Department of Food Science and Human Nutrition, College of Agriculture and Natural Resources and College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jenifer I. Fenton
- Department of Food Science and Human Nutrition, College of Agriculture and Natural Resources and College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - E. Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brandie M. Ehrmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah B. Lovins
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - M Ryan Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA,Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Gregory J. Smith
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samir N.P. Kelada
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,For correspondence: Saame Raza Shaikh
| |
Collapse
|
7
|
Barlev AN, Malkiel S, Kurata-Sato I, Dorjée AL, Suurmond J, Diamond B. FcɣRIIB regulates autoantibody responses by limiting marginal zone B cell activation. J Clin Invest 2022; 132:157250. [PMID: 35819855 PMCID: PMC9435648 DOI: 10.1172/jci157250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
FcɣRIIB is an inhibitory receptor expressed throughout B cell development. Diminished expression or function is associated with lupus in mice and humans, in particular through an effect on autoantibody production and plasma cell differentiation. Here, we analysed the effect of B cell-intrinsic FcɣRIIB expression on B cell activation and plasma cell differentiation. Loss of FcɣRIIB on B cells (Fcgr2b cKO mice) led to a spontaneous increase in autoantibody titers. This increase was most striking for IgG3, suggestive of increased extrafollicular responses. Marginal zone (MZ) B cells had the highest expression of FcɣRIIB in both mouse and human. This high expression of FcɣRIIB was linked to increased MZ B cell activation, Erk phosphorylation, and calcium fluxin the absence of FcɣRIIB triggering. Marked increases in IgG3+ plasma cells and B cells were observed during extrafollicular plasma cell responses in Fcgr2b cKO mice. The increased IgG3 response following immunization of Fcgr2b cKO mice was lost in MZ-deficient Notch2/Fcgr2b cKO mice. Importantly, SLE patients exhibited decreased expression of FcɣRIIB, most strongly in MZ B cells. Thus, we present a model where high FcɣRIIB expression in MZ B cells prevents their hyperactivation and ensuing autoimmunity.
Collapse
Affiliation(s)
- Ashley N Barlev
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Susan Malkiel
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Izumi Kurata-Sato
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Annemarie L Dorjée
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Betty Diamond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, United States of America
| |
Collapse
|
8
|
Marhelava K, Krawczyk M, Firczuk M, Fidyt K. CAR-T Cells Shoot for New Targets: Novel Approaches to Boost Adoptive Cell Therapy for B Cell-Derived Malignancies. Cells 2022; 11:1804. [PMID: 35681499 PMCID: PMC9180412 DOI: 10.3390/cells11111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is undeniably a promising tool in combating various types of hematological malignancies. However, it is not yet optimal and a significant number of patients experience a lack of response or relapse after the treatment. Therapy improvement requires careful analysis of the occurring problems and a deeper understanding of the reasons that stand behind them. In this review, we summarize the recent knowledge about CAR-T products' clinical performance and discuss diversified approaches taken to improve the major shortcomings of this therapy. Especially, we prioritize the challenges faced by CD19 CAR-T cell-based treatment of B cell-derived malignancies and revise the latest insights about mechanisms mediating therapy resistance. Since the loss of CD19 is one of the major obstacles to the success of CAR-T cell therapy, we present antigens that could be alternatively used for the treatment of various types of B cell-derived cancers.
Collapse
Affiliation(s)
- Katsiaryna Marhelava
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Doctoral School of Translational Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Firczuk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
| |
Collapse
|
9
|
Getahun A. Role of inhibitory signaling in peripheral B cell tolerance*. Immunol Rev 2022; 307:27-42. [PMID: 35128676 PMCID: PMC8986582 DOI: 10.1111/imr.13070] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
At least 20% of B cells in the periphery expresses an antigen receptor with a degree of self-reactivity. If activated, these autoreactive B cells pose a risk as they can contribute to the development of autoimmune diseases. To prevent their activation, both B cell-intrinsic and extrinsic tolerance mechanisms are in place in healthy individuals. In this review article, I will focus on B cell-intrinsic mechanisms that prevent the activation of autoreactive B cells in the periphery. I will discuss how inhibitory signaling circuits are established in autoreactive B cells, focusing on the Lyn-SHIP-1-SHP-1 axis, how they contribute to peripheral immune tolerance, and how disruptions of these circuits can contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology University of Colorado SOM Aurora Colorado USA
- Department of Immunology and Genomic Medicine National Jewish Health Denver Colorado USA
| |
Collapse
|
10
|
Dizon BLP, Pierce SK. The tangled web of autoreactive B cells in malaria immunity and autoimmune disease. Trends Parasitol 2022; 38:379-389. [PMID: 35120815 PMCID: PMC9012675 DOI: 10.1016/j.pt.2022.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Two seminal observations suggest that the African genome contains genes selected by malaria that protect against systemic lupus erythematosus (SLE) in individuals chronically exposed to malaria, but which in the absence of malaria, are risk factors for SLE. First, Brian Greenwood observed that SLE was rare in Africa and that malaria prevented SLE-like disease in susceptible mice. Second, African-Americans, as compared with individuals of European descent, are at higher risk of SLE. Understanding that antibodies play central roles in malaria immunity and SLE, we discuss how autoreactive B cells contribute to malaria immunity but promote SLE pathology in the absence of malaria. Testing this model may provide insights into the regulation of autoreactivity and identify new therapeutic targets for SLE.
Collapse
Affiliation(s)
- Brian L P Dizon
- Rheumatology Fellowship and Training Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA; Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
11
|
Karimifar M, Akbari K, ArefNezhad R, Fathi F, Mousaei Ghasroldasht M, Motedayyen H. Impacts of FcγRIIB and FcγRIIIA gene polymorphisms on systemic lupus erythematous disease activity index. BMC Res Notes 2021; 14:455. [PMID: 34922596 PMCID: PMC8684074 DOI: 10.1186/s13104-021-05868-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/30/2021] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Systemic lupus erythematous (SLE) disease is a chronic autoimmune disease with unknown etiology that can involve different organs. Polymorphisms in Fcγ receptors have been identified as genetic factors in susceptibility to SLE. This study was aimed to investigate effects of two single nucleotide polymorphisms (SNPs) within FcγRIIB and FcγRIIIA genes on systemic lupus erythematous disease activity index (SLEDAI) in an Iranian population. RESULTS Our findings indicated TT and GG genotypes were the common genotypes of FcγRIIB and FcγRIIIA SNPs in SLE patients, respectively. There were no significant differences in genotype and allele frequencies of FcγRIIB and FcγRIIIA SNPs in SLE and healthy subjects. However, the frequencies of genotypes and alleles of FcγRIIB and FcγRIIIA SNPs were significantly associated with some clinical manifestations used to determine SLEDAI (P < 0.001-0.5).
Collapse
Affiliation(s)
- Mansoor Karimifar
- Department of Rheumatology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Khosro Akbari
- Department of Rheumatology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza ArefNezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mousaei Ghasroldasht
- Ariagene Medical Genetic Laboratory, Isfahan, Iran
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, 5th Kilometer of Ravand Road, Kashan, Iran.
| |
Collapse
|
12
|
Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, Zhang L. B Cells in Rheumatoid Arthritis:Pathogenic Mechanisms and Treatment Prospects. Front Immunol 2021; 12:750753. [PMID: 34650569 PMCID: PMC8505880 DOI: 10.3389/fimmu.2021.750753] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common, chronic, systemic autoimmune disease, and its clinical features are the proliferation of joint synovial tissue, the formation of pannus and the destruction of cartilage. The global incidence of RA is about 1%, and it is more common in women. The basic feature of RA is the body’s immune system disorders, in which autoreactive CD4+T cells, pathogenic B cells, M1 macrophages, inflammatory cytokines, chemokines and autoantibodies abnormally increase in the body of RA patients B cell depletion therapy has well proved the important role of B cells in the pathogenesis of RA, and the treatment of RA with B cells as a target has also been paid more and more attention. Although the inflammatory indicators in RA patients receiving B-cell depletion therapy have been significantly improved, the risk of infection and cancer has also increased, which suggests that we need to deplete pathogenic B cells instead of all B cells. However, at present we cannot distinguish between pathogenic B cells and protective B cells in RA patients. In this review, we explore fresh perspectives upon the roles of B cells in the occurrence, development and treatment of RA.
Collapse
Affiliation(s)
- Fengping Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xuexue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Bergamaschi L, Mescia F, Turner L, Hanson AL, Kotagiri P, Dunmore BJ, Ruffieux H, De Sa A, Huhn O, Morgan MD, Gerber PP, Wills MR, Baker S, Calero-Nieto FJ, Doffinger R, Dougan G, Elmer A, Goodfellow IG, Gupta RK, Hosmillo M, Hunter K, Kingston N, Lehner PJ, Matheson NJ, Nicholson JK, Petrunkina AM, Richardson S, Saunders C, Thaventhiran JED, Toonen EJM, Weekes MP, Göttgens B, Toshner M, Hess C, Bradley JR, Lyons PA, Smith KGC. Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity 2021; 54:1257-1275.e8. [PMID: 34051148 PMCID: PMC8125900 DOI: 10.1016/j.immuni.2021.05.010] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/13/2021] [Accepted: 05/11/2021] [Indexed: 02/02/2023]
Abstract
The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.
Collapse
Affiliation(s)
- Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Federica Mescia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Lorinda Turner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Aimee L Hanson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Prasanti Kotagiri
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Benjamin J Dunmore
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Hélène Ruffieux
- MRC Biostatistics Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK
| | - Aloka De Sa
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Oisín Huhn
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Michael D Morgan
- Cancer Research UK - Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Mark R Wills
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Fernando J Calero-Nieto
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Anne Elmer
- Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Kelvin Hunter
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Nathalie Kingston
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; NHS Blood and Transplant, Cambridge, UK
| | - Jeremy K Nicholson
- The Australian National Phenome Centre, Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, Western Australia WA 6150, Australia
| | - Anna M Petrunkina
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Sylvia Richardson
- MRC Biostatistics Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK
| | - Caroline Saunders
- Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - James E D Thaventhiran
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; MRC Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QR, UK
| | - Erik J M Toonen
- R&D Department, Hycult Biotech, 5405 PD Uden, the Netherlands
| | - Michael P Weekes
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Mark Toshner
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Heart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Christoph Hess
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Department of Biomedicine, University and University Hospital Basel, 4031 Basel, Switzerland; Botnar Research Centre for Child Health (BRCCH) University Basel & ETH Zurich, 4058 Basel, Switzerland
| | - John R Bradley
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
14
|
Trend S, Leffler J, Teige I, Frendéus B, Kermode AG, French MA, Hart PH. FcγRIIb Expression Is Decreased on Naive and Marginal Zone-Like B Cells From Females With Multiple Sclerosis. Front Immunol 2021; 11:614492. [PMID: 33505402 PMCID: PMC7832177 DOI: 10.3389/fimmu.2020.614492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
B cells are critical to the development of multiple sclerosis (MS), but the mechanisms by which they contribute to the disease are poorly defined. We hypothesised that the expression of CD32b (FcγRIIb), a receptor for the Fc region of IgG with inhibitory activities in B cells, is lower on B cell subsets from people with clinically isolated syndrome (CIS) or MS. CD32b expression was highest on post-naive IgM+ B cell subsets in healthy controls. For females with MS or CIS, significantly lower CD32b expression was identified on IgM+ B cell subsets, including naive and IgMhi MZ-like B cells, when compared with control females. Lower CD32b expression on these B cell subsets was associated with detectable anti-Epstein Barr Virus viral capsid antigen IgM antibodies, and higher serum levels of B cell activating factor. To investigate the effects of lower CD32b expression, B cells were polyclonally activated in the presence of IgG immune complexes, with or without a CD32b blocking antibody, and the expression of TNF and IL-10 in B cell subsets was assessed. The reduction of TNF but not IL-10 expression in controls mediated by IgG immune complexes was reversed by CD32b blockade in naive and IgMhi MZ-like B cells only. However, no consequence of lower CD32b expression on these cells from females with CIS or MS was detected. Our findings highlight a potential role for naive and marginal zone-like B cells in the immunopathogenesis of MS in females, which requires further investigation.
Collapse
Affiliation(s)
- Stephanie Trend
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Jonatan Leffler
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Ingrid Teige
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Björn Frendéus
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Allan G Kermode
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA, Australia
| | - Martyn A French
- Medical School and School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Prue H Hart
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
15
|
Wang TT, Ravetch JV. Functional diversification of IgGs through Fc glycosylation. J Clin Invest 2020; 129:3492-3498. [PMID: 31478910 DOI: 10.1172/jci130029] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
IgG antibodies are secreted from B cells and bind to a variety of pathogens to control infections as well as contribute to inflammatory diseases. Many of the functions of IgGs are mediated through Fcγ receptors (FcγRs), which transduce interactions with immune complexes, leading to a variety of cellular outcomes depending on the FcγRs and cell types engaged. Which FcγRs and cell types will be engaged during an immune response depends on the structure of Fc domains within immune complexes that are formed when IgGs bind to cognate antigen(s). Recent studies have revealed an unexpected degree of structural variability in IgG Fc domains among people, driven primarily by differences in IgG subclasses and N-linked glycosylation of the CH2 domain. This translates, in turn, to functional immune diversification through type I and type II FcγR-mediated cellular functions. For example, Fc domain sialylation triggers conformational changes of IgG1 that enable interactions with type II FcγRs; these receptors mediate cellular functions including antiinflammatory activity or definition of thresholds for B cell selection based on B cell receptor affinity. Similarly, presence or absence of a core fucose alters type I FcγR binding of IgG1 by modulating the Fc's affinity for FcγRIIIa, thereby altering its proinflammatory activity. How heterogeneity in IgG Fc domains contributes to human immune diversity is now being elucidated, including impacts on vaccine responses and susceptibility to disease and its sequelae during infections. Here, we discuss how Fc structures arising from sialylation and fucosylation impact immunity, focusing on responses to vaccination and infection. We also review work defining individual differences in Fc glycosylation, regulation of Fc glycosylation, and clinical implications of these pathways.
Collapse
Affiliation(s)
- Taia T Wang
- Department of Medicine, Division of Infectious Diseases, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
16
|
Cashman KS, Jenks SA, Woodruff MC, Tomar D, Tipton CM, Scharer CD, Lee EH, Boss JM, Sanz I. Understanding and measuring human B-cell tolerance and its breakdown in autoimmune disease. Immunol Rev 2019; 292:76-89. [PMID: 31755562 PMCID: PMC6935423 DOI: 10.1111/imr.12820] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
The maintenance of immunological tolerance of B lymphocytes is a complex and critical process that must be implemented as to avoid the detrimental development of autoreactivity and possible autoimmunity. Murine models have been invaluable to elucidate many of the key components in B-cell tolerance; however, translation to human homeostatic and pathogenic immune states can be difficult to assess. Functional autoreactive, flow cytometric, and single-cell cloning assays have proven to be critical in deciphering breaks in B-cell tolerance within autoimmunity; however, newer approaches to assess human B-cell tolerance may prove to be vital in the further exploration of underlying tolerance defects. In this review, we supply a comprehensive overview of human immune tolerance checkpoints with associated mechanisms of enforcement, and highlight current and future methodologies which are likely to benefit future studies into the mechanisms that become defective in human autoimmune conditions.
Collapse
Affiliation(s)
- Kevin S. Cashman
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Scott A. Jenks
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Matthew C. Woodruff
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Deepak Tomar
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Christopher M. Tipton
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Eun-Hyung Lee
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia, USA
| | - Jeremy M. Boss
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Analysis of the B cell receptor repertoire in six immune-mediated diseases. Nature 2019; 574:122-126. [PMID: 31554970 PMCID: PMC6795535 DOI: 10.1038/s41586-019-1595-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/21/2019] [Indexed: 01/22/2023]
Abstract
B cells are important in the pathogenesis of many, and perhaps all, immune-mediated diseases (IMDs). Each B cell expresses a single B cell receptor (BCR)1, with the diverse range of BCRs expressed by an individual’s total B cell population being termed the “BCR repertoire”. Our understanding of the BCR repertoire in the context of IMDs is incomplete, and defining this could reveal new insights into pathogenesis and therapy. We therefore compared the BCR repertoire in systemic lupus erythematosus (SLE), ANCA-associated vasculitis (AAV), Crohn’s disease (CD), Behçet’s disease (BD), eosinophilic granulomatosis with polyangiitis (EGPA) and IgA vasculitis (IgAV), analysing BCR clonality, and immunoglobulin heavy chain gene (IGHV) and, in particular, isotype usage. An IgA-dominated increased clonality in SLE and CD, together with skewed IGHV gene usage in these and other diseases, suggested a microbial contribution to pathogenesis. Different immunosuppressive treatment had specific and distinct impacts on the repertoire; B cells persisting after rituximab were predominately isotype-switched and clonally expanded, the inverse of those persisting after mycophenolate mofetil. A comparative analysis of the BCR repertoire in immune-mediated disease reveals a complex B cell architecture, providing a platform for understanding pathological mechanisms and designing treatment strategies.
Collapse
|