1
|
Su Y, Zeng X, Zhang L, Bian Y, Wang Y, Ma B. ABTrans: A Transformer-based Model for Predicting Interaction between Anti-Aβ Antibodies and Peptides. Interdiscip Sci 2024:10.1007/s12539-024-00664-5. [PMID: 39466358 DOI: 10.1007/s12539-024-00664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Antibodies against Aβ peptide have been recently approved to treat Alzheimer's disease, underscoring the importance of understanding their interactions for developing more potent treatments. Here we investigated the interaction between anti-Aβ antibodies and various peptides using a deep learning model. Our model, ABTrans, was trained on dodecapeptide sequences from phage display experiments and known anti-Aβ antibody sequences sourced from public sources. It classified the binding ability between anti-Aβ antibodies and dodecapeptides into four levels: not binding, weak binding, medium binding, and strong binding, achieving an accuracy of 0.83. Using ABTrans, we examined the cross-reaction of anti-Aβ antibodies with other human amyloidogenic proteins, revealing that Aducanumab and Donanemab exhibited the least cross-reactivity. Additionally, we systematically screened interactions between eleven selected anti-Aβ antibodies and all human proteins to identify potential off-target candidates.
Collapse
Affiliation(s)
- Yuhong Su
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xincheng Zeng
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingfeng Zhang
- School of Electrical Engineering and Computer Science, University of Ottawa, 75 Laurier Ave, Ottawa, K1N 6N5, Canada
| | - Yanlin Bian
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangjing Wang
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Digiwiser Biological, Inc, Shanghai, 200240, China.
| |
Collapse
|
2
|
Boopathi S, Garduño-Juárez R. A Small Molecule Impedes the Aβ 1-42 Tetramer Neurotoxicity by Preserving Membrane Integrity: Microsecond Multiscale Simulations. ACS Chem Neurosci 2024; 15:3496-3512. [PMID: 39292558 DOI: 10.1021/acschemneuro.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Amyloid-β (Aβ1-42) peptides aggregated into plaques deposited in the brain are the main hallmark of Alzheimer's disease (AD), a social and economic burden worldwide. In this context, insoluble Aβ1-42 fibrils are the main components of plaques. The recent trials that used approved AD drugs show that they can remove the fibrils from AD patients' brains, but they did not halt the course of the disease. Mounting evidence envisages that the soluble Aβ1-42 oligomers' interactions with the neuronal membrane trigger higher cell death than Aβ1-42 fibril interactions. Developing a compound that can alleviate the oligomer's toxicity is one of the most demanding tasks for curing the disease. We performed two molecular dynamics (MD) simulations in an explicit solvent model. In the first case, 55-μs of multiscale all-atom (AA)/coarse-grained (CG) MD simulations were carried out to decipher the impact of a previously described small anti-Aβ molecule, termed M30 (2-octahydroisoquinolin-2(1H)-ylethanamine), on an Aβ1-42 tetramer structure in close contact with a DMPC bilayer. In the second case, 15-μs AA/CG MD simulations were performed to rationalize the dynamics between Aβ1-42 and Aβ1-42-M30 tetramer complexes embedded in DMPC. On the membrane bilayer, we found that the Aβ1-42 tetramer penetrates the bilayer surface due to unrestricted conformational flexibility and many contacts with the membrane phosphate groups. In contrast, no Aβ1-42-M30 tetramer penetration was observed during the entire course of the simulation. In the case of the membrane-embedded Aβ1-42 tetramer, the integrity of the bottom bilayer leaflet was severely affected by the interactions between the negatively charged phosphate groups and the positively charged residues of the Aβ1-42 tetramer, resulting in a deep tetramer penetration into the bilayer hydrophobic region. These contacts were not observed in the case of the membrane-embedded Aβ1-42-M30 tetramer. It was noted that M30 molecules bind to Aβ1-42 tetramer through hydrogen bonds, resulting in a conformational stable Aβ1-42-M30 complex. The associated complex has reduced conformational changes and an enhanced rigidity that prevents the tetramer dissociation by interfering with the tetramer-membrane contacts. Our findings suggest that the M30 molecules could bind to Aβ1-42 tetramer resulting in a rigid structure, and that such complexes do not significantly perturb the membrane bilayer organization. These observations support the in vitro and in vivo experimental evidence that the M30 molecules prevent synaptotocity, improving AD-affected mice memory.
Collapse
Affiliation(s)
- Subramanian Boopathi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| |
Collapse
|
3
|
Joshi R, Brezani V, Mey GM, Guixé-Muntet S, Ortega-Ribera M, Zhuang Y, Zivny A, Werneburg S, Gracia-Sancho J, Szabo G. IRF3 regulates neuroinflammatory responses and the expression of genes associated with Alzheimer's disease. J Neuroinflammation 2024; 21:212. [PMID: 39215356 PMCID: PMC11363437 DOI: 10.1186/s12974-024-03203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The pathological role of interferon signaling is emerging in neuroinflammatory disorders, yet, the specific role of Interferon Regulatory Factor 3 (IRF3) in neuroinflammation remains poorly understood. Here, we show that global IRF3 deficiency delays TLR4-mediated signaling in microglia and attenuates the hallmark features of LPS-induced inflammation such as cytokine release, microglial reactivity, astrocyte activation, myeloid cell infiltration, and inflammasome activation. Moreover, expression of a constitutively active IRF3 (S388D/S390D: IRF3-2D) in microglia induces a transcriptional program reminiscent of the Activated Response Microglia and the expression of genes associated with Alzheimer's disease, notably apolipoprotein-e. Using bulk-RNAseq of IRF3-2D brain myeloid cells, we identified Z-DNA binding protein-1 (ZBP1) as a target of IRF3 that is relevant across various neuroinflammatory disorders. Lastly, we show IRF3 phosphorylation and IRF3-dependent ZBP1 induction in response to Aβ in primary microglia cultures. Together, our results identify IRF3 as an important regulator of LPS and Aβ -mediated neuroinflammatory responses and highlight IRF3 as a central regulator of disease-specific gene activation in different neuroinflammatory diseases.
Collapse
Affiliation(s)
- Radhika Joshi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Veronika Brezani
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Gabrielle M Mey
- Department of Opthalmology and Visual Sciences, Kellogg Eye Center Michigan Neuroscience Institute, University of Michigan, Ann Arbor, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sergi Guixé-Muntet
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute-CIBEREHD, Barcelona, Spain
| | - Marti Ortega-Ribera
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Yuan Zhuang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Adam Zivny
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Sebastian Werneburg
- Department of Opthalmology and Visual Sciences, Kellogg Eye Center Michigan Neuroscience Institute, University of Michigan, Ann Arbor, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jordi Gracia-Sancho
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute-CIBEREHD, Barcelona, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA.
| |
Collapse
|
4
|
Oasa S, Kouznetsova VL, Tsigelny IF, Terenius L. Small molecular decoys in Alzheimer's disease. Neural Regen Res 2024; 19:1658-1659. [PMID: 38103228 PMCID: PMC10960305 DOI: 10.4103/1673-5374.389643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/11/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Sho Oasa
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Igor F. Tsigelny
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lars Terenius
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Leimu L, Holm P, Gąciarz A, Haavisto O, Prince S, Pesonen U, Huovinen T, Lamminmäki U. Epitope-specific antibody fragments block aggregation of AGelD187N, an aberrant peptide in gelsolin amyloidosis. J Biol Chem 2024; 300:107507. [PMID: 38944121 PMCID: PMC11298591 DOI: 10.1016/j.jbc.2024.107507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Aggregation of aberrant fragment of plasma gelsolin, AGelD187N, is a crucial event underlying the pathophysiology of Finnish gelsolin amyloidosis, an inherited form of systemic amyloidosis. The amyloidogenic gelsolin fragment AGelD187N does not play any physiological role in the body, unlike most aggregating proteins related to other protein misfolding diseases. However, no therapeutic agents that specifically and effectively target and neutralize AGelD187N exist. We used phage display technology to identify novel single-chain variable fragments that bind to different epitopes in the monomeric AGelD187N that were further maturated by variable domain shuffling and converted to antigen-binding fragment (Fab) antibodies. The generated antibody fragments had nanomolar binding affinity for full-length AGelD187N, as evaluated by biolayer interferometry. Importantly, all four Fabs selected for functional studies efficiently inhibited the amyloid formation of full-length AGelD187N as examined by thioflavin fluorescence assay and transmission electron microscopy. Two Fabs, neither of which bound to the previously proposed fibril-forming region of AGelD187N, completely blocked the amyloid formation of AGelD187N. Moreover, no small soluble aggregates, which are considered pathogenic species in protein misfolding diseases, were formed after successful inhibition of amyloid formation by the most promising aggregation inhibitor, as investigated by size-exclusion chromatography combined with multiangle light scattering. We conclude that all regions of the full-length AGelD187N are important in modulating its assembly into fibrils and that the discovered epitope-specific anti-AGelD187N antibody fragments provide a promising starting point for a disease-modifying therapy for gelsolin amyloidosis, which is currently lacking.
Collapse
Affiliation(s)
- Laura Leimu
- R&D, Orion Pharma, Orion Corporation, Turku, Finland; Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Patrik Holm
- R&D, Orion Pharma, Orion Corporation, Turku, Finland; Department of Life Technologies, University of Turku, Turku, Finland; Organon R&D Finland, Turku, Finland
| | - Anna Gąciarz
- R&D, Orion Pharma, Orion Corporation, Turku, Finland; Mobidiag, A Hologic Company, Espoo, Finland
| | - Oskar Haavisto
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Stuart Prince
- R&D, Orion Pharma, Orion Corporation, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Ullamari Pesonen
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Tuomas Huovinen
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Urpo Lamminmäki
- Department of Life Technologies, University of Turku, Turku, Finland.
| |
Collapse
|
6
|
González Díaz A, Cataldi R, Mannini B, Vendruscolo M. Preparation and Characterization of Zn(II)-Stabilized Aβ 42 Oligomers. ACS Chem Neurosci 2024; 15:2586-2599. [PMID: 38979921 PMCID: PMC11258685 DOI: 10.1021/acschemneuro.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Aβ oligomers are being investigated as cytotoxic agents in Alzheimer's disease (AD). Because of their transient nature and conformational heterogeneity, the relationship between the structure and activity of these oligomers is still poorly understood. Hence, methods for stabilizing Aβ oligomeric species relevant to AD are needed to uncover the structural determinants of their cytotoxicity. Here, we build on the observation that metal ions and metabolites have been shown to interact with Aβ, influencing its aggregation and stabilizing its oligomeric species. We thus developed a method that uses zinc ions, Zn(II), to stabilize oligomers produced by the 42-residue form of Aβ (Aβ42), which is dysregulated in AD. These Aβ42-Zn(II) oligomers are small in size, spanning the 10-30 nm range, stable at physiological temperature, and with a broad toxic profile in human neuroblastoma cells. These oligomers offer a tool to study the mechanisms of toxicity of Aβ oligomers in cellular and animal AD models.
Collapse
Affiliation(s)
- Alicia González Díaz
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Rodrigo Cataldi
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Benedetta Mannini
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Department
of Experimental and Clinical Biomedical Sciences Mario Serio, University
of Florence, 50134 Florence, Italy
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
7
|
Dey A, Patil A, Arumugam S, Maiti S. Single-Molecule Maps of Membrane Insertion by Amyloid-β Oligomers Predict Their Toxicity. J Phys Chem Lett 2024; 15:6292-6298. [PMID: 38855822 DOI: 10.1021/acs.jpclett.4c01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The interaction of small Amyloid-β (Aβ) oligomers with the lipid membrane is an important component of the pathomechanism of Alzheimer's disease (AD). However, oligomers are heterogeneous in size. How each type of oligomer incorporates into the membrane, and how that relates to their toxicity, is unknown. Here, we employ a single molecule technique called Q-SLIP (Quencher-induced Step Length Increase in Photobleaching) to measure the membrane insertion of each monomeric unit of individual oligomers of Aβ42, Aβ40, and Aβ40-F19-Cyclohexyl alanine (Aβ40-F19Cha), and correlate it with their toxicity. We observe that the N-terminus of Aβ42 inserts close to the center of the bilayer, the less toxic Aβ40 inserts to a shallower depth, and the least toxic Aβ40-F19Cha has no specific distribution. This oligomer-specific map provides a mechanistic representation of membrane-mediated Aβ toxicity and should be a valuable tool for AD research.
Collapse
Affiliation(s)
- Arpan Dey
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Abhishek Patil
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC 3800, Australia
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC 3800, Australia
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
8
|
Haniff ZR, Bocharova M, Mantingh T, Rucker JJ, Velayudhan L, Taylor DM, Young AH, Aarsland D, Vernon AC, Thuret S. Psilocybin for dementia prevention? The potential role of psilocybin to alter mechanisms associated with major depression and neurodegenerative diseases. Pharmacol Ther 2024; 258:108641. [PMID: 38583670 DOI: 10.1016/j.pharmthera.2024.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Major depression is an established risk factor for subsequent dementia, and depression in late life may also represent a prodromal state of dementia. Considering current challenges in the clinical development of disease modifying therapies for dementia, the focus of research is shifting towards prevention and modification of risk factors to alter the neurodegenerative disease trajectory. Understanding mechanistic commonalities underlying affective symptoms and cognitive decline may reveal biomarkers to aid early identification of those at risk of progressing to dementia during the preclinical phase of disease, thus allowing for timely intervention. Adult hippocampal neurogenesis (AHN) is a phenomenon that describes the birth of new neurons in the dentate gyrus throughout life and it is associated with spatial learning, memory and mood regulation. Microglia are innate immune system macrophages in the central nervous system that carefully regulate AHN via multiple mechanisms. Disruption in AHN is associated with both dementia and major depression and microgliosis is a hallmark of several neurodegenerative diseases. Emerging evidence suggests that psychedelics promote neuroplasticity, including neurogenesis, and may also be immunomodulatory. In this context, psilocybin, a serotonergic agonist with rapid-acting antidepressant properties has the potential to ameliorate intersecting pathophysiological processes relevant for both major depression and neurodegenerative diseases. In this narrative review, we focus on the evidence base for the effects of psilocybin on adult hippocampal neurogenesis and microglial form and function; which may suggest that psilocybin has the potential to modulate multiple mechanisms of action, and may have implications in altering the progression from major depression to dementia in those at risk.
Collapse
Affiliation(s)
- Zarah R Haniff
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Mariia Bocharova
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Tim Mantingh
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - James J Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Latha Velayudhan
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - David M Taylor
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, United Kingdom
| | - Dag Aarsland
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Wolfson Centre for Age Related Diseases, Division of Neuroscience of the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Stavanger University Hospital, Stavanger, Norway
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom.
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
9
|
Xia Z, Prescott EE, Urbanek A, Wareing HE, King MC, Olerinyova A, Dakin H, Leah T, Barnes KA, Matuszyk MM, Dimou E, Hidari E, Zhang YP, Lam JYL, Danial JSH, Strickland MR, Jiang H, Thornton P, Crowther DC, Ohtonen S, Gómez-Budia M, Bell SM, Ferraiuolo L, Mortiboys H, Higginbottom A, Wharton SB, Holtzman DM, Malm T, Ranasinghe RT, Klenerman D, De S. Co-aggregation with Apolipoprotein E modulates the function of Amyloid-β in Alzheimer's disease. Nat Commun 2024; 15:4695. [PMID: 38824138 PMCID: PMC11144216 DOI: 10.1038/s41467-024-49028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Which isoforms of apolipoprotein E (apoE) we inherit determine our risk of developing late-onset Alzheimer's Disease (AD), but the mechanism underlying this link is poorly understood. In particular, the relevance of direct interactions between apoE and amyloid-β (Aβ) remains controversial. Here, single-molecule imaging shows that all isoforms of apoE associate with Aβ in the early stages of aggregation and then fall away as fibrillation happens. ApoE-Aβ co-aggregates account for ~50% of the mass of diffusible Aβ aggregates detected in the frontal cortices of homozygotes with the higher-risk APOE4 gene. We show how dynamic interactions between apoE and Aβ tune disease-related functions of Aβ aggregates throughout the course of aggregation. Our results connect inherited APOE genotype with the risk of developing AD by demonstrating how, in an isoform- and lipidation-specific way, apoE modulates the aggregation, clearance and toxicity of Aβ. Selectively removing non-lipidated apoE4-Aβ co-aggregates enhances clearance of toxic Aβ by glial cells, and reduces secretion of inflammatory markers and membrane damage, demonstrating a clear path to AD therapeutics.
Collapse
Affiliation(s)
- Zengjie Xia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Emily E Prescott
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Agnieszka Urbanek
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Hollie E Wareing
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Marianne C King
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Anna Olerinyova
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Helen Dakin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
- Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Tom Leah
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Katy A Barnes
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Martyna M Matuszyk
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Eleni Dimou
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Eric Hidari
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Yu P Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Jeff Y L Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
| | - Michael R Strickland
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hong Jiang
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Thornton
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mireia Gómez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Simon M Bell
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University School of Medicine, St. Louis, MO, USA
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rohan T Ranasinghe
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK.
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK.
| | - Suman De
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK.
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
10
|
Zhang L, Cao K, Xie J, Liang X, Gong H, Luo Q, Luo H. Aβ 42 and ROS dual-targeted multifunctional nanocomposite for combination therapy of Alzheimer's disease. J Nanobiotechnology 2024; 22:278. [PMID: 38783363 PMCID: PMC11112798 DOI: 10.1186/s12951-024-02543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Amyloid-β (Aβ) readily misfolds into neurotoxic aggregates, generating high levels of reactive oxygen species (ROS), leading to progressive oxidative damage and ultimately cell death. Therefore, simultaneous inhibition of Aβ aggregation and scavenging of ROS may be a promising therapeutic strategy to alleviate Alzheimer's disease pathology. Based on the previously developed antibody 1F12 that targets all forms of Aβ42, we developed an Aβ42 and ROS dual-targeting nanocomposite using biodegradable mesoporous silica nanoparticles as carriers to load ultra-small cerium oxide nanocrystals (bMSNs@Ce-1F12). By modifying the brain-targeted rabies virus glycoprotein 29 (RVG29-bMSNs@Ce-1F12), this intelligent nanocomposite can efficiently target brain Aβ-rich regions. Combined with peripheral and central nervous system treatments, RVG29-bMSNs@Ce-1F12 can significantly alleviate AD symptoms by inhibiting Aβ42 misfolding, accelerating Aβ42 clearance, and scavenging ROS. Furthermore, this synergistic effect of ROS scavenging and Aβ clearance exhibited by this Aβ42 and ROS dual-targeted strategy also reduced the burden of hyperphosphorylated tau, alleviated glial cell activation, and ultimately improved cognitive function in APP/PS1 mice. Our findings indicate that RVG29-bMSNs@Ce-1F12 is a promising nanodrug that can facilitate multi-target treatment of AD.
Collapse
Affiliation(s)
- Liding Zhang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Kai Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Xie
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Qingming Luo
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
| | - Haiming Luo
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
| |
Collapse
|
11
|
Nguyen NK, Poduska B, Franks M, Bera M, MacCormack I, Lin G, Petroff AP, Das S, Nag A. A Copper-Selective Sensor and Its Inhibition of Copper-Amyloid Beta Aggregation. BIOSENSORS 2024; 14:247. [PMID: 38785721 PMCID: PMC11117483 DOI: 10.3390/bios14050247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Copper is an essential trace metal for biological processes in humans and animals. A low level of copper detection at physiological pH using fluorescent probes is very important for in vitro applications, such as the detection of copper in water or urine, and in vivo applications, such as tracking the dynamic copper concentrations inside cells. Copper homeostasis is disrupted in neurological diseases like Alzheimer's disease, and copper forms aggregates with amyloid beta (Ab42) peptide, resulting in senile plaques in Alzheimer's brains. Therefore, a selective copper detector probe that can detect amyloid beta peptide-copper aggregates and decrease the aggregate size has potential uses in medicine. We have developed a series of Cu2+-selective low fluorescent to high fluorescent tri and tetradentate dentate ligands and conjugated them with a peptide ligand to amyloid-beta binding peptide to increase the solubility of the compounds and make the resultant compounds bind to Cu2+-amyloid aggregates. The copper selective compounds were developed using chemical scaffolds known to have high affinity and selectivity for Cu2+, and their conjugates with peptides were tested for affinity and selectivity towards Cu2+. The test results were used to inform further improvement of the next compound. The final Cu2+ chelator-peptide conjugate we developed showed high selectivity for Cu2+ and high fluorescence properties. The compound bound 1:1 to Cu2+ ion, as determined from its Job's plot. Fluorescence of the ligand could be detected at nanomolar concentrations. The effect of this ligand on controlling Cu2+-Ab42 aggregation was studied using fluorescence assays and microscopy. It was found that the Cu2+-chelator-peptide conjugate efficiently reduced aggregate size and, therefore, acted as an inhibitor of Ab42-Cu2+ aggregation. Since high micromolar concentrations of Cu2+ are present in senile plaques, and Cu2+ accelerates the formation of toxic soluble aggregates of Ab42, which are precursors of insoluble plaques, the developed hybrid molecule can potentially serve as a therapeutic for Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Arundhati Nag
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA; (N.K.N.); (B.P.); (M.F.); (M.B.); (I.M.); (G.L.); (A.P.P.); (S.D.)
| |
Collapse
|
12
|
Mancuso R, Fattorelli N, Martinez-Muriana A, Davis E, Wolfs L, Van Den Daele J, Geric I, Premereur J, Polanco P, Bijnens B, Preman P, Serneels L, Poovathingal S, Balusu S, Verfaillie C, Fiers M, De Strooper B. Xenografted human microglia display diverse transcriptomic states in response to Alzheimer's disease-related amyloid-β pathology. Nat Neurosci 2024; 27:886-900. [PMID: 38539015 PMCID: PMC11089003 DOI: 10.1038/s41593-024-01600-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/14/2024] [Indexed: 05/14/2024]
Abstract
Microglia are central players in Alzheimer's disease pathology but analyzing microglial states in human brain samples is challenging due to genetic diversity, postmortem delay and admixture of pathologies. To circumvent these issues, here we generated 138,577 single-cell expression profiles of human stem cell-derived microglia xenotransplanted in the brain of the AppNL-G-F model of amyloid pathology and wild-type controls. Xenografted human microglia adopt a disease-associated profile similar to that seen in mouse microglia, but display a more pronounced human leukocyte antigen or HLA state, likely related to antigen presentation in response to amyloid plaques. The human microglial response also involves a pro-inflammatory cytokine/chemokine cytokine response microglia or CRM response to oligomeric Aβ oligomers. Genetic deletion of TREM2 or APOE as well as APOE polymorphisms and TREM2R47H expression in the transplanted microglia modulate these responses differentially. The expression of other Alzheimer's disease risk genes is differentially regulated across the distinct cell states elicited in response to amyloid pathology. Thus, we have identified multiple transcriptomic cell states adopted by human microglia in a multipronged response to Alzheimer's disease-related pathology, which should be taken into account in translational studies.
Collapse
Affiliation(s)
- Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.
| | - Nicola Fattorelli
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Anna Martinez-Muriana
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Emma Davis
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Leen Wolfs
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Johanna Van Den Daele
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Ivana Geric
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jessie Premereur
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paula Polanco
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Baukje Bijnens
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Pranav Preman
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lutgarde Serneels
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Suresh Poovathingal
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
| | - Sriram Balusu
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Mark Fiers
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Bart De Strooper
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- UK Dementia Research Institute at UCL, University College London, London, UK.
| |
Collapse
|
13
|
Young AP, Denovan-Wright EM. JAK1/2 Regulates Synergy Between Interferon Gamma and Lipopolysaccharides in Microglia. J Neuroimmune Pharmacol 2024; 19:14. [PMID: 38642237 DOI: 10.1007/s11481-024-10115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Microglia, the resident immune cells of the brain, regulate neuroinflammation which can lead to secondary neuronal damage and cognitive impairment under pathological conditions. Two of the many molecules that can elicit an inflammatory response from microglia are lipopolysaccharide (LPS), a component of gram-negative bacteria, and interferon gamma (IFNγ), an endogenous pro-inflammatory cytokine. We thoroughly examined the concentration-dependent relationship between LPS from multiple bacterial species and IFNγ in cultured microglia and macrophages. We measured the effects that these immunostimulatory molecules have on pro-inflammatory activity of microglia and used a battery of signaling inhibitors to identify the pathways that contribute to the microglial response. We found that LPS and IFNγ interacted synergistically to induce a pro-inflammatory phenotype in microglia, and that inhibition of JAK1/2 completely blunted the response. We determined that this synergistic action of LPS and IFNγ was likely dependent on JNK and Akt signaling rather than typical pro-inflammatory mediators such as NF-κB. Finally, we demonstrated that LPS derived from Escherichia coli, Klebsiella pneumoniae, and Akkermansia muciniphila can elicit different inflammatory responses from microglia and macrophages, but these responses could be consistently prevented using ruxolitinib, a JAK1/2 inhibitor. Collectively, this work reveals a mechanism by which microglia may become hyperactivated in response to the combination of LPS and IFNγ. Given that elevations in circulating LPS and IFNγ occur in a wide variety of pathological conditions, it is critical to understand the pharmacological interactions between these molecules to develop safe and effective treatments to suppress this process.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
14
|
Chen A, Shea D, Daggett V. Performance of SOBA-AD blood test in discriminating Alzheimer's disease patients from cognitively unimpaired controls in two independent cohorts. Sci Rep 2024; 14:7946. [PMID: 38575622 PMCID: PMC10995183 DOI: 10.1038/s41598-024-57107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Amyloid-beta (Aβ) toxic oligomers are critical early players in the molecular pathology of Alzheimer's disease (AD). We have developed a Soluble Oligomer Binding Assay (SOBA-AD) for detection of these Aβ oligomers that contain α-sheet secondary structure that discriminates plasma samples from patients on the AD continuum from non-AD controls. We tested 265 plasma samples from two independent cohorts to investigate the performance of SOBA-AD. Testing was performed at two different sites, with different personnel, reagents, and instrumentation. Across two cohorts, SOBA-AD discriminated AD patients from cognitively unimpaired (CU) subjects with 100% sensitivity, > 95% specificity, and > 98% area under the curve (AUC) (95% CI 0.95-1.00). A SOBA-AD positive readout, reflecting α-sheet toxic oligomer burden, was found in AD patients, and not in controls, providing separation of the two populations, aside from 5 SOBA-AD positive controls. Based on an earlier SOBA-AD study, the Aβ oligomers detected in these CU subjects may represent preclinical cases of AD. The results presented here support the value of SOBA-AD as a promising blood-based tool for the detection and confirmation of AD.
Collapse
Affiliation(s)
- Amy Chen
- AltPep Corporation, 1150 Eastlake Avenue N, Suite 800, Seattle, WA, 98109, USA
| | - Dylan Shea
- AltPep Corporation, 1150 Eastlake Avenue N, Suite 800, Seattle, WA, 98109, USA
- University of Washington, Box 355610, Seattle, WA, 98195-5610, USA
| | - Valerie Daggett
- AltPep Corporation, 1150 Eastlake Avenue N, Suite 800, Seattle, WA, 98109, USA.
- University of Washington, Box 355610, Seattle, WA, 98195-5610, USA.
| |
Collapse
|
15
|
Uceda AB, Mariño L, Casasnovas R, Adrover M. An overview on glycation: molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys Rev 2024; 16:189-218. [PMID: 38737201 PMCID: PMC11078917 DOI: 10.1007/s12551-024-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/14/2024] Open
Abstract
The formation of a heterogeneous set of advanced glycation end products (AGEs) is the final outcome of a non-enzymatic process that occurs in vivo on long-life biomolecules. This process, known as glycation, starts with the reaction between reducing sugars, or their autoxidation products, with the amino groups of proteins, DNA, or lipids, thus gaining relevance under hyperglycemic conditions. Once AGEs are formed, they might affect the biological function of the biomacromolecule and, therefore, induce the development of pathophysiological events. In fact, the accumulation of AGEs has been pointed as a triggering factor of obesity, diabetes-related diseases, coronary artery disease, neurological disorders, or chronic renal failure, among others. Given the deleterious consequences of glycation, evolution has designed endogenous mechanisms to undo glycation or to prevent it. In addition, many exogenous molecules have also emerged as powerful glycation inhibitors. This review aims to provide an overview on what glycation is. It starts by explaining the similarities and differences between glycation and glycosylation. Then, it describes in detail the molecular mechanism underlying glycation reactions, and the bio-molecular targets with higher propensity to be glycated. Next, it discusses the precise effects of glycation on protein structure, function, and aggregation, and how computational chemistry has provided insights on these aspects. Finally, it reports the most prevalent diseases induced by glycation, and the endogenous mechanisms and the current therapeutic interventions against it.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Laura Mariño
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Rodrigo Casasnovas
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Miquel Adrover
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| |
Collapse
|
16
|
Nguyen-Thi PT, Vo TK, Pham THT, Nguyen TT, Van Vo G. Natural flavonoids as potential therapeutics in the management of Alzheimer's disease: a review. 3 Biotech 2024; 14:68. [PMID: 38357675 PMCID: PMC10861420 DOI: 10.1007/s13205-024-03925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder which is associated with the accumulation of proteotoxic Aβ peptides, and pathologically characterized by the deposition of Aβ-enriched plaques and neurofibrillary tangles. Given the social and economic burden caused by the rising frequency of AD, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compound's therapeutic effects for AD have been recently investigated in numerous in vitro and in vivo studies, only few have developed to clinical trials. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of the preclinical and clinical trials of flavonoids for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, Faculty of Medicine, VNU University of Medicine and Pharmacy, Vietnam National University, Hanoi, 100000 Vietnam
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000 Vietnam
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420 Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000 Vietnam
- Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
17
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
18
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
19
|
Fertan E, Böken D, Murray A, Danial JSH, Lam JYL, Wu Y, Goh PA, Alić I, Cheetham MR, Lobanova E, Zhang YP, Nižetić D, Klenerman D. Cerebral organoids with chromosome 21 trisomy secrete Alzheimer's disease-related soluble aggregates detectable by single-molecule-fluorescence and super-resolution microscopy. Mol Psychiatry 2024; 29:369-386. [PMID: 38102482 PMCID: PMC11116105 DOI: 10.1038/s41380-023-02333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Understanding the role of small, soluble aggregates of beta-amyloid (Aβ) and tau in Alzheimer's disease (AD) is of great importance for the rational design of preventative therapies. Here we report a set of methods for the detection, quantification, and characterisation of soluble aggregates in conditioned media of cerebral organoids derived from human iPSCs with trisomy 21, thus containing an extra copy of the amyloid precursor protein (APP) gene. We detected soluble beta-amyloid (Aβ) and tau aggregates secreted by cerebral organoids from both control and the isogenic trisomy 21 (T21) genotype. We developed a novel method to normalise measurements to the number of live neurons within organoid-conditioned media based on glucose consumption. Thus normalised, T21 organoids produced 2.5-fold more Aβ aggregates with a higher proportion of larger (300-2000 nm2) and more fibrillary-shaped aggregates than controls, along with 1.3-fold more soluble phosphorylated tau (pTau) aggregates, increased inflammasome ASC-specks, and a higher level of oxidative stress inducing thioredoxin-interacting protein (TXNIP). Importantly, all this was detectable prior to the appearance of histological amyloid plaques or intraneuronal tau-pathology in organoid slices, demonstrating the feasibility to model the initial pathogenic mechanisms for AD in-vitro using cells from live genetically pre-disposed donors before the onset of clinical disease. Then, using different iPSC clones generated from the same donor at different times in two independent experiments, we tested the reproducibility of findings in organoids. While there were differences in rates of disease progression between the experiments, the disease mechanisms were conserved. Overall, our results show that it is possible to non-invasively follow the development of pathology in organoid models of AD over time, by monitoring changes in the aggregates and proteins in the conditioned media, and open possibilities to study the time-course of the key pathogenic processes taking place.
Collapse
Affiliation(s)
- Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Dorothea Böken
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Aoife Murray
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Jeff Y L Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Pollyanna A Goh
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
| | - Ivan Alić
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Matthew R Cheetham
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Evgeniia Lobanova
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Yu P Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Dean Nižetić
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
20
|
Paul D, Agrawal R, Singh S. Alzheimer's disease and clinical trials. J Basic Clin Physiol Pharmacol 2024; 35:31-44. [PMID: 38491747 DOI: 10.1515/jbcpp-2023-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD) is spreading its root disproportionately among the worldwide population. Many genes have been identified as the hallmarks of AD. Based upon the knowledge, many clinical trials have been designed and conducted. Attempts have been made to alleviate the pathology associated with AD by targeting the molecular products of these genes. Irrespective of the understanding on the genetic component of AD, many clinical trials have failed and imposed greater challenges on the path of drug discovery. Therefore, this review aims to identify research and review articles to pinpoint the limitations of drug candidates (thiethylperazine, CT1812, crenezumab, CNP520, and lecanemab), which are under or withdrawn from clinical trials. Thorough analysis of the cross-talk pathways led to the identification of many confounding factors, which could interfere with the success of clinical trials with drug candidates such as thiethylperazine, CT1812, crenezumab, and CNP520. Though these drug candidates were enrolled in clinical trials, yet literature review shows many limitations. These limitations raise many questions on the rationale behind the enrollments of these drug candidates in clinical trials. A meticulous prior assessment of the outcome of clinical studies may stop risky clinical trials at their inceptions. This may save time, money, and resources.
Collapse
Affiliation(s)
- Deepraj Paul
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| | - Rohini Agrawal
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| | - Swati Singh
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| |
Collapse
|
21
|
Polis B, Samson AO. Addressing the Discrepancies Between Animal Models and Human Alzheimer's Disease Pathology: Implications for Translational Research. J Alzheimers Dis 2024; 98:1199-1218. [PMID: 38517793 DOI: 10.3233/jad-240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Animal models, particularly transgenic mice, are extensively used in Alzheimer's disease (AD) research to emulate key disease hallmarks, such as amyloid plaques and neurofibrillary tangles formation. Although these models have contributed to our understanding of AD pathogenesis and can be helpful in testing potential therapeutic interventions, their reliability is dubious. While preclinical studies have shown promise, clinical trials often yield disappointing results, highlighting a notable gap and disparity between animal models and human AD pathology. Existing models frequently overlook early-stage human pathologies and other key AD characteristics, thereby limiting their application in identifying optimal therapeutic interventions. Enhancing model reliability necessitates rigorous study design, comprehensive behavioral evaluations, and biomarker utilization. Overall, a nuanced understanding of each model's neuropathology, its fidelity to human AD, and its limitations is essential for accurate interpretation and successful translation of findings. This article analyzes the discrepancies between animal models and human AD pathology that complicate the translation of findings from preclinical studies to clinical applications. We also delve into AD pathogenesis and attributes to propose a new perspective on this pathology and deliberate over the primary limitations of key experimental models. Additionally, we discuss several fundamental problems that may explain the translational failures and suggest some possible directions for more effective preclinical studies.
Collapse
Affiliation(s)
- Baruh Polis
- Bar-Ilan University Azrieli Faculty of Medicine, Safed, Israel
| | | |
Collapse
|
22
|
Louros N, Schymkowitz J, Rousseau F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 2023; 24:912-933. [PMID: 37684425 DOI: 10.1038/s41580-023-00647-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
23
|
Siddiqui GA, Naeem A. Bioflavonoids ameliorate crowding induced hemoglobin aggregation: a spectroscopic and molecular docking approach. J Biomol Struct Dyn 2023; 41:10315-10325. [PMID: 36519442 DOI: 10.1080/07391102.2022.2154270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
The cellular environment is densely crowded, confining biomacromolecules including proteins to less available space. This macromolecular confinement may affect the physiological conformation of proteins in long-term processes like ageing. Changes in physiological protein structure can lead to protein conformational disorders including neurodegeneration. An intervention approach using food and plant derived bioflavonoids offered a way to find a treatment for these enervating pathological conditions as there is no remedy available. The bioflavonoids NAR (naringenin), 7HD (7 hydroxyflavanone) and CHR (chrysin) were tested for their ability to protect Hb (hemoglobin) against crowding-induced aggregation. Morphological and secondary structural transitions were studied using microscopic and circular dichroism experiments, respectively. The kinetic study was carried out using the relative thioflavin T assay. Molecular docking, AmylPred2, admetSAR and FRET were applied to understand the binding parameters of bioflavonoids with Hb and their drug likeliness. Isolated human lymphocytes were used as a cellular system to study the toxic effects of Hb aggregates. Redox perturbation and cytotoxicity were evaluated by DCFH-DA and MTT assays, respectively. This study suggests that bioflavonoids bind to Hb in the vicinity of aggregation prone amino acid sequences. Binding of the bioflavonoids stabilizes the Hb against crowding-induced structural alterations. Therefore, this study signifies the potential of bioflavonoids for future treatment of many proteopathies including neurodegeneration.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gufran Ahmed Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
24
|
Han YL, Yin HH, Xiao C, Bernards MT, He Y, Guan YX. Understanding the Molecular Mechanisms of Polyphenol Inhibition of Amyloid β Aggregation. ACS Chem Neurosci 2023; 14:4051-4061. [PMID: 37890131 DOI: 10.1021/acschemneuro.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is highly associated with self-aggregation of amyloid β (Aβ) proteins into fibrils. Inhibition of Aβ aggregation by polyphenols is one of the major therapeutic strategies for AD. Among them, four polyphenols (brazilin, resveratrol, hematoxylin, and rosmarinic acid) have been reported to be effective at inhibiting Aβ aggregation, but the inhibition mechanisms are still unclear. In this work, these four polyphenols were selected to explore their interactions with the Aβ17-42 pentamer by molecular dynamics simulation. All four polyphenols can bind to the pentamer tightly but prefer different binding sites. Conversion of the β-sheet to the random coil, fewer interchain hydrogen bonds, and weaker salt bridges were observed after binding. Interestingly, different Aβ17-42 pentamer destabilizing mechanisms for resveratrol and hematoxylin were found. Resveratrol inserts into the hydrophobic core of the pentamer by forming hydrogen bonds with Asp23 and Lys28, while hematoxylin prefers to bind beside chain A of the pentamer, which leads to β-sheet offset and dissociation of the β1 sheet of chain E. This work reveals the interactions between the Aβ17-42 pentamer and four polyphenols and discusses the relationship between inhibitor structures and their inhibition mechanisms, which also provides useful guidance for screening effective Aβ aggregation inhibitors and drug design against AD.
Collapse
Affiliation(s)
- Yin-Lei Han
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Huan-Huan Yin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Chao Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Matthew T Bernards
- Department of Chemical and Biological Engineering, University of Idaho, Moscow 83844, Idaho, United States
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Chemical Engineering, University of Washington, Seattle 98195, Washington, United States
| | - Yi-Xin Guan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Yeh CT, Chang HW, Hsu WH, Huang SJ, Wu MH, Tu LH, Lee MC, Chan JCC. Beta Amyloid Oligomers with Higher Cytotoxicity have Higher Sidechain Dynamics. Chemistry 2023; 29:e202301879. [PMID: 37706579 DOI: 10.1002/chem.202301879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 09/15/2023]
Abstract
The underlying biophysical principle governing the cytotoxicity of the oligomeric aggregates of β-amyloid (Aβ) peptides has long been an enigma. Here we show that the size of Aβ40 oligomers can be actively controlled by incubating the peptides in reverse micelles. Our approach allowed for the first time a detailed comparison of the structures and dynamics of two Aβ40 oligomers of different sizes, viz., 10 and 23 nm, by solid-state NMR. From the chemical shift data, we infer that the conformation and/or the chemical environments of the residues from K16 to K28 are different between the 10-nm and 23-nm oligomers. We find that the 10-nm oligomers are more cytotoxic, and the molecular motion of the sidechain of its charged residue K16 is more dynamic. Interestingly, the residue A21 exhibits unusually high structural rigidity. Our data raise an interesting possibility that the cytotoxicity of Aβ40 oligomers could also be correlated to the motional dynamics of the sidechains.
Collapse
Affiliation(s)
- Chen-Tsen Yeh
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Han-Wen Chang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Wen-Hsin Hsu
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Meng-Hsin Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Ming-Che Lee
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
26
|
Zhang YP, Lobanova E, Emin D, Lobanov SV, Kouli A, Williams-Gray CH, Klenerman D. Imaging Protein Aggregates in Parkinson's Disease Serum Using Aptamer-Assisted Single-Molecule Pull-Down. Anal Chem 2023; 95:15254-15263. [PMID: 37782556 PMCID: PMC10585954 DOI: 10.1021/acs.analchem.3c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
The formation of soluble α-synuclein (α-syn) and amyloid-β (Aβ) aggregates is associated with the development of Parkinson's disease (PD). Current methods mainly focus on the measurement of the aggregate concentration and are unable to determine their heterogeneous size and shape, which potentially also change during the development of PD due to increased protein aggregation. In this work, we introduce aptamer-assisted single-molecule pull-down (APSiMPull) combined with super-resolution fluorescence imaging of α-syn and Aβ aggregates in human serum from early PD patients and age-matched controls. Our diffraction-limited imaging results indicate that the proportion of α-syn aggregates (α-syn/(α-syn+Aβ)) can be used to distinguish PD and control groups with an area under the curve (AUC) of 0.85. Further, super resolution fluorescence imaging reveals that PD serums have a higher portion of larger and rounder α-syn aggregates than controls. Little difference was observed for Aβ aggregates. Combining these two metrics, we constructed a new biomarker and achieved an AUC of 0.90. The combination of the aggregate number and morphology provides a new approach to early PD diagnosis.
Collapse
Affiliation(s)
- Yu P. Zhang
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Evgeniia Lobanova
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Derya Emin
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Sergey V. Lobanov
- Medical
Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Antonina Kouli
- Department
of Clinical Neurosciences, University of
Cambridge, Cambridge CB2 0PY, United Kingdom
| | | | - David Klenerman
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
27
|
Menduti G, Boido M. Recent Advances in High-Content Imaging and Analysis in iPSC-Based Modelling of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:14689. [PMID: 37834135 PMCID: PMC10572296 DOI: 10.3390/ijms241914689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
In the field of neurodegenerative pathologies, the platforms for disease modelling based on patient-derived induced pluripotent stem cells (iPSCs) represent a valuable molecular diagnostic/prognostic tool. Indeed, they paved the way for the in vitro recapitulation of the pathological mechanisms underlying neurodegeneration and for characterizing the molecular heterogeneity of disease manifestations, also enabling drug screening approaches for new therapeutic candidates. A major challenge is related to the choice and optimization of the morpho-functional study designs in human iPSC-derived neurons to deeply detail the cell phenotypes as markers of neurodegeneration. In recent years, the specific combination of high-throughput screening with subcellular resolution microscopy for cell-based high-content imaging (HCI) screening allowed in-depth analyses of cell morphology and neurite trafficking in iPSC-derived neuronal cells by using specific cutting-edge microscopes and automated computational assays. The present work aims to describe the main recent protocols and advances achieved with the HCI analysis in iPSC-based modelling of neurodegenerative diseases, highlighting technical and bioinformatics tips and tricks for further uses and research. To this end, microscopy requirements and the latest computational pipelines to analyze imaging data will be explored, while also providing an overview of the available open-source high-throughput automated platforms.
Collapse
Affiliation(s)
- Giovanna Menduti
- Department of Neuroscience “Rita Levi Montalcini”, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Regione Gonzole 10, Orbassano, 10043 Turin, TO, Italy;
| | | |
Collapse
|
28
|
Stecker MM, Srivastava A, Reiss AB. Amyloid-β Effects on Peripheral Nerve: A New Model System. Int J Mol Sci 2023; 24:14488. [PMID: 37833938 PMCID: PMC10572603 DOI: 10.3390/ijms241914488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Although there are many biochemical methods to measure amyloid-β (Aβ)42 concentration, one of the critical issues in the study of the effects of Aβ42 on the nervous system is a simple physiological measurement. The in vitro rat sciatic nerve model is employed and the nerve action potential (NAP) is quantified with different stimuli while exposed to different concentrations of Aβ42. Aβ42 predominantly reduces the NAP amplitude with minimal effects on other parameters except at low stimulus currents and short inter-stimulus intervals. The effects of Aβ42 are significantly concentration-dependent, with a maximum reduction in NAP amplitude at a concentration of 70 nM and smaller effects on the NAP amplitude at higher and lower concentrations. However, even physiologic concentrations in the range of 70 pM did reduce the NAP amplitude. The effects of Aβ42 became maximal 5-8 h after exposure and did not reverse during a 30 min washout period. The in vitro rat sciatic nerve model is sensitive to the effects of physiologic concentrations of Aβ42. These experiments suggest that the effect of Aβ42 is a very complex function of concentration that may be the result of amyloid-related changes in membrane properties or sodium channels.
Collapse
Affiliation(s)
| | - Ankita Srivastava
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Long Island, NY 11501, USA; (A.S.); (A.B.R.)
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Long Island, NY 11501, USA; (A.S.); (A.B.R.)
| |
Collapse
|
29
|
Meng F, Kim JY, Gopich IV, Chung HS. Single-molecule FRET and molecular diffusion analysis characterize stable oligomers of amyloid-β 42 of extremely low population. PNAS NEXUS 2023; 2:pgad253. [PMID: 37564361 PMCID: PMC10411938 DOI: 10.1093/pnasnexus/pgad253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Soluble oligomers produced during protein aggregation have been thought to be toxic species causing various diseases. Characterization of these oligomers is difficult because oligomers are a heterogeneous mixture, which is not readily separable, and may appear transiently during aggregation. Single-molecule spectroscopy can provide valuable information by detecting individual oligomers, but there have been various problems in determining the size and concentration of oligomers. In this work, we develop and use a method that analyzes single-molecule fluorescence burst data of freely diffusing molecules in solution based on molecular diffusion theory and maximum likelihood method. We demonstrate that the photon count rate, diffusion time, population, and Förster resonance energy transfer (FRET) efficiency can be accurately determined from simulated data and the experimental data of a known oligomerization system, the tetramerization domain of p53. We used this method to characterize the oligomers of the 42-residue amyloid-β (Aβ42) peptide. Combining peptide incubation in a plate reader and single-molecule free-diffusion experiments allows for the detection of stable oligomers appearing at various stages of aggregation. We find that the average size of these oligomers is 70-mer and their overall population is very low, less than 1 nM, in the early and middle stages of aggregation of 1 µM Aβ42 peptide. Based on their average size and long diffusion time, we predict the oligomers have a highly elongated rod-like shape.
Collapse
Affiliation(s)
- Fanjie Meng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| |
Collapse
|
30
|
Dimou E, Katsinelos T, Meisl G, Tuck BJ, Keeling S, Smith AE, Hidari E, Lam JYL, Burke M, Lövestam S, Ranasinghe RT, McEwan WA, Klenerman D. Super-resolution imaging unveils the self-replication of tau aggregates upon seeding. Cell Rep 2023; 42:112725. [PMID: 37393617 PMCID: PMC7614924 DOI: 10.1016/j.celrep.2023.112725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023] Open
Abstract
Tau is a soluble protein interacting with tubulin to stabilize microtubules. However, under pathological conditions, it becomes hyperphosphorylated and aggregates, a process that can be induced by treating cells with exogenously added tau fibrils. Here, we employ single-molecule localization microscopy to resolve the aggregate species formed in early stages of seeded tau aggregation. We report that entry of sufficient tau assemblies into the cytosol induces the self-replication of small tau aggregates, with a doubling time of 5 h inside HEK cells and 1 day in murine primary neurons, which then grow into fibrils. Seeding occurs in the vicinity of the microtubule cytoskeleton, is accelerated by the proteasome, and results in release of small assemblies into the media. In the absence of seeding, cells still spontaneously form small aggregates at lower levels. Overall, our work provides a quantitative picture of the early stages of templated seeded tau aggregation in cells.
Collapse
Affiliation(s)
- Eleni Dimou
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK.
| | - Taxiarchis Katsinelos
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Georg Meisl
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Benjamin J Tuck
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Sophie Keeling
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Annabel E Smith
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Eric Hidari
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Jeff Y L Lam
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Melanie Burke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Sofia Lövestam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rohan T Ranasinghe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - William A McEwan
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK.
| |
Collapse
|
31
|
Xia Z, Wu Y, Lam JYL, Zhang Z, Burke M, Fertan E, Ranasinghe RT, Hidari E, Danial JS, Klenerman D. A computational suite for the structural and functional characterization of amyloid aggregates. CELL REPORTS METHODS 2023; 3:100499. [PMID: 37426747 PMCID: PMC10326375 DOI: 10.1016/j.crmeth.2023.100499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/11/2023] [Accepted: 05/17/2023] [Indexed: 07/11/2023]
Abstract
We developed the aggregate characterization toolkit (ACT), a fully automated computational suite based on existing and widely used core algorithms to measure the number, size, and permeabilizing activity of recombinant and human-derived aggregates imaged with diffraction-limited and super-resolution microscopy methods at high throughput. We have validated ACT on simulated ground-truth images of aggregates mimicking those from diffraction-limited and super-resolution microscopies and showcased its use in characterizing protein aggregates from Alzheimer's disease. ACT is developed for high-throughput batch processing of images collected from multiple samples and is available as an open-source code. Given its accuracy, speed, and accessibility, ACT is expected to be a fundamental tool in studying human and non-human amyloid intermediates, developing early disease stage diagnostics, and screening for antibodies that bind toxic and heterogeneous human amyloid aggregates.
Collapse
Affiliation(s)
- Zengjie Xia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - Jeff Yui Long Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - Ziwei Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - Melanie Burke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - Rohan T. Ranasinghe
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - Eric Hidari
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - John S.H. Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| |
Collapse
|
32
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202215785. [PMID: 38515735 PMCID: PMC10952214 DOI: 10.1002/ange.202215785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 03/08/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
33
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. Angew Chem Int Ed Engl 2023; 62:e202215785. [PMID: 36876912 PMCID: PMC10953358 DOI: 10.1002/anie.202215785] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
34
|
Li G, Jeon CK, Ma M, Jia Y, Zheng Z, Delafield DG, Lu G, Romanova EV, Sweedler JV, Ruotolo BT, Li L. Site-specific chirality-conferred structural compaction differentially mediates the cytotoxicity of Aβ42. Chem Sci 2023; 14:5936-5944. [PMID: 37293657 PMCID: PMC10246695 DOI: 10.1039/d3sc00678f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/06/2023] [Indexed: 06/10/2023] Open
Abstract
Growing evidence supports the confident association between distinct amyloid beta (Aβ) isoforms and Alzheimer's Disease (AD) pathogenesis. As such, critical investigations seeking to uncover the translational factors contributing to Aβ toxicity represent a venture of significant value. Herein, we comprehensively assess full-length Aβ42 stereochemistry, with a specific focus on models that consider naturally-occurring isomerization of Asp and Ser residues. We customize various forms of d-isomerized Aβ as natural mimics, ranging from fragments containing a single d residue to full length Aβ42 that includes multiple isomerized residues, systematically evaluating their cytotoxicity against a neuronal cell line. Combining multidimensional ion mobility-mass spectrometry experimental data with replica exchange molecular dynamics simulations, we confirm that co-d-epimerization at Asp and Ser residues within Aβ42 in both N-terminal and core regions effectively reduces its cytotoxicity. We provide evidence that this rescuing effect is associated with the differential and domain-specific compaction and remodeling of Aβ42 secondary structure.
Collapse
Affiliation(s)
- Gongyu Li
- State Key Laboratory of Pharmaceutical Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Chae Kyung Jeon
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
| | - Min Ma
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison 777 Highland Ave. Madison WI 53705 USA
| | - Yifei Jia
- State Key Laboratory of Pharmaceutical Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| | - Zhen Zheng
- School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Daniel G Delafield
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison 777 Highland Ave. Madison WI 53705 USA
| | - Gaoyuan Lu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison 777 Highland Ave. Madison WI 53705 USA
| | - Elena V Romanova
- Department of Chemistry and The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Jonathan V Sweedler
- Department of Chemistry and The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison 777 Highland Ave. Madison WI 53705 USA
| |
Collapse
|
35
|
Leppert A, Poska H, Landreh M, Abelein A, Chen G, Johansson J. A new kid in the folding funnel: Molecular chaperone activities of the BRICHOS domain. Protein Sci 2023; 32:e4645. [PMID: 37096906 PMCID: PMC10182729 DOI: 10.1002/pro.4645] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
The BRICHOS protein superfamily is a diverse group of proteins associated with a wide variety of human diseases, including respiratory distress, COVID-19, dementia, and cancer. A key characteristic of these proteins-besides their BRICHOS domain present in the ER lumen/extracellular part-is that they harbor an aggregation-prone region, which the BRICHOS domain is proposed to chaperone during biosynthesis. All so far studied BRICHOS domains modulate the aggregation pathway of various amyloid-forming substrates, but not all of them can keep denaturing proteins in a folding-competent state, in a similar manner as small heat shock proteins. Current evidence suggests that the ability to interfere with the aggregation pathways of substrates with entirely different end-point structures is dictated by BRICHOS quaternary structure as well as specific surface motifs. This review aims to provide an overview of the BRICHOS protein family and a perspective of the diverse molecular chaperone-like functions of various BRICHOS domains in relation to their structure and conformational plasticity. Furthermore, we speculate about the physiological implication of the diverse molecular chaperone functions and discuss the possibility to use the BRICHOS domain as a blood-brain barrier permeable molecular chaperone treatment of protein aggregation disorders.
Collapse
Affiliation(s)
- Axel Leppert
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Helen Poska
- School of Natural Sciences and HealthTallinn UniversityTallinnEstonia
| | - Michael Landreh
- Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Axel Abelein
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Gefei Chen
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| |
Collapse
|
36
|
Matsui A, Bellier JP, Hayashi D, Ishibe T, Nakamura Y, Taguchi H, Naruse N, Mera Y. Curcumin tautomerization in the mechanism of pentameric amyloid- β42 oligomers disassembly. Biochem Biophys Res Commun 2023; 666:68-75. [PMID: 37178507 DOI: 10.1016/j.bbrc.2023.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
Alzheimer's disease is a neurologic disorder characterized by the accumulation of extracellular deposits of amyloid-β (Aβ) fibrils in the brain of patients. The key etiologic agent in Alzheimer's disease is not known; however oligomeric Aβ appears detrimental to neuronal functions and increases Aβ fibrils deposition. Previous research has shown that curcumin, a phenolic pigment of turmeric, has an effect on Aβ assemblies, although the mechanism remains unclear. In this study, we demonstrate that curcumin disassembles pentameric oligomers made from synthetic Aβ42 peptides (pentameric oAβ42), using atomic force microscopy imaging followed by Gaussian analysis. Since curcumin shows keto-enol structural isomerism (tautomerism), the effect of keto-enol tautomerism on its disassembly was investigated. We have found that curcumin derivatives capable of keto-enol tautomerization also disassemble pentameric oAβ42, while, a curcumin derivative incapable of tautomerization did not affect the integrity of pentameric oAβ42. These experimental findings indicate that keto-enol tautomerism plays an essential role in the disassembly. We propose a mechanism for oAβ42 disassembly by curcumin based on molecular dynamics calculations of the tautomerism. When curcumin and its derivatives bind to the hydrophobic regions of oAβ42, the keto-form changes predominantly to the enol-form; this transition is associated with structural (twisting, planarization and rigidification) and potential energy changes that give curcumin enough force to act as a torsion molecular-spring that eventually disassembles pentameric oAβ42. This proposed mechanism sheds new light on keto-enol tautomerism as a relevant chemical feature for designing such novel therapeutic drugs that target protein aggregation.
Collapse
Affiliation(s)
- Atsuya Matsui
- Department of Fundamental Bioscience, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | | | - Daiki Hayashi
- Department of Fundamental Bioscience, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Takafumi Ishibe
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka, 560-8531, Japan
| | - Yoshiaki Nakamura
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka, 560-8531, Japan
| | - Hiroyasu Taguchi
- Kyoto Women's University, Kitahiyoshi-cho, Higashiyama-ku, Kyoto, 605-8501, Japan
| | - Nobuyasu Naruse
- Department of Fundamental Bioscience, Shiga University of Medical Science, Otsu, 520-2192, Japan.
| | - Yutaka Mera
- Department of Fundamental Bioscience, Shiga University of Medical Science, Otsu, 520-2192, Japan
| |
Collapse
|
37
|
Kohler V, Andréasson C. Reversible protein assemblies in the proteostasis network in health and disease. Front Mol Biosci 2023; 10:1155521. [PMID: 37021114 PMCID: PMC10067754 DOI: 10.3389/fmolb.2023.1155521] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
While proteins populating their native conformations constitute the functional entities of cells, protein aggregates are traditionally associated with cellular dysfunction, stress and disease. During recent years, it has become clear that large aggregate-like protein condensates formed via liquid-liquid phase separation age into more solid aggregate-like particles that harbor misfolded proteins and are decorated by protein quality control factors. The constituent proteins of the condensates/aggregates are disentangled by protein disaggregation systems mainly based on Hsp70 and AAA ATPase Hsp100 chaperones prior to their handover to refolding and degradation systems. Here, we discuss the functional roles that condensate formation/aggregation and disaggregation play in protein quality control to maintain proteostasis and why it matters for understanding health and disease.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Claes Andréasson
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
38
|
Tiwari A, Pradhan S, Sannigrahi A, Mahakud AK, Jha S, Chattopadhyay K, Biswas M, Saleem M. “Interplay of lipid-head group and packing defects in driving Amyloid-beta mediated myelin-like model membrane deformation”. J Biol Chem 2023; 299:104653. [PMID: 36990217 PMCID: PMC10148160 DOI: 10.1016/j.jbc.2023.104653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Accumulating evidence suggests that amyloid plaque associated myelin lipid loss as a result of elevated amyloid burden might also contribute to Alzheimer's disease. The amyloid fibrils though closely associated with lipids under physiological conditions, however, the progression of membrane remodeling events leading to lipid-fibril assembly remains unknown. Here we first reconstitute the interaction of Aβ-40 with myelin-like model membrane and show that the binding of Aβ-40 induces extensive tubulation. To look into the mechanism of membrane tubulation we chose a set of membrane conditions varying in lipid packing density and net charge that allows us to dissect the contribution of lipid specificity of Aβ-40 binding, aggregation kinetics, and subsequent changes in membrane parameters such as fluidity, diffusion, and compressibility modulus. We show that the binding of Aβ-40 depends predominantly on the lipid packing defect densities and electrostatic interactions and results in rigidification of the myelin-like model membrane during the early phase of amyloid aggregation. Furthermore, elongation of Aβ-40 into higher oligomeric and fibrillar species leads to eventual fluidization of the model membrane followed by extensive lipid membrane tubulation observed in the late phase. Taken together, our results capture mechanistic insights into snapshots of temporal dynamics of Aβ-40 - myelin-like model membrane interaction and demonstrate how short timescale, local phenomena of binding, and fibril-mediated load generation results in the consequent association of lipids with growing amyloid fibrils.
Collapse
|
39
|
The interactions of amyloid β aggregates with phospholipid membranes and the implications for neurodegeneration. Biochem Soc Trans 2023; 51:147-159. [PMID: 36629697 DOI: 10.1042/bst20220434] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023]
Abstract
Misfolding, aggregation and accumulation of Amyloid-β peptides (Aβ) in neuronal tissue and extracellular matrix are hallmark features of Alzheimer's disease (AD) pathology. Soluble Aβ oligomers are involved in neuronal toxicity by interacting with the lipid membrane, compromising its integrity, and affecting the function of receptors. These facts indicate that the interaction between Aβ oligomers and cell membranes may be one of the central molecular level factors responsible for the onset of neurodegeneration. The present review provides a structural understanding of Aβ neurotoxicity via membrane interactions and contributes to understanding early events in Alzheimer's disease.
Collapse
|
40
|
Liu X, Yu C, Su B, Zha D. Synthesis and properties of the kojic acid dimer and its potential for the treatment of Alzheimer's disease. RSC Med Chem 2023; 14:268-276. [PMID: 36846369 PMCID: PMC9945874 DOI: 10.1039/d2md00383j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The kojic acid dimer (KAD) is a metabolite derived from developing cottonseed when contaminated with aflatoxin. The KAD has been shown to exhibit bright greenish-yellow fluorescence, but little else is known about its biological activity. In this study, using kojic acid as a raw material, we developed a four-step synthetic route that achieved the gram-scale preparation of the KAD in approximately 25% total yield. The structure of the KAD was verified by single-crystal X-ray diffraction. The KAD showed good safety in a variety of cells and had a good protective effect in SH-SY5Y cells. At concentrations lower than 50 μM, the KAD was superior to vitamin C in ABTS+ free radical scavenging assay; the KAD resisted the production of reactive oxygen species induced by H2O2 as confirmed by fluorescence microscopy observation and flow cytometry analysis. Notably, the KAD could enhance the superoxide dismutase activity, which might be the mechanism of its antioxidant activity. The KAD also moderately inhibited the deposition of amyloid-β (Aβ) and selectively chelated Cu2+, Zn2+, Fe2+, Fe3+, and Al3+, which are related to the progress of Alzheimer's disease. Based on its good effects in terms of oxidative stress, neuroprotection, inhibition of Aβ deposition, and metal accumulation, the KAD shows potential for the multi-target treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xueyan Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China .,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University China
| | - Chuanyu Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China
| | - Biling Su
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China .,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University China
| |
Collapse
|
41
|
Matthes D, de Groot BL. Molecular dynamics simulations reveal the importance of amyloid-beta oligomer β-sheet edge conformations in membrane permeabilization. J Biol Chem 2023; 299:103034. [PMID: 36806684 PMCID: PMC10033322 DOI: 10.1016/j.jbc.2023.103034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Oligomeric aggregates of the amyloid-beta peptide(1-42) (Aβ42) are regarded as a primary cause of cytotoxicity related to membrane damage in Alzheimer's disease. However, a dynamical and structural characterization of pore-forming Aβ42 oligomers at atomic detail has not been feasible. Here, we used Aβ42 oligomer structures previously determined in a membrane-mimicking environment as putative model systems to study the pore formation process in phospholipid bilayers with all-atom molecular dynamics simulations. Multiple Aβ42 oligomer sizes, conformations, and N-terminally truncated isoforms were investigated on the multi-μs time scale. We found that pore formation and ion permeation occur via edge conductivity and exclusively for β-sandwich structures that feature exposed side-by-side β-strand pairs formed by residues 9 to 21 of Aβ42. The extent of pore formation and ion permeation depends on the insertion depth of hydrophilic residues 13 to 16 (HHQK domain) and thus on subtle differences in the overall stability, orientation, and conformation of the aggregates in the membrane. Additionally, we determined that backbone carbonyl and polar side-chain atoms from the edge strands directly contribute to the coordination sphere of the permeating ions. Furthermore, point mutations that alter the number of favorable side-chain contacts correlate with the ability of the Aβ42 oligomer models to facilitate ion permeation in the bilayer center. Our findings suggest that membrane-inserted, layered β-sheet edges are a key structural motif in pore-forming Aβ42 oligomers independent of their size and play a pivotal role in aggregate-induced membrane permeabilization.
Collapse
Affiliation(s)
- Dirk Matthes
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
42
|
Fertan E, Gendron WH, Wong AA, Hanson GM, Brown RE, Weaver ICG. Noncanonical regulation of imprinted gene Igf2 by amyloid-beta 1-42 in Alzheimer's disease. Sci Rep 2023; 13:2043. [PMID: 36739453 PMCID: PMC9899226 DOI: 10.1038/s41598-023-29248-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Reduced insulin-like growth factor 2 (IGF2) levels in Alzheimer's disease (AD) may be the mechanism relating age-related metabolic disorders to dementia. Since Igf2 is an imprinted gene, we examined age and sex differences in the relationship between amyloid-beta 1-42 (Aβ42) accumulation and epigenetic regulation of the Igf2/H19 gene cluster in cerebrum, liver, and plasma of young and old male and female 5xFAD mice, in frontal cortex of male and female AD and non-AD patients, and in HEK293 cell cultures. We show IGF2 levels, Igf2 expression, histone acetylation, and H19 ICR methylation are lower in females than males. However, elevated Aβ42 levels are associated with Aβ42 binding to Igf2 DMR2, increased DNA and histone methylation, and a reduction in Igf2 expression and IGF2 levels in 5xFAD mice and AD patients, independent of H19 ICR methylation. Cell culture results confirmed the binding of Aβ42 to Igf2 DMR2 increased DNA and histone methylation, and reduced Igf2 expression. These results indicate an age- and sex-related causal relationship among Aβ42 levels, epigenomic state, and Igf2 expression in AD and provide a potential mechanism for Igf2 regulation in normal and pathological conditions, suggesting IGF2 levels may be a useful diagnostic biomarker for Aβ42 targeted AD therapies.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - William H Gendron
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Gabrielle M Hanson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Psychiatry, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
43
|
Xu J, Gou S, Huang X, Zhang J, Zhou X, Gong X, Xiong J, Chi H, Yang G. Uncovering the Impact of Aggrephagy in the Development of Alzheimer's Disease: Insights Into Diagnostic and Therapeutic Approaches from Machine Learning Analysis. Curr Alzheimer Res 2023; 20:618-635. [PMID: 38141185 DOI: 10.2174/0115672050280894231214063023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) stands as a widespread neurodegenerative disorder marked by the gradual onset of memory impairment, predominantly impacting the elderly. With projections indicating a substantial surge in AD diagnoses, exceeding 13.8 million individuals by 2050, there arises an urgent imperative to discern novel biomarkers for AD. METHODS To accomplish these objectives, we explored immune cell infiltration and the expression patterns of immune cells and immune function-related genes of AD patients. Furthermore, we utilized the consensus clustering method combined with aggrephagy-related genes (ARGs) for typing AD patients and categorized AD specimens into distinct clusters (C1, C2). A total of 272 candidate genes were meticulously identified through a combination of differential analysis and Weighted Gene Co-Expression Network Analysis (WGCNA). Subsequently, we applied three machine learning algorithms-namely random forest (RF), support vector machine (SVM), and generalized linear model (GLM)-to pinpoint a pathogenic signature comprising five genes associated with AD. To validate the predictive accuracy of these identified genes in discerning AD progression, we constructed nomograms. RESULTS Our analyses uncovered that cluster C2 exhibits a higher immune expression than C1. Based on the ROC(0.956). We identified five characteristic genes (PFKFB4, PDK3, KIAA0319L, CEBPD, and PHC2T) associated with AD immune cells and function. The nomograms constructed on the basis of these five diagnostic genes demonstrated effectiveness. In the validation group, the ROC values were found to be 0.760 and 0.838, respectively. These results validate the robustness and reliability of the diagnostic model, affirming its potential for accurate identification of AD. CONCLUSION Our findings not only contribute to a deeper understanding of the molecular mechanisms underlying AD but also offer valuable insights for drug development and clinical analysis. The limitation of our study is the limited sample size, and although AD-related genes were identified and some of the mechanisms elucidated, further experiments are needed to elucidate the more in-depth mechanisms of these characterized genes in the disease.
Collapse
Affiliation(s)
- Jiayu Xu
- School of Science, Minzu University of China, Beijing, China
| | - Siqi Gou
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xueyuan Huang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuancheng Zhou
- Department of Psychiatry, Southwest Medical University, Luzhou, China
| | - Xiangjin Gong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Jingwen Xiong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Hao Chi
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, USA
| |
Collapse
|
44
|
Shibly AZ, Sheikh AM, Michikawa M, Tabassum S, Azad AK, Zhou X, Zhang Y, Yano S, Nagai A. Analysis of Cerebral Small Vessel Changes in AD Model Mice. Biomedicines 2022; 11:50. [PMID: 36672558 PMCID: PMC9855388 DOI: 10.3390/biomedicines11010050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Amyloid β (Aβ) peptide is deposited in the brains of sporadic Alzheimer's disease (AD) due to impaired vessel-dependent clearance. To understand the mechanisms, we investigated time-dependent cerebrovascular changes in AD model mice. Cerebrovascular and other pathological changes were analyzed in AD model mice (J20 strain) aging from 2 to 9 months by immunostaining. At 2 months, Aβ was only intraneuronal, whereas vessels were positive from 3 months in J20 mice. Compared to wild-type (WT), vessel density was increased at 2 months but decreased at 9 months in J20 mice, claudin-5 levels were decreased, and vascular endothelial growth factor (VEGF) levels were increased in the cortex and hippocampus of J20 mice brain at all time points. Albumin extravasation was evident from 3 months in J20 brains. Collagen 4 was increased at 2 and 3 months. Aquaporin 4 was spread beyond the vessels starting from 3 months in J20, which was restricted around the vessel in wild-type mice. In conclusion, the study showed that an early decrease in claudin-5 was associated with VEGF expression, indicating dysfunction of the blood-brain barrier. Decreased claudin-5 might cause the leakage of blood constituents into the parenchyma that alters astrocyte polarity and its functions.
Collapse
Affiliation(s)
- Abu Zaffar Shibly
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (A.Z.S.); (A.K.A.); (X.Z.); (Y.Z.)
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Abdullah Md. Sheikh
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (A.M.S.); (S.T.); (S.Y.)
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan;
| | - Shatera Tabassum
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (A.M.S.); (S.T.); (S.Y.)
| | - Abul Kalam Azad
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (A.Z.S.); (A.K.A.); (X.Z.); (Y.Z.)
| | - Xiaojing Zhou
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (A.Z.S.); (A.K.A.); (X.Z.); (Y.Z.)
| | - Yuchi Zhang
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (A.Z.S.); (A.K.A.); (X.Z.); (Y.Z.)
| | - Shozo Yano
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (A.M.S.); (S.T.); (S.Y.)
| | - Atsushi Nagai
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (A.Z.S.); (A.K.A.); (X.Z.); (Y.Z.)
| |
Collapse
|
45
|
Rofo F, Metzendorf NG, Saubi C, Suominen L, Godec A, Sehlin D, Syvänen S, Hultqvist G. Blood-brain barrier penetrating neprilysin degrades monomeric amyloid-beta in a mouse model of Alzheimer's disease. Alzheimers Res Ther 2022; 14:180. [PMID: 36471433 PMCID: PMC9720954 DOI: 10.1186/s13195-022-01132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Aggregation of the amyloid-β (Aβ) peptide in the brain is one of the key pathological events in Alzheimer's disease (AD). Reducing Aβ levels in the brain by enhancing its degradation is one possible strategy to develop new therapies for AD. Neprilysin (NEP) is a membrane-bound metallopeptidase and one of the major Aβ-degrading enzymes. The secreted soluble form of NEP (sNEP) has been previously suggested as a potential protein-therapy degrading Aβ in AD. However, similar to other large molecules, peripherally administered sNEP is unable to reach the brain due to the presence of the blood-brain barrier (BBB). METHODS To provide transcytosis across the BBB, we recombinantly fused the TfR binding moiety (scFv8D3) to either sNEP or a previously described variant of NEP (muNEP) suggested to have higher degradation efficiency of Aβ compared to other NEP substrates, but not per se to degrade Aβ more efficiently. To provide long blood half-life, an Fc-based antibody fragment (scFc) was added to the designs, forming sNEP-scFc-scFv8D3 and muNEP-scFc-scFv8D3. The ability of the mentioned recombinant proteins to degrade Aβ was first evaluated in vitro using synthetic Aβ peptides followed by sandwich ELISA. For the in vivo studies, a single injection of 125-iodine-labelled sNEP-scFc-scFv8D3 and muNEP-scFc-scFv8D3 was intravenously administered to a tg-ArcSwe mouse model of AD, using scFc-scFv8D3 protein that lacks NEP as a negative control. Different ELISA setups were applied to quantify Aβ concentration of different conformations, both in brain tissues and blood samples. RESULTS When tested in vitro, sNEP-scFc-scFv8D3 retained sNEP enzymatic activity in degrading Aβ and both constructs efficiently degraded arctic Aβ. When intravenously injected, sNEP-scFc-scFv8D3 demonstrated 20 times higher brain uptake compared to sNEP. Both scFv8D3-fused NEP proteins significantly reduced aggregated Aβ levels in the blood of tg-ArcSwe mice, a transgenic mouse model of AD, following a single intravenous injection. In the brain, monomeric and oligomeric Aβ were significantly reduced. Both scFv8D3-fused NEP proteins displayed a fast clearance from the brain. CONCLUSION A one-time injection of a BBB-penetrating NEP shows the potential to reduce, the likely most toxic, Aβ oligomers in the brain in addition to monomers. Also, Aβ aggregates in the blood were reduced.
Collapse
Affiliation(s)
- Fadi Rofo
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden
| | - Nicole G Metzendorf
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden
| | - Cristina Saubi
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden
| | - Laura Suominen
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden
| | - Ana Godec
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Greta Hultqvist
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden.
| |
Collapse
|
46
|
Kulenkampff K, Emin D, Staats R, Zhang YP, Sakhnini L, Kouli A, Rimon O, Lobanova E, Williams-Gray CH, Aprile FA, Sormanni P, Klenerman D, Vendruscolo M. An antibody scanning method for the detection of α-synuclein oligomers in the serum of Parkinson's disease patients. Chem Sci 2022; 13:13815-13828. [PMID: 36544716 PMCID: PMC9710209 DOI: 10.1039/d2sc00066k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/16/2022] [Indexed: 01/16/2023] Open
Abstract
Misfolded α-synuclein oligomers are closely implicated in the pathology of Parkinson's disease and related synucleinopathies. The elusive nature of these aberrant assemblies makes it challenging to develop quantitative methods to detect them and modify their behavior. Existing detection methods use antibodies to bind α-synuclein aggregates in biofluids, although it remains challenging to raise antibodies against α-synuclein oligomers. To address this problem, we used an antibody scanning approach in which we designed a panel of 9 single-domain epitope-specific antibodies against α-synuclein. We screened these antibodies for their ability to inhibit the aggregation process of α-synuclein, finding that they affected the generation of α-synuclein oligomers to different extents. We then used these antibodies to investigate the size distribution and morphology of soluble α-synuclein aggregates in serum and cerebrospinal fluid samples from Parkinson's disease patients. Our results indicate that the approach that we present offers a promising route for the development of antibodies to characterize soluble α-synuclein aggregates in biofluids.
Collapse
Affiliation(s)
- Klara Kulenkampff
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Derya Emin
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- UK Dementia Research Institute, University of Cambridge Cambridge CB2 0XY UK
| | - Roxine Staats
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Yu P Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Laila Sakhnini
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Antonina Kouli
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge UK
| | - Oded Rimon
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Evgeniia Lobanova
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- UK Dementia Research Institute, University of Cambridge Cambridge CB2 0XY UK
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge UK
| | - Francesco A Aprile
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- UK Dementia Research Institute, University of Cambridge Cambridge CB2 0XY UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
47
|
Alraawi Z, Banerjee N, Mohanty S, Kumar TKS. Amyloidogenesis: What Do We Know So Far? Int J Mol Sci 2022; 23:ijms232213970. [PMID: 36430450 PMCID: PMC9695042 DOI: 10.3390/ijms232213970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The study of protein aggregation, and amyloidosis in particular, has gained considerable interest in recent times. Several neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) show a characteristic buildup of proteinaceous aggregates in several organs, especially the brain. Despite the enormous upsurge in research articles in this arena, it would not be incorrect to say that we still lack a crystal-clear idea surrounding these notorious aggregates. In this review, we attempt to present a holistic picture on protein aggregation and amyloids in particular. Using a chronological order of discoveries, we present the case of amyloids right from the onset of their discovery, various biophysical techniques, including analysis of the structure, the mechanisms and kinetics of the formation of amyloids. We have discussed important questions on whether aggregation and amyloidosis are restricted to a subset of specific proteins or more broadly influenced by the biophysiochemical and cellular environment. The therapeutic strategies and the significant failure rate of drugs in clinical trials pertaining to these neurodegenerative diseases have been also discussed at length. At a time when the COVID-19 pandemic has hit the globe hard, the review also discusses the plausibility of the far-reaching consequences posed by the virus, such as triggering early onset of amyloidosis. Finally, the application(s) of amyloids as useful biomaterials has also been discussed briefly in this review.
Collapse
Affiliation(s)
- Zeina Alraawi
- Department of Chemistry and Biochemistry, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Srujana Mohanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | | |
Collapse
|
48
|
Shi JM, Li HY, Liu H, Zhu L, Guo YB, Pei J, An H, Li YS, Li SD, Zhang ZY, Zheng Y. N-terminal Domain of Amyloid-β Impacts Fibrillation and Neurotoxicity. ACS OMEGA 2022; 7:38847-38855. [PMID: 36340079 PMCID: PMC9631750 DOI: 10.1021/acsomega.2c04583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease is characterized by the presence of distinct amyloid-β peptide (Aβ) assemblies with diverse sizes, shapes, and toxicity. However, the primary determinants of Aβ aggregation and neurotoxicity remain unknown. Here, the N-terminal amino acid residues of Aβ42 that distinguished between humans and rats were substituted. The effects of these modifications on the ability of Aβ to aggregate and its neurotoxicity were investigated using biochemical, biophysical, and cellular techniques. The Aβ-derived diffusible ligand, protofibrils, and fibrils formed by the N-terminal mutational peptides, including Aβ42(R5G), Aβ42(Y10F), and rat Aβ42, were indistinguishable by conventional techniques such as size-exclusion chromatography, negative-staining transmission electron microscopy and silver staining, whereas the amyloid fibrillation detected by thioflavin T assay was greatly inhibited in vitro. Using circular dichroism spectroscopy, we discovered that both Aβ42 and Aβ42(Y10F) generated protofibrils and fibrils with a high proportion of parallel β-sheet structures. Furthermore, protofibrils formed by other mutant Aβ peptides and N-terminally shortened peptides were incapable of inducing neuronal death, with the exception of Aβ42 and Aβ42(Y10F). Our findings indicate that the N-terminus of Aβ is important for its fibrillation and neurotoxicity.
Collapse
Affiliation(s)
- Jing-Ming Shi
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Hai-Yun Li
- Department
of Biochemistry and Molecular Biology, School of Basic Medicine, Xi’an Jiaotong University, Xi’an 710061, China
| | - Hang Liu
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Li Zhu
- School
of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yi-Bo Guo
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Jie Pei
- Lanzhou
Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Hao An
- School
of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan-Song Li
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Sha-Di Li
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Ze-Yu Zhang
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Yi Zheng
- School
of Medicine, University of Electronic Science
and Technology of China, Chengdu 610054, China
| |
Collapse
|
49
|
Quantitative super-resolution imaging of pathological aggregates reveals distinct toxicity profiles in different synucleinopathies. Proc Natl Acad Sci U S A 2022; 119:e2205591119. [PMID: 36206368 PMCID: PMC9573094 DOI: 10.1073/pnas.2205591119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Protein aggregation is a hallmark of major neurodegenerative disorders. Increasing data suggest that smaller aggregates cause higher toxic response than filamentous aggregates (fibrils). However, the size of small aggregates has challenged their detection within biologically relevant environments. Here, we report approaches to quantitatively super-resolve aggregates in live cells and ex vivo brain tissues. We show that Amytracker 630 (AT630), a commercial aggregate-activated fluorophore, has outstanding photophysical properties that enable super-resolution imaging of α-synuclein, tau, and amyloid-β aggregates, achieving ∼4 nm precision. Applying AT630 to AppNL-G-F mouse brain tissues or aggregates extracted from a Parkinson's disease donor, we demonstrate excellent agreement with antibodies specific for amyloid-β or α-synuclein, respectively, confirming the specificity of AT630. Subsequently, we use AT630 to reveal a linear relationship between α-synuclein aggregate size and cellular toxicity and discovered that aggregates smaller than 450 ± 60 nm (aggregate450nm) readily penetrated the plasma membrane. We determine aggregate450nm concentrations in six Parkinson's disease and dementia with Lewy bodies donor samples and show that aggregates in different synucleinopathies demonstrate distinct potency in toxicity. We further show that cell-penetrating aggregates are surrounded by proteasomes, which assemble into foci to gradually process aggregates. Our results suggest that the plasma membrane effectively filters out fibrils but is vulnerable to penetration by aggregates of 450 ± 60 nm. Together, our findings present an exciting strategy to determine specificity of aggregate toxicity within heterogeneous samples. Our approach to quantitatively measure these toxic aggregates in biological environments opens possibilities to molecular examinations of disease mechanisms under physiological conditions.
Collapse
|
50
|
The Mitochondrial Enzyme 17βHSD10 Modulates Ischemic and Amyloid-β-Induced Stress in Primary Mouse Astrocytes. eNeuro 2022; 9:ENEURO.0040-22.2022. [PMID: 36096650 PMCID: PMC9536859 DOI: 10.1523/eneuro.0040-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Severe brain metabolic dysfunction and amyloid-β accumulation are key hallmarks of Alzheimer's disease (AD). While astrocytes contribute to both pathologic mechanisms, the role of their mitochondria, which is essential for signaling and maintenance of these processes, has been largely understudied. The current work provides the first direct evidence that the mitochondrial metabolic switch 17β-hydroxysteroid dehydrogenase type 10 (17βHSD10) is expressed and active in murine astrocytes from different brain regions. While it is known that this protein is overexpressed in the brains of AD patients, we found that 17βHSD10 is also upregulated in astrocytes exposed to amyloidogenic and ischemic stress. Importantly, such catalytic overexpression of 17βHSD10 inhibits mitochondrial respiration during increased energy demand. This observation contrasts with what has been found in neuronal and cancer model systems, which suggests astrocyte-specific mechanisms mediated by the protein. Furthermore, the catalytic upregulation of the enzyme exacerbates astrocytic damage, reactive oxygen species (ROS) generation and mitochondrial network alterations during amyloidogenic stress. On the other hand, 17βHSD10 inhibition through AG18051 counters most of these effects. In conclusion, our data represents novel insights into the role of astrocytic mitochondria in metabolic and amyloidogenic stress with implications of 17βHSD10 in multiple neurodegenerative mechanisms.
Collapse
|