1
|
Chen Z, Wang J, Kankala RK, Jiang M, Long L, Li W, Zou L, Chen A, Liu Y. Decellularized extracellular matrix-based disease models for drug screening. Mater Today Bio 2024; 29:101280. [PMID: 39399243 PMCID: PMC11470555 DOI: 10.1016/j.mtbio.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
In vitro drug screening endeavors to replicate cellular states closely resembling those encountered in vivo, thereby maximizing the fidelity of drug effects and responses within the body. Decellularized extracellular matrix (dECM)-based materials offer a more authentic milieu for crafting disease models, faithfully emulating the extracellular components and structural complexities encountered by cells in vivo. This review discusses recent advancements in leveraging dECM-based materials as biomaterials for crafting cell models tailored for drug screening. Initially, we delineate the biological functionalities of diverse ECM components, shedding light on their potential influences on disease model construction. Further, we elucidate the decellularization techniques and methodologies for fabricating cell models utilizing dECM substrates. Then, the article delves into the research strides made in employing dECM-based models for drug screening across a spectrum of ailments, including tumors, as well as heart, liver, lung, and bone diseases. Finally, the review summarizes the bottlenecks, hurdles, and promising research trajectories associated with the dECM materials for drug screening, alongside their prospective applications in personalized medicine. Together, by encapsulating the contemporary research landscape surrounding dECM materials in cell model construction and drug screening, this review underscores the vast potential of dECM materials in drug assessment and personalized therapy.
Collapse
Affiliation(s)
- Zhoujiang Chen
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Ji Wang
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, PR China
| | - Mingli Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563099, Guizhou, PR China
| | - Lianlin Long
- School of Pharmacy, Zunyi Medical University, Zunyi, 563099, Guizhou, PR China
| | - Wei Li
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Liang Zou
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, PR China
| | - Ya Liu
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| |
Collapse
|
2
|
Bakhshandeh S, Heras U, Taïeb HM, Varadarajan AR, Lissek SM, Hücker SM, Lu X, Garske DS, Young SAE, Abaurrea A, Caffarel MM, Riestra A, Bragado P, Contzen J, Gossen M, Kirsch S, Warfsmann J, Honarnejad K, Klein CA, Cipitria A. Dormancy-inducing 3D engineered matrix uncovers mechanosensitive and drug-protective FHL2-p21 signaling axis. SCIENCE ADVANCES 2024; 10:eadr3997. [PMID: 39504377 PMCID: PMC11540038 DOI: 10.1126/sciadv.adr3997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Solid cancers frequently relapse with distant metastasis, despite local and systemic treatment. Cellular dormancy has been identified as an important mechanism underlying drug resistance enabling late relapse. Therefore, relapse from invisible, minimal residual cancer of seemingly disease-free patients call for in vitro models of dormant cells suited for drug discovery. Here, we explore dormancy-inducing 3D engineered matrices, which generate mechanical confinement and induce growth arrest and survival against chemotherapy in cancer cells. We characterized the dormant phenotype of solitary cells by P-ERKlow:P-p38high dormancy signaling ratio, along with Ki67- expression. As underlying mechanism, we identified stiffness-dependent nuclear localization of the four-and-a-half LIM domain 2 (FHL2) protein, leading to p53-independent high p21Cip1/Waf1 nuclear expression, validated in murine and human tissue. Suggestive of a resistance-causing role, cells in the dormancy-inducing matrix became sensitive against chemotherapy upon FHL2 down-regulation. Thus, our biomaterial-based approach will enable systematic screens for previously unidentified compounds suited to eradicate potentially relapsing dormant cancer cells.
Collapse
Affiliation(s)
- Sadra Bakhshandeh
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Unai Heras
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Hubert M. Taïeb
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Adithi R. Varadarajan
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Susanna M. Lissek
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Sarah M. Hücker
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Xin Lu
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Daniela S. Garske
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Sarah A. E. Young
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Andrea Abaurrea
- Group of Breast Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
| | - Maria M Caffarel
- Group of Breast Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ana Riestra
- Department of Pharmacy, Fundación Onkologikoa Fundazioa, San Sebastian, Spain
- Department of Medicine, University of Deusto, Bilbao, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Jörg Contzen
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Stefan Kirsch
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Jens Warfsmann
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Kamran Honarnejad
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Christoph A. Klein
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
Lan BQ, Wang YJ, Yu SX, Liu W, Liu YJ. Physical effects of 3-D microenvironments on confined cell behaviors. Am J Physiol Cell Physiol 2024; 327:C1192-C1201. [PMID: 39246142 DOI: 10.1152/ajpcell.00288.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Cell migration is a fundamental and functional cellular process, influenced by a complex microenvironment consisting of different cells and extracellular matrix. Recent research has highlighted that, besides biochemical cues from the microenvironment, physical cues can also greatly alter cellular behavior. However, due to the complexity of the microenvironment, little is known about how the physical interactions between migrating cells and surrounding microenvironment instructs cell movement. Here, we explore various examples of three-dimensional microenvironment reconstruction models in vitro and describe how the physical interplay between migrating cells and the neighboring microenvironment controls cell behavior. Understanding this mechanical cooperation will provide key insights into organ development, regeneration, and tumor metastasis.
Collapse
Affiliation(s)
- Bao-Qiong Lan
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Sai-Xi Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Wei Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| |
Collapse
|
4
|
Lu SL, Pei Y, Liu WW, Han K, Cheng JCH, Li PC. Evaluating ECM stiffness and liver cancer radiation response via shear-wave elasticity in 3D culture models. Radiat Oncol 2024; 19:128. [PMID: 39334323 PMCID: PMC11430210 DOI: 10.1186/s13014-024-02513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The stiffness of the tumor microenvironment (TME) directly influences cellular behaviors. Radiotherapy (RT) is a common treatment for solid tumors, but the TME can impact its efficacy. In the case of liver cancer, clinical observations have shown that tumors within a cirrhotic, stiffer background respond less to RT, suggesting that the extracellular matrix (ECM) stiffness plays a critical role in the development of radioresistance. METHODS This study explored the effects of ECM stiffness and the inhibition of lysyl oxidase (LOX) isoenzymes on the radiation response of liver cancer in a millimeter-sized three-dimensional (3D) culture. We constructed a cube-shaped ECM-based millimeter-sized hydrogel containing Huh7 human liver cancer cells. By modulating the collagen concentration, we produced two groups of samples with different ECM stiffnesses to mimic the clinical scenarios of normal and cirrhotic livers. We used a single-transducer system for shear-wave-based elasticity measurement, to derive Young's modulus of the 3D cell culture to investigate how the ECM stiffness affects radiosensitivity. This is the first demonstration of a workflow for assessing radiation-induced response in a millimeter-sized 3D culture. RESULTS Increased ECM stiffness was associated with a decreased radiation response. Moreover, sonoporation-assisted LOX inhibition with BAPN (β-aminopropionitrile monofumarate) significantly decreased the initial ECM stiffness and increased RT-induced cell death. Inhibition of LOX was particularly effective in reducing ECM stiffness in stiffer matrices. Combining LOX inhibition with RT markedly increased radiation-induced DNA damage in cirrhotic liver cancer cells, enhancing their response to radiation. Furthermore, LOX inhibition can be combined with sonoporation to overcome stiffness-related radioresistance, potentially leading to better treatment outcomes for patients with liver cancer. CONCLUSIONS The findings underscore the significant influence of ECM stiffness on liver cancer's response to radiation. Sonoporation-aided LOX inhibition emerges as a promising strategy to mitigate stiffness-related resistance, offering potential improvements in liver cancer treatment outcomes.
Collapse
Affiliation(s)
- Shao-Lun Lu
- Department of Radiation Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu Pei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Wei-Wen Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Graduate of Institute of Oral Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kun Han
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Jason Chia-Hsien Cheng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Radiation Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Pai-Chi Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Barros da Silva P, Zhao X, Bidarra SJ, Nascimento DS, LaLone V, Lourenço BN, Paredes J, Stevens MM, Barrias CC. Tunable Hybrid Hydrogels of Alginate and Cell-Derived dECM to Study the Impact of Matrix Alterations on Epithelial-to-Mesenchymal Transition. Adv Healthc Mater 2024:e2401032. [PMID: 39246099 DOI: 10.1002/adhm.202401032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/27/2024] [Indexed: 09/10/2024]
Abstract
Epithelial-to-mesenchymal transition (EMT) is crucial for tumor progression, being linked to alterations in the extracellular matrix (ECM). Understanding the ECM's role in EMT can uncover new therapeutic targets, yet replicating these interactions in vitro remains challenging. It is shown that hybrid hydrogels of alginate (ALG) and cell-derived decellularized ECM (dECM), with independently tunable composition and stiffness, are useful 3D-models to explore the impact of the breast tumor matrix on EMT. Soft RGD-ALG hydrogels (200 Pa), used as neutral bulk material, supported mammary epithelial cells morphogenesis without spontaneous EMT, allowing to define the gene, protein, and biochemical profiles of cells at different TGFβ1-induced EMT states. To mimic the breast tumor composition, dECM from TGFβ1-activated fibroblasts (adECM) are generated, which shows upregulation of tumor-associated proteins compared to ndECM from normal fibroblasts. Using hybrid adECM-ALG hydrogels, it is shown that the presence of adECM induces partial EMT in normal epithelial cells, and amplifes TGF-β1 effects compared to ALG and ndECM-ALG. Increasing the hydrogel stiffness to tumor-like levels (2.5 kPa) have a synergistic effect, promoting a more evident EMT. These findings shed light on the complex interplay between matrix composition and stiffness in EMT, underscoring the utility of dECM-ALG hydrogels as a valuable in vitro platform for cancer research.
Collapse
Affiliation(s)
- P Barros da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
- FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, 4200-135, Portugal
| | - Xiaoyu Zhao
- Department of Bioengineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
| | - Sílvia J Bidarra
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4200-135, Portugal
| | - Vernon LaLone
- Department of Bioengineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
- Department of Materials, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
| | - Bianca N Lourenço
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
- FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, 4200-135, Portugal
| | - Joana Paredes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, 4200-319, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, 4200-135, Portugal
| | - Molly M Stevens
- Department of Bioengineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
- Department of Materials, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
| | - C C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4200-135, Portugal
| |
Collapse
|
6
|
Lim JJ, Vining KH, Mooney DJ, Blencowe BJ. Matrix stiffness-dependent regulation of immunomodulatory genes in human MSCs is associated with the lncRNA CYTOR. Proc Natl Acad Sci U S A 2024; 121:e2404146121. [PMID: 39074278 PMCID: PMC11317610 DOI: 10.1073/pnas.2404146121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
Cell-matrix interactions in 3D environments significantly differ from those in 2D cultures. As such, mechanisms of mechanotransduction in 2D cultures are not necessarily applicable to cell-encapsulating hydrogels that resemble features of tissue architecture. Accordingly, the characterization of molecular pathways in 3D matrices is expected to uncover insights into how cells respond to their mechanical environment in physiological contexts, and potentially also inform hydrogel-based strategies in cell therapies. In this study, a bone marrow-mimetic hydrogel was employed to systematically investigate the stiffness-responsive transcriptome of mesenchymal stromal cells. High matrix rigidity impeded integrin-collagen adhesion, resulting in changes in cell morphology characterized by a contractile network of actin proximal to the cell membrane. This resulted in a suppression of extracellular matrix-regulatory genes involved in the remodeling of collagen fibrils, as well as the upregulation of secreted immunomodulatory factors. Moreover, an investigation of long noncoding RNAs revealed that the cytoskeleton regulator RNA (CYTOR) contributes to these 3D stiffness-driven changes in gene expression. Knockdown of CYTOR using antisense oligonucleotides enhanced the expression of numerous mechanoresponsive cytokines and chemokines to levels exceeding those achievable by modulating matrix stiffness alone. Taken together, our findings further our understanding of mechanisms of mechanotransduction that are distinct from canonical mechanotransductive pathways observed in 2D cultures.
Collapse
Affiliation(s)
- Justin J. Lim
- Donnelly Centre, University of Toronto, Toronto, ONM5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S1A8, Canada
| | - Kyle H. Vining
- Department of Preventative and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA19104
| | - David J. Mooney
- Department of Bioengineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Benjamin J. Blencowe
- Donnelly Centre, University of Toronto, Toronto, ONM5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S1A8, Canada
| |
Collapse
|
7
|
Vitacolonna M, Bruch R, Agaçi A, Nürnberg E, Cesetti T, Keller F, Padovani F, Sauer S, Schmoller KM, Reischl M, Hafner M, Rudolf R. A multiparametric analysis including single-cell and subcellular feature assessment reveals differential behavior of spheroid cultures on distinct ultra-low attachment plate types. Front Bioeng Biotechnol 2024; 12:1422235. [PMID: 39157442 PMCID: PMC11327450 DOI: 10.3389/fbioe.2024.1422235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Spheroids have become principal three-dimensional models to study cancer, developmental processes, and drug efficacy. Single-cell analysis techniques have emerged as ideal tools to gauge the complexity of cellular responses in these models. However, the single-cell quantitative assessment based on 3D-microscopic data of the subcellular distribution of fluorescence markers, such as the nuclear/cytoplasm ratio of transcription factors, has largely remained elusive. For spheroid generation, ultra-low attachment plates are noteworthy due to their simplicity, compatibility with automation, and experimental and commercial accessibility. However, it is unknown whether and to what degree the plate type impacts spheroid formation and biology. This study developed a novel AI-based pipeline for the analysis of 3D-confocal data of optically cleared large spheroids at the wholemount, single-cell, and sub-cellular levels. To identify relevant samples for the pipeline, automated brightfield microscopy was employed to systematically compare the size and eccentricity of spheroids formed in six different plate types using four distinct human cell lines. This showed that all plate types exhibited similar spheroid-forming capabilities and the gross patterns of growth or shrinkage during 4 days after seeding were comparable. Yet, size and eccentricity varied systematically among specific cell lines and plate types. Based on this prescreen, spheroids of HaCaT keratinocytes and HT-29 cancer cells were further assessed. In HaCaT spheroids, the in-depth analysis revealed a correlation between spheroid size, cell proliferation, and the nuclear/cytoplasm ratio of the transcriptional coactivator, YAP1, as well as an inverse correlation with respect to cell differentiation. These findings, yielded with a spheroid model and at a single-cell level, corroborate earlier concepts of the role of YAP1 in cell proliferation and differentiation of keratinocytes in human skin. Further, the results show that the plate type may influence the outcome of experimental campaigns and that it is advisable to scan different plate types for the optimal configuration during a specific investigation.
Collapse
Affiliation(s)
- Mario Vitacolonna
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roman Bruch
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ane Agaçi
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Elina Nürnberg
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Tiziana Cesetti
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Florian Keller
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics (IFE), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center München, München-Neuherberg, Germany
| | - Simeon Sauer
- Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Kurt M. Schmoller
- Institute of Functional Epigenetics (IFE), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center München, München-Neuherberg, Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Medical Faculty Mannheim of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Medical Faculty Mannheim of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
8
|
Zhong BL, Elliot JM, Wang P, Li H, Hall RN, Wang B, Prakash M, Dunn AR. Split Luciferase Molecular Tension Sensors for Bioluminescent Readout of Mechanical Forces in Biological Systems. ACS Sens 2024; 9:3489-3495. [PMID: 38973210 DOI: 10.1021/acssensors.3c02664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The ability of proteins to sense and transmit mechanical forces underlies many biological processes, but characterizing these forces in biological systems remains a challenge. Existing genetically encoded force sensors typically rely on fluorescence or bioluminescence resonance energy transfer (FRET or BRET) to visualize tension. However, these force sensing modules are relatively large, and interpreting measurements requires specialized image analysis and careful control experiments. Here, we report a compact molecular tension sensor that generates a bioluminescent signal in response to tension. This sensor (termed PILATeS) makes use of the split NanoLuc luciferase and consists of the H. sapiens titin I10 domain with the insertion of a 10-15 amino acid tag derived from the C-terminal β-strand of NanoLuc. Mechanical load across PILATeS mediates exposure of this tag to recruit the complementary split NanoLuc fragment, resulting in force-dependent bioluminescence. We demonstrate the ability of PILATeS to report biologically meaningful forces by visualizing forces at the interface between integrins and extracellular matrix substrates. We further use PILATeS as a genetically encoded sensor of tension experienced by the mechanosensing protein vinculin. We anticipate that PILATeS will provide an accessible means of visualizing molecular-scale forces in biological systems.
Collapse
Affiliation(s)
- Brian L Zhong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jeandele M Elliot
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Pengli Wang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hongquan Li
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - R Nelson Hall
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
9
|
İyisan N, Hausdörfer O, Wang C, Hiendlmeier L, Harder P, Wolfrum B, Özkale B. Mechanoactivation of Single Stem Cells in Microgels Using a 3D-Printed Stimulation Device. SMALL METHODS 2024:e2400272. [PMID: 39011729 DOI: 10.1002/smtd.202400272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Indexed: 07/17/2024]
Abstract
In this study, the novel 3D-printed pressure chamber for encapsulated single-cell stimulation (3D-PRESS) platform is introduced for the mechanical stimulation of single stem cells in 3D microgels. The custom-designed 3D-PRESS, allows precise pressure application up to 400 kPa at the single-cell level. Microfluidics is employed to encapsulate single mesenchymal stem cells within ionically cross-linked alginate microgels with cell adhesion RGD peptides. Rigorous testing affirms the leak-proof performance of the 3D-PRESS device up to 400 kPa, which is fully biocompatible. 3D-PRESS is implemented on mesenchymal stem cells for mechanotransduction studies, by specifically targeting intracellular calcium signaling and the nuclear translocation of a mechanically sensitive transcription factor. Applying 200 kPa pressure on individually encapsulated stem cells reveals heightened calcium signaling in 3D microgels compared to conventional 2D culture. Similarly, Yes-associated protein (YAP) translocation into the nucleus occurs at 200 kPa in 3D microgels with cell-binding RGD peptides unveiling the involvement of integrin-mediated mechanotransduction in singly encapsulated stem cells in 3D microgels. Combining live-cell imaging with precise mechanical control, the 3D-PRESS platform emerges as a versatile tool for exploring cellular responses to pressure stimuli, applicable to various cell types, providing novel insights into single-cell mechanobiology.
Collapse
Affiliation(s)
- Nergishan İyisan
- Microrobotic Bioengineering Lab (MRBL), School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich (TUM), Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, München, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Oliver Hausdörfer
- Microrobotic Bioengineering Lab (MRBL), School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich (TUM), Hans-Piloty-Straße 1, 85748, Garching, Germany
| | - Chen Wang
- Microrobotic Bioengineering Lab (MRBL), School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich (TUM), Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, München, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Lukas Hiendlmeier
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Neuroelectronics, School of Computation, Information, and Technology, Department of Electrical Engineering, Department of Electrical Engineering, Technical University of Munich (TUM), 85748, Garching, Germany
| | - Philipp Harder
- Microrobotic Bioengineering Lab (MRBL), School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich (TUM), Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, München, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Bernhard Wolfrum
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Neuroelectronics, School of Computation, Information, and Technology, Department of Electrical Engineering, Department of Electrical Engineering, Technical University of Munich (TUM), 85748, Garching, Germany
| | - Berna Özkale
- Microrobotic Bioengineering Lab (MRBL), School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich (TUM), Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, München, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| |
Collapse
|
10
|
Starich B, Yang F, Tanrioven D, Kung HC, Baek J, Nair PR, Kamat P, Macaluso N, Eoh J, Han KS, Gu L, Walston J, Sun S, Wu PH, Wirtz D, Phillip JM. Substrate stiffness modulates the emergence and magnitude of senescence phenotypes in dermal fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579151. [PMID: 38370721 PMCID: PMC10871290 DOI: 10.1101/2024.02.06.579151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Cellular senescence is a major driver of aging and disease. Here we show that substrate stiffness modulates the emergence and magnitude of senescence phenotypes after exposure to senescence inducers. Using a primary dermal fibroblast model, we show that decreased substrate stiffness accelerates senescence-associated cell-cycle arrest and regulates the expression of conventional protein-based biomarkers of senescence. We found that the expression of these senescence biomarkers, namely p21WAF1/CIP1 and p16INK4a are mechanosensitive and are in-part regulated by myosin contractility through focal adhesion kinase (FAK)-ROCK signaling. Interestingly, at the protein level senescence-induced dermal fibroblasts on soft substrates (0.5 kPa) do not express p21WAF1/CIP1 and p16INK4a at comparable levels to induced cells on stiff substrates (4GPa). However, cells express CDKN1a, CDKN2a, and IL6 at the RNA level across both stiff and soft substrates. Moreover, when cells are transferred from soft to stiff substrates, senescent cells recover an elevated expression of p21WAF1/CIP1 and p16INK4a at levels comparable to senescence cells on stiff substrates, pointing to a mechanosensitive regulation of the senescence phenotype. Together, our results indicate that the emergent senescence phenotype depends critically on the local mechanical environments of cells and that senescent cells actively respond to changing mechanical cues.
Collapse
|
11
|
Akinpelu A, Akinsipe T, Avila LA, Arnold RD, Mistriotis P. The impact of tumor microenvironment: unraveling the role of physical cues in breast cancer progression. Cancer Metastasis Rev 2024; 43:823-844. [PMID: 38238542 PMCID: PMC11156564 DOI: 10.1007/s10555-024-10166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Metastasis accounts for the vast majority of breast cancer-related fatalities. Although the contribution of genetic and epigenetic modifications to breast cancer progression has been widely acknowledged, emerging evidence underscores the pivotal role of physical stimuli in driving breast cancer metastasis. In this review, we summarize the changes in the mechanics of the breast cancer microenvironment and describe the various forces that impact migrating and circulating tumor cells throughout the metastatic process. We also discuss the mechanosensing and mechanotransducing molecules responsible for promoting the malignant phenotype in breast cancer cells. Gaining a comprehensive understanding of the mechanobiology of breast cancer carries substantial potential to propel progress in prognosis, diagnosis, and patient treatment.
Collapse
Affiliation(s)
- Ayuba Akinpelu
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, 36849, USA
| | - L Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, 36849, USA
| | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Panagiotis Mistriotis
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
12
|
Mo H, Li R, Yang N, Han J, Xiao X, Zhang Y, Xiao Z, Jiao L, Xu Q, Tu K. USP40 promotes hepatocellular carcinoma progression through a YAP/USP40 positive feedback loop. Cancer Lett 2024; 589:216832. [PMID: 38537774 DOI: 10.1016/j.canlet.2024.216832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Yes-associated protein (YAP) is an essential driver of hepatocellular carcinoma (HCC) progression and the ubiquitin-proteasome system controls its abundance. However, the role of ubiquitin-specific protease 40 (USP40) in YAP stability remains unclear. Here, USP40 was first identified as a novel regulator of YAP abundance and its target genes in HCC cells. USP40 interacted with YAP to remove the lysine 48 (K48)-linked polyubiquitination of YAP at K252 and K315 sites, thereby maintaining YAP stability. USP40 facilitated the proliferation, colony formation, migration and spheroid formation of HCC cells in vitro and promoted HCC growth in vivo in a YAP-dependent manner. In turn, YAP transcriptionally activated USP40 expression in HCC cells. RNA sequencing analysis showed that about 37% of USP40-regulated genes overlapped with YAP-regulated genes. Interestingly, stiffness-induced USP40 upregulation was abolished by YAP knockdown, and USP40 knockdown attenuated stiffness-induced YAP accumulation in HCC cells. Clinical data demonstrated that USP40 was positively associated with YAP expression in HCC tissues and its high expression indicated a poor prognosis. In conclusion, the USP40/YAP positive feedback loop contributes to HCC progression, suggesting that USP40 may be a promising drug target for anti-HCC.
Collapse
Affiliation(s)
- Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Runtian Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Nan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaqi Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xuelian Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yilei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zhengtao Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Lianying Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China.
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
13
|
Abrahamsson A, Boroojeni FR, Naeimipour S, Reustle N, Selegård R, Aili D, Dabrosin C. Increased matrix stiffness enhances pro-tumorigenic traits in a physiologically relevant breast tissue- monocyte 3D model. Acta Biomater 2024; 178:160-169. [PMID: 38382828 DOI: 10.1016/j.actbio.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
High mammographic density, associated with increased tissue stiffness, is a strong risk factor for breast cancer per se. In postmenopausal women there is no differences in the occurrence of ductal carcinoma in situ (DCIS) depending on breast density. Preliminary data suggest that dense breast tissue is associated with a pro-inflammatory microenvironment including infiltrating monocytes. However, the underlying mechanism(s) remains largely unknown. A major roadblock to understanding this risk factor is the lack of relevant in vitro models. A biologically relevant 3D model with tunable stiffness was developed by cross-linking hyaluronic acid. Breast cancer cells were cultured with and without freshly isolated human monocytes. In a unique clinical setting, extracellular proteins were sampled using microdialysis in situ from women with various breast densities. We show that tissue stiffness resembling high mammographic density increases the attachment of monocytes to the cancer cells, increase the expression of adhesion molecules and epithelia-mesenchymal-transition proteins in estrogen receptor (ER) positive breast cancer. Increased tissue stiffness results in increased secretion of similar pro-tumorigenic proteins as those found in human dense breast tissue including inflammatory cytokines, proteases, and growth factors. ER negative breast cancer cells were mostly unaffected suggesting that diverse cancer cell phenotypes may respond differently to tissue stiffness. We introduce a biological relevant model with tunable stiffness that resembles the densities found in normal breast tissue in women. The model will be key for further mechanistic studies. Additionally, our data revealed several pro-tumorigenic pathways that may be exploited for prevention and therapy against breast cancer. STATEMENT OF SIGNIFICANCE: Women with mammographic high-density breasts have a 4-6-fold higher risk of breast cancer than low-density breasts. Biological mechanisms behind this increase are not fully understood and no preventive therapeutics are available. One major reason being a lack of suitable experimental models. Having such models available would greatly enhance the discovery of relevant targets for breast cancer prevention. We present a biologically relevant 3D-model for studies of human dense breasts, providing a platform for investigating both biophysical and biochemical properties that may affect cancer progression. This model will have a major scientific impact on studies for identification of novel targets for breast cancer prevention.
Collapse
Affiliation(s)
- Annelie Abrahamsson
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Fatemeh Rasti Boroojeni
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Sajjad Naeimipour
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Nina Reustle
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Daniel Aili
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden.
| | - Charlotta Dabrosin
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
14
|
Mirzakhel Z, Reddy GA, Boman J, Manns B, Veer ST, Katira P. "Patchiness" in mechanical stiffness across a tumor as an early-stage marker for malignancy. BMC Ecol Evol 2024; 24:33. [PMID: 38486161 PMCID: PMC10938681 DOI: 10.1186/s12862-024-02221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/03/2024] [Indexed: 03/17/2024] Open
Abstract
Mechanical phenotyping of tumors, either at an individual cell level or tumor cell population level is gaining traction as a diagnostic tool. However, the extent of diagnostic and prognostic information that can be gained through these measurements is still unclear. In this work, we focus on the heterogeneity in mechanical properties of cells obtained from a single source such as a tissue or tumor as a potential novel biomarker. We believe that this heterogeneity is a conventionally overlooked source of information in mechanical phenotyping data. We use mechanics-based in-silico models of cell-cell interactions and cell population dynamics within 3D environments to probe how heterogeneity in cell mechanics drives tissue and tumor dynamics. Our simulations show that the initial heterogeneity in the mechanical properties of individual cells and the arrangement of these heterogenous sub-populations within the environment can dictate overall cell population dynamics and cause a shift towards the growth of malignant cell phenotypes within healthy tissue environments. The overall heterogeneity in the cellular mechanotype and their spatial distributions is quantified by a "patchiness" index, which is the ratio of the global to local heterogeneity in cell populations. We observe that there exists a threshold value of the patchiness index beyond which an overall healthy population of cells will show a steady shift towards a more malignant phenotype. Based on these results, we propose that the "patchiness" of a tumor or tissue sample, can be an early indicator for malignant transformation and cancer occurrence in benign tumors or healthy tissues. Additionally, we suggest that tissue patchiness, measured either by biochemical or biophysical markers, can become an important metric in predicting tissue health and disease likelihood just as landscape patchiness is an important metric in ecology.
Collapse
Affiliation(s)
- Zibah Mirzakhel
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Gudur Ashrith Reddy
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Jennifer Boman
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Brianna Manns
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Savannah Ter Veer
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA.
- Computational Science Research Center, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
15
|
Wubshet NH, Cai G, Chen SJ, Sullivan M, Reeves M, Mays D, Harrison M, Varnado P, Yang B, Arreguin-Martinez E, Qu Y, Lin SS, Duran P, Aguilar C, Giza S, Clements T, Liu AP. Cellular mechanotransduction of human osteoblasts in microgravity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583164. [PMID: 38464311 PMCID: PMC10925314 DOI: 10.1101/2024.03.03.583164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, 4 microfluidic chips capable of measuring single-cell mechanics of hFOBs via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. Our analysis revealed slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell behavior and signaling in space.
Collapse
Affiliation(s)
- Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Samuel J. Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | - Benjamin Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Yunjia Qu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shan-Shan Lin
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Duran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Carlos Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Jeffreys N, Brockman JM, Zhai Y, Ingber DE, Mooney DJ. Mechanical forces amplify TCR mechanotransduction in T cell activation and function. APPLIED PHYSICS REVIEWS 2024; 11:011304. [PMID: 38434676 PMCID: PMC10848667 DOI: 10.1063/5.0166848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/08/2023] [Indexed: 03/05/2024]
Abstract
Adoptive T cell immunotherapies, including engineered T cell receptor (eTCR) and chimeric antigen receptor (CAR) T cell immunotherapies, have shown efficacy in treating a subset of hematologic malignancies, exhibit promise in solid tumors, and have many other potential applications, such as in fibrosis, autoimmunity, and regenerative medicine. While immunoengineering has focused on designing biomaterials to present biochemical cues to manipulate T cells ex vivo and in vivo, mechanical cues that regulate their biology have been largely underappreciated. This review highlights the contributions of mechanical force to several receptor-ligand interactions critical to T cell function, with central focus on the TCR-peptide-loaded major histocompatibility complex (pMHC). We then emphasize the role of mechanical forces in (i) allosteric strengthening of the TCR-pMHC interaction in amplifying ligand discrimination during T cell antigen recognition prior to activation and (ii) T cell interactions with the extracellular matrix. We then describe approaches to design eTCRs, CARs, and biomaterials to exploit TCR mechanosensitivity in order to potentiate T cell manufacturing and function in adoptive T cell immunotherapy.
Collapse
Affiliation(s)
| | | | - Yunhao Zhai
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
17
|
Jahin I, Phillips T, Marcotti S, Gorey MA, Cox S, Parsons M. Extracellular matrix stiffness activates mechanosensitive signals but limits breast cancer cell spheroid proliferation and invasion. Front Cell Dev Biol 2023; 11:1292775. [PMID: 38125873 PMCID: PMC10731024 DOI: 10.3389/fcell.2023.1292775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Breast cancer is characterized by physical changes that occur in the tumor microenvironment throughout growth and metastasis of tumors. Extracellular matrix stiffness increases as tumors develop and spread, with stiffer environments thought to correlate with poorer disease prognosis. Changes in extracellular stiffness and other physical characteristics are sensed by integrins which integrate these extracellular cues to intracellular signaling, resulting in modulation of proliferation and invasion. However, the co-ordination of mechano-sensitive signaling with functional changes to groups of tumor cells within 3-dimensional environments remains poorly understood. Here we provide evidence that increasing the stiffness of collagen scaffolds results in increased activation of ERK1/2 and YAP in human breast cancer cell spheroids. We also show that ERK1/2 acts upstream of YAP activation in this context. We further demonstrate that YAP, matrix metalloproteinases and actomyosin contractility are required for collagen remodeling, proliferation and invasion in lower stiffness scaffolds. However, the increased activation of these proteins in higher stiffness 3-dimensional collagen gels is correlated with reduced proliferation and reduced invasion of cancer cell spheroids. Our data collectively provide evidence that higher stiffness 3-dimensional environments induce mechano-signaling but contrary to evidence from 2-dimensional studies, this is not sufficient to promote pro-tumorigenic effects in breast cancer cell spheroids.
Collapse
Affiliation(s)
| | | | | | | | | | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
18
|
Pierantoni L, Reis RL, Silva-Correia J, Oliveira JM, Heavey S. Spatial -omics technologies: the new enterprise in 3D breast cancer models. Trends Biotechnol 2023; 41:1488-1500. [PMID: 37544843 DOI: 10.1016/j.tibtech.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
The fields of tissue bioengineering, -omics, and spatial biology are advancing rapidly, each offering the opportunity for a paradigm shift in breast cancer research. However, to date, collaboration between these fields has not reached its full potential. In this review, we describe the most recently generated 3D breast cancer models regarding the biomaterials and technological platforms employed. Additionally, their biological evaluation is reported, highlighting their advantages and limitations. Specifically, we focus on the most up-to-date -omics and spatial biology techniques, which can generate a deeper understanding of the biological relevance of bioengineered 3D breast cancer in vitro models, thus paving the way towards truly clinically relevant microphysiological systems, improved drug development success rates, and personalised medicine approaches.
Collapse
Affiliation(s)
- Lara Pierantoni
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
19
|
Kechagia Z, Sáez P, Gómez-González M, Canales B, Viswanadha S, Zamarbide M, Andreu I, Koorman T, Beedle AEM, Elosegui-Artola A, Derksen PWB, Trepat X, Arroyo M, Roca-Cusachs P. The laminin-keratin link shields the nucleus from mechanical deformation and signalling. NATURE MATERIALS 2023; 22:1409-1420. [PMID: 37709930 PMCID: PMC10627833 DOI: 10.1038/s41563-023-01657-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/31/2023] [Indexed: 09/16/2023]
Abstract
The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111-unlike fibronectin or collagen I-impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin β4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that β4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals.
Collapse
Affiliation(s)
- Zanetta Kechagia
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Pablo Sáez
- Laboratori de Càlcul Numèric (LàCaN), Universitat Politècnica de Catalunya, Barcelona, Spain
- Institut de Matemátiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
| | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Brenda Canales
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, King's College London, London, UK
| | - Srivatsava Viswanadha
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Ion Andreu
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Amy E M Beedle
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Physics, King's College London, London, UK
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, King's College London, London, UK
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Laboratori de Càlcul Numèric (LàCaN), Universitat Politècnica de Catalunya, Barcelona, Spain
- Institut de Matemátiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Xin Y, Li K, Huang M, Liang C, Siemann D, Wu L, Tan Y, Tang X. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. Oncogene 2023; 42:3457-3490. [PMID: 37864030 PMCID: PMC10656290 DOI: 10.1038/s41388-023-02844-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Evidence from physical sciences in oncology increasingly suggests that the interplay between the biophysical tumor microenvironment and genetic regulation has significant impact on tumor progression. Especially, tumor cells and the associated stromal cells not only alter their own cytoskeleton and physical properties but also remodel the microenvironment with anomalous physical properties. Together, these altered mechano-omics of tumor tissues and their constituents fundamentally shift the mechanotransduction paradigms in tumorous and stromal cells and activate oncogenic signaling within the neoplastic niche to facilitate tumor progression. However, current findings on tumor biophysics are limited, scattered, and often contradictory in multiple contexts. Systematic understanding of how biophysical cues influence tumor pathophysiology is still lacking. This review discusses recent different schools of findings in tumor biophysics that have arisen from multi-scale mechanobiology and the cutting-edge technologies. These findings range from the molecular and cellular to the whole tissue level and feature functional crosstalk between mechanotransduction and oncogenic signaling. We highlight the potential of these anomalous physical alterations as new therapeutic targets for cancer mechanomedicine. This framework reconciles opposing opinions in the field, proposes new directions for future cancer research, and conceptualizes novel mechanomedicine landscape to overcome the inherent shortcomings of conventional cancer diagnosis and therapies.
Collapse
Grants
- R35 GM150812 NIGMS NIH HHS
- This work was financially supported by National Natural Science Foundation of China (Project no. 11972316, Y.T.), Shenzhen Science and Technology Innovation Commission (Project no. JCYJ20200109142001798, SGDX2020110309520303, and JCYJ20220531091002006, Y.T.), General Research Fund of Hong Kong Research Grant Council (PolyU 15214320, Y. T.), Health and Medical Research Fund (HMRF18191421, Y.T.), Hong Kong Polytechnic University (1-CD75, 1-ZE2M, and 1-ZVY1, Y.T.), the Cancer Pilot Research Award from UF Health Cancer Center (X. T.), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM150812 (X. T.), the National Science Foundation under grant number 2308574 (X. T.), the Air Force Office of Scientific Research under award number FA9550-23-1-0393 (X. T.), the University Scholar Program (X. T.), UF Research Opportunity Seed Fund (X. T.), the Gatorade Award (X. T.), and the National Science Foundation REU Site at UF: Engineering for Healthcare (Douglas Spearot and Malisa Sarntinoranont). We are deeply grateful for the insightful discussions with and generous support from all members of Tang (UF)’s and Tan (PolyU)’s laboratories and all staff members of the MAE/BME/ECE/Health Cancer Center at UF and BME at PolyU.
- National Natural Science Foundation of China (National Science Foundation of China)
- Shenzhen Science and Technology Innovation Commission
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Chenyu Liang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar Siemann
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Liu Y, Yao X, Zhao Y, Fang D, Shi L, Yang L, Song G, Cai K, Li L, Deng Q, Li M, Luo Z. Mechanotransduction in response to ECM stiffening impairs cGAS immune signaling in tumor cells. Cell Rep 2023; 42:113213. [PMID: 37804510 DOI: 10.1016/j.celrep.2023.113213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
The tumor microenvironment (TME) plays decisive roles in disabling T cell-mediated antitumor immunity, but the immunoregulatory functions of its biophysical properties remain elusive. Extracellular matrix (ECM) stiffening is a hallmark of solid tumors. Here, we report that the stiffened ECM contributes to the immunosuppression in TME via activating the Rho-associated coiled-coil-containing protein kinase (ROCK)-myosin IIA-filamentous actin (F-actin) mechanosignaling pathway in tumor cells to promote the generation of TRIM14-scavenging nonmuscle myosin heavy chain IIA (NMHC-IIA)-F-actin stress fibers, thus accelerating the autophagic degradation of cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) to deprive tumor cyclic GMP-AMP (cGAMP) and further attenuating tumor immunogenicity. Pharmacological inhibition of myosin IIA effector molecules with blebbistatin (BLEB) or the RhoA upstream regulator of this pathway with simvastatin (SIM) restored tumor-intrinsic cGAS-mediated cGAMP production and enhanced antitumor immunity. Our work identifies that ECM stiffness is an important biophysical cue to regulate tumor immunogenicity via the ROCK-myosin IIA-F-actin axis and that inhibiting this mechanosignaling pathway could boost immunotherapeutic efficacy for effective solid tumor treatment.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Xuemei Yao
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Youbo Zhao
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - De Fang
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Lei Shi
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Liqi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qin Deng
- Analytical and Testing Center, Chongqing University, Chongqing 400044, P.R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China; 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China.
| |
Collapse
|
22
|
Feng M, Wang J, Li K, Nakamura F. UBE2A/B is the trans-acting factor mediating mechanotransduction and contact inhibition. Biochem J 2023; 480:1659-1674. [PMID: 37818922 DOI: 10.1042/bcj20230208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Mechanotransduction and contact inhibition (CI) control gene expression to regulate proliferation, differentiation, and even tumorigenesis of cells. However, their downstream trans-acting factors (TAFs) are not well known due to a lack of a high-throughput method to quantitatively detect them. Here, we developed a method to identify TAFs on the cis-acting sequences that reside in open chromatin or DNaseI-hypersensitive sites (DHSs) and to detect nucleocytoplasmic shuttling TAFs using computational and experimental screening. The DHS-proteomics revealed over 1000 potential mechanosensing TAFs and UBE2A/B (Ubiquitin-conjugating enzyme E2 A) was experimentally identified as a force- and CI-dependent nucleocytoplasmic shuttling TAF. We found that translocation of YAP/TAZ and UBE2A/B are distinctively regulated by inhibition of myosin contraction, actin-polymerization, and CI depending on cell types. Next-generation sequence analysis revealed many downstream genes including YAP are transcriptionally regulated by ubiquitination of histone by UBE2A/B. Our results suggested a YAP-independent mechanotransduction and CI pathway mediated by UBE2A/B.
Collapse
Affiliation(s)
- Mingwei Feng
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jiale Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Kangjing Li
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
23
|
Son YJ, Keum C, Kim M, Jeong G, Jin S, Hwang HW, Kim H, Lee K, Jeon H, Kim H, Pahk KJ, Jang HW, Sun JY, Han HS, Lee KH, Ok MR, Kim YC, Jeong Y. Selective Cell-Cell Adhesion Regulation via Cyclic Mechanical Deformation Induced by Ultrafast Nanovibrations. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37751467 DOI: 10.1021/acsami.3c08941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The adoption of dynamic mechanomodulation to regulate cellular behavior is an alternative to the use of chemical drugs, allowing spatiotemporal control. However, cell-selective targeting of mechanical stimuli is challenging due to the lack of strategies with which to convert macroscopic mechanical movements to different cellular responses. Here, we designed a nanoscale vibrating surface that controls cell behavior via selective repetitive cell deformation based on a poroelastic cell model. The vibrating indentations induce repetitive water redistribution in the cells with water redistribution rates faster than the vibrating rate; however, in the opposite case, cells perceive the vibrations as a one-time stimulus. The selective regulation of cell-cell adhesion through adjusting the frequency of nanovibration was demonstrated by suppression of cadherin expression in smooth muscle cells (fast water redistribution rate) with no change in vascular endothelial cells (slow water redistribution rate). This technique may provide a new strategy for cell-type-specific mechanical stimulation.
Collapse
Affiliation(s)
- Young Ju Son
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Changjoon Keum
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Minsoo Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Goeen Jeong
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyeong Jin
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Hae Won Hwang
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyewon Kim
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyungwoo Lee
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hojun Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Seop Han
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Kwan Hyi Lee
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Myoung-Ryul Ok
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yu-Chan Kim
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
24
|
Huang M, Wang H, Mackey C, Chung MC, Guan J, Zheng G, Roy A, Xie M, Vulpe C, Tang X. YAP at the Crossroads of Biomechanics and Drug Resistance in Human Cancer. Int J Mol Sci 2023; 24:12491. [PMID: 37569866 PMCID: PMC10419175 DOI: 10.3390/ijms241512491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Biomechanical forces are of fundamental importance in biology, diseases, and medicine. Mechanobiology is an emerging interdisciplinary field that studies how biological mechanisms are regulated by biomechanical forces and how physical principles can be leveraged to innovate new therapeutic strategies. This article reviews state-of-the-art mechanobiology knowledge about the yes-associated protein (YAP), a key mechanosensitive protein, and its roles in the development of drug resistance in human cancer. Specifically, the article discusses three topics: how YAP is mechanically regulated in living cells; the molecular mechanobiology mechanisms by which YAP, along with other functional pathways, influences drug resistance of cancer cells (particularly lung cancer cells); and finally, how the mechanical regulation of YAP can influence drug resistance and vice versa. By integrating these topics, we present a unified framework that has the potential to bring theoretical insights into the design of novel mechanomedicines and advance next-generation cancer therapies to suppress tumor progression and metastasis.
Collapse
Affiliation(s)
- Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Heyang Wang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Cole Mackey
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32603, USA
| | - Michael C. Chung
- Department of Physics, University of Florida, Gainesville, FL 32611, USA
| | - Juan Guan
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Department of Physics, University of Florida, Gainesville, FL 32611, USA
| | - Guangrong Zheng
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32603, USA
| | - Arkaprava Roy
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32603, USA
| | - Christopher Vulpe
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
25
|
Rafaeva M, Jensen ARD, Horton ER, Zornhagen KW, Strøbech JE, Fleischhauer L, Mayorca-Guiliani AE, Nielsen SR, Grønseth DS, Kuś F, Schoof EM, Arnes L, Koch M, Clausen-Schaumann H, Izzi V, Reuten R, Erler JT. Fibroblast-derived matrix models desmoplastic properties and forms a prognostic signature in cancer progression. Front Immunol 2023; 14:1154528. [PMID: 37539058 PMCID: PMC10395327 DOI: 10.3389/fimmu.2023.1154528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/30/2023] [Indexed: 08/05/2023] Open
Abstract
The desmoplastic reaction observed in many cancers is a hallmark of disease progression and prognosis, particularly in breast and pancreatic cancer. Stromal-derived extracellular matrix (ECM) is significantly altered in desmoplasia, and as such plays a critical role in driving cancer progression. Using fibroblast-derived matrices (FDMs), we show that cancer cells have increased growth on cancer associated FDMs, when compared to FDMs derived from non-malignant tissue (normal) fibroblasts. We assess the changes in ECM characteristics from normal to cancer-associated stroma at the primary tumor site. Compositional, structural, and mechanical analyses reveal significant differences, with an increase in abundance of core ECM proteins, coupled with an increase in stiffness and density in cancer-associated FDMs. From compositional changes of FDM, we derived a 36-ECM protein signature, which we show matches in large part with the changes in pancreatic ductal adenocarcinoma (PDAC) tumor and metastases progression. Additionally, this signature also matches at the transcriptomic level in multiple cancer types in patients, prognostic of their survival. Together, our results show relevance of FDMs for cancer modelling and identification of desmoplastic ECM components for further mechanistic studies.
Collapse
Affiliation(s)
- Maria Rafaeva
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Adina R. D. Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Edward R. Horton
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kamilla W. Zornhagen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jan E. Strøbech
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lutz Fleischhauer
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Munich, Germany
- Center for NanoScience – CsNS, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Sebastian R. Nielsen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Dina S. Grønseth
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Filip Kuś
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Erwin M. Schoof
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luis Arnes
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Koch
- Center for Biochemistry, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Munich, Germany
- Center for NanoScience – CsNS, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Raphael Reuten
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Janine T. Erler
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Koushki N, Ghagre A, Srivastava LK, Molter C, Ehrlicher AJ. Nuclear compression regulates YAP spatiotemporal fluctuations in living cells. Proc Natl Acad Sci U S A 2023; 120:e2301285120. [PMID: 37399392 PMCID: PMC10334804 DOI: 10.1073/pnas.2301285120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/04/2023] [Indexed: 07/05/2023] Open
Abstract
Yes-associated protein (YAP) is a key mechanotransduction protein in diverse physiological and pathological processes; however, a ubiquitous YAP activity regulatory mechanism in living cells has remained elusive. Here, we show that YAP nuclear translocation is highly dynamic during cell movement and is driven by nuclear compression arising from cell contractile work. We resolve the mechanistic role of cytoskeletal contractility in nuclear compression by manipulation of nuclear mechanics. Disrupting the linker of nucleoskeleton and cytoskeleton complex reduces nuclear compression for a given contractility and correspondingly decreases YAP localization. Conversely, decreasing nuclear stiffness via silencing of lamin A/C increases nuclear compression and YAP nuclear localization. Finally, using osmotic pressure, we demonstrated that nuclear compression even without active myosin or filamentous actin regulates YAP localization. The relationship between nuclear compression and YAP localization captures a universal mechanism for YAP regulation with broad implications in health and biology.
Collapse
Affiliation(s)
- Newsha Koushki
- Department of Bioengineering, McGill University, Montreal, QCH3A 0E9, Canada
| | - Ajinkya Ghagre
- Department of Bioengineering, McGill University, Montreal, QCH3A 0E9, Canada
| | | | - Clayton Molter
- Department of Bioengineering, McGill University, Montreal, QCH3A 0E9, Canada
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, QCH3A 0E9, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QCH3A 0C7, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QCH3A 2B4, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QCH3A 0C3, Canada
- Centre for Structural Biology, McGill University, Montreal, QCH3G 0B1, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| |
Collapse
|
27
|
Saraswathibhatla A, Indana D, Chaudhuri O. Cell-extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol 2023; 24:495-516. [PMID: 36849594 PMCID: PMC10656994 DOI: 10.1038/s41580-023-00583-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 03/01/2023]
Abstract
Mechanical properties of extracellular matrices (ECMs) regulate essential cell behaviours, including differentiation, migration and proliferation, through mechanotransduction. Studies of cell-ECM mechanotransduction have largely focused on cells cultured in 2D, on top of elastic substrates with a range of stiffnesses. However, cells often interact with ECMs in vivo in a 3D context, and cell-ECM interactions and mechanisms of mechanotransduction in 3D can differ from those in 2D. The ECM exhibits various structural features as well as complex mechanical properties. In 3D, mechanical confinement by the surrounding ECM restricts changes in cell volume and cell shape but allows cells to generate force on the matrix by extending protrusions and regulating cell volume as well as through actomyosin-based contractility. Furthermore, cell-matrix interactions are dynamic owing to matrix remodelling. Accordingly, ECM stiffness, viscoelasticity and degradability often play a critical role in regulating cell behaviours in 3D. Mechanisms of 3D mechanotransduction include traditional integrin-mediated pathways that sense mechanical properties and more recently described mechanosensitive ion channel-mediated pathways that sense 3D confinement, with both converging on the nucleus for downstream control of transcription and phenotype. Mechanotransduction is involved in tissues from development to cancer and is being increasingly harnessed towards mechanotherapy. Here we discuss recent progress in our understanding of cell-ECM mechanotransduction in 3D.
Collapse
Affiliation(s)
| | - Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Zingales V, Esposito MR, Torriero N, Taroncher M, Cimetta E, Ruiz MJ. The Growing Importance of Three-Dimensional Models and Microphysiological Systems in the Assessment of Mycotoxin Toxicity. Toxins (Basel) 2023; 15:422. [PMID: 37505691 PMCID: PMC10467068 DOI: 10.3390/toxins15070422] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
Current investigations in the field of toxicology mostly rely on 2D cell cultures and animal models. Although well-accepted, the traditional 2D cell-culture approach has evident drawbacks and is distant from the in vivo microenvironment. To overcome these limitations, increasing efforts have been made in the development of alternative models that can better recapitulate the in vivo architecture of tissues and organs. Even though the use of 3D cultures is gaining popularity, there are still open questions on their robustness and standardization. In this review, we discuss the current spheroid culture and organ-on-a-chip techniques as well as the main conceptual and technical considerations for the correct establishment of such models. For each system, the toxicological functional assays are then discussed, highlighting their major advantages, disadvantages, and limitations. Finally, a focus on the applications of 3D cell culture for mycotoxin toxicity assessments is provided. Given the known difficulties in defining the safety ranges of exposure for regulatory agency policies, we are confident that the application of alternative methods may greatly improve the overall risk assessment.
Collapse
Affiliation(s)
- Veronica Zingales
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain;
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Maria Rosaria Esposito
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Noemi Torriero
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Mercedes Taroncher
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain;
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - María-José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain;
| |
Collapse
|
29
|
Adebowale K, Ha B, Saraswathibhatla A, Indana D, Popescu MC, Demirdjian S, Yang J, Bassik MC, Franck C, Bollyky PL, Chaudhuri O. Monocytes use protrusive forces to generate migration paths in viscoelastic collagen-based extracellular matrices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544394. [PMID: 37333226 PMCID: PMC10274922 DOI: 10.1101/2023.06.09.544394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Circulating monocytes are recruited to the tumor microenvironment, where they can differentiate into macrophages that mediate tumor progression. To reach the tumor microenvironment, monocytes must first extravasate and migrate through the type-1 collagen rich stromal matrix. The viscoelastic stromal matrix around tumors not only stiffens relative to normal stromal matrix, but often exhibits enhanced viscous characteristics, as indicated by a higher loss tangent or faster stress relaxation rate. Here, we studied how changes in matrix stiffness and viscoelasticity, impact the three-dimensional migration of monocytes through stromal-like matrices. Interpenetrating networks of type-1 collagen and alginate, which enable independent tunability of stiffness and stress relaxation over physiologically relevant ranges, were used as confining matrices for three-dimensional culture of monocytes. Increased stiffness and faster stress relaxation independently enhanced the 3D migration of monocytes. Migrating monocytes have an ellipsoidal or rounded wedge-like morphology, reminiscent of amoeboid migration, with accumulation of actin at the trailing edge. Matrix adhesions and Rho-mediated contractility were dispensable for monocyte migration in 3D, but migration did require actin polymerization and myosin contractility. Mechanistic studies indicate that actin polymerization at the leading edge generates protrusive forces that open a path for the monocytes to migrate through in the confining viscoelastic matrices. Taken together, our findings implicate matrix stiffness and stress relaxation as key mediators of monocyte migration and reveal how monocytes use pushing forces at the leading edge mediated by actin polymerization to generate migration paths in confining viscoelastic matrices. Significance Statement Cell migration is essential for numerous biological processes in health and disease, including for immune cell trafficking. Monocyte immune cells migrate through extracellular matrix to the tumor microenvironment where they can play a role in regulating cancer progression. Increased extracellular matrix (ECM) stiffness and viscoelasticity have been implicated in cancer progression, but the impact of these changes in the ECM on monocyte migration remains unknown. Here, we find that increased ECM stiffness and viscoelasticity promote monocyte migration. Interestingly, we reveal a previously undescribed adhesion-independent mode of migration whereby monocytes generate a path to migrate through pushing forces at the leading edge. These findings help elucidate how changes in the tumor microenvironment impact monocyte trafficking and thereby disease progression.
Collapse
|
30
|
Micalet A, Pape J, Bakkalci D, Javanmardi Y, Hall C, Cheema U, Moeendarbary E. Evaluating the Impact of a Biomimetic Mechanical Environment on Cancer Invasion and Matrix Remodeling. Adv Healthc Mater 2023; 12:e2201749. [PMID: 36333907 PMCID: PMC11468596 DOI: 10.1002/adhm.202201749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/10/2022] [Indexed: 10/13/2024]
Abstract
The stiffness of tumors and their host tissues is much higher than most hydrogels, which are conventionally used to study in vitro cancer progression. The tumoroid assay is an engineered 3D in vitro tumor model that allows investigation of cancer cell invasion in an environment that is biomimetic in terms of extracellular matrix (ECM) composition and stiffness. Using this model, the change in matrix stiffness by epithelial colorectal cancer cells is systematically characterized by atomic force microscopy indentation tests. Less invasive epithelial cancer cells stiffen the tumor microenvironment while highly aggressive epithelial cancer cells show significant softening of the tumor microenvironment. Changes in stiffness are attributed to both cell-generated active forces as well as ECM degradation and remodeling. The degradation is in part attributed to the enzymatic activity of matrix metalloproteinases (MMPs) as demonstrated by the significant expression of MMP-2 and MMP-9 at both gene and protein levels. Targeting MMP activity through broad-spectrum drug inhibition (BB-94) reverses the changes in stiffness and also decreases cancer cell invasion. These results promote the idea of using mechano-based cancer therapies such as MMP inhibition.
Collapse
Affiliation(s)
- Auxtine Micalet
- Department of Mechanical EngineeringUniversity College LondonGower StreetLondonWC1E 6BTUK
- UCL Centre for 3D Models of Health and DiseaseDepartment of Targeted InterventionDivision of Surgery and Interventional ScienceUniversity College LondonCharles Bell House43–45 Foley StreetLondonW1W 7TSUK
| | - Judith Pape
- UCL Centre for 3D Models of Health and DiseaseDepartment of Targeted InterventionDivision of Surgery and Interventional ScienceUniversity College LondonCharles Bell House43–45 Foley StreetLondonW1W 7TSUK
| | - Deniz Bakkalci
- UCL Centre for 3D Models of Health and DiseaseDepartment of Targeted InterventionDivision of Surgery and Interventional ScienceUniversity College LondonCharles Bell House43–45 Foley StreetLondonW1W 7TSUK
| | - Yousef Javanmardi
- Department of Mechanical EngineeringUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Chloe Hall
- Department of Mechanical EngineeringUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Umber Cheema
- UCL Centre for 3D Models of Health and DiseaseDepartment of Targeted InterventionDivision of Surgery and Interventional ScienceUniversity College LondonCharles Bell House43–45 Foley StreetLondonW1W 7TSUK
| | - Emad Moeendarbary
- Department of Mechanical EngineeringUniversity College LondonGower StreetLondonWC1E 6BTUK
| |
Collapse
|
31
|
Sievers J, Mahajan V, Welzel PB, Werner C, Taubenberger A. Precision Hydrogels for the Study of Cancer Cell Mechanobiology. Adv Healthc Mater 2023; 12:e2202514. [PMID: 36826799 PMCID: PMC11468035 DOI: 10.1002/adhm.202202514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Indexed: 02/25/2023]
Abstract
Cancer progression is associated with extensive remodeling of the tumor microenvironment (TME), resulting in alterations of biochemical and biophysical cues that affect both cancer and stromal cells. In particular, the mechanical characteristics of the TME extracellular matrix undergo significant changes. Bioengineered polymer hydrogels can be instrumental to systematically explore how mechanically changed microenvironments impact cancer cell behavior, including proliferation, survival, drug resistance, and invasion. This article reviews studies that have explored the impact of different mechanical cues of the cells' 3D microenvironment on cancer cell behavior using hydrogel-based in vitro models. In particular, advanced engineering strategies are highlighted for tailored hydrogel matrices recapitulating the TME's micrometer- and sub-micrometer-scale architectural and mechanical features, while accounting for its intrinsically heterogenic and dynamic nature. It is anticipated that such precision hydrogel systems will further the understanding of cancer mechanobiology.
Collapse
Affiliation(s)
- Jana Sievers
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Vaibhav Mahajan
- Center for Molecular and Cellular Bioengineering (CMCB)BIOTECTU Dresden01307DresdenGermany
| | - Petra B. Welzel
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center of Regenerative Therapies Dresden and Cluster of Excellence Physics of LifeTU Dresden01062DresdenGermany
| | - Anna Taubenberger
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center for Molecular and Cellular Bioengineering (CMCB)BIOTECTU Dresden01307DresdenGermany
| |
Collapse
|
32
|
Wang W, Taufalele PV, Millet M, Homsy K, Smart K, Berestesky ED, Schunk CT, Rowe MM, Bordeleau F, Reinhart-King CA. Matrix stiffness regulates tumor cell intravasation through expression and ESRP1-mediated alternative splicing of MENA. Cell Rep 2023; 42:112338. [PMID: 37027295 PMCID: PMC10551051 DOI: 10.1016/j.celrep.2023.112338] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
During intravasation, cancer cells cross the endothelial barrier and enter the circulation. Extracellular matrix stiffening has been correlated with tumor metastatic potential; however, little is known about the effects of matrix stiffness on intravasation. Here, we utilize in vitro systems, a mouse model, specimens from patients with breast cancer, and RNA expression profiles from The Cancer Genome Atlas Program (TCGA) to investigate the molecular mechanism by which matrix stiffening promotes tumor cell intravasation. Our data show that heightened matrix stiffness increases MENA expression, which promotes contractility and intravasation through focal adhesion kinase activity. Further, matrix stiffening decreases epithelial splicing regulatory protein 1 (ESRP1) expression, which triggers alternative splicing of MENA, decreases the expression of MENA11a, and enhances contractility and intravasation. Altogether, our data indicate that matrix stiffness regulates tumor cell intravasation through enhanced expression and ESRP1-mediated alternative splicing of MENA, providing a mechanism by which matrix stiffness regulates tumor cell intravasation.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Paul V Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Martial Millet
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada
| | - Kevin Homsy
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada
| | - Kyra Smart
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Emily D Berestesky
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Curtis T Schunk
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Matthew M Rowe
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; Département de biologie moléculaire, de biochimie médicale et de pathologie, Université Laval, Québec, QC G1V 0A6, Canada.
| | | |
Collapse
|
33
|
Khalilimeybodi A, Fraley S, Rangamani P. Mechanisms underlying divergent relationships between Ca 2+ and YAP/TAZ signalling. J Physiol 2023; 601:483-515. [PMID: 36463416 PMCID: PMC10986318 DOI: 10.1113/jp283966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Yes-associated protein (YAP) and its homologue TAZ are transducers of several biochemical and biomechanical signals, integrating multiplexed inputs from the microenvironment into higher level cellular functions such as proliferation, differentiation and migration. Emerging evidence suggests that Ca2+ is a key second messenger that connects microenvironmental input signals and YAP/TAZ regulation. However, studies that directly modulate Ca2+ have reported contradictory YAP/TAZ responses: in some studies, a reduction in Ca2+ influx increases the activity of YAP/TAZ, while in others, an increase in Ca2+ influx activates YAP/TAZ. Importantly, Ca2+ and YAP/TAZ exhibit distinct spatiotemporal dynamics, making it difficult to unravel their connections from a purely experimental approach. In this study, we developed a network model of Ca2+ -mediated YAP/TAZ signalling to investigate how temporal dynamics and crosstalk of signalling pathways interacting with Ca2+ can alter the YAP/TAZ response, as observed in experiments. By including six signalling modules (e.g. GPCR, IP3-Ca2+ , kinases, RhoA, F-actin and Hippo-YAP/TAZ) that interact with Ca2+ , we investigated both transient and steady-state cell response to angiotensin II and thapsigargin stimuli. The model predicts that stimuli, Ca2+ transients and frequency-dependent relationships between Ca2+ and YAP/TAZ are primarily mediated by cPKC, DAG, CaMKII and F-actin. Simulation results illustrate the role of Ca2+ dynamics and CaMKII bistable response in switching the direction of changes in Ca2+ -induced YAP/TAZ activity. A frequency-dependent YAP/TAZ response revealed the competition between upstream regulators of LATS1/2, leading to the YAP/TAZ non-monotonic response to periodic GPCR stimulation. This study provides new insights into underlying mechanisms responsible for the controversial Ca2+ -YAP/TAZ relationship observed in experiments. KEY POINTS: YAP/TAZ integrates biochemical and biomechanical inputs to regulate cellular functions, and Ca2+ acts as a key second messenger linking cellular inputs to YAP/TAZ. Studies have reported contradictory Ca2+ -YAP/TAZ relationships for different cell types and stimuli. A network model of Ca2+ -mediated YAP/TAZ signalling was developed to investigate the underlying mechanisms of divergent Ca2+ -YAP/TAZ relationships. The model predicts context-dependent Ca2+ transient, CaMKII bistable response and frequency-dependent activation of LATS1/2 upstream regulators as mechanisms governing the Ca2+ -YAP/TAZ relationship. This study provides new insights into the underlying mechanisms of the controversial Ca2+ -YAP/TAZ relationship to better understand the dynamics of cellular functions controlled by YAP/TAZ activity.
Collapse
Affiliation(s)
- A. Khalilimeybodi
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093
| | - S.I. Fraley
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093
| | - P. Rangamani
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093
| |
Collapse
|
34
|
Elosegui-Artola A, Gupta A, Najibi AJ, Seo BR, Garry R, Tringides CM, de Lázaro I, Darnell M, Gu W, Zhou Q, Weitz DA, Mahadevan L, Mooney DJ. Matrix viscoelasticity controls spatiotemporal tissue organization. NATURE MATERIALS 2023; 22:117-127. [PMID: 36456871 PMCID: PMC10332325 DOI: 10.1038/s41563-022-01400-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/07/2022] [Indexed: 06/17/2023]
Abstract
Biomolecular and physical cues of the extracellular matrix environment regulate collective cell dynamics and tissue patterning. Nonetheless, how the viscoelastic properties of the matrix regulate collective cell spatial and temporal organization is not fully understood. Here we show that the passive viscoelastic properties of the matrix encapsulating a spheroidal tissue of breast epithelial cells guide tissue proliferation in space and in time. Matrix viscoelasticity prompts symmetry breaking of the spheroid, leading to the formation of invading finger-like protrusions, YAP nuclear translocation and epithelial-to-mesenchymal transition both in vitro and in vivo in a Arp2/3-complex-dependent manner. Computational modelling of these observations allows us to establish a phase diagram relating morphological stability with matrix viscoelasticity, tissue viscosity, cell motility and cell division rate, which is experimentally validated by biochemical assays and in vitro experiments with an intestinal organoid. Altogether, this work highlights the role of stress relaxation mechanisms in tissue growth dynamics, a fundamental process in morphogenesis and oncogenesis.
Collapse
Affiliation(s)
- Alberto Elosegui-Artola
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA
- Institute for Bioengineering of Catalonia, Barcelona, Spain
- Cell and Tissue Mechanobiology Laboratory, Francis Crick Institute, London, UK
- Department of Physics, King's College London, London, UK
| | - Anupam Gupta
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Alexander J Najibi
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA
| | - Bo Ri Seo
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA
| | - Ryan Garry
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Christina M Tringides
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Irene de Lázaro
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA
| | - Max Darnell
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA
| | - Wei Gu
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Qiao Zhou
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - David A Weitz
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - L Mahadevan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - David J Mooney
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA.
| |
Collapse
|
35
|
Yan Z, Guo D, Tao R, Yu X, Zhang J, He Y, Zhang J, Li J, Zhang S, Guo W. Fluid shear stress induces cell migration via RhoA-YAP1-autophagy pathway in liver cancer stem cells. Cell Adh Migr 2022; 16:94-106. [PMID: 35880618 PMCID: PMC9331214 DOI: 10.1080/19336918.2022.2103925] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fluid shear stress (FSS) regulates the metastasis of hepatocellular carcinoma (HCC), but the role of the RhoA-YAP1-autophagy pathway in HCC remains unclear. Due to the core role of liver cancer stem cells (LCSCs) in HCC metastasis and recurrence, we explored the RhoA-YAP1-autophagy pathway in LCSCs under FSS. Our results indicate that LCSCs have stronger proliferation and cell spheroidization abilities. FSS (1 dyn/cm2) upregulated the migration of LCSCs and autophagy protein markers, inducing LC3B aggregation and autophagosome formation in LCSCs. Mechanistically, FSS promoted YAP1 dephosphorylation and transport to the nucleus, which is mediated by RhoA, inducing autophagy. Finally, inhibition of autophagy suppressed cell migration in LCSCs under FSS. In conclusion, FSS promoted the migration of LCSCs via the RhoA-YAP1-autophagy pathway.
Collapse
Affiliation(s)
- Zhiping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Ruolin Tao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Jiacheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Jiakai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China,CONTACT Wenzhi Guo Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
Baek J, Kumar S, Schaffer DV, Im SG. N-Cadherin adhesive ligation regulates mechanosensitive neural stem cell lineage commitment in 3D matrices. Biomater Sci 2022; 10:6768-6777. [PMID: 36314115 PMCID: PMC10195187 DOI: 10.1039/d2bm01349e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During differentiation, neural stem cells (NSCs) encounter diverse cues from their niche, including not only biophysical cues from the extracellular matrix (ECM) but also cell-cell communication. However, it is still poorly understood how these cues cumulatively regulate mechanosensitive NSC fate commitment, especially in 3D matrices that better mimic in vivo systems. Here, we develop a click chemistry-based 3D hydrogel material system to fully decouple cell-cell and cell-ECM interactions by functionalizing small peptides: the HAVDI motif from N-cadherin and RGD motif from fibronectin. The hydrogel is engineered to range in stiffness from 75 Pa to 600 Pa. Interestingly, HAVDI-mediated interaction shows increased neurogenesis, except for the softest gel (75 Pa). Moreover, the HAVDI ligation attenuates the mechanosensing state of NSCs, exhibiting restricted cytoskeletal formation and RhoA signaling. Given that mechanosensitive neurogenesis has been reported to be regulated by cytoskeletal formation, our finding suggests that the enhanced neurogenesis in the HAVDI-modified gel may be highly associated with the HAVDI interaction-mediated attenuation of mechanosensing. Furthermore, NSCs in the HAVDI gel shows higher β-catenin activity, which has been known to promote neurogenesis. Our findings provide critical insights into how mechanosensitive NSC fate commitment is regulated as a consequence of diverse interactions in 3D microenvironments.
Collapse
Affiliation(s)
- Jieung Baek
- Dept. of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Dept. of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sanjay Kumar
- Dept. of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Dept. of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Dept. of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David V Schaffer
- Dept. of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Dept. of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Dept. of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sung Gap Im
- Dept. of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
37
|
Lee Y, Bae SJ, Eun NL, Ahn SG, Jeong J, Cha YJ. Correlation of Yes-Associated Protein 1 with Stroma Type and Tumor Stiffness in Hormone-Receptor Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14204971. [PMID: 36291755 PMCID: PMC9599900 DOI: 10.3390/cancers14204971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary YAP1 is an oncogene that can be activated by matrix stiffness, as it can act as a mechanotransducer. So far, only in vitro studies regarding YAP1 activation and matrix stiffness are present. We confirmed the activation of YAP1 in breast cancer using human breast cancer tissue and immunohistochemistry. Tumor stiffness was quantified by shear-wave elastography. Nuclear localization of YAP1 showed correlation with tumor stiffness in hormone-receptor positive (HR+) breast cancer. Also, tumors with non-collagen-type stroma showed an association between YAP1 expression and tumor stiffness. YAP1 expression, along with tumor stiffness, may serve as a prognostic candidate in HR+ breast cancer. Abstract (1) Background: Yes-associated protein 1 (YAP1) is an oncogene activated under the dysregulated Hippo pathway. YAP1 is also a mechanotransducer that is activated by matrix stiffness. So far, there are no in vivo studies on YAP1 expression related to stiffness. We aimed to investigate the association between YAP1 activation and tumor stiffness in human breast cancer samples, using immunohistochemistry and shear-wave elastography (SWE). (2) Methods: We included 488 patients with treatment-naïve breast cancer. Tumor stiffness was measured and the mean, maximal, and minimal elasticity values and elasticity ratios were recorded. Nuclear YAP1 expression was evaluated by immunohistochemistry and tumor-infiltrating lymphocytes (TILs); tumor-stroma ratio (TSR) and stroma type of tumors were also evaluated. (3) Results: Tumor stiffness was higher in tumors with YAP1 positivity, low TILs, and high TSR and was correlated with nuclear YAP1 expression; this correlation was observed in hormone receptor positive (HR+) tumors, as well as in tumors with non-collagen-type stroma. (4) Conclusions: We confirmed the correlation between nuclear YAP1 expression and tumor stiffness, and nuclear YAP1 expression was deemed a prognostic candidate in HR+ tumors combined with SWE-measured tumor stiffness.
Collapse
Affiliation(s)
- Yangkyu Lee
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Soong June Bae
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Na Lae Eun
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Sung Gwe Ahn
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Joon Jeong
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: ; Tel.: +82-2-2019-3540
| |
Collapse
|
38
|
Nguyen LTS, Jacob MAC, Parajón E, Robinson DN. Cancer as a biophysical disease: Targeting the mechanical-adaptability program. Biophys J 2022; 121:3573-3585. [PMID: 35505610 PMCID: PMC9617128 DOI: 10.1016/j.bpj.2022.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022] Open
Abstract
With the number of cancer cases projected to significantly increase over time, researchers are currently exploring "nontraditional" research fields in the pursuit of novel therapeutics. One emerging area that is steadily gathering interest revolves around cellular mechanical machinery. When looking broadly at the physical properties of cancer, it has been debated whether a cancer could be defined as either stiffer or softer across cancer types. With numerous articles supporting both sides, the evidence instead suggests that cancer is not particularly regimented. Instead, cancer is highly adaptable, allowing it to endure the constantly changing microenvironments cancer cells encounter, such as tumor compression and the shear forces in the vascular system and body. What allows cancer cells to achieve this adaptability are the particular proteins that make up the mechanical network, leading to a particular mechanical program of the cancer cell. Coincidentally, some of these proteins, such as myosin II, α-actinins, filamins, and actin, have either altered expression in cancer and/or some type of direct involvement in cancer progression. For this reason, targeting the mechanical system as a therapeutic strategy may lead to more efficacious treatments in the future. However, targeting the mechanical program is far from trivial. As involved as the mechanical program is in cancer development and metastasis, it also helps drive many other key cellular processes, such as cell division, cell adhesion, metabolism, and motility. Therefore, anti-cancer treatments targeting the mechanical program must take great care to avoid potential side effects. Here, we introduce the potential of targeting the mechanical program while also providing its challenges and shortcomings as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Ly T S Nguyen
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Mark Allan C Jacob
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Eleana Parajón
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
39
|
Sikic L, Schulman E, Kosklin A, Saraswathibhatla A, Chaudhuri O, Pokki J. Nanoscale Tracking Combined with Cell-Scale Microrheology Reveals Stepwise Increases in Force Generated by Cancer Cell Protrusions. NANO LETTERS 2022; 22:7742-7750. [PMID: 35950832 PMCID: PMC9523704 DOI: 10.1021/acs.nanolett.2c01327] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
In early breast cancer progression, cancer cells invade through a nanoporous basement membrane (BM) as a first key step toward metastasis. This invasion is thought to be mediated by a combination of proteases, which biochemically degrade BM matrix, and physical forces, which mechanically open up holes in the matrix. To date, techniques that quantify cellular forces of BM invasion in 3D culture have been unavailable. Here, we developed cellular-force measurements for breast cancer cell invasion in 3D culture that combine multiple-particle tracking of force-induced BM-matrix displacements at the nanoscale, and magnetic microrheometry of localized matrix mechanics. We find that cancer-cell protrusions exert forces from picoNewtons up to nanoNewtons during invasion. Strikingly, the protrusions extension involves stepwise increases in force, in steps of 0.2 to 0.5 nN exerted from every 30 s to 6 min. Thus, this technique reveals previously unreported dynamics of force generation by invasive protrusions in cancer cells.
Collapse
Affiliation(s)
- Luka Sikic
- Department
of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150,Finland
| | - Ester Schulman
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Anna Kosklin
- Department
of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150,Finland
| | - Aashrith Saraswathibhatla
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ovijit Chaudhuri
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Juho Pokki
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150,Finland
| |
Collapse
|
40
|
Tian Q, Gao H, Ma Y, Zhu L, Zhou Y, Shen Y, Wang B. The regulatory roles of T helper cells in distinct extracellular matrix characterization in breast cancer. Front Immunol 2022; 13:871742. [PMID: 36159822 PMCID: PMC9493030 DOI: 10.3389/fimmu.2022.871742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Background Tumors are characterized by extracellular matrix (ECM) remodeling and stiffening. The ECM has been recognized as an important determinant of breast cancer progression and prognosis. Recent studies have revealed a strong link between ECM remodeling and immune cell infiltration in a variety of tumor types. However, the landscape and specific regulatory mechanisms between ECM and immune microenvironment in breast cancer have not been fully understood. Methods Using genomic data and clinical information of breast cancer patients obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we conducted an extensive multi-omics analysis to explore the heterogeneity and prognostic significance of the ECM microenvironment. Masson and Sirius red staining were applied to quantify the contents of collagen in the ECM microenvironment. Tissue immunofluorescence (IF) staining was applied to identify T helper (Th) cells. Results We classified breast cancer patients into two ECM-clusters and three gene-clusters by consensus clustering. Significant heterogeneity in prognosis and immune cell infiltration have been found in these distinct clusters. Specifically, in the ECM-cluster with better prognosis, the expression levels of Th2 and regulatory T (Treg) cells were reduced, while the Th1, Th17 and T follicular helper (Tfh) cells-associated activities were significantly enhanced. The correlations between ECM characteristics and Th cells infiltration were then validated by clinical tissue samples from our hospital. The ECM-associated prognostic model was then constructed by 10 core prognostic genes and stratified breast cancer patients into two risk groups. Kaplan-Meier analysis showed that the overall survival (OS) of breast cancer patients in the high-risk group was significantly worse than that of the low-risk group. The risk scores for breast cancer patients obtained from our prognostic model were further confirmed to be associated with immune cell infiltration, tumor mutation burden (TMB) and stem cell indexes. Finally, the half-maximal inhibitory concentration (IC50) values of antitumor agents for patients in different risk groups were calculated to provide references for therapy targeting distinct ECM characteristics. Conclusion Our findings identify a novel strategy for breast cancer subtyping based on the ECM characterization and reveal the regulatory roles of Th cells in ECM remodeling. Targeting ECM remodeling and Th cells hold potential to be a therapeutic alternative for breast cancer in the future.
Collapse
Affiliation(s)
- Qi Tian
- Department of Radiology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huan Gao
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yingying Ma
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lizhe Zhu
- Department of Breast Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Zhou
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanwei Shen
- Department of Surgery Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
- *Correspondence: Yanwei Shen, ; Bo Wang,
| | - Bo Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yanwei Shen, ; Bo Wang,
| |
Collapse
|
41
|
Increased Stiffness Downregulates Focal Adhesion Kinase Expression in Pancreatic Cancer Cells Cultured in 3D Self-Assembling Peptide Scaffolds. Biomedicines 2022; 10:biomedicines10081835. [PMID: 36009384 PMCID: PMC9405295 DOI: 10.3390/biomedicines10081835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/18/2023] Open
Abstract
The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that participates in integrin-mediated signal transduction and contributes to different biological processes, such as cell migration, survival, proliferation and angiogenesis. Moreover, FAK can be activated by autophosphorylation at position Y397 and trigger different signaling pathways in response to increased extracellular matrix stiffness. In addition, FAK is overexpressed and/or hyperactivated in many epithelial cancers, and its expression correlates with tumor malignancy and invasion potential. One of the characteristics of solid tumors is an over deposition of ECM components, which generates a stiff microenvironment that promotes, among other features, sustained cell proliferation and survival. Researchers are, therefore, increasingly developing cell culture models to mimic the increased stiffness associated with these kinds of tumors. In the present work, we have developed a new 3D in vitro model to study the effect of matrix stiffness in pancreatic ductal adenocarcinoma (PDAC) cells as this kind of tumor is characterized by a desmoplastic stroma and an increased stiffness compared to its normal counterpart. For that, we have used a synthetic self-assembling peptide nanofiber matrix, RAD16-I, which does not suffer a significant degradation in vitro, thus allowing to maintain the same local stiffness along culture time. We show that increased matrix stiffness in synthetic 3D RAD16-I gels, but not in collagen type I scaffolds, promotes FAK downregulation at a protein level in all the cell lines analyzed. Moreover, even though it has classically been described that stiff 3D matrices promote an increase in pFAKY397/FAK proteins, we found that this ratio in soft and stiff RAD16-I gels is cell-type-dependent. This study highlights how cell response to increased matrix stiffness greatly depends on the nature of the matrix used for 3D culture.
Collapse
|
42
|
Jagiełło A, Castillo U, Botvinick E. Cell mediated remodeling of stiffness matched collagen and fibrin scaffolds. Sci Rep 2022; 12:11736. [PMID: 35817812 PMCID: PMC9273755 DOI: 10.1038/s41598-022-14953-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Cells are known to continuously remodel their local extracellular matrix (ECM) and in a reciprocal way, they can also respond to mechanical and biochemical properties of their fibrous environment. In this study, we measured how stiffness around dermal fibroblasts (DFs) and human fibrosarcoma HT1080 cells differs with concentration of rat tail type 1 collagen (T1C) and type of ECM. Peri-cellular stiffness was probed in four directions using multi-axes optical tweezers active microrheology (AMR). First, we found that neither cell type significantly altered local stiffness landscape at different concentrations of T1C. Next, rat tail T1C, bovine skin T1C and fibrin cell-free hydrogels were polymerized at concentrations formulated to match median stiffness value. Each of these hydrogels exhibited distinct fiber architecture. Stiffness landscape and fibronectin secretion, but not nuclear/cytoplasmic YAP ratio differed with ECM type. Further, cell response to Y27632 or BB94 treatments, inhibiting cell contractility and activity of matrix metalloproteinases, respectively, was also dependent on ECM type. Given differential effect of tested ECMs on peri-cellular stiffness landscape, treatment effect and cell properties, this study underscores the need for peri-cellular and not bulk stiffness measurements in studies on cellular mechanotransduction.
Collapse
Affiliation(s)
- Alicja Jagiełło
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA
| | - Ulysses Castillo
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA
| | - Elliot Botvinick
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA.
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, 92612, USA.
- Department of Surgery, University of California Irvine, 333 City Boulevard, Suite 700, Orange, CA, 92868, USA.
- The Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, CA, 92697-2730, USA.
| |
Collapse
|
43
|
Gao H, Tian Q, Zhou Y, Zhu L, Lu Y, Ma Y, Feng J, Jiang Y, Wang B. 3D Collagen Fiber Concentration Regulates Treg Cell Infiltration in Triple Negative Breast Cancer. Front Immunol 2022; 13:904418. [PMID: 35774776 PMCID: PMC9237245 DOI: 10.3389/fimmu.2022.904418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is characterized by poor prognosis and a lack of effective therapeutic agents owing to the absence of biomarkers. A high abundance of tumor-infiltrating regulatory T cells (Tregs) was associated with worse prognosis in malignant disease. Exploring the association between Treg cell infiltration and TNBC will provide new insights for understanding TNBC immunosuppression and may pave the way for developing novel immune-based treatments. Materials and Methods Patients from TCGA were divided into Treg-high (Treg-H) and Treg-low (Treg-L) groups based on the abundance of Tregs according to CIBERSORT analysis. The association between expression level of Tregs and the clinical characteristics as well as prognosis of breast cancer were evaluated. Next, a Treg-related prognostic model was established after survival-dependent univariate Cox and LASSO regression analysis, companied with an external GEO cohort validation. Then, GO, KEGG and GSEA analyses were performed between the Treg-H and Treg-L groups. Masson and Sirius red/Fast Green staining were applied for ECM characterization. Accordingly, Jurkat T cells were encapsulated in 3D collagen to mimic the ECM microenvironment, and the expression levels of CD4, FOXP3 and CD25 were quantified according to immunofluorescence staining. Results The expression level of Tregs is significantly associated with the clinical characteristics of breast cancer patients, and a high level of Treg cell expression indicates a poor prognosis in TNBC. To further evaluate this, a Treg-related prognostic model was established that accurately predicted outcomes in both TCGA training and GEO validation cohorts of TNBC patients. Subsequently, ECM-associated signaling pathways were identified between the Treg-H and Treg-L groups, indicating the role of ECM in Treg infiltration. Since we found increasing collagen concentrations in TNBC patients with distant migration, we encapsulated Jurkat T cells within a 3D matrix with different collagen concentrations and observed that increasing collagen concentrations promoted the expression of Treg biomarkers, supporting the regulatory role of ECM in Treg infiltration. Conclusion Our results support the association between Treg expression and breast cancer progression as well as prognosis in the TNBC subtype. Moreover, increasing collagen density may promote Treg infiltration, and thus induce an immunosuppressed TME.
Collapse
Affiliation(s)
- Huan Gao
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qi Tian
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lizhe Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinliang Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yingying Ma
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jinteng Feng
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yina Jiang
- Department of Pathology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yina Jiang, ; Bo Wang,
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yina Jiang, ; Bo Wang,
| |
Collapse
|
44
|
Kumari J, Wagener FADTG, Kouwer PHJ. Novel Synthetic Polymer-Based 3D Contraction Assay: A Versatile Preclinical Research Platform for Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19212-19225. [PMID: 35468292 PMCID: PMC9073832 DOI: 10.1021/acsami.2c02549] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The driving factors causing fibrosis and scar formation include fibroblast differentiation into myofibroblasts and hampered myofibroblast apoptosis, which ultimately results in collagen accumulation and tissue contraction. Currently, only very few drugs are available for fibrosis treatment, and there is an urgent demand for new pharmaceutical products. High-throughput in vitro fibrosis models are necessary to develop such drugs. In this study, we developed such a novel model based on synthetic polyisocyanide (PIC-RGD) hydrogels. The model not only measures contraction but also allows for subsequent molecular and cellular analysis. Fibroblasts were seeded in small (10 μL) PIC-RGD gels in the absence or presence of TGFβ1, the latter to induce myofibroblast differentiation. The contraction model clearly differentiates fibroblasts and myofibroblasts. Besides a stronger contraction, we also observed α-smooth muscle actin (αSMA) production and higher collagen deposition for the latter. The results were supported by mRNA expression experiments of αSMA, Col1α1, P53, and Ki67. As proof of principle, the effects of FDA-approved antifibrotic drugs nintedanib and pirfenidone were tested in our newly developed fibrosis model. Both drugs clearly reduce myofibroblast-induced contraction. Moreover, both drugs significantly decrease myofibroblast viability. Our low-volume synthetic PIC-RGD hydrogel platform is an attractive tool for high-throughput in vitro antifibrotic drug screening.
Collapse
Affiliation(s)
- Jyoti Kumari
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department
of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 6525 EX Nijmegen, The Netherlands
| | - Frank A. D. T. G. Wagener
- Department
of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 6525 EX Nijmegen, The Netherlands
- (F.A.D.T.G.W.)
| | - Paul H. J. Kouwer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- (P.H.J.K.)
| |
Collapse
|
45
|
Yan X, He Y, Yang S, Zeng T, Hua Y, Bao S, Yang F, Duan N, Sun C, Liang Y, Fu Z, Huang X, Li W, Yin Y. A positive feedback loop: RAD18-YAP-TGF-β between triple-negative breast cancer and macrophages regulates cancer stemness and progression. Cell Death Dis 2022; 8:196. [PMID: 35413945 PMCID: PMC9005530 DOI: 10.1038/s41420-022-00968-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022]
Abstract
As a key regulator of the DNA translesion synthesis (TLS) pathway, RAD18 is error-prone and contributes to the accumulation of DNA mutations. Our previous study showed that it plays an essential role in the progression of multiple tumors. However, the mechanism through which RAD18 influences triple-negative breast cancer (TNBC), especially the interaction between tumor cells and the tumor microenvironment, remains elusive. In this study, we showed that RAD18 expression is markedly higher in patients with high T stage TNBC and inversely correlated with prognosis. High expression of RAD18 facilitated a highly stem-cell phenotype through the Hippo/YAP pathway, which supports the proliferation of TNBC. In addition, the cytokine byproduct TGF-β activates macrophages to have an M2-like tumor-associated macrophage (TAM) phenotype. Reciprocally, TGF-β from TAMs activated RAD18 in TNBC to enhance tumor stemness, forming a positive feedback loop. Inhibition of YAP or TGF-β breaks this loop and suppresses cancer stemness and proliferation In nude mice, RAD18 promoted subcutaneous transplanted tumor growth and M2-type TAM recruitment. Collectively, the RAD18-YAP-TGF-β loop is essential for the promotion of the stemness phenotype by TNBC and could be a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Xueqi Yan
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Yaozhou He
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Shikun Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, 210029, Nanjing, China
| | - Tianyu Zeng
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Yijia Hua
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Shengnan Bao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Fan Yang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Ningjun Duan
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Chunxiao Sun
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Yan Liang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Ziyi Fu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Xiang Huang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Wei Li
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
| | - Yongmei Yin
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
46
|
Liu K, Wiendels M, Yuan H, Ruan C, Kouwer PH. Cell-matrix reciprocity in 3D culture models with nonlinear elasticity. Bioact Mater 2022; 9:316-331. [PMID: 34820573 PMCID: PMC8586441 DOI: 10.1016/j.bioactmat.2021.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/24/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
Three-dimensional (3D) matrix models using hydrogels are powerful tools to understand and predict cell behavior. The interactions between the cell and its matrix, however is highly complex: the matrix has a profound effect on basic cell functions but simultaneously, cells are able to actively manipulate the matrix properties. This (mechano)reciprocity between cells and the extracellular matrix (ECM) is central in regulating tissue functions and it is fundamentally important to broadly consider the biomechanical properties of the in vivo ECM when designing in vitro matrix models. This manuscript discusses two commonly used biopolymer networks, i.e. collagen and fibrin gels, and one synthetic polymer network, polyisocyanide gel (PIC), which all possess the characteristic nonlinear mechanics in the biological stress regime. We start from the structure of the materials, then address the uses, advantages, and limitations of each material, to provide a guideline for tissue engineers and biophysicists in utilizing current materials and also designing new materials for 3D cell culture purposes.
Collapse
Affiliation(s)
- Kaizheng Liu
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Maury Wiendels
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Hongbo Yuan
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401, PR China
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Paul H.J. Kouwer
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| |
Collapse
|
47
|
Matrix Stiffness Contributes to Cancer Progression by Regulating Transcription Factors. Cancers (Basel) 2022; 14:cancers14041049. [PMID: 35205794 PMCID: PMC8870363 DOI: 10.3390/cancers14041049] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Matrix stiffness is recognized as a critical factor in cancer progression. Recent studies have shown that matrix stiffening is caused by the accumulation, contraction, and crosslinking of the extracellular matrix by cancer and stromal cells. Cancer and stromal cells respond to matrix stiffness, which determines the phenotypes of these cells. In addition, matrix stiffness activates and/or inactivates specific transcription factors in cancer and stromal cells to regulate cancer progression. In this review, we discuss the mechanisms of cancer stiffening and progression that are regulated by transcription factors responding to matrix stiffness. Abstract Matrix stiffness is critical for the progression of various types of cancers. In solid cancers such as mammary and pancreatic cancers, tumors often contain abnormally stiff tissues, mainly caused by stiff extracellular matrices due to accumulation, contraction, and crosslinking. Stiff extracellular matrices trigger mechanotransduction, the conversion of mechanical cues such as stiffness of the matrix to biochemical signaling in the cells, and as a result determine the cellular phenotypes of cancer and stromal cells in tumors. Transcription factors are key molecules for these processes, as they respond to matrix stiffness and are crucial for cellular behaviors. The Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) is one of the most studied transcription factors that is regulated by matrix stiffness. The YAP/TAZ are activated by a stiff matrix and promotes malignant phenotypes in cancer and stromal cells, including cancer-associated fibroblasts. In addition, other transcription factors such as β-catenin and nuclear factor kappa B (NF-κB) also play key roles in mechanotransduction in cancer tissues. In this review, the mechanisms of stiffening cancer tissues are introduced, and the transcription factors regulated by matrix stiffness in cancer and stromal cells and their roles in cancer progression are shown.
Collapse
|
48
|
Aprile P, Whelan IT, Sathy BN, Carroll SF, Kelly DJ. Soft Hydrogel Environments that Facilitate Cell Spreading and Aggregation Preferentially Support Chondrogenesis of Adult Stem Cells. Macromol Biosci 2022; 22:e2100365. [PMID: 35171524 DOI: 10.1002/mabi.202100365] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a promising cell type for treating damaged and diseased synovial joints. The therapeutic potential of MSCs will be facilitated by the engineering of biomaterial environments capable of directing their fate. Here we explored the interplay between matrix elasticity and cell morphology in regulating the chondrogenic differentiation of MSCs when seeded onto or encapsulated within hydrogels made of interpenetrating networks (IPN) of alginate and collagen type I. This IPN system enabled the independent control of substrate stiffness (in 2D and in 3D) and cell morphology (3D only). In a 2D culture environment, the expression of chondrogenic markers SOX9, ACAN and COL2 increased on a soft substrate, which correlated with increased SMAD2/3 nuclear localization, enhanced MSCs condensation and the formation of larger cellular aggregates. The encapsulation of spread MSCs within a soft IPN dramatically increased the expression of cartilage-specific genes, which was linked to higher levels of cellular condensation and nuclear SMAD2/3 localization. Surprisingly, cells forced to adopt a more rounded morphology within the same soft IPNs expressed higher levels of the osteogenic markers RUNX2 and COL1. The insight provided by this study suggests that a mechanobiology informed approach to biomaterial development will be integral to the development of successful cartilage tissue engineering strategies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Paola Aprile
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Ian T Whelan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,CÚRAM Center for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Binulal N Sathy
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Centre for Nanoscience and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Simon F Carroll
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,CÚRAM Center for Research in Medical Devices, National University of Ireland, Galway, Ireland.,The Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Ireland
| |
Collapse
|
49
|
Yao PA, Wu Y, Zhao K, Li Y, Cao J, Xing C. The feedback loop of ANKHD1/lncRNA MALAT1/YAP1 strengthens the radioresistance of CRC by activating YAP1/AKT signaling. Cell Death Dis 2022; 13:103. [PMID: 35110552 PMCID: PMC8810793 DOI: 10.1038/s41419-022-04554-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
Abstract
Innate radioresistance substantially limits the effectiveness of radiotherapy for colorectal cancer (CRC); thus, a strategy to enhance the radiosensitivity of CRC is urgently needed. Herein, we reported that ankyrin repeat and KH domain containing 1 (ANKHD1) serves as a key regulator of radioresistance in CRC. ANKHD1 was highly expressed in CRC tissues and was highly correlated with Yes-associated protein 1 (YAP1) in CRC. Our results first revealed that ANKHD1 knockdown could increase the radiosensitivity of CRC by regulating DNA-damage repair, both in vitro and in vivo. Furthermore, the interactive regulation between ANKHD1 or YAP1 and lncRNA MALAT1 was revealed by RIP and RNA pull-down assays. Moreover, our results also demonstrated that MALAT1 silencing can radiosensitize CRC cells to IR through YAP1/AKT axis, similar to ANKHD1 silencing. Taken together, we report a feedback loop of ANKHD1/MALAT1/YAP1 that synergistically promotes the transcriptional coactivation of YAP1 and in turn enhances the radioresistance of CRC by regulating DNA-damage repair, probably via the YAP1/AKT axis. Our results suggested that targeting the YAP1/AKT axis downstream of ANKHD1/MALAT1/YAP1 may enhance the radiosensitivity of CRC.
Collapse
Affiliation(s)
- Ping-An Yao
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yong Wu
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Kui Zhao
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yecheng Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China. .,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Chungen Xing
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
50
|
Han P, Gomez GA, Duda GN, Ivanovski S, Poh PS. Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomater 2022; 163:259-274. [PMID: 35038587 DOI: 10.1016/j.actbio.2022.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/03/2023]
Abstract
The dynamics of cell mechanics and epigenetic signatures direct cell behaviour and fate, thus influencing regenerative outcomes. In recent years, the utilisation of 2D geometric (i.e. square, circle, hexagon, triangle or round-shaped) substrates for investigating cell mechanics in response to the extracellular microenvironment have gained increasing interest in regenerative medicine due to their tunable physicochemical properties. In contrast, there is relatively limited knowledge of cell mechanobiology and epigenetics in the context of 3D biomaterial matrices, i.e., hydrogels and scaffolds. Scaffold geometry provides biophysical signals that trigger a nucleus response (regulation of gene expression) and modulates cell behaviour and function. In this review, we explore the potential of additive manufacturing to incorporate multi length-scale geometry features on a scaffold. Then, we discuss how scaffold geometry direct cell and nuclear mechanosensing. We further discuss how cell epigenetics, particularly DNA/histone methylation and histone acetylation, are modulated by scaffold features that lead to specific gene expression and ultimately influence the outcome of tissue regeneration. Overall, we highlight that geometry of different magnitude scales can facilitate the assembly of cells and multicellular tissues into desired functional architectures through the mechanotransduction pathway. Moving forward, the challenge confronting biomedical engineers is the distillation of the vast knowledge to incorporate multiscaled geometrical features that would collectively elicit a favourable tissue regeneration response by harnessing the design flexibility of additive manufacturing. STATEMENT OF SIGNIFICANCE: It is well-established that cells sense and respond to their 2D geometric microenvironment by transmitting extracellular physiochemical forces through the cytoskeleton and biochemical signalling to the nucleus, facilitating epigenetic changes such as DNA methylation, histone acetylation, and microRNA expression. In this context, the current review presents a unique perspective and highlights the importance of 3D architectures (dimensionality and geometries) on cell and nuclear mechanics and epigenetics. Insight into current challenges around the study of mechanobiology and epigenetics utilising additively manufactured 3D scaffold geometries will progress biomaterials research in this space.
Collapse
|