1
|
Salido RA, Zhao HN, McDonald D, Mannochio-Russo H, Zuffa S, Oles RE, Aron AT, El Abiead Y, Farmer S, González A, Martino C, Mohanty I, Parker CW, Patel L, Portal Gomes PW, Schmid R, Schwartz T, Zhu J, Barratt MR, Rubins KH, Chu H, Karouia F, Venkateswaran K, Dorrestein PC, Knight R. The International Space Station has a unique and extreme microbial and chemical environment driven by use patterns. Cell 2025:S0092-8674(25)00108-4. [PMID: 40020666 DOI: 10.1016/j.cell.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/17/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Space habitation provides unique challenges in built environments isolated from Earth. We produced a 3D map of the microbes and metabolites throughout the United States Orbital Segment (USOS) of the International Space Station (ISS) with 803 samples collected during space flight, including controls. We find that the use of each of the nine sampled modules within the ISS strongly drives the microbiology and chemistry of the habitat. Relating the microbiology to other Earth habitats, we find that, as with human microbiota, built environment microbiota also align naturally along an axis of industrialization, with the ISS providing an extreme example of an industrialized environment. We demonstrate the utility of culture-independent sequencing for microbial risk monitoring, especially as the location of sequencing moves to space. The resulting resource of chemistry and microbiology in the space-built environment will guide long-term efforts to maintain human health in space for longer durations.
Collapse
Affiliation(s)
- Rodolfo A Salido
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Haoqi Nina Zhao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Renee E Oles
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA; Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sawyer Farmer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Antonio González
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Cameron Martino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ceth W Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Lucas Patel
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Paulo Wender Portal Gomes
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Robin Schmid
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Tara Schwartz
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Zhu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Hiutung Chu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Fathi Karouia
- Blue Marble Space Institute of Science, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA; Space Research Within Reach, San Francisco, CA, USA; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA, USA.
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA; Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA; Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Gilbert JA, Hartmann EM. The indoors microbiome and human health. Nat Rev Microbiol 2024; 22:742-755. [PMID: 39030408 DOI: 10.1038/s41579-024-01077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/21/2024]
Abstract
Indoor environments serve as habitat for humans and are replete with various reservoirs and niches for microorganisms. Microorganisms enter indoor spaces with their human and non-human hosts, as well as via exchange with outdoor sources, such as ventilation and plumbing. Once inside, many microorganisms do not survive, especially on dry, barren surfaces. Even reduced, this microbial biomass has critical implications for the health of human occupants. As urbanization escalates, exploring the intersection of the indoor environment with the human microbiome and health is increasingly vital. The indoor microbiome, a complex ecosystem of microorganisms influenced by human activities and environmental factors, plays a pivotal role in modulating infectious diseases and fostering healthy immune development. Recent advancements in microbiome research shed light on this unique ecological system, highlighting the need for innovative approaches in creating health-promoting living spaces. In this Review, we explore the microbial ecology of built environments - places where humans spend most of their lives - and its implications for immune, endocrine and neurological health. We further propose strategies to harness the indoor microbiome for better health outcomes.
Collapse
Affiliation(s)
- Jack A Gilbert
- Department of Paediatrics, University of California San Diego, La Jolla, CA, USA.
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Pulmonary Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
3
|
Zhu Z, Jia Y, Yu H, Yu S, Zhou Y, Liu P, Zhang H, Yang Y. Investigation on the Moisture Absorption Behaviors of Palm Leaves ( Corypha umbraculifera) and Their Variation Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25133-25142. [PMID: 39552496 DOI: 10.1021/acs.langmuir.4c03368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Palm leaves serve as a traditional recording medium and are widespread in south and southeast Asia, and they have a long history. However, they are sensitive to environmental fluctuations, especially moisture, which may severely affect their conservation status. In this research, the moisture absorption behaviors of palm leaves in different states, including raw, treated, naturally aged, and artificially aged ones, were investigated by intelligent gravimetric analysis (IGA) and water retention value (WRV) to analyze their moisture absorption characteristics. Mathematical model was employed to fit and analyze their water adsorption curves, aiming to explore the content and distribution of the adsorbed water in monolayered and multilayered. Then, the chemical and physical properties of different palm leaves were studied by chemical composition analysis, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscopy (SEM), and low-field nuclear magnetic resonance (low-field NMR), and the relationship between moisture absorption characteristics and their chemical composition and physical structures was analyzed. The results demonstrated that both treatment and aging processes could have a noticeable impact on the moisture absorption of palm leaves, as evidenced by reduced equilibrium moisture content (EMC) at high relative humidity (RH), decreased multilayer water adsorption content, and slightly increased monolayer water adsorption content. Besides, palm leaves exhibit a lower rate of moisture adsorption, at ∼30-50% RH, which facilitates their long-term conservation. The results of chemical and physical analyses revealed that the reduced content of hydrophilic groups was the primary reason for a decrease in palm leaves moisture absorption. Additionally, the fiber structure changes of palm leaves caused by treatment or aging may have different influences on their moisture adsorption, especially the content of monolayer adsorbed water.
Collapse
Affiliation(s)
- Zirui Zhu
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai 200433, China
- Yunnan Academician Workstation for Palm Leaf Manuscript Conservation, Xishuangbanna, Yunnan 666199, China
| | - Yuqing Jia
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai 200433, China
| | - Hanwei Yu
- Yunnan Academician Workstation for Palm Leaf Manuscript Conservation, Xishuangbanna, Yunnan 666199, China
- Dai Autonomous Prefecture Library of Xishuangbanna, Xishuangbanna, Yunnan 666199, China
| | - Shuang Yu
- Yunnan Academician Workstation for Palm Leaf Manuscript Conservation, Xishuangbanna, Yunnan 666199, China
- Dai Autonomous Prefecture Library of Xishuangbanna, Xishuangbanna, Yunnan 666199, China
| | - Yangxin Zhou
- Yunnan Academician Workstation for Palm Leaf Manuscript Conservation, Xishuangbanna, Yunnan 666199, China
- Dai Autonomous Prefecture Library of Xishuangbanna, Xishuangbanna, Yunnan 666199, China
| | - Peng Liu
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai 200433, China
- Yunnan Academician Workstation for Palm Leaf Manuscript Conservation, Xishuangbanna, Yunnan 666199, China
| | - Hongbin Zhang
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai 200433, China
- Yunnan Academician Workstation for Palm Leaf Manuscript Conservation, Xishuangbanna, Yunnan 666199, China
| | - Yuliang Yang
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai 200433, China
- Yunnan Academician Workstation for Palm Leaf Manuscript Conservation, Xishuangbanna, Yunnan 666199, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Mankiewicz Ledins P, Lin EZ, Bhattacharya C, Pollitt KJG, Dyson AH, Hénaff EM. A deployable film method to enable replicable sampling of low-abundance environmental microbiomes. Sci Rep 2024; 14:23857. [PMID: 39394219 PMCID: PMC11470061 DOI: 10.1038/s41598-024-72341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
Urbanizing global populations spend over 90% of their time indoors where microbiome abundance and diversity are low. Chronic exposure to microbiomes with low abundance and diversity have demonstrated negative long-term impacts on human health. Sequencing-based analyses of environmental nucleic acids are critical to understanding the impact of the indoor microbiome on human health, however low DNA yields indoors, alongside sample collection and processing inconsistencies, currently challenge study replicability. This study presents a comparative assessment of a novel, passive, easily replicable sampling strategy using polydimethylsiloxane (PDMS) sheets alongside a representative swab-based collection protocol. Deployable, customizable PDMS films designed for whole-sample insertion into standardized extraction kits demonstrated 43% higher DNA yields per sample, and 76% higher yields per cm2 of sampler over swab-based protocols. These results indicate that this accessible, scalable method enables sufficient DNA collection to comprehensively evaluate indoor microbiome exposures and potential human health impacts using smaller, more space efficient samplers, representing an attractive alternative to swab-based collection. In addition, this process reduces the manual steps required for microbiome sampling which could address inter-study variability, transform the current microbiome sampling paradigm, and ultimately benefit the replicability and accessibility of microbiome exposure studies.
Collapse
Affiliation(s)
| | | | | | | | - Anna H Dyson
- Yale School of Architecture, 180 York Street, New Haven, CT, 06511, USA
| | | |
Collapse
|
5
|
Wang S, Zheng X, Ye J, Sun Z, Chen Z, Cao G, Zhang Y, Shen F, Gao CX, Qian H. Impact of climate zones and seasons on indoor airborne microbial communities: Insights from a comprehensive analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171879. [PMID: 38521271 DOI: 10.1016/j.scitotenv.2024.171879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Bacteria and fungi are ubiquitous throughout built environments and are suspended in the air, potentially affecting human health. However, the impacts of climate zones on the diversity, structure, and stochastic assembly of indoor airborne microbes remain unknown. This study comprehensively analyzed indoor airborne microbes across five climate zones in China during the summer and winter using high-throughput sequencing. The diversity and structure of indoor airborne communities vary across climatic zones. A random forest model was used to identify biomarkers in different climate zones. The results showed no relationship between the biomarkers and their rankings in mean relative abundance. The Sloan neutral model fitting results indicated that the impact of climate zones on the stochastic process in the assembly of indoor airborne microbes was considerably more important than that of seasons. Additionally, the influence of seasons on the diversity, structure, and stochastic assembly process of indoor airborne microbes differed among different climate zones. The diversity, structure, and stochastic assembly processes of bacteria present distinctive outcomes in climate zones and seasons compared with those of fungi. Overall, these findings indicate that customized strategies are necessary to manage indoor airborne microbial communities in each climate zone, season, and for specific microbial species.
Collapse
Affiliation(s)
- Shengqi Wang
- School of Energy and Environment, Southeast University, Nanjing 210096, China; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; Orygen, 35 Poplar Road, Parkville, VIC, Australia
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Jin Ye
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zongke Sun
- Department of Environmental Microbiology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ziguang Chen
- Institute of Building Environmental and Energy Efficiency, China Academy of Building Research, Beijing 100013, China
| | - Guoqing Cao
- Institute of Building Environmental and Energy Efficiency, China Academy of Building Research, Beijing 100013, China
| | - Yin Zhang
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Caroline X Gao
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; Orygen, 35 Poplar Road, Parkville, VIC, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
6
|
Gottel NR, Hill MS, Neal MJ, Allard SM, Zengler K, Gilbert JA. Biocontrol in built environments to reduce pathogen exposure and infection risk. THE ISME JOURNAL 2024; 18:wrad024. [PMID: 38365248 PMCID: PMC10848226 DOI: 10.1093/ismejo/wrad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
The microbiome of the built environment comprises bacterial, archaeal, fungal, and viral communities associated with human-made structures. Even though most of these microbes are benign, antibiotic-resistant pathogens can colonize and emerge indoors, creating infection risk through surface transmission or inhalation. Several studies have catalogued the microbial composition and ecology in different built environment types. These have informed in vitro studies that seek to replicate the physicochemical features that promote pathogenic survival and transmission, ultimately facilitating the development and validation of intervention techniques used to reduce pathogen accumulation. Such interventions include using Bacillus-based cleaning products on surfaces or integrating bacilli into printable materials. Though this work is in its infancy, early research suggests the potential to use microbial biocontrol to reduce hospital- and home-acquired multidrug-resistant infections. Although these techniques hold promise, there is an urgent need to better understand the microbial ecology of built environments and to determine how these biocontrol solutions alter species interactions. This review covers our current understanding of microbial ecology of the built environment and proposes strategies to translate that knowledge into effective biocontrol of antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Neil R Gottel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
| | - Megan S Hill
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Maxwell J Neal
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Sarah M Allard
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Karsten Zengler
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, United States
| | - Jack A Gilbert
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
7
|
Hill MS, Gilbert JA. Microbiology of the built environment: harnessing human-associated built environment research to inform the study and design of animal nests and enclosures. Microbiol Mol Biol Rev 2023; 87:e0012121. [PMID: 38047636 PMCID: PMC10732082 DOI: 10.1128/mmbr.00121-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
SUMMARYOver the past decade, hundreds of studies have characterized the microbial communities found in human-associated built environments (BEs). These have focused primarily on how the design and use of our built spaces have shaped human-microbe interactions and how the differential selection of certain taxa or genetic traits has influenced health outcomes. It is now known that the more removed humans are from the natural environment, the greater the risk for the development of autoimmune and allergic diseases, and that indoor spaces can be harsh, selective environments that can increase the emergence of antimicrobial-resistant and virulent phenotypes in surface-bound communities. However, despite the abundance of research that now points to the importance of BEs in determining human-microbe interactions, only a fraction of non-human animal structures have been comparatively explored. It is here, in the context of human-associated BE research, that we consider the microbial ecology of animal-built natural nests and burrows, as well as artificial enclosures, and point to areas of primary interest for future research.
Collapse
Affiliation(s)
- Megan S. Hill
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Jack A. Gilbert
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Liu HH, Chen L, Shao HB, Gao S, Hong XY, Bing XL. Environmental Factors and the Symbiont Cardinium Influence the Bacterial Microbiome of Spider Mites Across the Landscape. MICROBIAL ECOLOGY 2023; 87:1. [PMID: 37991578 DOI: 10.1007/s00248-023-02314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Microbes play a key role in the biology, ecology, and evolution of arthropods. Despite accumulating data on microbial communities in arthropods that feed on plants using piercing-sucking mouthparts, we still lack a comprehensive understanding of the composition and assembly factors of the microbiota, particularly in field-collected spider mites. Here, we applied 16S rRNA amplicon sequencing to investigate the characters of the bacterial community in 140 samples representing 420 mite individuals, belonging to eight Tetranychus species (Acari: Tetranychidae) collected from 26 sites in China. The results showed that the bacterial composition of spider mites varied significantly among different species, locations, and plants. The environment showed a significant influence on the bacterial community of spider mites, with different relative contributions. Latitude and precipitation were found to be the main factors influencing the bacterial community composition. The dissimilarity of bacterial community and geographical distance between mite locations were significantly correlated. The assembly of spider mite bacterial communities seemed to be mainly influenced by stochastic processes. Furthermore, the symbiont Cardinium was found to be important in shaping the microbiota of many Tetranychus species. The relative abundance of Cardinium was > 50% in T. viennensis, T. urticae G, T. urticae R, and T. turkestani. Removing Cardinium reads from our analysis significantly changed Shannon diversity index and weighted beta diversity in these species. Altogether, this study provides novel insights into bacterial diversity patterns that contribute to our knowledge of the symbiotic relationships between arthropods and their bacterial communities.
Collapse
Affiliation(s)
- Huan-Huan Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hui-Biao Shao
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shuo Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
9
|
Wang Y, Thompson KN, Yan Y, Short MI, Zhang Y, Franzosa EA, Shen J, Hartmann EM, Huttenhower C. RNA-based amplicon sequencing is ineffective in measuring metabolic activity in environmental microbial communities. MICROBIOME 2023; 11:131. [PMID: 37312147 DOI: 10.1186/s40168-022-01449-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Characterization of microbial activity is essential to the understanding of the basic biology of microbial communities, as the function of a microbiome is defined by its biochemically active ("viable") community members. Current sequence-based technologies can rarely differentiate microbial activity, due to their inability to distinguish live and dead sourced DNA. As a result, our understanding of microbial community structures and the potential mechanisms of transmission between humans and our surrounding environments remains incomplete. As a potential solution, 16S rRNA transcript-based amplicon sequencing (16S-RNA-seq) has been proposed as a reliable methodology to characterize the active components of a microbiome, but its efficacy has not been evaluated systematically. Here, we present our work to benchmark RNA-based amplicon sequencing for activity assessment in synthetic and environmentally sourced microbial communities. RESULTS In synthetic mixtures of living and heat-killed Escherichia coli and Streptococcus sanguinis, 16S-RNA-seq successfully reconstructed the active compositions of the communities. However, in the realistic environmental samples, no significant compositional differences were observed in RNA ("actively transcribed - active") vs. DNA ("whole" communities) spiked with E. coli controls, suggesting that this methodology is not appropriate for activity assessment in complex communities. The results were slightly different when validated in environmental samples of similar origins (i.e., from Boston subway systems), where samples were differentiated both by environment type as well as by library type, though compositional dissimilarities between DNA and RNA samples remained low (Bray-Curtis distance median: 0.34-0.49). To improve the interpretation of 16S-RNA-seq results, we compared our results with previous studies and found that 16S-RNA-seq suggests taxon-wise viability trends (i.e., specific taxa are universally more or less likely to be viable compared to others) in samples of similar origins. CONCLUSIONS This study provides a comprehensive evaluation of 16S-RNA-seq for viability assessment in synthetic and complex microbial communities. The results found that while 16S-RNA-seq was able to semi-quantify microbial viability in relatively simple communities, it only suggests a taxon-dependent "relative" viability in realistic communities. Video Abstract.
Collapse
Affiliation(s)
- Ya Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Harvard T.H. Chan School of Public Health Microbiome Analysis Core, Building SPH1, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Kelsey N Thompson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Harvard T.H. Chan School of Public Health Microbiome Analysis Core, Building SPH1, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Harvard T.H. Chan School of Public Health Microbiome Analysis Core, Building SPH1, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Meghan I Short
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Harvard T.H. Chan School of Public Health Microbiome Analysis Core, Building SPH1, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Yancong Zhang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Harvard T.H. Chan School of Public Health Microbiome Analysis Core, Building SPH1, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Harvard T.H. Chan School of Public Health Microbiome Analysis Core, Building SPH1, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Jiaxian Shen
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
- Harvard T.H. Chan School of Public Health Microbiome Analysis Core, Building SPH1, 655 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Wang Y, Chen Y, Xin J, Chen X, Xu T, He J, Pan Z, Zhang C. Metabolomic profiles of the liquid state fermentation in co-culture of Eurotium amstelodami and Bacillus licheniformis. Front Microbiol 2023; 14:1080743. [PMID: 36778878 PMCID: PMC9909110 DOI: 10.3389/fmicb.2023.1080743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
As an important source of new drug molecules, secondary metabolites (SMs) produced by microorganisms possess important biological activities, such as antibacterial, anti-inflammatory, and hypoglycemic effects. However, the true potential of microbial synthesis of SMs has not been fully elucidated as the SM gene clusters remain silent under laboratory culture conditions. Herein, we evaluated the inhibitory effect of Staphylococcus aureus by co-culture of Eurotium amstelodami and three Bacillus species, including Bacillus licheniformis, Bacillus subtilis, and Bacillus amyloliquefaciens. In addition, a non-target approach based on ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) was used to detect differences in extracellular and intracellular metabolites. Notably, the co-culture of E. amstelodami and Bacillus spices significantly improved the inhibitory effect against S. aureus, with the combination of E. amstelodami and B. licheniformis showing best performance. Metabolomics data further revealed that the abundant SMs, such as Nummularine B, Lucidenic acid E2, Elatoside G, Aspergillic acid, 4-Hydroxycyclohexylcarboxylic acid, Copaene, and Pipecolic acid were significantly enhanced in co-culture. Intracellularly, the differential metabolites were involved in the metabolism of amino acids, nucleic acids, and glycerophospholipid. Overall, this work demonstrates that the co-culture strategy is beneficial for inducing biosynthesis of active metabolites in E. amstelodami and B. licheniformis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuanbo Zhang
- Laboratory of Microbial Resources and Industrial Application, College of Life Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|
11
|
Niculita-Hirzel H, Wild P, Hirzel AH. Season, Vegetation Proximity and Building Age Shape the Indoor Fungal Communities' Composition at City-Scale. J Fungi (Basel) 2022; 8:1045. [PMID: 36294610 PMCID: PMC9605656 DOI: 10.3390/jof8101045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/04/2022] Open
Abstract
Exposure to particular microbiome compositions in the built environment can affect human health and well-being. Identifying the drivers of these indoor microbial assemblages is key to controlling the microbiota of the built environment. In the present study, we used culture and metabarcoding of the fungal Internal Transcribed Spacer ribosomal RNA region to assess whether small-scale variation in the built environment influences the diversity, composition and structure of indoor air fungal communities between a heating and an unheated season. Passive dust collectors were used to collect airborne fungi from 259 dwellings representative of three major building periods and five building environments in one city-Lausanne (Vaud, Switzerland)-over a heating and an unheated period. A homogenous population (one or two people with an average age of 75 years) inhabited the households. Geographic information systems were used to assess detailed site characteristics (altitude, proximity to forest, fields and parks, proximity to the lake, and density of buildings and roads) for each building. Our analysis indicated that season was the factor that explained most of the variation in colonies forming unit (CFU) concentration and indoor mycobiome composition, followed by the period of building construction. Fungal assemblages were more diverse during the heating season than during the unheated season. Buildings with effective insulation had distinct mycobiome compositions from those built before 1975 - regardless of whether they were constructed with pre-1945 technology and materials or 1945 - 1974 ones. The urban landscape-as a whole-was a significant predictor of cultivable Penicillium load-the closer the building was to the lake, the higher the Penicillium load-but not of fungal community composition. Nevertheless, the relative abundance of eleven fungal taxa detected by metabarcoding decreased significantly with the urbanization gradient. When urban landscape descriptors were analyzed separately, the explanatory power of proximity to vegetation in shaping fungal assemblages become significant, indicating that land cover type had an influence on fungal community structure that was obscured by the effects of building age and sampling season. In conclusion, indoor mycobiomes are strongly modulated by season, and their assemblages are shaped by the effectiveness of building insulation, but are weakly influenced by the urban landscape.
Collapse
Affiliation(s)
- Hélène Niculita-Hirzel
- Department Work, Health & Environment, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, CH-1066 Epalinges-Lausanne, Switzerland
| | - Pascal Wild
- Department Work, Health & Environment, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, CH-1066 Epalinges-Lausanne, Switzerland
| | - Alexandre H. Hirzel
- Computer Science Center, Amphimax Building, Quartier Sorge, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Fu X, Ou Z, Sun Y. Indoor microbiome and allergic diseases: From theoretical advances to prevention strategies. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:133-146. [PMID: 38075599 PMCID: PMC10702906 DOI: 10.1016/j.eehl.2022.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 12/20/2023]
Abstract
The prevalence of allergic diseases, such as asthma, rhinitis, eczema, and sick building syndrome (SBS), has increased drastically in the past few decades. Current medications can only relieve the symptoms but not cure these diseases whose development is suggested to be greatly impacted by the indoor microbiome. However, no study comprehensively summarizes the progress and general rules in the field, impeding subsequent translational application. To close knowledge gaps between theoretical research and practical application, we conducted a comprehensive literature review to summarize the epidemiological, environmental, and molecular evidence of indoor microbiome studies. Epidemiological evidence shows that the potential protective indoor microorganisms for asthma are mainly from the phyla Actinobacteria and Proteobacteria, and the risk microorganisms are mainly from Bacilli, Clostridia, and Bacteroidia. Due to extremely high microbial diversity and geographic variation, different health-associated species/genera are detected in different regions. Compared with indoor microbial composition, indoor metabolites show more consistent associations with health, including microbial volatile organic compounds (MVOCs), lipopolysaccharides (LPS), indole derivatives, and flavonoids. Therefore, indoor metabolites could be a better indicator than indoor microbial taxa for environmental assessments and health outcome prediction. The interaction between the indoor microbiome and environmental characteristics (surrounding greenness, relative humidity, building confinement, and CO2 concentration) and immunology effects of indoor microorganisms (inflammatory cytokines and pattern recognition receptors) are briefly reviewed to provide new insights for disease prevention and treatment. Widely used tools in indoor microbiome studies are introduced to facilitate standard practice and the precise identification of health-related targets.
Collapse
Affiliation(s)
- Xi Fu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zheyuan Ou
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
13
|
Aksenov AA, Salido RA, Melnik AV, Brennan C, Brejnrod A, Caraballo-Rodríguez AM, Gauglitz JM, Lejzerowicz F, Farmer DK, Vance ME, Knight R, Dorrestein PC. The molecular impact of life in an indoor environment. SCIENCE ADVANCES 2022; 8:eabn8016. [PMID: 35749501 PMCID: PMC9232106 DOI: 10.1126/sciadv.abn8016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The chemistry of indoor surfaces and the role of microbes in shaping and responding to that chemistry are largely unexplored. We found that, over 1 month, people's presence and activities profoundly reshaped the chemistry of a house. Molecules associated with eating/cooking, bathroom use, and personal care were found throughout the entire house, while molecules associated with medications, outdoor biocides, and microbially derived compounds were distributed in a location-dependent manner. The house and its microbial occupants, in turn, also introduced chemical transformations such as oxidation and transformations of foodborne molecules. The awareness of and the ability to observe the molecular changes introduced by people should influence future building designs.
Collapse
Affiliation(s)
- Alexander A. Aksenov
- Skaggs of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Rodolfo A. Salido
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexey V. Melnik
- Skaggs of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Caitriona Brennan
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Asker Brejnrod
- Skaggs of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrés Mauricio Caraballo-Rodríguez
- Skaggs of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Julia M. Gauglitz
- Skaggs of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Franck Lejzerowicz
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Delphine K. Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Marina E. Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Computer Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Pieter C. Dorrestein
- Skaggs of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Katemauswa M, Hossain E, Liu Z, Lesani M, Parab AR, Dean DA, McCall LI. Enabling Quantitative Analysis of Surface Small Molecules for Exposomics and Behavioral Studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:412-419. [PMID: 35084848 DOI: 10.1021/jasms.1c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Workplace chemical exposures are a major source of occupational injury. Although over half of these are skin exposures, exposomics research often focuses on chemical levels in the air or in worker biofluids such as blood and urine. Until now, one limitation has been the lack of methods to quantitatively measure surface chemical transfer. Outside the realm of harmful chemicals, the small molecules we leave behind on surfaces can also reveal important aspects of human behavior. In this study, we developed a swab-based quantitative approach to determine small molecule concentrations across common surfaces. We demonstrate its utility using one drug, cyclobenzaprine, on metal surfaces, and two human-derived metabolites, carnitine and phenylacetylglutamine, on four common surfaces: linoleum flooring, plastified laboratory workbench, metal, and Plexiglas. We observed peak areas proportional to surface analyte concentrations at 45 min and 1 week after deposition, enabling quantification of molecule abundance on workplace built environment surfaces. In contrast, this method was unsuitable for analysis of oleanolic acid, for which we did not observe a strong linear proportional relationship following swab-based recovery from surfaces. Overall, this method paves the way for future quantitative exposomics studies in analyte-specific and surface-specific frameworks.
Collapse
Affiliation(s)
- Mitchelle Katemauswa
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, Oklahoma 73019, United States
- University of Oklahoma, Laboratories of Molecular Anthropology and Microbiome Research, Norman, Oklahoma 73019, United States
| | - Ekram Hossain
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, Oklahoma 73019, United States
- University of Oklahoma, Laboratories of Molecular Anthropology and Microbiome Research, Norman, Oklahoma 73019, United States
| | - Zongyuan Liu
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, Oklahoma 73019, United States
- University of Oklahoma, Laboratories of Molecular Anthropology and Microbiome Research, Norman, Oklahoma 73019, United States
| | - Mahbobeh Lesani
- University of Oklahoma, Department of Microbiology and Plant Biology, Norman, Oklahoma 73019, United States
- University of Oklahoma, Laboratories of Molecular Anthropology and Microbiome Research, Norman, Oklahoma 73019, United States
| | - Adwaita R Parab
- University of Oklahoma, Department of Microbiology and Plant Biology, Norman, Oklahoma 73019, United States
- University of Oklahoma, Laboratories of Molecular Anthropology and Microbiome Research, Norman, Oklahoma 73019, United States
| | - Danya A Dean
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, Oklahoma 73019, United States
- University of Oklahoma, Laboratories of Molecular Anthropology and Microbiome Research, Norman, Oklahoma 73019, United States
| | - Laura-Isobel McCall
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, Oklahoma 73019, United States
- University of Oklahoma, Department of Microbiology and Plant Biology, Norman, Oklahoma 73019, United States
- University of Oklahoma, Laboratories of Molecular Anthropology and Microbiome Research, Norman, Oklahoma 73019, United States
| |
Collapse
|
15
|
AminiTabrizi R, Dontsova K, Graf Grachet N, Tfaily MM. Elevated temperatures drive abiotic and biotic degradation of organic matter in a peat bog under oxic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150045. [PMID: 34798718 DOI: 10.1016/j.scitotenv.2021.150045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Understanding the effects of elevated temperatures on soil organic matter (SOM) decomposition pathways in northern peatlands is central to predicting their fate under future warming. Peatlands role as carbon (C) sink is dependent on both anoxic conditions and low temperatures that limit SOM decomposition. Previous studies have shown that elevated temperatures due to climate change can disrupt peatland's C balance by enhancing SOM decomposition and increasing CO2 emissions. However, little is known about how SOM decomposition pathways change at higher temperatures. Here, we used an integrated research approach to investigate the mechanisms behind enhanced CO2 emissions and SOM decomposition under elevated temperatures of surface peat soil collected from a raised and Sphagnum dominated mid-continental bog (S1 bog) peatland at the Marcel Experimental Forest in Minnesota, USA, incubated under oxic conditions at three different temperatures (4, 21, and 35 °C). Our results indicated that elevated temperatures could destabilize peatland's C pool via a combination of abiotic and biotic processes. In particular, temperature-driven changes in redox conditions can lead to abiotic destabilization of Fe-organic matter (phenol) complexes, previously an underestimated decomposition pathway in peatlands, leading to increased CO2 production and accumulation of polyphenol-like compounds that could further inhibit extracellular enzyme activities and/or fuel the microbial communities with labile compounds. Further, increased temperatures can alter strategies of microbial communities for nutrient acquisition via changes in the activities of extracellular enzymes by priming SOM decomposition, leading to enhanced CO2 emission from peatlands. Therefore, coupled biotic and abiotic processes need to be incorporated into process-based climate models to predict the fate of SOM under elevated temperatures and to project the likely impacts of environmental change on northern peatlands and CO2 emissions.
Collapse
Affiliation(s)
- Roya AminiTabrizi
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Katerina Dontsova
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Nathalia Graf Grachet
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Malak M Tfaily
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA; Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
16
|
Zhu M, Zheng J, Xie J, Zhao D, Qiao ZW, Huang D, Luo HB. Effects of environmental factors on the microbial community changes during medium-high temperature Daqu manufacturing. Food Res Int 2022; 153:110955. [DOI: 10.1016/j.foodres.2022.110955] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/25/2021] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
|
17
|
Delgado Corrales B, Kaiser R, Nerlich P, Agraviador A, Sherry A. BioMateriOME: To understand microbe-material interactions within sustainable, living architectures. ADVANCES IN APPLIED MICROBIOLOGY 2022; 122:77-126. [PMID: 37085194 DOI: 10.1016/bs.aambs.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BioMateriOME evolved from a prototyping process which was informed from discussions between a team of designers, architects and microbiologists, when considering constructing with biomaterials or human cohabitation with novel living materials in the built environment. The prototype has two elements (i) BioMateriOME-Public (BMP), an interactive public materials library, and (ii) BioMateriOME-eXperimental (BMX), a replicated materials library for rigorous microbiome experimentation. The prototype was installed into the OME, a unique experimental living house, in order to (1) gain insights into society's perceptions of living materials, and (2) perform a comparative analysis of indoor surface microbiome development on novel biomaterials in contrast to conventional indoor surfaces, respectively. This review summarizes the BioMateriOME prototype and its use as a tool in combining microbiology, design, architecture and social science. The use of microbiology and biological components in the fabrication of biomaterials is provided, together with an appreciation of the microbial communities common to conventional indoor surfaces, and how these communities may change in response to the implementation of living materials in our homes. Societal perceptions of microbiomes and biomaterials, are considered within the framework of healthy architecture. Finally, features of architectural design with microbes in mind are introduced, with the possibility of codifying microbial surveillance into design and construction benchmarks, standards and regulations toward healthier buildings and their occupants.
Collapse
Affiliation(s)
- Beatriz Delgado Corrales
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Romy Kaiser
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paula Nerlich
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Armand Agraviador
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Angela Sherry
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
18
|
Xu C, Chen H, Liu Z, Sui G, Li D, Kan H, Zhao Z, Hu W, Chen J. The decay of airborne bacteria and fungi in a constant temperature and humidity test chamber. ENVIRONMENT INTERNATIONAL 2021; 157:106816. [PMID: 34399240 DOI: 10.1016/j.envint.2021.106816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Despite substantial research to profile the microbial characteristics in the atmosphere, the changing metabolism underpinning microbial successional dynamics remains ambiguous. Herein, we applied qPCR, high-throughput sequencing of the genes encoding 16S and ITS rRNA to render the bacterial/fungal dynamics of ambient PM2.5 filters maintained at constant conditions of temperature (20 ± 2 °C) and humidity (50 ± 5%). The incubation experiments which lasted for 50 days aim to simulate a metabolic process of microbe in two types PM2.5 (polluted and non-polluted). The results show that microbial community species in polluted PM2.5 had faster decay rates, more bacterial diversity and less fungal community compared to the non-polluted ones. For bacteria, the proportion of anaerobic species is higher than aerobic ones, and their performance of contain mobile elements, form-biofilms, and pathogenic risks declined rapidly as times went by. Whereas for fungi, saprotroph species occupied about 70% of the population, resulting in a specified peak of abundance due to the adequacy nutrients supplied by the apoptosis cells. Combining the classified microbial species, we found stable community structure and the volatile ones related to the various metabolic survival strategies during different time. Without the input of peripheral environment, the health risks of airborne microbe descend to a healthy level after 20 days, implying their biologic effectiveness was about 20 days no matter the air is polluted or not. This study provided new insights into the different metabolic survival of airborne microorganisms in ideal and stable conditions.
Collapse
Affiliation(s)
- Caihong Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Zhe Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Haidong Kan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhuohui Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wei Hu
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan Tyndall Centre, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China.
| |
Collapse
|
19
|
Tong X, Leung MHY, Shen Z, Lee JYY, Mason CE, Lee PKH. Metagenomic insights into the microbial communities of inert and oligotrophic outdoor pier surfaces of a coastal city. MICROBIOME 2021; 9:213. [PMID: 34724986 PMCID: PMC8562002 DOI: 10.1186/s40168-021-01166-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/20/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Studies of the microbiomes on surfaces in built environment have largely focused on indoor spaces, while outdoor spaces have received far less attention. Piers are engineered infrastructures commonly found in coastal areas, and due to their unique locations at the interface between terrestrial and aquatic ecosystems, pier surfaces are likely to harbor interesting microbiology. In this study, the microbiomes on the metal and concrete surfaces at nine piers located along the coastline of Hong Kong were investigated by metagenomic sequencing. The roles played by different physical attributes and environmental factors in shaping the taxonomic composition and functional traits of the pier surface microbiomes were determined. Metagenome-assembled genomes were reconstructed and their putative biosynthetic gene clusters were characterized in detail. RESULTS Surface material was found to be the strongest factor in structuring the taxonomic and functional compositions of the pier surface microbiomes. Corrosion-related bacteria were significantly enriched on metal surfaces, consistent with the pitting corrosion observed. The differential enrichment of taxa mediating biodegradation suggests differences between the metal and concrete surfaces in terms of specific xenobiotics being potentially degraded. Genome-centric analysis detected the presence of many novel species, with the majority of them belonging to the phylum Proteobacteria. Genomic characterization showed that the potential metabolic functions and secondary biosynthetic capacity were largely correlated with taxonomy, rather than surface attributes and geography. CONCLUSIONS Pier surfaces are a rich reservoir of abundant novel bacterial species. Members of the surface microbial communities use different mechanisms to counter the stresses under oligotrophic conditions. A better understanding of the outdoor surface microbiomes located in different environments should enhance the ability to maintain outdoor surfaces of infrastructures. Video Abstract.
Collapse
Affiliation(s)
- Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Zhiyong Shen
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Justin Y Y Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
20
|
Cobo-Díaz JF, Alvarez-Molina A, Alexa EA, Walsh CJ, Mencía-Ares O, Puente-Gómez P, Likotrafiti E, Fernández-Gómez P, Prieto B, Crispie F, Ruiz L, González-Raurich M, López M, Prieto M, Cotter P, Alvarez-Ordóñez A. Microbial colonization and resistome dynamics in food processing environments of a newly opened pork cutting industry during 1.5 years of activity. MICROBIOME 2021; 9:204. [PMID: 34645520 PMCID: PMC8515711 DOI: 10.1186/s40168-021-01131-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The microorganisms that inhabit food processing environments (FPE) can strongly influence the associated food quality and safety. In particular, the possibility that FPE may act as a reservoir of antibiotic-resistant microorganisms, and a hotspot for the transmission of antibiotic resistance genes (ARGs) is a concern in meat processing plants. Here, we monitor microbial succession and resistome dynamics relating to FPE through a detailed analysis of a newly opened pork cutting plant over 1.5 years of activity. RESULTS We identified a relatively restricted principal microbiota dominated by Pseudomonas during the first 2 months, while a higher taxonomic diversity, an increased representation of other taxa (e.g., Acinetobacter, Psychrobacter), and a certain degree of microbiome specialization on different surfaces was recorded later on. An increase in total abundance, alpha diversity, and β-dispersion of ARGs, which were predominantly assigned to Acinetobacter and associated with resistance to certain antimicrobials frequently used on pig farms of the region, was detected over time. Moreover, a sharp increase in the occurrence of extended-spectrum β-lactamase-producing Enterobacteriaceae and vancomycin-resistant Enterococcaceae was observed when cutting activities started. ARGs associated with resistance to β-lactams, tetracyclines, aminoglycosides, and sulphonamides frequently co-occurred, and mobile genetic elements (i.e., plasmids, integrons) and lateral gene transfer events were mainly detected at the later sampling times in drains. CONCLUSIONS The observations made suggest that pig carcasses were a source of resistant bacteria that then colonized FPE and that drains, together with some food-contact surfaces, such as equipment and table surfaces, represented a reservoir for the spread of ARGs in the meat processing facility. Video Abstract.
Collapse
Affiliation(s)
- José F. Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | | | - Elena A. Alexa
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Present address: Microbiology Department, National University of Ireland, Galway, Ireland
| | - Calum J. Walsh
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Paula Puente-Gómez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Eleni Likotrafiti
- Department of Food Science & Technology, International Hellenic University, Thessaloniki, Greece
| | | | - Bernardo Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Fiona Crispie
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Lorena Ruiz
- Dairy Research Institute, Spanish National Research Council, Instituto de Productos Lácteos de Asturias-CSIC, Villaviciosa, Spain
- MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias Spain
| | - Montserrat González-Raurich
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Paul Cotter
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| |
Collapse
|
21
|
Marotz C, Belda-Ferre P, Ali F, Das P, Huang S, Cantrell K, Jiang L, Martino C, Diner RE, Rahman G, McDonald D, Armstrong G, Kodera S, Donato S, Ecklu-Mensah G, Gottel N, Salas Garcia MC, Chiang LY, Salido RA, Shaffer JP, Bryant MK, Sanders K, Humphrey G, Ackermann G, Haiminen N, Beck KL, Kim HC, Carrieri AP, Parida L, Vázquez-Baeza Y, Torriani FJ, Knight R, Gilbert J, Sweeney DA, Allard SM. SARS-CoV-2 detection status associates with bacterial community composition in patients and the hospital environment. MICROBIOME 2021; 9:132. [PMID: 34103074 PMCID: PMC8186369 DOI: 10.1186/s40168-021-01083-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/21/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND SARS-CoV-2 is an RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Viruses exist in complex microbial environments, and recent studies have revealed both synergistic and antagonistic effects of specific bacterial taxa on viral prevalence and infectivity. We set out to test whether specific bacterial communities predict SARS-CoV-2 occurrence in a hospital setting. METHODS We collected 972 samples from hospitalized patients with COVID-19, their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and used these bacterial profiles to classify SARS-CoV-2 RNA detection with a random forest model. RESULTS Sixteen percent of surfaces from COVID-19 patient rooms had detectable SARS-CoV-2 RNA, although infectivity was not assessed. The highest prevalence was in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples more closely resembled the patient microbiome compared to floor samples, SARS-CoV-2 RNA was detected less often in bed rail samples (11%). SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity in both human and surface samples and higher biomass in floor samples. 16S microbial community profiles enabled high classifier accuracy for SARS-CoV-2 status in not only nares, but also forehead, stool, and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from the genus Rothia strongly predicted SARS-CoV-2 presence across sample types, with greater prevalence in positive surface and human samples, even when compared to samples from patients in other intensive care units prior to the COVID-19 pandemic. CONCLUSIONS These results contextualize the vast diversity of microbial niches where SARS-CoV-2 RNA is detected and identify specific bacterial taxa that associate with the viral RNA prevalence both in the host and hospital environment. Video Abstract.
Collapse
Affiliation(s)
- Clarisse Marotz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Farhana Ali
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Promi Das
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Shi Huang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Kalen Cantrell
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Lingjing Jiang
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Division of Biostatistics, University of California, San Diego, La Jolla, CA, USA
| | - Cameron Martino
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Rachel E Diner
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Gibraan Rahman
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - George Armstrong
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Sho Kodera
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Sonya Donato
- Microbiome Core, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gertrude Ecklu-Mensah
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Neil Gottel
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Mariana C Salas Garcia
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Leslie Y Chiang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rodolfo A Salido
- Infection Prevention and Clinical Epidemiology Unit at UC San Diego Health, Division of Infectious Diseases and Global Public Health, Department of Medicine, UC San Diego, San Diego, CA, USA
| | - Justin P Shaffer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mac Kenzie Bryant
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Karenina Sanders
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Greg Humphrey
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gail Ackermann
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Niina Haiminen
- IBM, T.J Watson Research Center, Yorktown Heights, New York, USA
| | - Kristen L Beck
- AI and Cognitive Software, IBM Research-Almaden, San Jose, CA, USA
| | - Ho-Cheol Kim
- AI and Cognitive Software, IBM Research-Almaden, San Jose, CA, USA
| | | | - Laxmi Parida
- IBM, T.J Watson Research Center, Yorktown Heights, New York, USA
| | - Yoshiki Vázquez-Baeza
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Francesca J Torriani
- Infection Prevention and Clinical Epidemiology Unit at UC San Diego Health, Division of Infectious Diseases and Global Public Health, Department of Medicine, UC San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jack Gilbert
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Daniel A Sweeney
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Sarah M Allard
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
22
|
Feng Z, Shen H, Nie Y, Wu XL. The Impacts of the Occupants on the Bacterial Communities of Classrooms. Curr Microbiol 2021; 78:2112-2121. [PMID: 33768385 DOI: 10.1007/s00284-021-02451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/10/2021] [Indexed: 11/29/2022]
Abstract
In modern societies, people spend most of their time in the built environment which harbors unique microbial assemblages with the potential to influence human health. However, how the occupants of buildings influence indoor microbial communities remains under-researched. Here, we investigated the diversities of the bacterial communities of a typical Chinese middle school to demonstrate the effects of occupant activities on bacterial communities inside classrooms. The results showed that samples taken from classrooms exhibited higher microbial diversity compared to samples collected from public areas such as gym and restaurant, suggesting the occupant activities could increase the diversities of the indoor microbial communities. Moreover, we also found that the duration of occupation strongly influence the presence/absence of phylogenetic lineages of the bacterial communities, the type of occupants, on the other hand, affect the relative abundances of bacterial taxa. In addition, samples taken from classrooms with longer occupation time exhibited a better fit to the Sloan Neutral Community Model for Prokaryotes, suggesting that room occupation influences the assembly process of microbial communities. In conclusion, our study demonstrates that the duration of occupation and the type of occupants influence the microbiome of the built environment.
Collapse
Affiliation(s)
- Zhou Feng
- College of Engineering, Peking University, Beijing, 100871, China
| | - He Shen
- The Experimental High School Attached to Beijing Normal University, Beijing, 100032, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, 100871, China.
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, 100871, China. .,Institute of Ocean Research, Peking University, Beijing, 100871, China. .,Institute of Ecology, Peking University, Beijing, 100871, China.
| |
Collapse
|
23
|
Minich JJ, Ali F, Marotz C, Belda-Ferre P, Chiang L, Shaffer JP, Carpenter CS, McDonald D, Gilbert J, Allard SM, Allen EE, Knight R, Sweeney DA, Swafford AD. Feasibility of using alternative swabs and storage solutions for paired SARS-CoV-2 detection and microbiome analysis in the hospital environment. MICROBIOME 2021; 9:25. [PMID: 33482920 PMCID: PMC7821463 DOI: 10.1186/s40168-020-00960-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/06/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Determining the role of fomites in the transmission of SARS-CoV-2 is essential in the hospital setting and will likely be important outside of medical facilities as governments around the world make plans to ease COVID-19 public health restrictions and attempt to safely reopen economies. Expanding COVID-19 testing to include environmental surfaces would ideally be performed with inexpensive swabs that could be transported safely without concern of being a source of new infections. However, CDC-approved clinical-grade sampling supplies and techniques using a synthetic swab are expensive, potentially expose laboratory workers to viable virus and prohibit analysis of the microbiome due to the presence of antibiotics in viral transport media (VTM). To this end, we performed a series of experiments comparing the diagnostic yield using five consumer-grade swabs (including plastic and wood shafts and various head materials including cotton, synthetic, and foam) and one clinical-grade swab for inhibition to RNA. For three of these swabs, we evaluated performance to detect SARS-CoV-2 in twenty intensive care unit (ICU) hospital rooms of patients including COVID-19+ patients. All swabs were placed in 95% ethanol and further evaluated in terms of RNase activity. SARS-CoV-2 was measured both directly from the swab and from the swab eluent. RESULTS Compared to samples collected in VTM, 95% ethanol demonstrated significant inhibition properties against RNases. When extracting directly from the swab head as opposed to the eluent, RNA recovery was approximately 2-4× higher from all six swab types tested as compared to the clinical standard of testing the eluent from a CDC-approved synthetic (SYN) swab. The limit of detection (LoD) of SARS-CoV-2 from floor samples collected using the consumer-grade plastic (CGp) or research-grade plastic The Microsetta Initiative (TMI) swabs was similar or better than the SYN swab, further suggesting that swab type does not impact RNA recovery as measured by the abundance of SARS-CoV-2. The LoD for TMI was between 0 and 362.5 viral particles, while SYN and CGp were both between 725 and 1450 particles. Lastly microbiome analyses (16S rRNA gene sequencing) of paired samples (nasal and floor from same patient room) collected using different swab types in triplicate indicated that microbial communities were not impacted by swab type, but instead driven by the patient and sample type. CONCLUSIONS Compared to using a clinical-grade synthetic swab, detection of SARS-CoV-2 from environmental samples collected from ICU rooms of patients with COVID was similar using consumer-grade swabs, stored in 95% ethanol. The yield was best from the swab head rather than the eluent and the low level of RNase activity and lack of antibiotics in these samples makes it possible to perform concomitant microbiome analyses. Video abstract.
Collapse
Affiliation(s)
- Jeremiah J Minich
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Farhana Ali
- Division of Gastroenterology, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Clarisse Marotz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Leslie Chiang
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Justin P Shaffer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Carolina S Carpenter
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jack Gilbert
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Sarah M Allard
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Daniel A Sweeney
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California San Diego, La Jolla, CA, USA
| | - Austin D Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Ma X, Li X, Liu J, Cheng Y, Zou J, Zhai F, Sun Z, Han L. Soil microbial community succession and interactions during combined plant/white-rot fungus remediation of polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142224. [PMID: 33207520 DOI: 10.1016/j.scitotenv.2020.142224] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Despite combined plant/white-rot fungus remediation being effective for remediating polycyclic aromatic hydrocarbon (PAH)-contaminated soil, the complex organismal interactions and their effects on soil PAH degradation remain unclear. Here, we used quantitative PCR, analysis of soil enzyme activities, and sequencing of representative genes to characterize the ecological dynamics of natural attenuation, mycoremediation (MR, using Crucibulum laeve), phytoremediation (PR, using Salix viminalis), and plant-microbial remediation (PMR, using both species) for PAHs in soil for 60 days. On day 60, PMR achieved the highest removal efficiency of all three representative PAHs (65.5%, 47.5%, and 62.4% for phenanthrene, pyrene, and benzo(a)pyrene, respectively) when compared with the other treatments. MR significantly increased the relative abundance of Rhizobium and Bacillus but antagonized the other putative indigenous PAH-degrading bacteria, which were enriched by PR. PR significantly reduced soil nutrients, such as NO3- and NH4+, and available potassium (AK), thereby changing the microbial community composition as reflected by redundancy analysis, significantly reducing the soil bacterial biomass relative to that in other treatments. These disadvantages hampered phenanthrene and pyrene removal. MR provided additional nutrients, which counteracted the nutrient consumption associated with PR, thereby maintaining the microbial community diversity and bacterial biomass of PMR at a level achieved in the NA treatment. Combination remediation therefore overcame the disadvantages of using PR alone. These results indicated that inoculation with the combination of S. viminalis and C. laeve synergistically stimulated the growth of indigenous PAH-degrading microorganisms and maintained bacterial biomass, thus accelerating the dissipation of soil PAHs.
Collapse
Affiliation(s)
- Xiaodong Ma
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Xia Li
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China; College of Agriculture and Bioengineering, Heze University, University Road, Mudan District, Heze 274000, Shandong, China
| | - Junxiang Liu
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Yunhe Cheng
- Beijing Academy of Forestry and Pomology Sciences, Shuguanghuayuanzhong Road, Haidian District, Beijing 100097, China
| | - Junzhu Zou
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Feifei Zhai
- School of Architectural and Artistic Design, Henan Polytechnic University, Jiefang Middle Road, Jiaozuo, Henan 454000, China
| | - Zhenyuan Sun
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Lei Han
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China.
| |
Collapse
|
25
|
Xu Y, Tandon R, Ancheta C, Arroyo P, Gilbert JA, Stephens B, Kelley ST. Quantitative profiling of built environment bacterial and fungal communities reveals dynamic material dependent growth patterns and microbial interactions. INDOOR AIR 2021; 31:188-205. [PMID: 32757488 DOI: 10.1111/ina.12727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/01/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Indoor microbial communities vary in composition and diversity depending on material type, moisture levels, and occupancy. In this study, we integrated bacterial cell counting, fungal biomass estimation, and fluorescence-assisted cell sorting (FACS) with amplicon sequencing of bacterial (16S rRNA) and fungal (ITS) communities to investigate the influence of wetting on medium density fiberboard (MDF) and gypsum wallboard. Surface samples were collected longitudinally from wetted materials maintained at high relative humidity (~95%). Bacterial and fungal growth patterns were strongly time-dependent and material-specific. Fungal growth phenotypes differed between materials: spores dominated MDF surfaces while fungi transitioned from spores to hyphae on gypsum. FACS confirmed that most of the bacterial cells were intact (viable) on both materials over the course of the study. Integrated cell count and biomass data (quantitative profiling) revealed that small changes in relative abundance often resulted from large changes in absolute abundance, while negative correlations in relative abundances were explained by rapid growth of only one group of bacteria or fungi. Comparisons of bacterial-bacterial and fungal-bacterial networks suggested a top-down control of fungi on bacterial growth, possibly via antibiotic production. In conclusion, quantitative profiling provides novel insights into microbial growth dynamics on building materials with potential implications for human health.
Collapse
Affiliation(s)
- Ying Xu
- Graduate Program in Bioinformatics and Medical Informatics, San Diego State University, San Diego, CA, USA
| | - Ruby Tandon
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Chrislyn Ancheta
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Pablo Arroyo
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Jack A Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Brent Stephens
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Scott T Kelley
- Graduate Program in Bioinformatics and Medical Informatics, San Diego State University, San Diego, CA, USA
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
26
|
Hegarty B, Pan A, Haverinen-Shaughnessy U, Shaughnessy R, Peccia J. DNA Sequence-Based Approach for Classifying the Mold Status of Buildings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15968-15975. [PMID: 33258367 DOI: 10.1021/acs.est.0c03904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dampness or water damage in buildings and human exposure to the resultant mold growth is an ever-present public health concern. This study provides quantitative evidence that the airborne fungal ecology of homes with known mold growth ("moldy") differs from the normal airborne fungal ecology of homes with no history of dampness, water damage, or visible mold ("no mold"). Settled dust from indoor air and outdoor air and direct samples from building materials with mold growth were examined in homes from 11 cities across dry, temperate, and continental climate regions within the United States. Community analysis based on the sequence of the internal transcribed spacer region of fungal ribosomal RNA encoding genes demonstrated consistent and quantifiable differences between the fungal ecology of settled dust in homes with inspector-verified water damage and visible mold versus the settled dust of homes with no history of dampness, water damage, or visible mold. These differences include lower community richness (padj = 0.01) in the settled dust of moldy homes versus no mold homes, as well as distinct community taxonomic structures between moldy and no mold homes (ANOSIM, R = 0.15, p = 0.001). We identified 11 Ascomycota taxa that were more highly enriched in moldy homes and 14 taxa from Ascomycota, Basidiomycota, and Zygomycota that were more highly enriched in no mold homes. The indoor air differences between moldy versus no mold homes were significant for all three climate regions considered. These distinct but complex differences between settled dust samples from moldy and no homes were used to train a machine learning-based model to classify the mold status of a home. The model was able to accurately classify 100% of moldy homes and 90% of no mold homes. The integration of DNA-based fungal ecology with advanced computational approaches can be used to accurately classify the presence of mold growth in homes, assist with inspection and remediation decisions, and potentially lead to reduced exposure to hazardous microbes indoors.
Collapse
Affiliation(s)
- Bridget Hegarty
- Department of Chemical and Environmental Engineering, Yale University, P.O. Box 208263 New Haven, Connecticut 06520-8286, United States
| | - Annabelle Pan
- Department of Chemical and Environmental Engineering, Yale University, P.O. Box 208263 New Haven, Connecticut 06520-8286, United States
| | - Ulla Haverinen-Shaughnessy
- Indoor Air Program, The University of Tulsa, 800 South Tucker Drive, Henneke 212, Tulsa, Oklahoma 74101-9700, United States
| | - Richard Shaughnessy
- Indoor Air Program, The University of Tulsa, 800 South Tucker Drive, Henneke 212, Tulsa, Oklahoma 74101-9700, United States
| | - Jordan Peccia
- Department of Chemical and Environmental Engineering, Yale University, P.O. Box 208263 New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
27
|
Minich J, Ali F, Marotz C, Belda-Ferre P, Chiang L, Shaffer JP, Carpenter CS, McDonald D, Gilbert J, Allard SM, Allen EE, Knight R, Sweeney DA, Swafford AD. Feasibility of using alternative swabs and storage solutions for paired SARS-CoV-2 detection and microbiome analysis in the hospital environment. RESEARCH SQUARE 2020:rs.3.rs-56028. [PMID: 32839765 PMCID: PMC7444291 DOI: 10.21203/rs.3.rs-56028/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Determining the role of fomites in the transmission of SARS-CoV-2 is essential in the hospital setting and will likely be important outside of medical facilities as governments around the world make plans to ease COVID-19 public health restrictions and attempt to safely reopen economies. Expanding COVID-19 testing to include environmental surfaces would ideally be performed with inexpensive swabs that could be transported safely without concern of being a source of new infections. However, CDC-approved clinical-grade sampling supplies and techniques using a synthetic swab are expensive, potentially expose laboratory workers to viable virus and prohibit analysis of the microbiome due to the presence of antibiotics in viral transport media (VTM). To this end, we performed a series of experiments comparing the diagnostic yield using five consumer-grade swabs (including plastic and wood shafts and various head materials including cotton, synthetic, and foam) and one clinical grade swab for inhibition to RNA. For three of these swabs, we evaluated performance to detect SARS-CoV-2 in twenty intensive care unit (ICU) hospital rooms of patients including COVID-19+ patients. All swabs were placed in 95% ethanol and further evaluated in terms of RNase activity. SARS-CoV-2 was measured both directly from the swab and from the swab eluent. Results Compared to samples collected in VTM, 95% ethanol demonstrated significant inhibition properties against RNases. When extracting directly from the swab head as opposed to the eluent, RNA recovery was approximately 2-4x higher from all six swab types tested as compared to the clinical standard of testing the eluent from a CDC-approved synthetic (SYN) swab. The limit of detection (LoD) of SARSSARS-CoV-2 from floor samples collected using the consumer-grade plastic (CGp) or research-grade plastic The Microsetta Initiative (TMI) swabs was similar or better than the SYN swab, further suggesting that swab type does not impact RNA recovery as measured by the abundance of SARSSARS-CoV-2. The LoD for TMI was between 0-362.5 viral particles while SYN and CGp were both between 725-1450 particles. Lastly microbiome analyses (16S rRNA gene sequencing) of paired samples (nasal and floor from same patient-room) collected using different swab types in triplicate indicated that microbial communities were not impacted by swab type, but instead driven by the patient and sample type. Conclusions Compared to using a clinical-grade synthetic swab, detection of SARS-CoV-2 from environmental samples collected from ICU rooms of patients with COVID was similar using consumer grade swabs, stored in 95% ethanol. The yield was best from the swab head rather than the eluent and the low level of RNase activity and lack of antibiotics in these samples makes it possible to perform concomitant microbiome analyses.
Collapse
Affiliation(s)
- Jeremiah Minich
- University of California San Diego Scripps Institution of Oceanography
| | | | | | | | | | | | | | | | | | | | - Eric E Allen
- University of California San Diego Scripps Institution of Oceanography
| | | | | | | |
Collapse
|
28
|
Marotz C, Belda-Ferre P, Ali F, Das P, Huang S, Cantrell K, Jiang L, Martino C, Diner RE, Rahman G, McDonald D, Armstrong G, Kodera S, Donato S, Ecklu-Mensah G, Gottel N, Garcia MCS, Chiang LY, Salido RA, Shaffer JP, Bryant M, Sanders K, Humphrey G, Ackermann G, Haiminen N, Beck KL, Kim HC, Carrieri AP, Parida L, Vázquez-Baeza Y, Torriani FJ, Knight R, Gilbert JA, Sweeney DA, Allard SM. Microbial context predicts SARS-CoV-2 prevalence in patients and the hospital built environment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.11.19.20234229. [PMID: 33236030 PMCID: PMC7685343 DOI: 10.1101/2020.11.19.20234229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Synergistic effects of bacteria on viral stability and transmission are widely documented but remain unclear in the context of SARS-CoV-2. We collected 972 samples from hospitalized ICU patients with coronavirus disease 2019 (COVID-19), their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and contextualized the massive microbial diversity in this dataset in a meta-analysis of over 20,000 samples. Sixteen percent of surfaces from COVID-19 patient rooms were positive, with the highest prevalence in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples increasingly resembled the patient microbiome throughout their stay, SARS-CoV-2 was less frequently detected there (11%). Despite surface contamination in almost all patient rooms, no health care workers providing COVID-19 patient care contracted the disease. SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity across human and surface samples, and higher biomass in floor samples. 16S microbial community profiles allowed for high classifier accuracy for SARS-CoV-2 status in not only nares, but also forehead, stool and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from the genus Rothia was highly predictive of SARS-CoV-2 across sample types, and had higher prevalence in positive surface and human samples, even when comparing to samples from patients in another intensive care unit prior to the COVID-19 pandemic. These results suggest that bacterial communities contribute to viral prevalence both in the host and hospital environment.
Collapse
Affiliation(s)
- Clarisse Marotz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Farhana Ali
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Promi Das
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Shi Huang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Kalen Cantrell
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Lingjing Jiang
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Division of Biostatistics, University of California, San Diego, La Jolla, California, USA
| | - Cameron Martino
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Rachel E Diner
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Gibraan Rahman
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - George Armstrong
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Sho Kodera
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Sonya Donato
- Microbiome Core, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gertrude Ecklu-Mensah
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Neil Gottel
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Mariana C Salas Garcia
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Leslie Y Chiang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Rodolfo A Salido
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Justin P Shaffer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - MacKenzie Bryant
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Karenina Sanders
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Greg Humphrey
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gail Ackermann
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Niina Haiminen
- IBM, T.J Watson Research Center, Yorktown Heights, New York, USA
| | - Kristen L Beck
- AI and Cognitive Software, IBM Research-Almaden, San Jose, California, USA
| | - Ho-Cheol Kim
- AI and Cognitive Software, IBM Research-Almaden, San Jose, California, USA
| | | | - Laxmi Parida
- AI and Cognitive Software, IBM Research-Almaden, San Jose, California, USA
| | - Yoshiki Vázquez-Baeza
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Francesca J Torriani
- Infection Prevention and Clinical Epidemiology Unit at UC San Diego Health, Division of Infectious Diseases and Global Public Health, Department of Medicine, UC San Diego, San Diego CA, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Jack A Gilbert
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Daniel A Sweeney
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California San Diego, La Jolla, California, USA
| | - Sarah M Allard
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
29
|
Sun Y, Fu X, Li Y, Yuan Q, Ou Z, Lindgren T, Deng Y, Norbäck D. Shotgun metagenomics of dust microbiome from flight deck and cabin in civil aviation aircraft. INDOOR AIR 2020; 30:1199-1212. [PMID: 32578244 DOI: 10.1111/ina.12707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/30/2020] [Accepted: 06/14/2020] [Indexed: 05/14/2023]
Abstract
Microbial exposure is related to the health of passengers on commercial aircraft, but no studies characterized the microbial composition at the species level and identified their ecological determinants. We collected vacuum dust from floor and seat surfaces in flight decks and cabins of 18 aircraft, and amplification-free shotgun metagenomics was conducted to characterize the microbial composition. In total, 7437 microbial taxa were identified. The relative abundance for bacteria, eukaryote, viruses, and archaea was 96.9%, 1.8%, 0.3%, and 0.03%, respectively. The top bacterial species mainly derived from outdoor air and human skin included Sphingomonas, Corynebacterium, Micrococcus luteus, Variovorax paradoxus, Paracoccus dentrificans, and Propionibacterium acnes. The abundance of NIAID-defined pathogens was low, accounted for only 0.23% of total microbes. The microbial species and functional composition were structured by the indoor surface type (R2 = 0.38, Adonis), followed by the manufacturer of the aircraft (R2 = 0.12) and flight duration (R2 = 0.07). Indoor surfaces affected species derived from different habitats; the abundance of dry skin and desiccated species was higher on textile surfaces, whereas the abundance of moist and oily skin species was higher on leather surfaces. The growth rates for most microbes were stopped and almost stopped.
Collapse
Affiliation(s)
- Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Xi Fu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yanling Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Qianqian Yuan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Zheyuan Ou
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Torsten Lindgren
- Occupational and Environmental Medicine, Department of Medical Science, University Hospital, Uppsala University, Uppsala, Sweden
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Dan Norbäck
- Occupational and Environmental Medicine, Department of Medical Science, University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Li S, Yang Z, Hu D, Cao L, He Q. Understanding building-occupant-microbiome interactions toward healthy built environments: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2020; 15:65. [PMID: 33145119 PMCID: PMC7596174 DOI: 10.1007/s11783-020-1357-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/30/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Built environments, occupants, and microbiomes constitute a system of ecosystems with extensive interactions that impact one another. Understanding the interactions between these systems is essential to develop strategies for effective management of the built environment and its inhabitants to enhance public health and well-being. Numerous studies have been conducted to characterize the microbiomes of the built environment. This review summarizes current progress in understanding the interactions between attributes of built environments and occupant behaviors that shape the structure and dynamics of indoor microbial communities. In addition, this review also discusses the challenges and future research needs in the field of microbiomes of the built environment that necessitate research beyond the basic characterization of microbiomes in order to gain an understanding of the causal mechanisms between the built environment, occupants, and microbiomes, which will provide a knowledge base for the development of transformative intervention strategies toward healthy built environments. The pressing need to control the transmission of SARS-CoV-2 in indoor environments highlights the urgency and significance of understanding the complex interactions between the built environment, occupants, and microbiomes, which is the focus of this review.
Collapse
Affiliation(s)
- Shuai Li
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Zhiyao Yang
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Da Hu
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Liu Cao
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
- Institute for a Secure & Sustainable Environment, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
31
|
Sisk-Hackworth L, Kelley ST. An application of compositional data analysis to multiomic time-series data. NAR Genom Bioinform 2020; 2:lqaa079. [PMID: 33575625 PMCID: PMC7671389 DOI: 10.1093/nargab/lqaa079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/07/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Compositional data analysis (CoDA) methods have increased in popularity as a new framework for analyzing next-generation sequencing (NGS) data. CoDA methods, such as the centered log-ratio (clr) transformation, adjust for the compositional nature of NGS counts, which is not addressed by traditional normalization methods. CoDA has only been sparsely applied to NGS data generated from microbial communities or to multiple ‘omics’ datasets. In this study, we applied CoDA methods to analyze NGS and untargeted metabolomic datasets obtained from bacterial and fungal communities. Specifically, we used clr transformation to reanalyze NGS amplicon and metabolomics data from a study investigating the effects of building material type, moisture and time on microbial and metabolomic diversity. Compared to analysis of untransformed data, analysis of clr-transformed data revealed novel relationships and stronger associations between sample conditions and microbial and metabolic community profiles.
Collapse
Affiliation(s)
| | - Scott T Kelley
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
32
|
Bing XL, Zhao DS, Peng CW, Huang HJ, Hong XY. Similarities and spatial variations of bacterial and fungal communities in field rice planthopper (Hemiptera: Delphacidae) populations. INSECT SCIENCE 2020; 27:947-963. [PMID: 32198842 DOI: 10.1111/1744-7917.12782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Rice planthoppers are notorious plant sap-feeding pests which cause serious damage. While several microbes in rice planthoppers have been broadly characterized, the abundance and diversity of bacteria and fungi in field planthoppers are largely unknown. This study investigated the bacterial and fungal community compositions of Chinese wild rice planthoppers Laodelphax striatellus and Sogatella furcifera using parallel 16S rRNA gene amplicon and internal transcribed space region sequencing. The bacteria varied significantly between the species and were partitioned significantly by sex, tissues and host environments in each species. The majority of bacteria were affiliated with the genera Wolbachia, Cardinium, Rickettsia and Pantoea. The abundance of Wolbachia was negatively correlated with that of Cardinium in both planthopper species. Compared with bacteria, the abundance and diversity of fungi did not differ between sexes but both were enriched in the gut. The bacterial community as a whole showed no significant correlation with the fungal community. The majority of fungi were related to Sarocladium, Alternaria, Malassezia, Aspergillus and Curvularia. A phylogenetic analysis revealed that these fungi were closely related to botanic symbionts or pathogens. Our results provide novel insights into the bacteria and fungi of rice planthoppers.
Collapse
Affiliation(s)
- Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Dian-Shu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Chang-Wu Peng
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
Zhao D, Cardona C, Gottel N, Winton VJ, Thomas PM, Raba DA, Kelley ST, Henry C, Gilbert JA, Stephens B. Chemical composition of material extractives influences microbial growth and dynamics on wetted wood materials. Sci Rep 2020; 10:14500. [PMID: 32879425 PMCID: PMC7467922 DOI: 10.1038/s41598-020-71560-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 08/18/2020] [Indexed: 11/12/2022] Open
Abstract
The impact of material chemical composition on microbial growth on building materials remains relatively poorly understood. We investigate the influence of the chemical composition of material extractives on microbial growth and community dynamics on 30 different wood species that were naturally inoculated, wetted, and held at high humidity for several weeks. Microbial growth was assessed by visual assessment and molecular sequencing. Unwetted material powders and microbial swab samples were analyzed using reverse phase liquid chromatography with tandem mass spectrometry. Different wood species demonstrated varying susceptibility to microbial growth after 3 weeks and visible coverage and fungal qPCR concentrations were correlated (R2 = 0.55). Aspergillaceae was most abundant across all samples; Meruliaceae was more prevalent on 8 materials with the highest visible microbial growth. A larger and more diverse set of compounds was detected from the wood shavings compared to the microbial swabs, indicating a complex and heterogeneous chemical composition within wood types. Several individual compounds putatively identified in wood samples showed statistically significant, near-monotonic associations with microbial growth, including C11H16O4, C18H34O4, and C6H15NO. A pilot experiment confirmed the inhibitory effects of dosing a sample of wood materials with varying concentrations of liquid C6H15NO (assuming it presented as Diethylethanolamine).
Collapse
Affiliation(s)
- Dan Zhao
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Alumni Memorial Hall 228E, 3201 South Dearborn Street, Chicago, IL, 60616, USA
| | - Cesar Cardona
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Neil Gottel
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Valerie J Winton
- Proteomics Center of Excellence and Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Paul M Thomas
- Proteomics Center of Excellence and Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Daniel A Raba
- Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Scott T Kelley
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Christopher Henry
- Mathematics and Computer Science, Argonne National Laboratory, Lemont, IL, USA
| | - Jack A Gilbert
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Brent Stephens
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Alumni Memorial Hall 228E, 3201 South Dearborn Street, Chicago, IL, 60616, USA.
| |
Collapse
|
34
|
Minich JJ, Ali F, Marotz C, Belda-Ferre P, Chiang L, Shaffer JP, Carpenter CS, McDonald D, Gilbert JA, Allard SM, Allen EE, Knight R, Sweeney DA, Swafford AD. Feasibility of using alternative swabs and storage solutions for paired SARS-CoV-2 detection and microbiome analysis in the hospital environment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32511552 DOI: 10.1101/2020.05.12.20073577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Determining the role of fomites in the transmission of SARS-CoV-2 is essential in the hospital setting and will likely be important outside of medical facilities as governments around the world make plans to ease COVID-19 public health restrictions and attempt to safely reopen economies. Expanding COVID-19 testing to include environmental surfaces would ideally be performed with inexpensive swabs that could be transported safely without concern of being a source of new infections. However, CDC-approved clinical-grade sampling supplies and techniques using a synthetic swab are expensive, potentially expose laboratory workers to viable virus and prohibit analysis of the microbiome due to the presence of antibiotics in viral transport media (VTM). To this end, we performed a series of experiments comparing the diagnostic yield using five consumer-grade swabs (including plastic and wood shafts and various head materials including cotton, synthetic, and foam) and one clinical grade swab for inhibition to RNA. For three of these swabs, we evaluated performance to detect SARS-CoV-2 in twenty intensive care unit (ICU) hospital rooms of patients with 16 COVID-19+. All swabs were placed in 95% ethanol and further evaluated in terms of RNase activity. SARS-CoV-2 was measured both directly from the swab and from the swab eluent. Results Compared to samples collected in VTM, 95% ethanol demonstrated significant inhibition properties against RNases. When extracting directly from the swab head as opposed to the eluent, RNA recovery was approximately 2-4x higher from all six swab types tested as compared to the clinical standard of testing the eluent from a CDC-approved synthetic swab. The limit of detection (LoD) of SARs-CoV-2 from floor samples collected using the CGp or TMI swabs was similar or better than the CDC standard, further suggesting that swab type does not impact RNA recovery as measured by SARs-CoV-2. The LoD for TMI was between 0-362.5 viral particles while SYN and CGp were both between 725-1450 particles. Lastly microbiome analyses (16S rRNA) of paired samples (e.g., environment to host) collected using different swab types in triplicate indicated that microbial communities were not impacted by swab type but instead driven by the patient and sample type (floor or nasal). Conclusions Compared to using a clinical-grade synthetic swab, detection of SARS-CoV-2 from environmental samples collected from ICU rooms of patients with COVID was similar using consumer grade swabs, stored in 95% ethanol. The yield was best from the swab head rather than the eluent and the low level of RNase activity in these samples makes it possible to perform concomitant microbiome analysis. Keywords: COVID-19, SARS-CoV-2, RT-qPCR, swab, global health.
Collapse
|
35
|
Yang P, Tan C, Han M, Cheng L, Cui X, Ning K. Correlation-Centric Network (CCN) representation for microbial co-occurrence patterns: new insights for microbial ecology. NAR Genom Bioinform 2020; 2:lqaa042. [PMID: 33575595 PMCID: PMC7671402 DOI: 10.1093/nargab/lqaa042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022] Open
Abstract
Mainstream studies of microbial community focused on critical organisms and their physiology. Recent advances in large-scale metagenome analysis projects initiated new researches in the complex correlations between large microbial communities. Specifically, previous studies focused on the nodes (i.e. species) of the Species-Centric Networks (SCNs). However, little was understood about the change of correlation between network members (i.e. edges of the SCNs) when the network was disturbed. Here, we introduced a Correlation-Centric Network (CCN) to the microbial research based on the concept of edge networks. In CCN, each node represented a species-species correlation, and edge represented the species shared by two correlations. In this research, we investigated the CCNs and their corresponding SCNs on two large cohorts of microbiome. The results showed that CCNs not only retained the characteristics of SCNs, but also contained information that cannot be detected by SCNs. In addition, when the members of microbial communities were decreased (i.e. environmental disturbance), the CCNs fluctuated within a small range in terms of network connectivity. Therefore, by highlighting the important species correlations, CCNs could unveil new insights when studying not only the functions of target species, but also the stabilities of their residing microbial communities.
Collapse
Affiliation(s)
- Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chongyang Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lin Cheng
- Department of Engineering, Trinity College, 300 Summit Street, Hartford, CT 06106, USA
| | - Xuefeng Cui
- School of Computer Science and Technology, Shandong University, Qingdao, Shandong 250100, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
36
|
Nastasi N, Haines SR, Xu L, da Silva H, Divjan A, Barnes MA, Rappleye CA, Perzanowski MS, Green BJ, Dannemiller KC. Morphology and quantification of fungal growth in residential dust and carpets. BUILDING AND ENVIRONMENT 2020; 174:10.1016/j.buildenv.2020.106774. [PMID: 33897093 PMCID: PMC8064739 DOI: 10.1016/j.buildenv.2020.106774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mold growth indoors is associated with negative human health effects, and this growth is limited by moisture availability. Dust deposited in carpet is an important source of human exposure due to potential elevated resuspension compared to hard floors. However, we need an improved understanding of fungal growth in dust and carpet to better estimate human exposure. The goal of this study was to compare fungal growth quantity and morphology in residential carpet under different environmental conditions, including equilibrium relative humidity (ERH) (50%, 85%, 90%, 95%, 100%), carpet fiber material (nylon, olefin, wool) and presence/absence of dust. We analyzed incubated carpet and dust samples from three Ohio homes for total fungal DNA, fungal allergen Alt a 1, and fungal morphology. Dust presence and elevated ERH (≥85%) were the most important variables that increased fungal growth. Elevated ERH increased mean fungal DNA concentration (P < 0.0001), for instance by approximately 1000 times at 100% compared to 50% ERH after two weeks. Microscopy also revealed more fungal growth at higher ERH. Fungal concentrations were up to 100 times higher in samples containing house dust compared to no dust. For fiber type, olefin had the least total fungal growth, and nylon had the most total fungi and A. alternata growth in unaltered dust. Increased ERH conditions were associated with increased Alt a 1 allergen concentration. The results of this study demonstrate that ERH, presence/absence of house dust, and carpet fiber type influence fungal growth and allergen production in residential carpet, which has implications for human exposure.
Collapse
Affiliation(s)
- Nicholas Nastasi
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH, USA
- Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, USA
- Environmental Science Graduate Program, Ohio State University, Columbus, OH, USA
| | - Sarah R. Haines
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH, USA
- Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, USA
- Environmental Science Graduate Program, Ohio State University, Columbus, OH, USA
| | - Lingyi Xu
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Hadler da Silva
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Adnan Divjan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mark A. Barnes
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Chad A. Rappleye
- Department of Microbiology, College of Arts and Sciences, Ohio State University, Columbus, OH, USA
| | - Matthew S. Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Brett J. Green
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Karen C. Dannemiller
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH, USA
- Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, USA
| |
Collapse
|