1
|
Jasińska-Stroschein M, Glajzner P. Searching for Old and New Small-Molecule Protein Kinase Inhibitors as Effective Treatments in Pulmonary Hypertension-A Systematic Review. Int J Mol Sci 2024; 25:12858. [PMID: 39684570 DOI: 10.3390/ijms252312858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Treatment options for pulmonary arterial hypertension (PAH) have improved substantially in the last 30 years, but there is still a need for novel molecules that can regulate the excessive accumulation of pulmonary artery smooth muscle cells (PASMCs) and consequent vascular remodeling. One set of possible candidates are protein kinases. The study provides an overview of existing preclinical and clinical data regarding small-molecule protein kinase inhibitors in PAH. Online databases were searched from 2001 to 2023 according to PRISMA. The corpus included preclinical studies demonstrating alterations in at least one PH-related parameter following chronic exposure to an individual protein kinase inhibitor, as well as prospective clinical reports including healthy adults or those with PAH, with primary outcomes defined as safety or efficacy of an individual small-molecule protein kinase inhibitor. Several models in preclinical protocols (93 papers) have been proposed for studying small-molecule protein kinase inhibitors in PAH. In total, 51 kinase inhibitors were tested. Meta-analysis of preclinical results demonstrated seralutinib, sorafenib, fasudil hydrochloride, and imatinib had the most comprehensive effects on PH with anti-inflammatory, anti-oxidant, and anti-proliferative potential. Fasudil demonstrated more than 70% animal survival with the longest experimental period, while dasatinib, nintedanib, and (R)-crizotinib could deteriorate PAH. The substances targeting the same kinases often varied considerably in their activity, and such heterogeneity may be due to the variety of causes. Recent studies have addressed the molecules that affect multiple networks such as PDG-FRα/β/CSF1R/c-KIT/BMPR2 or FKBP12/mTOR. They also focus on achieving a satisfactory safety profile using innovative inhalation formulations Many small-molecule protein kinase inhibitors are able to control migration, proliferation and survival in PASMCs in preclinical observations. Standardized animal models can successfully reduce inter-study heterogeneity and thereby facilitate successful identification of candidate drugs for further evaluations.
Collapse
Affiliation(s)
| | - Paulina Glajzner
- Department of Biopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
2
|
Hong J, Medzikovic L, Sun W, Wong B, Ruffenach G, Rhodes CJ, Brownstein A, Liang LL, Aryan L, Li M, Vadgama A, Kurt Z, Schwantes-An TH, Mickler EA, Gräf S, Eyries M, Lutz KA, Pauciulo MW, Trembath RC, Perros F, Montani D, Morrell NW, Soubrier F, Wilkins MR, Nichols WC, Aldred MA, Desai AA, Trégouët DA, Umar S, Saggar R, Channick R, Tuder RM, Geraci MW, Stearman RS, Yang X, Eghbali M. Integrative Multiomics in the Lung Reveals a Protective Role of Asporin in Pulmonary Arterial Hypertension. Circulation 2024; 150:1268-1287. [PMID: 39167456 PMCID: PMC11473243 DOI: 10.1161/circulationaha.124.069864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Integrative multiomics can elucidate pulmonary arterial hypertension (PAH) pathobiology, but procuring human PAH lung samples is rare. METHODS We leveraged transcriptomic profiling and deep phenotyping of the largest multicenter PAH lung biobank to date (96 disease and 52 control) by integration with clinicopathologic data, genome-wide association studies, Bayesian regulatory networks, single-cell transcriptomics, and pharmacotranscriptomics. RESULTS We identified 2 potentially protective gene network modules associated with vascular cells, and we validated ASPN, coding for asporin, as a key hub gene that is upregulated as a compensatory response to counteract PAH. We found that asporin is upregulated in lungs and plasma of multiple independent PAH cohorts and correlates with reduced PAH severity. We show that asporin inhibits proliferation and transforming growth factor-β/phosphorylated SMAD2/3 signaling in pulmonary artery smooth muscle cells from PAH lungs. We demonstrate in Sugen-hypoxia rats that ASPN knockdown exacerbated PAH and recombinant asporin attenuated PAH. CONCLUSIONS Our integrative systems biology approach to dissect the PAH lung transcriptome uncovered asporin as a novel protective target with therapeutic potential in PAH.
Collapse
Affiliation(s)
- Jason Hong
- Division of Pulmonary and Critical Care Medicine (J.H., B.W., A.B., L.L.L., A.V., R.S., R.C.), University of California, Los Angeles
| | - Lejla Medzikovic
- Departments of Anesthesiology & Perioperative Medicine (L.M., W.S., G.R., L.A., M.L., S.U., M. Eghbali), University of California, Los Angeles
| | - Wasila Sun
- Departments of Anesthesiology & Perioperative Medicine (L.M., W.S., G.R., L.A., M.L., S.U., M. Eghbali), University of California, Los Angeles
| | - Brenda Wong
- Division of Pulmonary and Critical Care Medicine (J.H., B.W., A.B., L.L.L., A.V., R.S., R.C.), University of California, Los Angeles
| | - Grégoire Ruffenach
- Departments of Anesthesiology & Perioperative Medicine (L.M., W.S., G.R., L.A., M.L., S.U., M. Eghbali), University of California, Los Angeles
| | | | - Adam Brownstein
- Division of Pulmonary and Critical Care Medicine (J.H., B.W., A.B., L.L.L., A.V., R.S., R.C.), University of California, Los Angeles
| | - Lloyd L Liang
- Division of Pulmonary and Critical Care Medicine (J.H., B.W., A.B., L.L.L., A.V., R.S., R.C.), University of California, Los Angeles
| | - Laila Aryan
- Departments of Anesthesiology & Perioperative Medicine (L.M., W.S., G.R., L.A., M.L., S.U., M. Eghbali), University of California, Los Angeles
| | - Min Li
- Departments of Anesthesiology & Perioperative Medicine (L.M., W.S., G.R., L.A., M.L., S.U., M. Eghbali), University of California, Los Angeles
| | - Arjun Vadgama
- Division of Pulmonary and Critical Care Medicine (J.H., B.W., A.B., L.L.L., A.V., R.S., R.C.), University of California, Los Angeles
| | - Zeyneb Kurt
- Northumbria University, Newcastle Upon Tyne, UK (Z.K.)
| | - Tae-Hwi Schwantes-An
- Department of Medicine, Indiana University, Indianapolis (T.-H.S.-A., E.A.M., M.A.A., A.A.D., R.S.S.)
| | - Elizabeth A Mickler
- Department of Medicine, Indiana University, Indianapolis (T.-H.S.-A., E.A.M., M.A.A., A.A.D., R.S.S.)
| | - Stefan Gräf
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, UK (S.G., N.W.M.)
| | - Mélanie Eyries
- Hôpital Pitié-Salpêtrière, AP-HP, Département de Génétique, Paris, France (M. Eyries)
| | - Katie A Lutz
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, OH (K.A.L., M.W.P., W.C.N.)
| | - Michael W Pauciulo
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, OH (K.A.L., M.W.P., W.C.N.)
| | - Richard C Trembath
- Department of Medical & Molecular Genetics, Faculty of Life Sciences & Medicine, King's College London, UK (R.C.T.)
| | - Frédéric Perros
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon 1, Pierre-Bénite, France (F.P.)
| | - David Montani
- AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (D.M.)
- Université Paris-Saclay, Le Kremlin Bicêtre, France (D.M.)
- UMR_S 999, Université Paris-Saclay, INSERM, Groupe Hospitalier Marie-Lannelongue-Saint Joseph, Le Plessis-Robinson, France (D.M.)
| | - Nicholas W Morrell
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, UK (S.G., N.W.M.)
| | | | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, UK (C.J.R., M.R.W.)
| | - William C Nichols
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, OH (K.A.L., M.W.P., W.C.N.)
| | - Micheala A Aldred
- Department of Medicine, Indiana University, Indianapolis (T.-H.S.-A., E.A.M., M.A.A., A.A.D., R.S.S.)
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis (T.-H.S.-A., E.A.M., M.A.A., A.A.D., R.S.S.)
| | | | - Soban Umar
- Departments of Anesthesiology & Perioperative Medicine (L.M., W.S., G.R., L.A., M.L., S.U., M. Eghbali), University of California, Los Angeles
| | - Rajan Saggar
- Division of Pulmonary and Critical Care Medicine (J.H., B.W., A.B., L.L.L., A.V., R.S., R.C.), University of California, Los Angeles
| | - Richard Channick
- Division of Pulmonary and Critical Care Medicine (J.H., B.W., A.B., L.L.L., A.V., R.S., R.C.), University of California, Los Angeles
| | - Rubin M Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora (R.M.T.)
| | - Mark W Geraci
- Department of Medicine, University of Pittsburgh, PA (M.W.G.)
| | - Robert S Stearman
- Department of Medicine, Indiana University, Indianapolis (T.-H.S.-A., E.A.M., M.A.A., A.A.D., R.S.S.)
| | - Xia Yang
- Integrative Biology and Physiology (X.Y.), University of California, Los Angeles
| | - Mansoureh Eghbali
- Departments of Anesthesiology & Perioperative Medicine (L.M., W.S., G.R., L.A., M.L., S.U., M. Eghbali), University of California, Los Angeles
| |
Collapse
|
3
|
Liang X, Zhou J, Wang H, Zhang Z, Yin M, Zhu Y, Li L, Chen C, Wei M, Hu M, Zhao C, Yao J, Li G, Dinh‐Xuan A, Xiao J, Bei Y. miR-30d Attenuates Pulmonary Arterial Hypertension via Targeting MTDH and PDE5A and Modulates the Beneficial Effect of Sildenafil. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407712. [PMID: 39206778 PMCID: PMC11516105 DOI: 10.1002/advs.202407712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Pulmonary arterial hypertension (PAH) is associated with aberrant pulmonary vascular smooth muscle cell (PASMC) function and vascular remodeling. MiR-30d plays an important role in the pathogenesis of several cardiovascular disorders. However, the function of miR-30d in PAH progression remained unknown. Our study shows that circulating miR-30d level is significantly reduced in the plasma from PAH patients. In miR-30d transgenic (TG) rats, overexpressing miR-30d attenuates monocrotaline (MCT)-induced pulmonary hypertension (PH) and pulmonary vascular remodeling. Increasing miR-30d also inhibits platelet-derived growth factor-bb (PDGF-bb)-induced proliferation and migration of human PASMC. Metadherin (MTDH) and phosphodiesterase 5A (PDE5A) are identified as direct target genes of miR-30d. Meanwhile, nuclear respiratory factor 1 (NRF1) acts as a positive upstream regulator of miR-30d. Using miR-30d knockout (KO) rats treated with sildenafil, a PDE5A inhibitor that is used in clinical PAH therapies, it is further found that suppressing miR-30d partially attenuates the beneficial effect of sildenafil against MCT-induced PH and vascular remodeling. The present study shows a protective effect of miR-30d against PAH and pulmonary vascular remodeling through targeting MTDH and PDE5A and reveals that miR-30d modulates the beneficial effect of sildenafil in treating PAH. MiR-30d should be a prospective target to treat PAH and pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Xuchun Liang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Jingwen Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Hongyun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Ziyi Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Mingming Yin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yujiao Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Lin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Chen Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Meng Wei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Meiyu Hu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Cuimei Zhao
- Department of CardiologyShanghai Tongji HospitalTongji University School of MedicineShanghai200065China
| | - Jianhua Yao
- Department of CardiologyTenth People's HospitalSchool of MedicineTongji UniversityShanghai200090China
- Department of CardiologyShigatse People's HospitalTibet857000China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Anh‐Tuan Dinh‐Xuan
- Lung Function & Respiratory Physiology UnitsDepartment of Respiratory Physiology and Sleep MedicineCochin & George Pompidou HospitalsAssistance Publique‐Hôpitaux de Paris (APHP) CentreUniversity Paris CitéParis75014France
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| |
Collapse
|
4
|
Wu Y, Zou Y, Song C, Cao K, Cai K, Chen S, Zhang Z, Geng D, Zhang N, Feng H, Tang M, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of serine/threonine protein kinases in cardiovascular disease and potential therapeutic methods. Biomed Pharmacother 2024; 177:117093. [PMID: 38971012 DOI: 10.1016/j.biopha.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Protein phosphorylation is an important link in a variety of signaling pathways, and most of the important life processes in cells involve protein phosphorylation. Based on the amino acid residues of phosphorylated proteins, protein kinases can be categorized into the following families: serine/threonine protein kinases, tyrosine-specific protein kinases, histidine-specific protein kinases, tryptophan kinases, and aspartate/glutamyl protein kinases. Of all the protein kinases, most are serine/threonine kinases, where serine/threonine protein kinases are protein kinases that catalyze the phosphorylation of serine or threonine residues on target proteins using ATP as a phosphate donor. The current socially accepted classification of serine/threonine kinases is to divide them into seven major groups: protein kinase A, G, C (AGC), CMGC, Calmodulin-dependent protein kinase (CAMK), Casein kinase (CK1), STE, Tyrosine kinase (TKL) and others. After decades of research, a preliminary understanding of the specific classification and respective functions of serine/threonine kinases has entered a new period of exploration. In this paper, we review the literature of the previous years and introduce the specific signaling pathways and related therapeutic modalities played by each of the small protein kinases in the serine/threonine protein kinase family, respectively, in some common cardiovascular system diseases such as heart failure, myocardial infarction, ischemia-reperfusion injury, and diabetic cardiomyopathy. To a certain extent, the current research results, including molecular mechanisms and therapeutic methods, are fully summarized and a systematic report is made for the prevention and treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China.
| | - Hao Feng
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| |
Collapse
|
5
|
Carman BL, Qin S, Predescu DN, Jana M, Cortese R, Aldred MA, Gozal D, Mokhlesi B, Predescu SA. Dysregulation of the Long Noncoding RNA X-Inactive-Specific Transcript Expression in Male Patients with Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1592-1606. [PMID: 38705381 PMCID: PMC11284765 DOI: 10.1016/j.ajpath.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/10/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a sex-biased disease with female sex as a significant risk factor. Increased expression of the long noncoding RNA X-inactive-specific transcript (Xist), as induced by an intersectin-1s protein fragment with proliferative potential (EHITSN), may explain the sexual dimorphism of female pulmonary artery endothelial cells (ECs) and at least in part, the imbalance sex/ratio of PAH. Xist is essential for X-chromosome inactivation and dosage compensation of X-linked genes. Herein, increased Xist expression was detected in a subset of ECs and lung tissue samples of male patients with PAH. The role of different Xist expression levels in ECs of male patients with PAH (ECPAH) was studied in several lines of male ECPAH in conjunction with molecular, biochemical, morphologic, and functional approaches. Male ECPAH showed on average 10.3-fold increase in high Xist versus low Xist, a significant association between Xist levels and their proliferative potential, and a heterogeneous methylation of the Xist/XIST antisense RNA (Tsix) locus. Interestingly, Xist up-regulation in male ECPAH decreased the expression of Krueppel-like factor 2 (Klf2), via EHITSN interaction with enhancer of zeste polycomb repressive complex 2 subunit (EZH2), the catalytic subunit of the polycomb repressive complex 2. Moreover, the studies demonstrate that EHITSN-triggered p38/ETS domain-containing protein Elk1/AP-1 transcription factor subunit (c-Fos) signaling is a pathologic mechanism central to ECPAH proliferation and the dynamic crosstalk with cell cycle regulatory proteins cyclin A1/cyclin D2 and Xist-EZH2-Klf2 interaction participate directly and differentially in establishing the proliferative profile of male ECPAH.
Collapse
Affiliation(s)
- Brandon L Carman
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois
| | - Shanshan Qin
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois
| | - Dan N Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois
| | - Malabendu Jana
- Department of Neurological Science, Rush University Medical Center, Chicago, Illinois
| | - Rene Cortese
- Child Health Research Institute, University of Missouri, Columbia, Missouri
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - David Gozal
- Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Babak Mokhlesi
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sanda A Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
6
|
Wang J, Shen Y, Zhang Y, Lin D, Wang Q, Sun X, Wei D, Shen B, Chen J, Ji Y, Fulton D, Yu Y, Chen F, Hu L. Smooth Muscle Ythdf2 Abrogation Ameliorates Pulmonary Vascular Remodeling by Regulating Myadm Transcript Stability. Hypertension 2024; 81:1785-1798. [PMID: 38832511 DOI: 10.1161/hypertensionaha.124.22801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND The N6-methyladenosine (m6A) modification of RNA and its regulators have important roles in the pathogenesis of pulmonary hypertension (PH). Ythdf2 (YTH N6-methyladenosine RNA binding protein 2) is best known for its role in degrading m6A-modified mRNAs such as Hmox1 mRNA, which leads to alternative activation of macrophages in PH. Recent studies have also linked Ythdf2 to the proliferation of pulmonary artery smooth muscle cells (PASMCs). However, its specific roles in PASMCs and downstream targets during the development of PH remain unclear. METHODS The expression and biological function of Ythdf2 in PASMCs were investigated in human and experimental models of PH. Smooth muscle cell-specific Ythdf2-deficient mice were used to assess the roles of Ythdf2 in PASMCs in vivo. Proteomic analysis, m6A sequencing, and RNA immunoprecipitation analysis were used to screen for potential downstream targets. RESULTS Ythdf2 was significantly upregulated in human and rodent PH-PASMCs, and smooth muscle cell-specific Ythdf2 deficiency ameliorated PASMC proliferation, right ventricular hypertrophy, pulmonary vascular remodeling, and PH development. Higher expression of Ythdf2 promoted PASMC proliferation and PH by paradoxically stabilizing Myadm mRNA in an m6A-dependent manner. Loss of Ythdf2 decreased the expression of Myadm in PASMCs and pulmonary arteries, both in vitro and in vivo. Additionally, silencing Myadm inhibited the Ythdf2-dependent hyperproliferation of PASMCs by upregulating the cell cycle kinase inhibitor p21. CONCLUSIONS We have identified a novel mechanism where the increased expression of Ythdf2 stimulates PH-PASMC proliferation through an m6A/Myadm/p21 pathway. Strategies targeting Ythdf2 in PASMCs might be useful additions to the therapeutic approach to PH.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/metabolism
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Vascular Remodeling/physiology
- Vascular Remodeling/genetics
Collapse
Affiliation(s)
- Jie Wang
- Department of Forensic Medicine (J.W., Y.S., Y.Z., D.L., Y.Y., F.C., L.H.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (J.W., F.C., L.H.), Nanjing Medical University, China
| | - Yueyao Shen
- Department of Forensic Medicine (J.W., Y.S., Y.Z., D.L., Y.Y., F.C., L.H.), Nanjing Medical University, China
| | - Yuhui Zhang
- Department of Forensic Medicine (J.W., Y.S., Y.Z., D.L., Y.Y., F.C., L.H.), Nanjing Medical University, China
| | - Donghai Lin
- Department of Forensic Medicine (J.W., Y.S., Y.Z., D.L., Y.Y., F.C., L.H.), Nanjing Medical University, China
| | - Qiang Wang
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, China (Q.W., X.S.)
| | - Xiaoxuan Sun
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, China (Q.W., X.S.)
| | - Dong Wei
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, China (D.W., J.C., F.C.)
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine (B.S.), Nanjing Medical University, China
| | - Jingyu Chen
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, China (D.W., J.C., F.C.)
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (Y.J.), Nanjing Medical University, China
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University (D.F., F.C.)
| | - Yanfang Yu
- Department of Forensic Medicine (J.W., Y.S., Y.Z., D.L., Y.Y., F.C., L.H.), Nanjing Medical University, China
| | - Feng Chen
- Department of Forensic Medicine (J.W., Y.S., Y.Z., D.L., Y.Y., F.C., L.H.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (J.W., F.C., L.H.), Nanjing Medical University, China
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, China (D.W., J.C., F.C.)
- Vascular Biology Center, Medical College of Georgia at Augusta University (D.F., F.C.)
| | - Li Hu
- Department of Forensic Medicine (J.W., Y.S., Y.Z., D.L., Y.Y., F.C., L.H.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (J.W., F.C., L.H.), Nanjing Medical University, China
| |
Collapse
|
7
|
Luo A, Hao R, Zhou X, Jia Y, Bao C, Yang L, Zhou L, Gu C, Desai AA, Tang H, Chu AA. Transcriptomic profiling highlights cell proliferation in the progression of experimental pulmonary hypertension in rats. Sci Rep 2024; 14:14056. [PMID: 38890390 PMCID: PMC11189536 DOI: 10.1038/s41598-024-64251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by pulmonary vascular remolding and occlusion, leading to the elevated pulmonary arterial pressures, right ventricular hypertrophy, and eventual heart failure if left untreated. Understanding the molecular mechanisms underlying the development and progression of pulmonary hypertension (PH) is crucial for devising efficient therapeutic approaches for the disease. Lung homogenates were collected weekly and underwent RNA-sequencing in the monocrotaline (MCT)-induced PH rat model to explore genes associated with PH progression. Statistical analyses revealed 1038, 1244, and 3125 significantly altered genes (P < 0.05, abs (log2fold change) > log21.5) between control and MCT-exposed rats during the first, second, and third week, respectively. Pathway enrichment analyses revealed involvement of cell cycle and innate immune system for the upregulated genes, GPCR and VEGF signaling for the downregulated genes. Furthermore, qRT-PCR validated upregulation of representative genes associated with cell cycle including Cdc25c (cell division cycle 25C), Cdc45, Top2a (topoisomerase IIα), Ccna2 (cyclin A2) and Ccnb1 (cyclin B1). Western blot and immunofluorescence analysis confirmed increases in PCNA, Ccna2, Top2a, along with other proliferation markers in the lung tissue of MCT-treated rats. In summary, RNA sequencing data highlights the significance of cell proliferation in progression of rodent PH.
Collapse
Affiliation(s)
- Ang Luo
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, China.
| | - Rongrong Hao
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, China
| | - Xia Zhou
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, China
| | - Yangfan Jia
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Changlei Bao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lei Yang
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, China
| | - Lirong Zhou
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, China
| | - Chenxin Gu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Ai-Ai Chu
- Division of Echocardiography, Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Brosinsky P, Heger J, Sydykov A, Weiss A, Klatt S, Czech L, Kraut S, Schermuly RT, Schlüter KD, Schulz R. Does Cell-Type-Specific Silencing of Monoamine Oxidase B Interfere with the Development of Right Ventricle (RV) Hypertrophy or Right Ventricle Failure in Pulmonary Hypertension? Int J Mol Sci 2024; 25:6212. [PMID: 38892401 PMCID: PMC11172614 DOI: 10.3390/ijms25116212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Increased mitochondrial reactive oxygen species (ROS) formation is important for the development of right ventricular (RV) hypertrophy (RVH) and failure (RVF) during pulmonary hypertension (PH). ROS molecules are produced in different compartments within the cell, with mitochondria known to produce the strongest ROS signal. Among ROS-forming mitochondrial proteins, outer-mitochondrial-membrane-located monoamine oxidases (MAOs, type A or B) are capable of degrading neurotransmitters, thereby producing large amounts of ROS. In mice, MAO-B is the dominant isoform, which is present in almost all cell types within the heart. We analyzed the effect of an inducible cardiomyocyte-specific knockout of MAO-B (cmMAO-B KO) for the development of RVH and RVF in mice. Right ventricular hypertrophy was induced by pulmonary artery banding (PAB). RV dimensions and function were measured through echocardiography. ROS production (dihydroethidium staining), protein kinase activity (PamStation device), and systemic hemodynamics (in vivo catheterization) were assessed. A significant decrease in ROS formation was measured in cmMAO-B KO mice during PAB compared to Cre-negative littermates, which was associated with reduced activity of protein kinases involved in hypertrophic growth. In contrast to littermates in which the RV was dilated and hypertrophied following PAB, RV dimensions were unaffected in response to PAB in cmMAO-B KO mice, and no decline in RV systolic function otherwise seen in littermates during PAB was measured in cmMAO-B KO mice. In conclusion, cmMAO-B KO mice are protected against RV dilatation, hypertrophy, and dysfunction following RV pressure overload compared to littermates. These results support the hypothesis that cmMAO-B is a key player in causing RV hypertrophy and failure during PH.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Disease Models, Animal
- Heart Failure/metabolism
- Heart Failure/etiology
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Ventricles/pathology
- Heart Ventricles/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/pathology
- Mice, Knockout
- Monoamine Oxidase/genetics
- Monoamine Oxidase/metabolism
- Monoamine Oxidase/deficiency
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Reactive Oxygen Species/metabolism
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/genetics
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/pathology
Collapse
Affiliation(s)
- Paulin Brosinsky
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Jacqueline Heger
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Akylbek Sydykov
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Astrid Weiss
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Stephan Klatt
- Vascular Research Centre, Goethe Universität, 60590 Frankfurt, Germany;
| | - Laureen Czech
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Simone Kraut
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Ralph Theo Schermuly
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Klaus-Dieter Schlüter
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| |
Collapse
|
9
|
Bazant J, Weiss A, Baldauf J, Schermuly RT, Hain T, Lucas R, Mraheil MA. Pneumococcal hydrogen peroxide regulates host cell kinase activity. Front Immunol 2024; 15:1414195. [PMID: 38903521 PMCID: PMC11188345 DOI: 10.3389/fimmu.2024.1414195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Protein kinases are indispensable reversible molecular switches that adapt and control protein functions during cellular processes requiring rapid responses to internal and external events. Bacterial infections can affect kinase-mediated phosphorylation events, with consequences for both innate and adaptive immunity, through regulation of antigen presentation, pathogen recognition, cell invasiveness and phagocytosis. Streptococcus pneumoniae (Spn), a human respiratory tract pathogen and a major cause of community-acquired pneumoniae, affects phosphorylation-based signalling of several kinases, but the pneumococcal mediator(s) involved in this process remain elusive. In this study, we investigated the influence of pneumococcal H2O2 on the protein kinase activity of the human lung epithelial H441 cell line, a generally accepted model of alveolar epithelial cells. Methods We performed kinome analysis using PamGene microarray chips and protein analysis in Western blotting in H441 lung cells infected with Spn wild type (SpnWT) or with SpnΔlctOΔspxB -a deletion mutant strongly attenuated in H2O2 production- to assess the impact of pneumococcal hydrogen peroxide (H2O2) on global protein kinase activity profiles. Results Our kinome analysis provides direct evidence that kinase activity profiles in infected H441 cells significantly vary according to the levels of pneumococcal H2O2. A large number of kinases in H441 cells infected with SpnWT are significantly downregulated, whereas this no longer occurs in cells infected with the mutant SpnΔlctOΔspxB strain, which lacks H2O2. In particular, we describe for the first time H2O2-mediated downregulation of Protein kinase B (Akt1) and activation of lymphocyte-specific tyrosine protein kinase (Lck) via H2O2-mediated phosphorylation.
Collapse
Affiliation(s)
- Jasmin Bazant
- Institute of Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, Germany
| | - Astrid Weiss
- Department of Internal Medicine, Cardio–Pulmonary Institute (CPI), Member of German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Julia Baldauf
- Department of Internal Medicine, Cardio–Pulmonary Institute (CPI), Member of German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Cardio–Pulmonary Institute (CPI), Member of German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, Germany
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Division of Pulmonary, Sleep and Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
10
|
Schlueter BC, Quanz K, Baldauf J, Petrovic A, Ruppert C, Guenther A, Gall H, Tello K, Grimminger F, Ghofrani HA, Weissmann N, Seeger W, Schermuly RT, Weiss A. The diverging roles of insulin-like growth factor binding proteins in pulmonary arterial hypertension. Vascul Pharmacol 2024; 155:107379. [PMID: 38762131 DOI: 10.1016/j.vph.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/29/2023] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Pulmonary hypertension (PH) is a progressive, severe and to date not curable disease of the pulmonary vasculature. Alterations of the insulin-like growth factor 1 (IGF-1) system are known to play a role in vascular pathologies and IGF-binding proteins (IGFBPs) are important regulators of the bioavailability and function of IGFs. In this study, we show that circulating plasma levels of IGFBP-1, IGFBP-2 and IGFBP-3 are increased in idiopathic pulmonary arterial hypertension (IPAH) patients compared to healthy individuals. These binding proteins inhibit the IGF-1 induced IGF-1 receptor (IGF1R) phosphorylation and exhibit diverging effects on the IGF-1 induced signaling pathways in human pulmonary arterial cells (i.e. healthy as well as IPAH-hPASMCs, and healthy hPAECs). Furthermore, IGFBPs are differentially expressed in an experimental mouse model of PH. In hypoxic mouse lungs, IGFBP-1 mRNA expression is decreased whereas the mRNA for IGFBP-2 is increased. In contrast to IGFBP-1, IGFBP-2 shows vaso-constrictive properties in the murine pulmonary vasculature. Our analyses show that IGFBP-1 and IGFBP-2 exhibit diverging effects on IGF-1 signaling and display a unique IGF1R-independent kinase activation pattern in human pulmonary arterial smooth muscle cells (hPASMCs), which represent a major contributor of PAH pathobiology. Furthermore, we could show that IGFBP-2, in contrast to IGFBP-1, induces epidermal growth factor receptor (EGFR) signaling, Stat-3 activation and expression of Stat-3 target genes. Based on our results, we conclude that the IGFBP family, especially IGFBP-1, IGFBP-2 and IGFBP-3, are deregulated in PAH, that they affect IGF signaling and thereby regulate the cellular phenotype in PH.
Collapse
MESH Headings
- Humans
- Animals
- Receptor, IGF Type 1/metabolism
- Receptor, IGF Type 1/genetics
- Signal Transduction
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Insulin-Like Growth Factor Binding Protein 3/metabolism
- Insulin-Like Growth Factor Binding Protein 3/genetics
- Insulin-Like Growth Factor Binding Protein 2/metabolism
- Insulin-Like Growth Factor Binding Protein 2/genetics
- Insulin-Like Growth Factor I/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Cells, Cultured
- Male
- Insulin-Like Growth Factor Binding Protein 1/metabolism
- Insulin-Like Growth Factor Binding Protein 1/genetics
- Phosphorylation
- Disease Models, Animal
- STAT3 Transcription Factor/metabolism
- Case-Control Studies
- Mice, Inbred C57BL
- Familial Primary Pulmonary Hypertension/metabolism
- Familial Primary Pulmonary Hypertension/physiopathology
- Familial Primary Pulmonary Hypertension/pathology
- Familial Primary Pulmonary Hypertension/genetics
- Female
- ErbB Receptors/metabolism
- Middle Aged
- Vascular Remodeling
- Adult
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
Collapse
Affiliation(s)
- Beate Christiane Schlueter
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany
| | - Karin Quanz
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany
| | - Julia Baldauf
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany
| | - Aleksandar Petrovic
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany
| | - Clemens Ruppert
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany
| | - Andreas Guenther
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany; Agaplesion Lung Clinic Waldhof-Elgershausen, Greifenstein 35753, Germany
| | - Henning Gall
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany; University Hospital Giessen and Marburg (UKGM), Giessen 35392, Germany
| | - Khodr Tello
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany; University Hospital Giessen and Marburg (UKGM), Giessen 35392, Germany
| | - Friedrich Grimminger
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany; University Hospital Giessen and Marburg (UKGM), Giessen 35392, Germany
| | - Hossein-Ardeschir Ghofrani
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany; University Hospital Giessen and Marburg (UKGM), Giessen 35392, Germany
| | - Norbert Weissmann
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany
| | - Werner Seeger
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany; Max Planck Institute (MPI) for Heart and Lung Research, Parkstrasse 1, Bad Nauheim 61231, Germany; University Hospital Giessen and Marburg (UKGM), Giessen 35392, Germany
| | - Ralph Theo Schermuly
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany
| | - Astrid Weiss
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany.
| |
Collapse
|
11
|
Tsare EPG, Klapa MI, Moschonas NK. Protein-protein interaction network-based integration of GWAS and functional data for blood pressure regulation analysis. Hum Genomics 2024; 18:15. [PMID: 38326862 PMCID: PMC11465932 DOI: 10.1186/s40246-023-00565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/12/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND It is valuable to analyze the genome-wide association studies (GWAS) data for a complex disease phenotype in the context of the protein-protein interaction (PPI) network, as the related pathophysiology results from the function of interacting polyprotein pathways. The analysis may include the design and curation of a phenotype-specific GWAS meta-database incorporating genotypic and eQTL data linking to PPI and other biological datasets, and the development of systematic workflows for PPI network-based data integration toward protein and pathway prioritization. Here, we pursued this analysis for blood pressure (BP) regulation. METHODS The relational scheme of the implemented in Microsoft SQL Server BP-GWAS meta-database enabled the combined storage of: GWAS data and attributes mined from GWAS Catalog and the literature, Ensembl-defined SNP-transcript associations, and GTEx eQTL data. The BP-protein interactome was reconstructed from the PICKLE PPI meta-database, extending the GWAS-deduced network with the shortest paths connecting all GWAS-proteins into one component. The shortest-path intermediates were considered as BP-related. For protein prioritization, we combined a new integrated GWAS-based scoring scheme with two network-based criteria: one considering the protein role in the reconstructed by shortest-path (RbSP) interactome and one novel promoting the common neighbors of GWAS-prioritized proteins. Prioritized proteins were ranked by the number of satisfied criteria. RESULTS The meta-database includes 6687 variants linked with 1167 BP-associated protein-coding genes. The GWAS-deduced PPI network includes 1065 proteins, with 672 forming a connected component. The RbSP interactome contains 1443 additional, network-deduced proteins and indicated that essentially all BP-GWAS proteins are at most second neighbors. The prioritized BP-protein set was derived from the union of the most BP-significant by any of the GWAS-based or the network-based criteria. It included 335 proteins, with ~ 2/3 deduced from the BP PPI network extension and 126 prioritized by at least two criteria. ESR1 was the only protein satisfying all three criteria, followed in the top-10 by INSR, PTN11, CDK6, CSK, NOS3, SH2B3, ATP2B1, FES and FINC, satisfying two. Pathway analysis of the RbSP interactome revealed numerous bioprocesses, which are indeed functionally supported as BP-associated, extending our understanding about BP regulation. CONCLUSIONS The implemented workflow could be used for other multifactorial diseases.
Collapse
Affiliation(s)
- Evridiki-Pandora G Tsare
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece.
| | - Nicholas K Moschonas
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece.
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece.
| |
Collapse
|
12
|
Pervizaj-Oruqaj L, Selvakumar B, Ferrero MR, Heiner M, Malainou C, Glaser RD, Wilhelm J, Bartkuhn M, Weiss A, Alexopoulos I, Witte B, Gattenlöhner S, Vadász I, Morty RE, Seeger W, Schermuly RT, Vazquez-Armendariz AI, Herold S. Alveolar macrophage-expressed Plet1 is a driver of lung epithelial repair after viral pneumonia. Nat Commun 2024; 15:87. [PMID: 38167746 PMCID: PMC10761876 DOI: 10.1038/s41467-023-44421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Influenza A virus (IAV) infection mobilizes bone marrow-derived macrophages (BMDM) that gradually undergo transition to tissue-resident alveolar macrophages (TR-AM) in the inflamed lung. Combining high-dimensional single-cell transcriptomics with complex lung organoid modeling, in vivo adoptive cell transfer, and BMDM-specific gene targeting, we found that transitioning ("regenerative") BMDM and TR-AM highly express Placenta-expressed transcript 1 (Plet1). We reveal that Plet1 is released from alveolar macrophages, and acts as important mediator of macrophage-epithelial cross-talk during lung repair by inducing proliferation of alveolar epithelial cells and re-sealing of the epithelial barrier. Intratracheal administration of recombinant Plet1 early in the disease course attenuated viral lung injury and rescued mice from otherwise fatal disease, highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Learta Pervizaj-Oruqaj
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Balachandar Selvakumar
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Buenos Aires, Argentina
| | - Maximiliano Ruben Ferrero
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Buenos Aires, Argentina
| | - Monika Heiner
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Christina Malainou
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Rolf David Glaser
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus Liebig University, Giessen, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Marek Bartkuhn
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus Liebig University, Giessen, Germany
| | - Astrid Weiss
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Biruta Witte
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | | | - István Vadász
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory Edward Morty
- Department of Translational Pulmonology and the Translational Lung Research Center, University Hospital Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Werner Seeger
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Buenos Aires, Argentina
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph Theo Schermuly
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
| | - Susanne Herold
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
13
|
Knight H, Abis G, Kaur M, Green HL, Krasemann S, Hartmann K, Lynham S, Clark J, Zhao L, Ruppert C, Weiss A, Schermuly RT, Eaton P, Rudyk O. Cyclin D-CDK4 Disulfide Bond Attenuates Pulmonary Vascular Cell Proliferation. Circ Res 2023; 133:966-988. [PMID: 37955182 PMCID: PMC10699508 DOI: 10.1161/circresaha.122.321836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a chronic vascular disease characterized, among other abnormalities, by hyperproliferative smooth muscle cells and a perturbed cellular redox and metabolic balance. Oxidants induce cell cycle arrest to halt proliferation; however, little is known about the redox-regulated effector proteins that mediate these processes. Here, we report a novel kinase-inhibitory disulfide bond in cyclin D-CDK4 (cyclin-dependent kinase 4) and investigate its role in cell proliferation and PH. METHODS Oxidative modifications of cyclin D-CDK4 were detected in human pulmonary arterial smooth muscle cells and human pulmonary arterial endothelial cells. Site-directed mutagenesis, tandem mass-spectrometry, cell-based experiments, in vitro kinase activity assays, in silico structural modeling, and a novel redox-dead constitutive knock-in mouse were utilized to investigate the nature and definitively establish the importance of CDK4 cysteine modification in pulmonary vascular cell proliferation. Furthermore, the cyclin D-CDK4 oxidation was assessed in vivo in the pulmonary arteries and isolated human pulmonary arterial smooth muscle cells of patients with pulmonary arterial hypertension and in 3 preclinical models of PH. RESULTS Cyclin D-CDK4 forms a reversible oxidant-induced heterodimeric disulfide dimer between C7/8 and C135, respectively, in cells in vitro and in pulmonary arteries in vivo to inhibit cyclin D-CDK4 kinase activity, decrease Rb (retinoblastoma) protein phosphorylation, and induce cell cycle arrest. Mutation of CDK4 C135 causes a kinase-impaired phenotype, which decreases cell proliferation rate and alleviates disease phenotype in an experimental mouse PH model, suggesting this cysteine is indispensable for cyclin D-CDK4 kinase activity. Pulmonary arteries and human pulmonary arterial smooth muscle cells from patients with pulmonary arterial hypertension display a decreased level of CDK4 disulfide, consistent with CDK4 being hyperactive in human pulmonary arterial hypertension. Furthermore, auranofin treatment, which induces the cyclin D-CDK4 disulfide, attenuates disease severity in experimental PH models by mitigating pulmonary vascular remodeling. CONCLUSIONS A novel disulfide bond in cyclin D-CDK4 acts as a rapid switch to inhibit kinase activity and halt cell proliferation. This oxidative modification forms at a critical cysteine residue, which is unique to CDK4, offering the potential for the design of a selective covalent inhibitor predicted to be beneficial in PH.
Collapse
Affiliation(s)
- Hannah Knight
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Giancarlo Abis
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, United Kingdom (G.A.)
| | - Manpreet Kaur
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Hannah L.H. Green
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Germany (S.K., K.H.)
| | - Kristin Hartmann
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Germany (S.K., K.H.)
| | - Steven Lynham
- Proteomics Core Facility, Centre of Excellence for Mass Spectrometry (S.L.), King’s College London, United Kingdom
| | - James Clark
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Lan Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (L.Z.)
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center Giessen Biobank, Justus-Liebig-University Giessen, Germany (C.R.)
| | - Astrid Weiss
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Member of the German Center for Lung Research (DZL), Germany (A.W., R.T.S.)
| | - Ralph T. Schermuly
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Member of the German Center for Lung Research (DZL), Germany (A.W., R.T.S.)
| | - Philip Eaton
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (P.E.)
| | - Olena Rudyk
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| |
Collapse
|
14
|
Ji J, Wu S, Bao X, Liu S, Ye Y, Liu J, Guo J, Liu J, Wang X, Xia Z, Wei L, Zhang Y, Hao D, Huang D. Mediating oxidative stress through the Palbociclib/miR-141-3p/STAT4 axis in osteoporosis: a bioinformatics and experimental validation study. Sci Rep 2023; 13:19560. [PMID: 37949959 PMCID: PMC10638393 DOI: 10.1038/s41598-023-46813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoporosis is a common bone disease characterized by loss of bone mass, reduced bone strength, and deterioration of bone microstructure. ROS-induced oxidative stress plays an important role in osteoporosis. However, the biomarkers and molecular mechanisms of oxidative stress are still unclear. We obtained the datasets from the Gene Expression Omnibus (GEO) database, and performed differential analysis, Venn analysis, and weighted correlation network analysis (WGCNA) analysis out the hub genes. Then, the correlation between inflammatory factors and hub genes was analyzed, and a Mendelian randomization (MR) analysis was performed on cytokines and osteoporosis outcomes. In addition, "CIBERSORT" was used to analyze the infiltration of immune cells and single-cell RNA-seq data was used to analyze the expression distribution of hub genes and cell-cell communications. Finally, we collected human blood samples for RT-qPCR and Elisa experiments, the miRNA-mRNA network was constructed using the miRBase database, the 3D structure was predicted using the RNAfold, Vfold3D database, and the drug sensitivity analysis was performed using the RNAactDrug database. We obtained three differentially expressed genes associated with oxidative stress: DBH, TAF15, and STAT4 by differential, WGCNA clustering, and Venn screening analyses, and further analyzed the correlation of these 3 genes with inflammatory factors and immune cell infiltration and found that STAT4 was significantly and positively correlated with IL-2. Single-cell data analysis showed that the STAT4 gene was highly expressed mainly in dendritic cells and monocytes. In addition, the results of RT-qPCR and Elisa experiments verified that the expression of STAT4 was consistent with the previous analysis, and a significant causal relationship between IL-2 and STAT4 SNPs and osteoporosis was found by Mendelian randomization. Finally, through miRNA-mRNA network and drug sensitivity analysis, we analyzed to get Palbociclib/miR-141-3p/STAT4 axis, which can be used for the prevention and treatment of osteoporosis. In this study, we proposed the Palbociclib/miR-141-3p/STAT4 axis for the first time and provided new insights into the mechanism of oxidative stress in osteoporosis.
Collapse
Affiliation(s)
- Jiajia Ji
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Shaobo Wu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Xueyuan Bao
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Shixuan Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yuxing Ye
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jiayuan Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jinniu Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jiateng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Xi Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Zhihao Xia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Liangliang Wei
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
15
|
Wu P, Zhu T, Huang Y, Fang Z, Luo F. Current understanding of the contribution of lactate to the cardiovascular system and its therapeutic relevance. Front Endocrinol (Lausanne) 2023; 14:1205442. [PMID: 37396168 PMCID: PMC10309561 DOI: 10.3389/fendo.2023.1205442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Research during the past decades has yielded numerous insights into the presence and function of lactate in the body. Lactate is primarily produced via glycolysis and plays special roles in the regulation of tissues and organs, particularly in the cardiovascular system. In addition to being a net consumer of lactate, the heart is also the organ in the body with the greatest lactate consumption. Furthermore, lactate maintains cardiovascular homeostasis through energy supply and signal regulation under physiological conditions. Lactate also affects the occurrence, development, and prognosis of various cardiovascular diseases. We will highlight how lactate regulates the cardiovascular system under physiological and pathological conditions based on evidence from recent studies. We aim to provide a better understanding of the relationship between lactate and cardiovascular health and provide new ideas for preventing and treating cardiovascular diseases. Additionally, we will summarize current developments in treatments targeting lactate metabolism, transport, and signaling, including their role in cardiovascular diseases.
Collapse
Affiliation(s)
- Panyun Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Tengteng Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiyuan Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Zulfiqar M, Stanuch M, Wodzinski M, Skalski A. DRU-Net: Pulmonary Artery Segmentation via Dense Residual U-Network with Hybrid Loss Function. SENSORS (BASEL, SWITZERLAND) 2023; 23:5427. [PMID: 37420595 DOI: 10.3390/s23125427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
The structure and topology of the pulmonary arteries is crucial to understand, plan, and conduct medical treatment in the thorax area. Due to the complex anatomy of the pulmonary vessels, it is not easy to distinguish between the arteries and veins. The pulmonary arteries have a complex structure with an irregular shape and adjacent tissues, which makes automatic segmentation a challenging task. A deep neural network is required to segment the topological structure of the pulmonary artery. Therefore, in this study, a Dense Residual U-Net with a hybrid loss function is proposed. The network is trained on augmented Computed Tomography volumes to improve the performance of the network and prevent overfitting. Moreover, the hybrid loss function is implemented to improve the performance of the network. The results show an improvement in the Dice and HD95 scores over state-of-the-art techniques. The average scores achieved for the Dice and HD95 scores are 0.8775 and 4.2624 mm, respectively. The proposed method will support physicians in the challenging task of preoperative planning of thoracic surgery, where the correct assessment of the arteries is crucial.
Collapse
Affiliation(s)
- Manahil Zulfiqar
- Department of Measurement and Electronics, AGH University of Science and Technology, 30-059 Krakow, Poland
- MedApp S.A., 30-150 Krakow, Poland
| | - Maciej Stanuch
- Department of Measurement and Electronics, AGH University of Science and Technology, 30-059 Krakow, Poland
- MedApp S.A., 30-150 Krakow, Poland
| | - Marek Wodzinski
- Department of Measurement and Electronics, AGH University of Science and Technology, 30-059 Krakow, Poland
- MedApp S.A., 30-150 Krakow, Poland
| | - Andrzej Skalski
- Department of Measurement and Electronics, AGH University of Science and Technology, 30-059 Krakow, Poland
- MedApp S.A., 30-150 Krakow, Poland
| |
Collapse
|
17
|
Walters R, Vasilaki E, Aman J, Chen CN, Wu Y, Liang OD, Ashek A, Dubois O, Zhao L, Sabrin F, Cebola I, Ferrer J, Morrell NW, Klinger JR, Wilkins MR, Zhao L, Rhodes CJ. SOX17 Enhancer Variants Disrupt Transcription Factor Binding And Enhancer Inactivity Drives Pulmonary Hypertension. Circulation 2023; 147:1606-1621. [PMID: 37066790 PMCID: PMC7614572 DOI: 10.1161/circulationaha.122.061940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/15/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare disease characterized by remodeling of the pulmonary arteries, increased vascular resistance, and right-sided heart failure. Genome-wide association studies of idiopathic/heritable PAH established novel genetic risk variants, including conserved enhancers upstream of transcription factor (TF) SOX17 containing 2 independent signals. SOX17 is an important TF in embryonic development and in the homeostasis of pulmonary artery endothelial cells (hPAEC) in the adult. Rare pathogenic mutations in SOX17 cause heritable PAH. We hypothesized that PAH risk alleles in an enhancer region impair TF-binding upstream of SOX17, which in turn reduces SOX17 expression and contributes to disturbed endothelial cell function and PAH development. METHODS CRISPR manipulation and siRNA were used to modulate SOX17 expression. Electromobility shift assays were used to confirm in silico-predicted TF differential binding to the SOX17 variants. Functional assays in hPAECs were used to establish the biological consequences of SOX17 loss. In silico analysis with the connectivity map was used to predict compounds that rescue disturbed SOX17 signaling. Mice with deletion of the SOX17-signal 1 enhancer region (SOX17-4593/enhKO) were phenotyped in response to chronic hypoxia and SU5416/hypoxia. RESULTS CRISPR inhibition of SOX17-signal 2 and deletion of SOX17-signal 1 specifically decreased SOX17 expression. Electromobility shift assays demonstrated differential binding of hPAEC nuclear proteins to the risk and nonrisk alleles from both SOX17 signals. Candidate TFs HOXA5 and ROR-α were identified through in silico analysis and antibody electromobility shift assays. Analysis of the hPAEC transcriptomes revealed alteration of PAH-relevant pathways on SOX17 silencing, including extracellular matrix regulation. SOX17 silencing in hPAECs resulted in increased apoptosis, proliferation, and disturbance of barrier function. With the use of the connectivity map, compounds were identified that reversed the SOX17-dysfunction transcriptomic signatures in hPAECs. SOX17 enhancer knockout in mice reduced lung SOX17 expression, resulting in more severe pulmonary vascular leak and hypoxia or SU5416/hypoxia-induced pulmonary hypertension. CONCLUSIONS Common PAH risk variants upstream of the SOX17 promoter reduce endothelial SOX17 expression, at least in part, through differential binding of HOXA5 and ROR-α. Reduced SOX17 expression results in disturbed hPAEC function and PAH. Existing drug compounds can reverse the disturbed SOX17 pulmonary endothelial transcriptomic signature.
Collapse
Affiliation(s)
- Rachel Walters
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Eleni Vasilaki
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Jurjan Aman
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
- Department of Pulmonary Medicine, Amsterdam University Medical Center, The Netherlands (J.A.)
| | - Chien-Nien Chen
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Yukyee Wu
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Olin D Liang
- Division of Hematology/Oncology, Department of Medicine (O.D.L.), Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence
| | - Ali Ashek
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Olivier Dubois
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Lin Zhao
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Farah Sabrin
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Inês Cebola
- Section of Genetics & Genomics, Department of Metabolism, Digestion & Reproduction, Hammersmith Hospital, Imperial College, London, United Kingdom (I.C., J.F.)
| | - Jorge Ferrer
- Section of Genetics & Genomics, Department of Metabolism, Digestion & Reproduction, Hammersmith Hospital, Imperial College, London, United Kingdom (I.C., J.F.)
- Computational Biology and Health Genomics Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Spain (J.F.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain (J.F.)
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, United Kingdom (N.W.M.)
- NIHR BioResource for Translational Research, University of Cambridge, United Kingdom (N.W.M.)
- On Behalf of the British Heart Foundation/Medical Research Council UK PAH Cohort Consortium (N.W.M., M.R.W., C.J.R.)
| | - James R Klinger
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Medicine (J.R.K.), Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence
| | - Martin R Wilkins
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
- On Behalf of the British Heart Foundation/Medical Research Council UK PAH Cohort Consortium (N.W.M., M.R.W., C.J.R.)
| | - Lan Zhao
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Christopher J Rhodes
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
- On Behalf of the British Heart Foundation/Medical Research Council UK PAH Cohort Consortium (N.W.M., M.R.W., C.J.R.)
| |
Collapse
|
18
|
Zhang X, Yang Z, Su S, Nan X, Xie X, Li Z, Lu D. Kaempferol ameliorates pulmonary vascular remodeling in chronic hypoxia-induced pulmonary hypertension rats via regulating Akt-GSK3β-cyclin axis. Toxicol Appl Pharmacol 2023; 466:116478. [PMID: 36940862 DOI: 10.1016/j.taap.2023.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) is considered a major contributor to elevated pulmonary vascular resistance and a key mechanism of vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Kaempferol is a natural flavonoid compound and can be derived from numerous common medicinal herbs and vegetables, which exhibit antiproliferative and proapoptotic properties, however, the effects of kaempferol on vascular remodeling in HPH remain unexplored. In this study, SD rats were placed in a hypobaric hypoxia chamber for four weeks to establish a pulmonary hypertension model and given either kaempferol or sildenafil (an inhibitor of PDE-5) during days 1-28, after which the hemodynamic parameter and pulmonary vascular morphometry were assessed. Furthermore, primary rat PASMCs were exposed to hypoxic conditions to generate a cell proliferation model, then incubated with either kaempferol or LY294002 (an inhibitor of PI3K). Immunoblotting and real-time quantitative PCR assessed the protein and mRNA expression levels in HPH rat lungs and PASMCs. We found that kaempferol reduced pulmonary artery pressure and pulmonary vascular remodeling, and alleviated right ventricular hypertrophy in HPH rats. The mechanistic analysis demonstrated that kaempferol reduced the protein levels of phosphorylation of Akt and GSK3β, leading to decreased expression of pro-proliferation (CDK2, CDK4, Cyclin D1, and PCNA) and anti-apoptotic related proteins (Bcl-2) and increased expression of pro-apoptosis proteins (Bax and cleaved caspase 3). These results collectively demonstrate that kaempferol ameliorates HPH in rats by inhibiting PASMC proliferation and pro-apoptosis via modulation of the Akt/GSK3β/CyclinD axis.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, China; Qinghai Provincial People's Hospital, Xining 810007, China
| | - Zhanting Yang
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, China
| | - Shanshan Su
- Xining Customs Technical Center, Key Laboratory of Food Safety Research in Qinghai Province, Qinghai, Xining 810003, China
| | - Xingmei Nan
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, China
| | - Xin Xie
- School of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, China.
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, China; Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610086, China.
| |
Collapse
|
19
|
Yang L, Wan N, Gong F, Wang X, Feng L, Liu G. Transcription factors and potential therapeutic targets for pulmonary hypertension. Front Cell Dev Biol 2023; 11:1132060. [PMID: 37009479 PMCID: PMC10064017 DOI: 10.3389/fcell.2023.1132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Pulmonary hypertension (PH) is a refractory and fatal disease characterized by excessive pulmonary arterial cell remodeling. Uncontrolled proliferation and hypertrophy of pulmonary arterial smooth muscle cells (PASMCs), dysfunction of pulmonary arterial endothelial cells (PAECs), and abnormal perivascular infiltration of immune cells result in pulmonary arterial remodeling, followed by increased pulmonary vascular resistance and pulmonary pressure. Although various drugs targeting nitric oxide, endothelin-1 and prostacyclin pathways have been used in clinical settings, the mortality of pulmonary hypertension remains high. Multiple molecular abnormalities have been implicated in pulmonary hypertension, changes in numerous transcription factors have been identified as key regulators in pulmonary hypertension, and a role for pulmonary vascular remodeling has been highlighted. This review consolidates evidence linking transcription factors and their molecular mechanisms, from pulmonary vascular intima PAECs, vascular media PASMCs, and pulmonary arterial adventitia fibroblasts to pulmonary inflammatory cells. These findings will improve the understanding of particularly interactions between transcription factor-mediated cellular signaling pathways and identify novel therapies for pulmonary hypertension.
Collapse
Affiliation(s)
- Liu Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Naifu Wan
- Department of Vascular & Cardiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanpeng Gong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianfeng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Guizhu Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Guizhu Liu,
| |
Collapse
|
20
|
Krüppel-like Factor 7 inhibits proliferation and migration of pulmonary smooth muscle cells via p21 activation. Eur J Pharmacol 2023; 940:175473. [PMID: 36566916 DOI: 10.1016/j.ejphar.2022.175473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The aberrant proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) are critical contributors to the pulmonary vascular remodeling that occurs during the development of Pulmonary arterial hypertension (PAH). Krüppel-like Factor 7 (KLF7) has been reported to be involved in the development of certain cardiovascular diseases. However, the role of KLF7 in PAH remains unknown. Here, we aimed to explore whether KLF7 mediates the proliferation and migration of PASMCs and its underlying mechanism. In this study, Sprague Dawley rats were exposed to 60 mg/kg monocrotaline (MCT) for 3 weeks to induce PAH and human PASMCs were stimulated with 20 ng/ml platelet-derived growth factor-BB (PDGF-BB) for 24 h to induce proliferation and migration. The mRNA and protein expression of KLF7 were significantly down-regulated in MCT-induced PAH rats and PDGF-BB-treated PASMCs. Under normal conditions, KLF7 knockdown obviously promoted PASMCs proliferation and migration, whereas KLF7 overexpression exhibited the opposite effects. Furthermore, PDGF-BB promoted the PASMCs proliferation and migration, increased the cell proportion in S phase, which was significantly attenuated by overexpression of KLF7. Mechanistic investigation indicated that KLF7 through activation its target protein, the cell cycle inhibitor p21, which finally leading to the inhibition of PASMCs growth. Consistently, UC2288, a specific inhibitor of p21, partially reversed the PASMCs proliferation inhibited by KLF7 overexpression. Taken collectively, the data suggested that KLF7 inhibits PASMCs proliferation and migration via p21 pathway and it may be used as a new therapeutic target for the PAH.
Collapse
|
21
|
Shen Y, Goncharov DA, Pena A, Baust J, Barragan AC, Ray A, Rode A, Bachman TN, Chang B, Jiang L, Dieffenbach P, Fredenburgh LE, Rojas M, DeLisser H, Mora AL, Kudryashova TV, Goncharova EA. Cross-talk between TSC2 and the extracellular matrix controls pulmonary vascular proliferation and pulmonary hypertension. Sci Signal 2022; 15:eabn2743. [PMID: 36473049 PMCID: PMC9869933 DOI: 10.1126/scisignal.abn2743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased proliferation and survival of cells in small pulmonary arteries (PAs) drive pulmonary arterial hypertension (PAH). Because cell growth mediated by the mTOR-containing mTORC1 complex is inhibited by tuberous sclerosis complex 2 (TSC2), we investigated the role of this GTPase-activating protein in PAH pathology. TSC2 abundance was decreased in remodeled small PAs and PA vascular smooth muscle cells (PAVSMCs) from patients with PAH or from rodent pulmonary hypertension (PH) models, as well as PAVSMCs maintained on substrates that reproduced pathology-induced stiffness. Accordingly, mice with smooth muscle-specific reduction in TSC2 developed PH. At the molecular level, decreased TSC2 abundance led to stiffness-induced PAVSMC proliferation, increased abundance of the mechanosensitive transcriptional coactivators YAP/TAZ, and enhanced mTOR kinase activity. Moreover, extracellular matrix (ECM) produced by TSC2-deficient PAVSMCs stimulated the proliferation of nondiseased PA adventitial fibroblasts and PAVSMCs through fibronectin and its receptor, the α5β1 integrin. Reconstituting TSC2 in PAVSMCs from patients with PAH through overexpression or treatment with the SIRT1 activator SRT2104 decreased YAP/TAZ abundance, mTOR activity, and ECM production, as well as inhibited proliferation and induced apoptosis. In two rodent models of PH, SRT2104 treatment restored TSC2 abundance, attenuated pulmonary vascular remodeling, and ameliorated PH. Thus, TSC2 in PAVSMCs integrates ECM composition and stiffness with pro-proliferative and survival signaling, and restoring TSC2 abundance could be an attractive therapeutic option to treat PH.
Collapse
Affiliation(s)
- Yuanjun Shen
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA 95616
| | - Dmitry A. Goncharov
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA 95616
| | - Andressa Pena
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Jeffrey Baust
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Andres Chavez Barragan
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Arnab Ray
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Analise Rode
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Timothy N. Bachman
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Baojun Chang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Lifeng Jiang
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA 95616
| | - Paul Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
| | - Laura E. Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Current affiliation: Regeneron Pharmaceuticals, Tarrytown, NY
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University College of Medicine, Columbus, OH, USA 43210
| | - Horace DeLisser
- Department of Pathology and Laboratory Medicine, Pulmonary Vascular Disease Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Ana L. Mora
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University College of Medicine, Columbus, OH, USA 43210
| | - Tatiana V. Kudryashova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA 95616
| | - Elena. A. Goncharova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA 95616
| |
Collapse
|
22
|
Davies DM, van den Handel K, Bharadwaj S, Lengefeld J. Cellular enlargement - A new hallmark of aging? Front Cell Dev Biol 2022; 10:1036602. [PMID: 36438561 PMCID: PMC9688412 DOI: 10.3389/fcell.2022.1036602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2023] Open
Abstract
Years of important research has revealed that cells heavily invest in regulating their size. Nevertheless, it has remained unclear why accurate size control is so important. Our recent study using hematopoietic stem cells (HSCs) in vivo indicates that cellular enlargement is causally associated with aging. Here, we present an overview of these findings and their implications. Furthermore, we performed a broad literature analysis to evaluate the potential of cellular enlargement as a new aging hallmark and to examine its connection to previously described aging hallmarks. Finally, we highlight interesting work presenting a correlation between cell size and age-related diseases. Taken together, we found mounting evidence linking cellular enlargement to aging and age-related diseases. Therefore, we encourage researchers from seemingly unrelated areas to take a fresh look at their data from the perspective of cell size.
Collapse
Affiliation(s)
- Daniel M. Davies
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kim van den Handel
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Soham Bharadwaj
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jette Lengefeld
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Hiraishi K, Kurahara LH, Ishikawa K, Go T, Yokota N, Hu Y, Fujita T, Inoue R, Hirano K. Potential of the TRPM7 channel as a novel therapeutic target for pulmonary arterial hypertension. J Smooth Muscle Res 2022; 58:50-62. [PMID: 35944979 PMCID: PMC9364263 DOI: 10.1540/jsmr.58.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an intractable vascular disease characterized by
a progressive increase in pulmonary vascular resistance caused by pulmonary vascular
remodeling, which ultimately leads to right-sided heart failure. PAH remains incurable,
despite the development of PAH-targeted therapeutics centered on pulmonary artery
relaxants. It is necessary to identify the target molecules that contribute to pulmonary
artery remodeling. Transient receptor potential (TRP) channels have been suggested to
modulate pulmonary artery remodeling. Our study focused on the transient receptor
potential ion channel subfamily M, member 7, or the TRPM7 channel, which modulates
endothelial-to-mesenchymal transition and smooth muscle proliferation in the pulmonary
artery. In this review, we summarize the role and expression profile of TRPM7 channels in
PAH progression and discuss TRPM7 channels as possible therapeutic targets. In addition,
we discuss the therapeutic effect of a Chinese herbal medicine, Ophiocordyceps
sinensis (OCS), on PAH progression, which partly involves TRPM7 inhibition.
Collapse
Affiliation(s)
- Keizo Hiraishi
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.,Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Kaori Ishikawa
- Department of General Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Tetsuhiko Go
- Department of General Thoracic Surgery, Faculty of Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Naoya Yokota
- Department of General Thoracic Surgery, Faculty of Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yaopeng Hu
- Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Takayuki Fujita
- Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Ryuji Inoue
- Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|
24
|
Sun Y, Wu W, Zhao Q, Jiang R, Li J, Wang L, Xia S, Liu M, Gong S, Liu J, Yuan P. CircGSAP regulates the cell cycle of pulmonary microvascular endothelial cells via the miR-942-5p sponge in pulmonary hypertension. Front Cell Dev Biol 2022; 10:967708. [PMID: 36060794 PMCID: PMC9428790 DOI: 10.3389/fcell.2022.967708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background We recently demonstrated that circGSAP was diminished in lung tissues from patients with pulmonary arterial hypertension and in hypoxia-induced pulmonary microvascular endothelial cells (PMECs). However, the underlying role of circGSAP in PMECs remains unknown. The study aimed to investigate the contribution of circGSAP to proliferation, apoptosis and cell cycle of PMECs in hypoxic environment and explore the mechanism.Methods The expression of circGSAP was quantified by real-time PCR or immunofluorescence in human lung tissue and PMECs. CircGSAP plasmid, circGSAP small interfering RNA (siRNA), miRNA inhibitor and target gene siRNA were synthesized to verify the role of circGSAP on regulating the proliferation, apoptosis, and cell cycle of PMECs.Results CircGSAP levels were decreased in lungs and plasma of patients with pulmonary hypertension second to chronic obstructive pulmonary disease (COPD-PH) and were associated with poor outcomes of COPD-PH patients. Upregulation of circGSAP inhibited proliferation, apoptosis resistance and G1/S transition of PMECs. Dual luciferase reporter assays showed that circGSAP acted as a competitive endogenous RNA regulating miR-942-5p, and identified SMAD4 as a target gene of miR-942-5p, Then, we verified the functions of miR-942-5p and SMAD4 in PMECs. In addition, the effect of circGSAP siRNA on PMECs was mitigated by transfection of miR-942-5p inhibitor, and the effect of miR-942-5p inhibitor on PMECs was inhibited by SMAD4 siRNA.Conclusion Our findings demonstrated that diminished circGSAP accelerated cell cycle to facilitate cell proliferation and apoptosis resistance through competitively binding miR-942-5p to modulate SMAD4 expressions in hypoxia-induced PMECs, indicating potential therapeutic strategies for PH.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinling Li
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shijin Xia
- Department of Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| | - Mingjie Liu
- Department of Lung Function, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Jinming Liu, ; Ping Yuan,
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Jinming Liu, ; Ping Yuan,
| |
Collapse
|
25
|
Zhang Z, Liu C, Bai Y, Li X, Gao X, Li C, Guo G, Chen S, Sun M, Liu K, Li Y, He K. Pipersentan: A De Novo Synthetic Endothelin Receptor Antagonist that Inhibits Monocrotaline- and Hypoxia-Induced Pulmonary Hypertension. Front Pharmacol 2022; 13:920222. [PMID: 35795553 PMCID: PMC9251115 DOI: 10.3389/fphar.2022.920222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Although major advances have been made in the pathogenesis and management of pulmonary arterial hypertension (PAH), the endothelin system is still considered to play a vital role in the pathology of PAH due to its vasoconstrictive action. Endothelin receptor antagonists (ERAs), either as monotherapy or in combination with other drugs, have attracted much attention in the treatment of this lethal disease, and research is continuing. Methods: A novel ERA, pipersentan 5-(1,3-Benzodioxol-5-yl)-6-[2-(5-bromopyrimidin-2-yl)oxyethoxy]-N-(2-methoxyethylsulfamoyl)pyrimidin-4-amine, was recently synthesized and the physicochemical characterizations and the pharmacology both in vitro and in vivo were studied. Results: This orally administered ERA can both competitively and selectively inhibit the binding of endothelin-1 (ET-1) to its receptors with good physicochemical characteristics. Pipersentan efficaciously antagonized the effects of ET-1 on pulmonary artery smooth muscle cell proliferation, migration and calcium mobilization and effectively improved right ventricular hypertrophy and pulmonary arterial pressure in both monocrotaline- and hypoxia-induced pulmonary hypertension (PH) rat models. Conclusions: This profile identifies pipersentan as a new agent for treating ET-1 system activation-related PH.
Collapse
Affiliation(s)
- Zeyu Zhang
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunlei Liu
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yongyi Bai
- Department of Cardiology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xiaojian Gao
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Chen Li
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Ge Guo
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Si Chen
- Senior Department of Cardiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mingzhuang Sun
- Senior Department of Cardiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kang Liu
- Senior Department of Cardiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Li
- Senior Department of Cardiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Kunlun He,
| |
Collapse
|
26
|
Aguilar D, Bosacoma A, Blanco I, Tura-Ceide O, Serrano-Mollar A, Barberà JA, Peinado VI. Differences and Similarities between the Lung Transcriptomic Profiles of COVID-19, COPD, and IPF Patients: A Meta-Analysis Study of Pathophysiological Signaling Pathways. Life (Basel) 2022; 12:887. [PMID: 35743918 PMCID: PMC9227224 DOI: 10.3390/life12060887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 11/20/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic respiratory disease associated with high morbidity and mortality. Although many patients recover, long-term sequelae after infection have become increasingly recognized and concerning. Among other sequelae, the available data indicate that many patients who recover from COVID-19 could develop fibrotic abnormalities over time. To understand the basic pathophysiology underlying the development of long-term pulmonary fibrosis in COVID-19, as well as the higher mortality rates in patients with pre-existing lung diseases, we compared the transcriptomic fingerprints among patients with COVID-19, idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD) using interactomic analysis. Patients who died of COVID-19 shared some of the molecular biological processes triggered in patients with IPF, such as those related to immune response, airway remodeling, and wound healing, which could explain the radiological images seen in some patients after discharge. However, other aspects of this transcriptomic profile did not resemble the profile associated with irreversible fibrotic processes in IPF. Our mathematical approach instead showed that the molecular processes that were altered in COVID-19 patients more closely resembled those observed in COPD. These data indicate that patients with COPD, who have overcome COVID-19, might experience a faster decline in lung function that will undoubtedly affect global health.
Collapse
Affiliation(s)
- Daniel Aguilar
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREDH), 28005 Madrid, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.B.); (I.B.); (O.T.-C.); (A.S.-M.); (J.A.B.)
| | - Adelaida Bosacoma
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.B.); (I.B.); (O.T.-C.); (A.S.-M.); (J.A.B.)
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Isabel Blanco
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.B.); (I.B.); (O.T.-C.); (A.S.-M.); (J.A.B.)
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona, 08007 Barcelona, Spain
| | - Olga Tura-Ceide
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.B.); (I.B.); (O.T.-C.); (A.S.-M.); (J.A.B.)
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona, 08007 Barcelona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Anna Serrano-Mollar
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.B.); (I.B.); (O.T.-C.); (A.S.-M.); (J.A.B.)
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain
| | - Joan Albert Barberà
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.B.); (I.B.); (O.T.-C.); (A.S.-M.); (J.A.B.)
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona, 08007 Barcelona, Spain
| | - Victor Ivo Peinado
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.B.); (I.B.); (O.T.-C.); (A.S.-M.); (J.A.B.)
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona, 08007 Barcelona, Spain
- Department of Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain
| |
Collapse
|
27
|
Yu W, Xu G, Chen H, Xiao L, Liu G, Hu P, Li S, Kasim V, Zeng C, Tong X. The substitution of SERCA2 redox cysteine 674 promotes pulmonary vascular remodeling by activating IRE1 α/XBP1s pathway. Acta Pharm Sin B 2022; 12:2315-2329. [PMID: 35646520 PMCID: PMC9136575 DOI: 10.1016/j.apsb.2021.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by pulmonary vascular remodeling, in which hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) plays an important role. The cysteine 674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) is the critical redox regulatory cysteine to regulate SERCA2 activity. Heterozygous SERCA2 C674S knock-in mice (SKI), where one copy of C674 was substituted by serine to represent partial C674 oxidative inactivation, developed significant pulmonary vascular remodeling resembling human PH, and their right ventricular systolic pressure modestly increased with age. In PASMCs, substitution of C674 activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway, accelerated cell cycle and cell proliferation, which reversed by IRE1α/XBP1s pathway inhibitor 4μ8C. In addition, suppressing the IRE1α/XBP1s pathway prevented pulmonary vascular remodeling caused by substitution of C674. Similar to SERCA2a, SERCA2b is also important to restrict the proliferation of PASMCs. Our study articulates the causal effect of C674 oxidative inactivation on the development of pulmonary vascular remodeling and PH, emphasizing the importance of C674 in restricting PASMC proliferation to maintain pulmonary vascular homeostasis. Moreover, the IRE1α/XBP1s pathway and SERCA2 might be potential targets for PH therapy.
Collapse
Affiliation(s)
- Weimin Yu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Institute of Health Biological Chemical Medication, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing 400038, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Li Xiao
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Pingping Hu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Corresponding author.
| |
Collapse
|
28
|
Predescu DN, Mokhlesi B, Predescu SA. The Impact of Sex Chromosomes in the Sexual Dimorphism of Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:582-594. [PMID: 35114193 PMCID: PMC8978209 DOI: 10.1016/j.ajpath.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 02/09/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a sex-biased disease with a poorly understood female prevalence. Emerging research suggests that nonhormonal factors, such as the XX or XY sex chromosome complement and sex bias in gene expression, may also lead to sex-based differences in PAH incidence, penetrance, and progression. Typically, one of females' two X chromosomes is epigenetically silenced to offer a gender-balanced gene expression. Recent data demonstrate that the long noncoding RNA X-inactive specific transcript, essential for X chromosome inactivation and dosage compensation of X-linked gene expression, shows elevated levels in female PAH lung specimens compared with controls. This molecular event leads to incomplete inactivation of the females' second X chromosome, abnormal expression of X-linked gene(s) involved in PAH pathophysiology, and a pulmonary artery endothelial cell (PAEC) proliferative phenotype. Moreover, the pathogenic proliferative p38 mitogen-activated protein kinase/ETS transcription factor ELK1 (Elk1)/cFos signaling is mechanistically linked to the sexually dimorphic proliferative response of PAECs in PAH. Apprehending the complicated relationship between long noncoding RNA X-inactive specific transcript and X-linked genes and how this relationship integrates into a sexually dimorphic proliferation of PAECs and PAH sex paradox remain challenging. We highlight herein new findings related to how the sex chromosome complement and sex-differentiated epigenetic mechanisms to control gene expression are decisive players in the sexual dimorphism of PAH. Pharmacologic interventions in the light of the newly elucidated mechanisms are discussed.
Collapse
Affiliation(s)
- Dan N Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois.
| | - Babak Mokhlesi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sanda A Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
29
|
Veith C, Vartürk-Özcan I, Wujak M, Hadzic S, Wu CY, Knoepp F, Kraut S, Petrovic A, Gredic M, Pak O, Brosien M, Heimbrodt M, Wilhelm J, Weisel FC, Malkmus K, Schäfer K, Gall H, Tello K, Kosanovic D, Sydykov A, Sarybaev A, Günther A, Brandes RP, Seeger W, Grimminger F, Ghofrani HA, Schermuly RT, Kwapiszewska G, Sommer N, Weissmann N. SPARC, a Novel Regulator of Vascular Cell Function in Pulmonary Hypertension. Circulation 2022; 145:916-933. [PMID: 35175782 DOI: 10.1161/circulationaha.121.057001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a life-threatening disease, characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary arterial pressure and right heart hypertrophy. PH can be caused by chronic hypoxia, leading to hyper-proliferation of pulmonary arterial smooth muscle cells (PASMCs) and apoptosis-resistant pulmonary microvascular endothelial cells (PMVECs). On reexposure to normoxia, chronic hypoxia-induced PH in mice is reversible. In this study, the authors aim to identify novel candidate genes involved in pulmonary vascular remodeling specifically in the pulmonary vasculature. METHODS After microarray analysis, the authors assessed the role of SPARC (secreted protein acidic and rich in cysteine) in PH using lung tissue from idiopathic pulmonary arterial hypertension (IPAH) patients, as well as from chronically hypoxic mice. In vitro studies were conducted in primary human PASMCs and PMVECs. In vivo function of SPARC was proven in chronic hypoxia-induced PH in mice by using an adeno-associated virus-mediated Sparc knockdown approach. RESULTS C57BL/6J mice were exposed to normoxia, chronic hypoxia, or chronic hypoxia with subsequent reexposure to normoxia for different time points. Microarray analysis of the pulmonary vascular compartment after laser microdissection identified Sparc as one of the genes downregulated at all reoxygenation time points investigated. Intriguingly, SPARC was vice versa upregulated in lungs during development of hypoxia-induced PH in mice as well as in IPAH, although SPARC plasma levels were not elevated in PH. TGF-β1 (transforming growth factor β1) or HIF2A (hypoxia-inducible factor 2A) signaling pathways induced SPARC expression in human PASMCs. In loss of function studies, SPARC silencing enhanced apoptosis and reduced proliferation. In gain of function studies, elevated SPARC levels induced PASMCs, but not PMVECs, proliferation. Coculture and conditioned medium experiments revealed that PMVECs-secreted SPARC acts as a paracrine factor triggering PASMCs proliferation. Contrary to the authors' expectations, in vivo congenital Sparc knockout mice were not protected from hypoxia-induced PH, most probably because of counter-regulatory proproliferative signaling. However, adeno-associated virus-mediated Sparc knockdown in adult mice significantly improved hemodynamic and cardiac function in PH mice. CONCLUSIONS This study provides evidence for the involvement of SPARC in the pathogenesis of human PH and chronic hypoxia-induced PH in mice, most likely by affecting vascular cell function.
Collapse
Affiliation(s)
- Christine Veith
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Ipek Vartürk-Özcan
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Magdalena Wujak
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany.,Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland (M.W.)
| | - Stefan Hadzic
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Cheng-Yu Wu
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Fenja Knoepp
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Simone Kraut
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Aleksandar Petrovic
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Marija Gredic
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Oleg Pak
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Monika Brosien
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Marie Heimbrodt
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany.,Institute for Lung Health (J.W., W.S., G.K.), Justus-Liebig-University, Giessen, Germany
| | - Friederike C Weisel
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Kathrin Malkmus
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Katharina Schäfer
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Henning Gall
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Khodr Tello
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia (D.K.)
| | - Akylbek Sydykov
- Kyrgyz National Center for Cardiology and Internal Medicine and Kyrgyz Indian Mountain Biomedical Research Center, Bishkek, Kyrgyz Republic (A.Sarybaev)
| | - Akpay Sarybaev
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Andreas Günther
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany (R.P.B.)
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany.,Institute for Lung Health (J.W., W.S., G.K.), Justus-Liebig-University, Giessen, Germany
| | - Friedrich Grimminger
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Grazyna Kwapiszewska
- Institute for Lung Health (J.W., W.S., G.K.), Justus-Liebig-University, Giessen, Germany.,Ludwig Boltzmann Institute for Lung Vascular Research and Otto Loewi Center, Physiology, Medical University of Graz, Graz, Austria (G.K.)
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S., N.S., N.W.), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
30
|
Wang J, Niu Y, Luo L, Lu Z, Chen Q, Zhang S, Guo Q, Li L, Gou D. Decoding ceRNA regulatory network in the pulmonary artery of hypoxia-induced pulmonary hypertension (HPH) rat model. Cell Biosci 2022; 12:27. [PMID: 35255963 PMCID: PMC8900362 DOI: 10.1186/s13578-022-00762-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
Background Hypoxia-induced pulmonary hypertension (HPH) is a lethal cardiovascular disease with the characteristic of severe remodeling of pulmonary vascular. Although a large number of dysregulated mRNAs, lncRNAs, circRNAs, and miRNAs related to HPH have been identified from extensive studies, the competitive endogenous RNA (ceRNA) regulatory network in the pulmonary artery that responds to hypoxia remains largely unknown. Results Transcriptomic profiles in the pulmonary arteries of HPH rats were characterized through high-throughput RNA sequencing in this study. Through relatively strict screening, a set of differentially expressed RNAs (DERNAs) including 19 DEmRNAs, 8 DElncRNAs, 19 DEcircRNAs, and 23 DEmiRNAs were identified between HPH and normal rats. The DEmRNAs were further found to be involved in cell adhesion, axon guidance, PPAR signaling pathway, and calcium signaling pathway, suggesting their crucial role in HPH. Moreover, a hypoxia-induced ceRNA regulatory network in the pulmonary arteries of HPH rats was constructed according to the ceRNA hypothesis. More specifically, the ceRNA network was composed of 10 miRNAs as hub nodes, which might be sponged by 6 circRNAs and 7 lncRNAs, and directed the expression of 18 downstream target genes that might play important role in the progression of HPH. The expression patterns of selected DERNAs in the ceRNA network were then validated to be consistent with sequencing results in another three independent batches of HPH and normal control rats. The diagnostic effectiveness of several hub mRNAs in ceRNA network was further evaluated through investigating their expression profiles in patients with pulmonary artery hypertension (PAH) recorded in the Gene Expression Omnibus (GEO) dataset GSE117261. Dysregulated POSTN, LTBP2, SPP1, and LSAMP were observed in both the pulmonary arteries of HPH rats and lung tissues of PAH patients. Conclusions A ceRNA regulatory network in the pulmonary arteries of HPH rats was constructed, 10 hub miRNAs and their corresponding interacting lncRNAs, circRNAs, and mRNAs were identified. The expression patterns of selected DERNAs were further validated to be consistent with the sequencing result. POSTN, LTBP2, SPP1, and LSAMP were suggested to be potential diagnostic biomarkers and therapeutic targets for PAH. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00762-1.
Collapse
Affiliation(s)
- Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Lingjie Luo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Zefeng Lu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Qinghua Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Shasha Zhang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Qianwen Guo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Li Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
31
|
Xie Z, Hou S, Yang X, Duan Y, Han J, Wang Q, Liao C. Lessons Learned from Past Cyclin-Dependent Kinase Drug Discovery Efforts. J Med Chem 2022; 65:6356-6389. [PMID: 35235745 DOI: 10.1021/acs.jmedchem.1c02190] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inhibition of cyclin-dependent kinases (CDKs) has become an effective therapeutic strategy for treating various diseases, especially cancer. Over almost three decades, although great efforts have been made to discover CDK inhibitors, many of which have entered clinical trials, only four CDK inhibitors have been approved. In the process of CDK inhibitor development, many difficulties and misunderstandings have hampered their discovery and clinical applications, which mainly include inadequate understanding of the biological functions of CDKs, less attention paid to pan- and multi-CDK inhibitors, nonideal isoform selectivity of developed selective CDK inhibitors, overlooking the metabolic stability of early discovered CDK inhibitors, no effective resistance solutions, and a lack of available combination therapy and effective biomarkers for CDK therapies. After reviewing the mechanisms of CDKs and the research progress of CDK inhibitors, this perspective summarizes and discusses these difficulties or lessons, hoping to facilitate the successful discovery of more useful CDK inhibitors.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Shuzeng Hou
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qin Wang
- Department of Otolaryngology─Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
32
|
Flavopiridol Mitigates the Progression of Monocrotaline-Induced Pulmonary Hypertension in Rats by Targeting Cyclin-Dependent Kinase 9. Cardiovasc Drugs Ther 2022; 37:449-460. [PMID: 35088192 PMCID: PMC10164032 DOI: 10.1007/s10557-021-07285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE To investigate the role of cyclin-dependent kinase 9 (CDK9) and the therapeutic potential of a CDK9 inhibitor (flavopiridol) in monocrotaline (MCT)-induced pulmonary hypertension (PH). METHODS For the in vivo experiments, rats with PH were established by a single intraperitoneal injection of MCT (60 mg/kg). After 2 weeks of MCT injection, rats were then treated with flavopiridol (5 mg/kg, i.p., twice a week) or vehicle for 2 weeks. For the in vitro experiments, human pulmonary artery smooth muscle cells (HPASMCs) were treated with flavopiridol (0.025-1 μM) or vehicle under hypoxic conditions. Hemodynamic recording, right ventricle histology, lung histology, and pulmonary arterial tissue isolation were performed. The expression levels of CDK9, RNA polymerase II, c-Myc, Mcl-1, and survivin were determined by qRT-PCR and western blotting, and the proliferation and apoptosis of rat pulmonary arterial tissues and/or HPASMCs were also assayed. RESULTS Compared to the control group, CDK9 was upregulated in pulmonary arterial tissues from MCT-induced PH rats and hypoxic cultured HPASMCs. Upregulation of CDK9 was associated with enhanced phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (RNA pol II) at serine-2 (Ser-2), promoting the expression of prosurvival and antiapoptotic proteins (c-Myc, Mcl-1, and survivin). Furthermore, treatment with flavopiridol (5 mg/kg) significantly alleviated pulmonary artery remodeling and partially reversed the progression of MCT-induced PH. Consistently, flavopiridol (0.5 μM) treatment decreased the proliferation and induced the apoptosis of cultured HPASMCs under hypoxic conditions. As a result of CDK9 inhibition and subsequent inhibition of RNA pol II CTD phosphorylation at Ser-2, flavopiridol decreased c-Myc, Mcl-1, and survivin expression in isolated pulmonary small arteries, leading to cell growth inhibition and apoptosis. CONCLUSION Flavopiridol mitigates the progression of MCT-induced PH in rats by targeting CDK9.
Collapse
|
33
|
Wang M, Su L, Sun J, Cai L, Li X, Zhu X, Song L, Li J, Tong S, He Q, Cai M, Yang L, Chen Y, Wang L, Huang X. FGF21 attenuates pulmonary arterial hypertension via downregulation of miR-130, which targets PPARγ. J Cell Mol Med 2022; 26:1034-1049. [PMID: 34989130 PMCID: PMC8831951 DOI: 10.1111/jcmm.17154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022] Open
Abstract
The proliferation, migration and apoptotic resistance of pulmonary artery smooth muscle cells (PASMCs) are central to the progression of pulmonary arterial hypertension (PAH). Our previous study identified that fibroblast growth factor 21 (FGF21) regulates signalling pathway molecules, such as peroxisome proliferator‐activated receptor gamma (PPARγ), to play an important role in PAH treatment. However, the biological roles of miRNAs in these effects are not yet clear. In this study, using miRNA sequencing and real‐time PCR, we found that FGF21 treatment inhibited miR‐130 elevation in hypoxia‐induced PAH in vitro and in vivo. Dual luciferase reporter gene assays showed that miR‐130 directly negatively regulates PPARγ expression. Inhibition of miR‐130 expression suppressed abnormal proliferation, migration and apoptotic resistance in hypoxic PASMCs, and this effect was corrected upon PPARγ knockdown. Both the ameliorative effect of FGF21 on pulmonary vascular remodelling and the inhibitory effect on proliferation, migration and apoptotic resistance in PASMCs were observed following exogenous administration of miR‐130 agomir. In conclusion, this study revealed the protective effect and mechanism of FGF21 on PAH through regulation of the miR‐130/PPARγ axis, providing new ideas for the development of potential drugs for PAH based on FGF21.
Collapse
Affiliation(s)
- Meibin Wang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lihuang Su
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junwei Sun
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luqiong Cai
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuchun Li
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiayan Zhu
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lanlan Song
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingyin Li
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuolan Tong
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinlian He
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengsi Cai
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lehe Yang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanfan Chen
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liangxing Wang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
34
|
Gu C, Wang Y, Zhang L, Qiao L, Sun S, Shao M, Tang X, Ding P, Tang C, Cao Y, Zhou Y, Guo M, Wei R, Li N, Xiao Y, Duan J, Yang Y. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:11. [PMID: 34991674 PMCID: PMC8734095 DOI: 10.1186/s13046-021-02220-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/13/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Currently, multiple myeloma (MM) is still an incurable plasma cell malignancy in urgent need of novel therapeutic targets and drugs. METHODS Bufalin was known as a highly toxic but effective anti-cancer compound. We used Bufalin as a probe to screen its potential targets by proteome microarray, in which AHSA1 was the unique target of Bufalin. The effects of AHSA1 on cellular proliferation and drug resistance were determined by MTT, western blot, flow cytometry, immunohistochemistry staining and xenograft model in vivo. The potential mechanisms of Bufalin and KU-177 in AHSA1/HSP90 were verified by co-immunoprecipitation, mass spectrometry, site mutation and microscale thermophoresis assay. RESULTS AHSA1 expression was increased in MM samples compared to normal controls, which was significantly associated with MM relapse and poor outcomes. Furthermore, AHSA1 promoted MM cell proliferation and proteasome inhibitor (PI) resistance in vitro and in vivo. Mechanism exploration indicated that AHSA1 acted as a co-chaperone of HSP90A to activate CDK6 and PSMD2, which were key regulators of MM proliferation and PI resistance respectively. Additionally, we identified AHSA1-K137 as the specific binding site of Bufalin on AHSA1, mutation of which decreased the interaction of AHSA1 with HSP90A and suppressed the function of AHSA1 on mediating CDK6 and PSMD2. Intriguingly, we discovered KU-177, an AHSA1 selective inhibitor, and found KU-177 targeting the same site as Bufalin. Bufalin and KU-177 treatments hampered the proliferation of flow MRD-positive cells in both primary MM and recurrent MM patient samples. Moreover, KU-177 abrogated the cellular proliferation and PI resistance induced by elevated AHSA1, and decreased the expression of CDK6 and PSMD2. CONCLUSIONS We demonstrate that AHSA1 may serve as a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma.
Collapse
Affiliation(s)
- Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yajun Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lulin Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Qiao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Miaomiao Shao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Pinggang Ding
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chao Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuhao Cao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanyan Zhou
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengjie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rongfang Wei
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yibei Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Jinao Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
35
|
Woods ML, Weiss A, Sokol AM, Graumann J, Boettger T, Richter AM, Schermuly RT, Dammann RH. Epigenetically silenced apoptosis-associated tyrosine kinase (AATK) facilitates a decreased expression of Cyclin D1 and WEE1, phosphorylates TP53 and reduces cell proliferation in a kinase-dependent manner. Cancer Gene Ther 2022; 29:1975-1987. [PMID: 35902728 PMCID: PMC9750878 DOI: 10.1038/s41417-022-00513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023]
Abstract
Silencing of the Apoptosis associated Tyrosine Kinase gene (AATK) has been described in cancer. In our study, we specifically investigated the epigenetic inactivation of AATK in pancreatic adenocarcinoma, lower grade glioma, lung, breast, head, and neck cancer. The resulting loss of AATK correlates with impaired patient survival. Inhibition of DNA methyltransferases (DNMTs) reactivated AATK in glioblastoma and pancreatic cancer. In contrast, epigenetic targeting via the CRISPR/dCas9 system with either EZH2 or DNMT3A inhibited the expression of AATK. Via large-scale kinomic profiling and kinase assays, we demonstrate that AATK acts a Ser/Thr kinase that phosphorylates TP53 at Ser366. Furthermore, whole transcriptome analyses and mass spectrometry associate AATK expression with the GO term 'regulation of cell proliferation'. The kinase activity of AATK in comparison to the kinase-dead mutant mediates a decreased expression of the key cell cycle regulators Cyclin D1 and WEE1. Moreover, growth suppression through AATK relies on its kinase activity. In conclusion, the Ser/Thr kinase AATK represses growth and phosphorylates TP53. Furthermore, expression of AATK was correlated with a better patient survival for different cancer entities. This data suggests that AATK acts as an epigenetically inactivated tumor suppressor gene.
Collapse
Affiliation(s)
- Michelle L. Woods
- grid.8664.c0000 0001 2165 8627Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Astrid Weiss
- grid.8664.c0000 0001 2165 8627Department of Internal Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany ,grid.452624.3German Center for Lung Research (DZL), Giessen, Germany
| | - Anna M. Sokol
- grid.418032.c0000 0004 0491 220XScientific Service Group Biomolecular Mass Spectrometry, Max-Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Johannes Graumann
- grid.418032.c0000 0004 0491 220XScientific Service Group Biomolecular Mass Spectrometry, Max-Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany ,grid.10253.350000 0004 1936 9756Present Address: Institute for Translational Proteomics, Department of Medicine, Philipps-University, 35037 Marburg, Germany
| | - Thomas Boettger
- grid.418032.c0000 0004 0491 220XMax-Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Antje M. Richter
- grid.8664.c0000 0001 2165 8627Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ralph T. Schermuly
- grid.8664.c0000 0001 2165 8627Department of Internal Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany ,grid.452624.3German Center for Lung Research (DZL), Giessen, Germany
| | - Reinhard H. Dammann
- grid.8664.c0000 0001 2165 8627Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany ,grid.440517.3German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392 Giessen, Germany
| |
Collapse
|
36
|
Kelly NJ, Chan SY. Pulmonary Arterial Hypertension: Emerging Principles of Precision Medicine across Basic Science to Clinical Practice. Rev Cardiovasc Med 2022; 23:378. [PMID: 36875282 PMCID: PMC9980296 DOI: 10.31083/j.rcm2311378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an enigmatic and deadly vascular disease with no known cure. Recent years have seen rapid advances in our understanding of the molecular underpinnings of PAH, with an expanding knowledge of the molecular, cellular, and systems-level drivers of disease that are being translated into novel therapeutic modalities. Simultaneous advances in clinical technology have led to a growing list of tools with potential application to diagnosis and phenotyping. Guided by fundamental biology, these developments hold the potential to usher in a new era of personalized medicine in PAH with broad implications for patient management and great promise for improved outcomes.
Collapse
Affiliation(s)
- Neil J Kelly
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
37
|
Yamamoto A, Saito T, Hosoya T, Kawahata K, Asano Y, Sato S, Mizoguchi F, Yasuda S, Kohsaka H. Therapeutic effect of cyclin-dependent kinase 4/6 inhibitor on dermal fibrosis in murine models of systemic sclerosis. Arthritis Rheumatol 2021; 74:860-870. [PMID: 34882985 DOI: 10.1002/art.42042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/18/2021] [Accepted: 12/02/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Histology of systemic sclerosis (SSc) includes an increased number of myofibroblasts, where transforming growth factor-β (TGF-β) plays a crucial role to promote dermal fibrosis. The objectives of this study were to examine whether the inhibition of cell cycle with cyclin-dependent kinase (CDK) 4/6 inhibitor suppress fibroblast proliferation and the differentiation into myofibroblasts, and the therapeutic effect of a CDK4/6 inhibitor on dermal fibrosis in murine models of SSc in monotherapy or in combination with TGF-β receptor inhibitor (TGFβRI). METHODS SSc fibroblasts were cultured in the presence or absence of TGF-β. Effects of palbociclib (CDKI), a CDK4/6 inhibitor, on fibroblast proliferation and TGF-β-induced differentiation into myofibroblasts were examined with BrdU uptake, immunofluorescence, and immunoblotting. Hypochlorous acid (HOCl)- and bleomycin-induced dermal fibrosis models were used to study the effect of CDKI on dermal fibrosis in monotherapy or in combination with galunisertib, a TGFβRI. RESULTS CDKI suppressed the proliferation of SSc fibroblasts and their TGF-β-induced differentiation into myofibroblast without inhibiting canonical and non-canonical TGF-β signals. Treatment of dermal fibrosis models with CDKI decreased dermal thickness and collagen content, as well as fibroblast proliferation and myofibroblast number. The combination therapy with CDKI and TGFβRI exerted additive anti-fibrotic effects. Mechanistically, CDKI suppressed the expression of cellular communication network (CCN) 2 and cadherin-11 important for fibrosis. CONCLUSION We demonstrated the therapeutic effect of CDKI on dermal fibrosis in monotherapy or in combination with TGFβRI. CDKI should be a novel agent for the treatment of SSc, which may be used with TGFβRI to increase the efficacy.
Collapse
Affiliation(s)
- Akio Yamamoto
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Saito
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tadashi Hosoya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kimito Kawahata
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumitaka Mizoguchi
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hitoshi Kohsaka
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
38
|
Liu Y, Yu F, Dai S, Meng T, Zhu Y, Qiu G, Wen L, Zhou X, Yuan H, Hu F. All-Trans Retinoic Acid and Doxorubicin Delivery by Folic Acid Modified Polymeric Micelles for the Modulation of Pin1-Mediated DOX-Induced Breast Cancer Stemness and Metastasis. Mol Pharm 2021; 18:3966-3978. [PMID: 34579532 DOI: 10.1021/acs.molpharmaceut.1c00220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stemness and metastasis are the two main challenges in cancer therapy and are related to disease relapse post-treatment. They both have a strong correlation with chemoresistance and poor prognosis, ultimately leading to treatment failure. It has been reported that chemotherapy can induce stemness and metastasis in many cancer types, especially treatment with the chemotherapeutic agent doxorubicin (DOX) in breast cancer. A combination treatment is an efficient and elegant approach in cancer therapy through simultaneous delivery of two or more drugs with a delivery system for its synergistic effect, which is not an additive of two individual drugs. Herein, we report a combinatorial system with DOX and all-trans retinoic acid (ATRA) to address both of the above issues. As a common critical regulatory factor for oncogenic signal transduction pathways, Pin1 is a specific isomerase highly expressed within various tumor cells. ATRA, a newly identified Pin1 inhibitor, can abolish several oncogenic pathways by effectively inhibiting and degrading overexpressed Pin1. We successfully developed a folic acid (FA)-modified chitosan (CSO)-derived polymer (FA-CSOSA) and obtained FA-CSOSA/DOX and FA-CSOSA/ATRA drug-loaded micelles. FA modification can improve the uptake of the nanoparticles in tumor cells and tumor sites via folate receptor-mediated cell internalization. Compared to treatment with DOX alone, the combined treatment induced 4T1 cell apoptosis in a synergistic manner. Reduced stemness-related protein expression and inhibited metastasis were observed during treatment with FA-CSOSA/DOX and FA-CSOSA/ATRA and were found to be associated with Pin1. Further in vivo experiments showed that treatment with FA-CSOSA/DOX and FA-CSOSA/ATRA resulted in 85.5% tumor inhibition, which was 2.5-fold greater than that of cells treated with DOX·HCl alone. This work presents a new paradigm for addressing chemotherapy-induced side effects via degradation of Pin1 induced by tumor-targeted delivery of DOX and ATRA.
Collapse
Affiliation(s)
- Yupeng Liu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China.,Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, People's Republic of China
| | - Fangying Yu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Suhuan Dai
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Yun Zhu
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan 316021, People's Republic of China
| | - Guoxi Qiu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Lijuan Wen
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China.,National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 342700, People's Republic of China
| | - Xueqing Zhou
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| |
Collapse
|
39
|
Meyer A, Yan S, Golumba-Nagy V, Esser RL, Barbarino V, Blakemore SJ, Rusyn L, Nikiforov A, Seeger-Nukpezah T, Grüll H, Pallasch CP, Kofler DM. Kinase activity profiling reveals contribution of G-protein signaling modulator 2 deficiency to impaired regulatory T cell migration in rheumatoid arthritis. J Autoimmun 2021; 124:102726. [PMID: 34555678 DOI: 10.1016/j.jaut.2021.102726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022]
Abstract
The ability of regulatory T (Treg) cells to migrate into inflammatory sites is reduced in autoimmune diseases, including rheumatoid arthritis (RA). The reasons for impaired Treg cell migration remain largely unknown. We performed multiplex human kinase activity arrays to explore possible differences in the post-translational phosphorylation status of kinase related proteins that could account for altered Treg cell migration in RA. Results were verified by migration assays and Western blot analysis of CD4+ T cells from RA patients and from mice with collagen type II induced arthritis. Kinome profiling of CD4+ T cells from RA patients revealed significantly altered post-translational phosphorylation of kinase related proteins, including G-protein-signaling modulator 2 (GPSM2), protein tyrosine kinase 6 (PTK6) and vitronectin precursor (VTNC). These proteins have not been associated with RA until now. We found that GPSM2 expression is reduced in CD4+ T cells from RA patients and is significantly downregulated in experimental autoimmune arthritis following immunization of mice with collagen type II. Interestingly, GPSM2 acts as a promoter of Treg cell migration in healthy individuals. Treatment of RA patients with interleukin-6 receptor (IL-6R) blocking antibodies restores GPSM2 expression, thereby improving Treg cell migration. Our study highlights the potential of multiplex kinase activity arrays as a tool for the identification of RA-related proteins which could serve as targets for novel treatments.
Collapse
Affiliation(s)
- Anja Meyer
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Viktoria Golumba-Nagy
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ruth L Esser
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Barbarino
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stuart J Blakemore
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lisa Rusyn
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anastasia Nikiforov
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tamina Seeger-Nukpezah
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Holger Grüll
- Institute of Diagnostic and Interventional Radiology, University Hospital Cologne, Germany
| | - Christian P Pallasch
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David M Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany.
| |
Collapse
|
40
|
Li Y, Li Y, Li L, Yin M, Wang J, Li X. PKR deficiency alleviates pulmonary hypertension via inducing inflammasome adaptor ASC inactivation. Pulm Circ 2021; 11:20458940211046156. [PMID: 34540200 PMCID: PMC8447110 DOI: 10.1177/20458940211046156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension is a progressive fatal disease that currently has no specific
therapeutic approaches. In this study, dsRNA-dependent protein kinase (PKR) was considered
a candidate molecule in pulmonary hypertension. We demonstrated that PKR is activated in
the endothelium of experimental pulmonary hypertension models. Deletion of PKR or
treatment with the PKR activation inhibitor C16 inhibited the development of pulmonary
hypertension. To explore the mechanism of PKR in pulmonary hypertension, we detected its
downstream signaling and found that PKR knockout represses apoptosis-associated speck-like
protein containing CARD (ASC) activation to inhibit high mobility group box 1 (HMGB1) and
interleukin-1 beta release. To further explore whether ASC mediates the pro-pulmonary
hypertension role of PKR, we used ASC deletion mice and found that ASC deletion inhibits
the development of pulmonary hypertension and the release of HMGB1 and interleukin-1 beta.
Furthermore, we co-cultured pulmonary arterial endothelial cells (PAECs) and pulmonary
arterial smooth muscle cells (PASMCs) and found that endothelial PKR promotes PASMCs
proliferation through the release of HMGB1 and interleukin-1 beta. In conclusion, these
data indicate that endothelial PKR promotes the excessive proliferation of PASMCs by
inducing ASC activation to release HMGB1 and interleukin-1 beta, which lead to the
development of pulmonary hypertension. Our study will provide a novel insight that PKR is
a potential target in the future treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Yapei Li
- Department of Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Li
- Department of Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lijun Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Minghui Yin
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jiangang Wang
- Department of Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
41
|
Abstract
Rationale: Sex hormones play a role in pulmonary arterial hypertension (PAH), but the menstrual cycle has never been studied.Objectives: We conducted a prospective observational study of eight women with stable PAH and 20 healthy controls over one cycle.Methods: Participants completed four study visits 1 week apart starting on the first day of menstruation. Relationships between sex hormones, hormone metabolites, and extracellular vesicle microRNA (miRNA) expression and clinical markers were compared with generalized linear mixed modeling.Results: Women with PAH had higher but less variable estradiol (E2) levels (P < 0.001) that tracked with 6-minute walk distance (P < 0.001), N-terminal prohormone of brain natriuretic peptide (P = 0.03) levels, and tricuspid annular plane systolic excursion (P < 0.01); the direction of these associations depended on menstrual phase. Dehydroepiandrosterone sulfate (DHEA-S) levels were lower in women with PAH (all visits, P < 0.001). In PAH, each 100-μg/dl increase in DHEA-S was associated with a 127-m increase in 6-minute walk distance (P < 0.001) and was moderated by the cardioprotective E2 metabolite 2-methoxyestrone (P < 0.001). As DHEA-S increased, N-terminal prohormone of brain natriuretic peptide levels decreased (P = 0.001). Expression of extracellular vesicle miRNAs-21, -29c, and -376a was higher in PAH, moderated by E2 and DHEA-S levels, and tracked with hormone-associated changes in clinical measures.Conclusions: Women with PAH have fluctuations in cardiopulmonary function during menstruation driven by E2 and DHEA-S. These hormones in turn influence transcription of extracellular vesicle miRNAs implicated in the pathobiology of pulmonary vascular disease and cancer.
Collapse
|
42
|
Jung SM, Park KS, Kim KJ. Integrative analysis of lung molecular signatures reveals key drivers of systemic sclerosis-associated interstitial lung disease. Ann Rheum Dis 2021; 81:108-116. [PMID: 34380701 DOI: 10.1136/annrheumdis-2021-220493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/25/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Interstitial lung disease is a significant comorbidity and the leading cause of mortality in patients with systemic sclerosis. Transcriptomic data of systemic sclerosis-associated interstitial lung disease (SSc-ILD) were analysed to evaluate the salient molecular and cellular signatures in comparison with those in related pulmonary diseases and to identify the key driver genes and target molecules in the disease module. METHODS A transcriptomic dataset of lung tissues from patients with SSc-ILD (n=52), idiopathic pulmonary fibrosis (IPF) (n=549), non-specific interstitial pneumonia (n=49) and pulmonary arterial hypertension (n=81) and from normal healthy controls (n=331) was subjected to filtration of differentially expressed genes, functional enrichment analysis, network-based key driver analysis and kernel-based diffusion scoring. The association of enriched pathways with clinical parameters was evaluated in patients with SSc-ILD. RESULTS SSc-ILD shared key pathogenic pathways with other fibrosing pulmonary diseases but was distinguishable in some pathological processes. SSc-ILD showed general similarity with IPF in molecular and cellular signatures but stronger signals for myofibroblasts, which in SSc-ILD were in a senescent and apoptosis-resistant state. The p53 signalling pathway was the most enriched signature in lung tissues and lung fibroblasts of SSc-ILD, and was significantly correlated with carbon monoxide diffusing capacity of lung, cellular senescence and apoptosis. EEF2, EFF2K, PHKG2, VCAM1, PRKACB, ITGA4, CDK1, CDK2, FN1 and HDAC1 were key regulators with high diffusion scores in the disease module. CONCLUSIONS Integrative transcriptomic analysis of lung tissues revealed key signatures of fibrosis in SSc-ILD. A network-based Bayesian approach provides deep insights into key regulatory genes and molecular targets applicable to treating SSc-ILD.
Collapse
Affiliation(s)
- Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
43
|
Zeng Y, Huang T, Zuo W, Wang D, Xie Y, Wang X, Xiao Z, Chen Z, Liu Q, Liu N, Xiao Y. Integrated analysis of m 6A mRNA methylation in rats with monocrotaline-induced pulmonary arterial hypertension. Aging (Albany NY) 2021; 13:18238-18256. [PMID: 34310344 PMCID: PMC8351682 DOI: 10.18632/aging.203230] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/04/2021] [Indexed: 01/22/2023]
Abstract
Background: N6-methyladenosine (m6A) modification is one of the most common chemical modifications of eukaryotic mRNAs, which play an important role in tumors and cardiovascular disease through regulating mRNA stability, splicing and translation. However, the changes of m6A mRNA and m6A-related enzymes in pulmonary arterial hypertension (PAH) remain largely unexplored. Methods: MeRIP-seq was used to identify m6A methylation in lung tissues from control and MCT-PAH rats. Western blot and immunofluorescence were used to evaluate expression of m6A-related enzymes. Results: Compared with control group, m6A methylation was mainly increased in lung tissues from MCT-PAH rats. The up-methylated coding genes in MCT-PAH rats were primarily enriched in processes associated with inflammation, glycolysis, ECM-receptor interaction and PDGF signal pathway, while genes with down-methylation were enriched in processes associated with TGF-β family receptor members. The expression of FTO and ALKBH5 downregulated, METTL3 and YTHDF1 increased and other methylation modification-related proteins was not significantly changed in MCT-PAH rats lung tissues. Immunofluorescence indicated that expression of FTO decreased and YTHDF1 increased in small pulmonary arteries of MCT-PAH rats. Conclusion: m6A levels and the expression of methylation-related enzymes were altered in PAH rats, in which FTO and YTHDF1 may play a crucial role in m6A modification.
Collapse
Affiliation(s)
- Yunhong Zeng
- Academy of Pediatrics, University of South China, Changsha 410007, China.,Department of Cardiology, Hunan Children's Hospital, Changsha 410007, China
| | - Ting Huang
- Academy of Pediatrics, University of South China, Changsha 410007, China.,Department of Utrasound, Hunan Children's Hospital, Changsha 410007, China
| | - Wanyun Zuo
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Dan Wang
- Department of Cardiology, Hunan Children's Hospital, Changsha 410007, China
| | - Yonghui Xie
- Academy of Pediatrics, University of South China, Changsha 410007, China.,Department of Cardiology, Hunan Children's Hospital, Changsha 410007, China
| | - Xun Wang
- Department of Cardiology, Hunan Children's Hospital, Changsha 410007, China
| | - Zhenghui Xiao
- Department of Intensive Care Unit, Hunan Children's Hospital, Changsha 410007, China
| | - Zhi Chen
- Department of Cardiology, Hunan Children's Hospital, Changsha 410007, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Na Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yunbin Xiao
- Department of Cardiology, Hunan Children's Hospital, Changsha 410007, China
| |
Collapse
|
44
|
Yuan K, Agarwal S, Chakraborty A, Condon DF, Patel H, Zhang S, Huang F, Mello SA, Kirk OI, Vasquez R, de Jesus Perez VA. Lung Pericytes in Pulmonary Vascular Physiology and Pathophysiology. Compr Physiol 2021; 11:2227-2247. [PMID: 34190345 PMCID: PMC10507675 DOI: 10.1002/cphy.c200027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pericytes are mesenchymal-derived mural cells localized within the basement membrane of pulmonary and systemic capillaries. Besides structural support, pericytes control vascular tone, produce extracellular matrix components, and cytokines responsible for promoting vascular homeostasis and angiogenesis. However, pericytes can also contribute to vascular pathology through the production of pro-inflammatory and pro-fibrotic cytokines, differentiation into myofibroblast-like cells, destruction of the extracellular matrix, and dissociation from the vessel wall. In the lung, pericytes are responsible for maintaining the integrity of the alveolar-capillary membrane and coordinating vascular repair in response to injury. Loss of pericyte communication with alveolar capillaries and a switch to a pro-inflammatory/pro-fibrotic phenotype are common features of lung disorders associated with vascular remodeling, inflammation, and fibrosis. In this article, we will address how to differentiate pericytes from other cells, discuss the molecular mechanisms that regulate the interactions of pericytes and endothelial cells in the pulmonary circulation, and the experimental tools currently used to study pericyte biology both in vivo and in vitro. We will also discuss evidence that links pericytes to the pathogenesis of clinically relevant lung disorders such as pulmonary hypertension, idiopathic lung fibrosis, sepsis, and SARS-COVID. Future studies dissecting the complex interactions of pericytes with other pulmonary cell populations will likely reveal critical insights into the origin of pulmonary diseases and offer opportunities to develop novel therapeutics to treat patients afflicted with these devastating disorders. © 2021 American Physiological Society. Compr Physiol 11:2227-2247, 2021.
Collapse
Affiliation(s)
- Ke Yuan
- Division of Respiratory Diseases Research, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Ananya Chakraborty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - David F. Condon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hiral Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Serena Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Flora Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Salvador A. Mello
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | | | - Rocio Vasquez
- University of Central Florida, Orlando, Florida, USA
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
45
|
Pal-Ghosh R, Xue D, Warburton R, Hill N, Polgar P, Wilson JL. CDC2 Is an Important Driver of Vascular Smooth Muscle Cell Proliferation via FOXM1 and PLK1 in Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:6943. [PMID: 34203295 PMCID: PMC8268698 DOI: 10.3390/ijms22136943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023] Open
Abstract
A key feature of pulmonary arterial hypertension (PAH) is the hyperplastic proliferation exhibited by the vascular smooth muscle cells from patients (HPASMC). The growth inducers FOXM1 and PLK1 are highly upregulated in these cells. The mechanism by which these two proteins direct aberrant growth in these cells is not clear. Herein, we identify cyclin-dependent kinase 1 (CDK1), also termed cell division cycle protein 2 (CDC2), as having a primary role in promoting progress of the cell cycle leading to proliferation in HPASMC. HPASMC obtained from PAH patients and pulmonary arteries from Sugen/hypoxia rats were investigated for their expression of CDC2. Protein levels of CDC2 were much higher in PAH than in cells from normal donors. Knocking down FOXM1 or PLK1 protein expression with siRNA or pharmacological inhibitors lowered the cellular expression of CDC2 considerably. However, knockdown of CDC2 with siRNA or inhibiting its activity with RO-3306 did not reduce the protein expression of FOXM1 or PLK1. Expression of CDC2 and FOXM1 reached its maximum at G1/S, while PLK1 reached its maximum at G2/M phase of the cell cycle. The expression of other CDKs such as CDK2, CDK4, CDK6, CDK7, and CDK9 did not change in PAH HPASMC. Moreover, inhibition via Wee1 inhibitor adavosertib or siRNAs targeting Wee1, Myt1, CDC25A, CDC25B, or CDC25C led to dramatic decreases in CDC2 protein expression. Lastly, we found CDC2 expression at the RNA and protein level to be upregulated in pulmonary arteries during disease progression Sugen/hypoxia rats. In sum, our present results illustrate that the increased expression of FOXM1 and PLK1 in PAH leads directly to increased expression of CDC2 resulting in potentiated growth hyperactivity of PASMC from patients with pulmonary hypertension. Our results further suggest that the regulation of CDC2, or associated regulatory proteins, will prove beneficial in the treatment of this disease.
Collapse
Affiliation(s)
- Ruma Pal-Ghosh
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Danfeng Xue
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Rod Warburton
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Nicholas Hill
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Peter Polgar
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Jamie L. Wilson
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| |
Collapse
|
46
|
Lemay SE, Awada C, Shimauchi T, Wu WH, Bonnet S, Provencher S, Boucherat O. Fetal Gene Reactivation in Pulmonary Arterial Hypertension: GOOD, BAD, or BOTH? Cells 2021; 10:1473. [PMID: 34208388 PMCID: PMC8231250 DOI: 10.3390/cells10061473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension is a debilitating chronic disorder marked by the progressive obliteration of the pre-capillary arterioles. This imposes a pressure overload on the right ventricle (RV) pushing the latter to undergo structural and mechanical adaptations that inexorably culminate in RV failure and death. Thanks to the advances in molecular biology, it has been proposed that some aspects of the RV and pulmonary vascular remodeling processes are orchestrated by a subversion of developmental regulatory mechanisms with an upregulation of a suite of genes responsible for the embryo's early growth and normally repressed in adults. In this review, we present relevant background regarding the close relationship between overactivation of fetal genes and cardiopulmonary remodeling, exploring whether the reawakening of developmental factors plays a causative role or constitutes a protective mechanism in the setting of PAH.
Collapse
Affiliation(s)
- Sarah-Eve Lemay
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Charifa Awada
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Wen-Hui Wu
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| |
Collapse
|
47
|
Qin S, Predescu D, Carman B, Patel P, Chen J, Kim M, Lahm T, Geraci M, Predescu SA. Up-Regulation of the Long Noncoding RNA X-Inactive-Specific Transcript and the Sex Bias in Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1135-1150. [PMID: 33836164 PMCID: PMC8176134 DOI: 10.1016/j.ajpath.2021.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a sex-biased disease. Increased expression and activity of the long-noncoding RNA X-inactive-specific transcript (Xist), essential for X-chromosome inactivation and dosage compensation of X-linked genes, may explain the sex bias of PAH. The present studies used a murine model of plexiform PAH, the intersectin-1s (ITSN) heterozygous knockout (KOITSN+/-) mouse transduced with an ITSN fragment (EHITSN) possessing endothelial cell proliferative activity, in conjunction with molecular, cell biology, biochemical, morphologic, and functional approaches. The data demonstrate significant sex-centered differences with regard to EHITSN-induced alterations in pulmonary artery remodeling, lung hemodynamics, and p38/ETS domain containing protein/c-Fos signaling, altogether leading to a more severe female lung PAH phenotype. Moreover, the long-noncoding RNA-Xist is up-regulated in the lungs of female EHITSN-KOITSN+/- mice compared with that in female wild-type mice, leading to sex-specific modulation of the X-linked gene ETS domain containing protein and its target, two molecular events also characteristic to female human PAH lung. More importantly, cyclin A1 expression in the S and G2/M phases of the cell cycle of synchronized pulmonary artery endothelial cells of female PAH patients is greater versus controls, suggesting functional hyperproliferation. Thus, Xist up-regulation leading to female pulmonary artery endothelial cell sexual dimorphic behavior may provide a better understanding of the origin of sex bias in PAH. Notably, the EHITSN-KOITSN+/- mouse is a unique experimental animal model of PAH that recapitulates most of the sexually dimorphic characteristics of human disease.
Collapse
Affiliation(s)
- Shanshan Qin
- Center for Genetic Medicine, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Dan Predescu
- Center for Genetic Medicine, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Brandon Carman
- Center for Genetic Medicine, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Priyam Patel
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Jiwang Chen
- Pulmonary Critical Care Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Miran Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Tim Lahm
- Health Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark Geraci
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Sanda A Predescu
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University, Chicago, Illinois.
| |
Collapse
|
48
|
Westöö C, Norvik C, Peruzzi N, van der Have O, Lovric G, Jeremiasen I, Tran PK, Mokso R, de Jesus Perez V, Brunnström H, Bech M, Galambos C, Tran-Lundmark K. Distinct types of plexiform lesions identified by synchrotron-based phase-contrast micro-CT. Am J Physiol Lung Cell Mol Physiol 2021; 321:L17-L28. [PMID: 33881927 DOI: 10.1152/ajplung.00432.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In pulmonary arterial hypertension, plexiform lesions are associated with severe arterial obstruction and right ventricular failure. Exploring their structure and position is crucial for understanding the interplay between hemodynamics and vascular remodeling. The aim of this research was to use synchrotron-based phase-contrast micro-CT to study the three-dimensional structure of plexiform lesions. Archived paraffin-embedded tissue samples from 14 patients with pulmonary arterial hypertension (13 idiopathic, 1 with known BMPR2-mutation) were imaged. Clinical data showed high-median PVR (12.5 WU) and mPAP (68 mmHg). Vascular lesions with more than 1 lumen were defined as plexiform. Prior radiopaque dye injection in some samples facilitated 3-D rendering. Four distinct types of plexiform lesions were identified: 1) localized within or derived from monopodial branches (supernumerary arteries), often with a connection to the vasa vasorum; 2) localized between pulmonary arteries and larger airways as a tortuous transformation of intrapulmonary bronchopulmonary anastomoses; 3) as spherical structures at unexpected abrupt ends of distal pulmonary arteries; and 4) as occluded pulmonary arteries with recanalization. By appearance and localization, types 1-2 potentially relieve pressure via the bronchial circulation, as pulmonary arteries in these patients were almost invariably occluded distally. In addition, types 1-3 were often surrounded by dilated thin-walled vessels, often connected to pulmonary veins, peribronchial vessels, or the vasa vasorum. Collaterals, bypassing completely occluded pulmonary arteries, were also observed to originate within plexiform lesions. In conclusion, synchrotron-based imaging revealed significant plexiform lesion heterogeneity, resulting in a novel classification. The four types likely have different effects on hemodynamics and disease progression.
Collapse
Affiliation(s)
- Christian Westöö
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Christian Norvik
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Niccolò Peruzzi
- Department of Clinical Sciences, Division of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Oscar van der Have
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Goran Lovric
- Centre d'Imagerie BioMédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Ida Jeremiasen
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Children's Heart Center, Skåne University Hospital, Lund, Sweden
| | - Phan-Kiet Tran
- Children's Heart Center, Skåne University Hospital, Lund, Sweden
| | - Rajmund Mokso
- Max IV Laboratory, Lund University, Lund, Sweden.,Institute for Biomedical Engineering, University and ETH Zürich, Zurich, Switzerland
| | | | - Hans Brunnström
- Department of Clinical Sciences Lund, Division of Pathology, Lund University, Lund, Sweden.,Department of Genetics and Pathology, Division of Laboratory Medicine, Lund University, Lund, Sweden
| | - Martin Bech
- Department of Clinical Sciences, Division of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Children's Heart Center, Skåne University Hospital, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
49
|
Fang X, Xie M, Liu X, He Y. CENPE contributes to pulmonary vascular remodeling in pulmonary hypertension. Biochem Biophys Res Commun 2021; 557:40-47. [PMID: 33862458 DOI: 10.1016/j.bbrc.2021.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 11/15/2022]
Abstract
Hypoxic pulmonary vascular remodeling is a pathological feature of pulmonary hypertension (PH). Our results showed that centromere-associated protein E (CENPE) expression in PH patients and hypoxia-induced PH rats was significantly higher than that in normal controls. In addition, CENPE deficiency significantly inhibited the development of pulmonary vascular remodeling and right ventricular hypertrophy. Moreover, knocking out CENPE effectively inhibited the proliferation and induced the apoptosis of primary pulmonary artery smooth muscle cells (PASMCs) in vivo. Furthermore, CENPE silencing by small interference significantly inhibited abnormal proliferation, apoptosis resistance, migration, and cell cycle arrest in hypoxia-induced PASMCs. Interestingly, we found that CENPE might exert its biological effect by targeting the transcription of CDK1 proteins.
Collapse
Affiliation(s)
- Xiaoyu Fang
- Department of Respiratory Diseases, Tongji Hospital, Key Lab of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Min Xie
- Department of Respiratory Diseases, Tongji Hospital, Key Lab of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiansheng Liu
- Department of Respiratory Diseases, Tongji Hospital, Key Lab of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yuanzhou He
- Department of Respiratory Diseases, Tongji Hospital, Key Lab of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
50
|
Hadzic S, Wu CY, Gredic M, Kojonazarov B, Pak O, Kraut S, Sommer N, Kosanovic D, Grimminger F, Schermuly RT, Seeger W, Bellusci S, Weissmann N. The effect of long-term doxycycline treatment in a mouse model of cigarette smoke-induced emphysema and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2021; 320:L903-L915. [PMID: 33760647 DOI: 10.1152/ajplung.00048.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of death and a still incurable disease, comprising emphysema and chronic bronchitis. In addition to airflow limitation, patients with COPD can suffer from pulmonary hypertension (PH). Doxycycline, an antibiotic from the tetracycline family, in addition to its pronounced antimicrobial activity, acts as a matrix metalloproteinase (MMP) inhibitor and has anti-inflammatory properties. Furthermore, doxycycline treatment exhibited a beneficial effect in several preclinical cardiovascular disease models. In preclinical research, doxycycline is frequently employed for gene expression modulation in Tet-On/Tet-Off transgenic animal models. Therefore, it is crucial to know whether doxycycline treatment in Tet-On/Tet-Off systems has effects independent of gene expression modulation by such systems. Against this background, we assessed the possible curative effects of long-term doxycycline administration in a mouse model of chronic CS exposure. Animals were exposed to cigarette smoke (CS) for 8 mo and then subsequently treated with doxycycline for additional 3 mo in room air conditions. Doxycycline decreased the expression of MMPs and general pro-inflammatory markers in the lungs from CS-exposed mice. This downregulation was, however, insufficient to ameliorate CS-induced emphysema or PH. Tet-On/Tet-Off induction by doxycycline in such models is a feasible genetic approach to study curative effects at least in established CS-induced emphysema and PH. However, we report several parameters that are influenced by doxycycline and use of a Tet-On/Tet-Off system when evaluating those parameters should be interpreted with caution.
Collapse
Affiliation(s)
- Stefan Hadzic
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Cheng-Yu Wu
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Marija Gredic
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Baktybek Kojonazarov
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.,Institute for Lung Health (ILH), Justus-Liebig-University, Giessen, Germany
| | - Oleg Pak
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Simone Kraut
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Natascha Sommer
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Djuro Kosanovic
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Friedrich Grimminger
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Ralph T Schermuly
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Werner Seeger
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.,Institute for Lung Health (ILH), Justus-Liebig-University, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Saverio Bellusci
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|