1
|
Kundu SK, Bandyopadhyay A, Sarkar R. Tryptophan-specific modification and diversification of peptides and proteins. Org Biomol Chem 2025. [PMID: 39831339 DOI: 10.1039/d4ob02015d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In spite of being the second-lowest abundant proteinogenic amino acid, approximately 90% of proteins contain at least one tryptophan residue. Hence, the chemoselective functionalization of tryptophan residue can provide access to site-selective bioconjugation of almost all known proteins. With the increase in the utility of bioconjugated proteins and peptides as drugs and therapeutic agents, the development of smart protocols to fabricate and modulate biomolecules has flourished. This review provides a comprehensive summary of the latest advances in tryptophan-specific modification and diversification of peptides and proteins that exhibit significant applications in proteomics, protein engineering, living cell imaging, drug discovery, etc. The article also highlights literature gaps and new opportunities for the sake of future innovation in the field.
Collapse
Affiliation(s)
- Sudipta K Kundu
- Department of Chemistry, Muragachha Government College, Nadia 741154, West Bengal, India.
- Department of Higher Education, Government of West Bengal, India
| | - Ayan Bandyopadhyay
- Department of Higher Education, Government of West Bengal, India
- Department of Chemistry, Chapra Government College, Nadia 741123, West Bengal, India
| | - Rajib Sarkar
- Department of Chemistry, Muragachha Government College, Nadia 741154, West Bengal, India.
- Department of Higher Education, Government of West Bengal, India
| |
Collapse
|
2
|
Li J, Hu QL, Liu JS, Xiong XF. Triflic Acid-Mediated Chemoselective Indole C2-Heteroarylation of Peptide Tryptophan Residues by Triazine. Org Lett 2024; 26:10928-10933. [PMID: 39648991 DOI: 10.1021/acs.orglett.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Peptide modification provides opportunities to afford peptides with designed functions. Among the proteogenic amino acids, tryptophan represents an ideal and attractive target for peptide modification because of the exclusive chemical reactivity of its unique indole structure. Herein, we reported an indole C2 position-selective and transition-metal-free modification approach for indole derivatives and tryptophan-containing peptides by triazine derivatives via triflic acid activation and that the incorporated functional group could act as an orthogonal handle for further bioconjugation via an inverse electron demand Diels-Alder reaction.
Collapse
Affiliation(s)
- Jian Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Qi-Long Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China
| | - Jia-Shu Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Krajcovicova S. Ideas Behind the Tryptophan-Mediated Petasis Reaction (TMPR) Concept for Peptide Stapling. ChemMedChem 2024; 19:e202400148. [PMID: 38726738 DOI: 10.1002/cmdc.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/09/2024] [Indexed: 07/22/2024]
Abstract
This Concept short review offers an insightful analysis of pivotal research papers and explores the key synthetic ideas behind the intersection of two realms in peptide chemistry: using tryptophan and Petasis multicomponent reactions for macrocyclisation and labelling of peptides. The recently published tryptophan-mediated Petasis reaction (TMPR) concept represents a critical junction between these two worlds, highlighting how combining such methodologies leads to more effective and versatile synthetic strategies, setting a potentially new direction for future research in the field of peptide-drug conjugates.
Collapse
Affiliation(s)
- Sona Krajcovicova
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
- Department of Organic Chemistry, Faculty of Science, Palacky University in Olomouc, Tr. 17. Listopadu 12, 77900, Olomouc, Czech Republic
| |
Collapse
|
4
|
Templ J, Schnürch M. Strategies for Using Quaternary Ammonium Salts as Alternative Reagents in Alkylations. Chemistry 2024; 30:e202400675. [PMID: 38587031 DOI: 10.1002/chem.202400675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/09/2024]
Abstract
Alkylation reactions are pivotal in organic chemistry, with wide-ranging utilization across various fields of applied synthetic chemistry. However, conventional reagents employed in alkylations often pose substantial health and exposure risks. Quaternary ammonium salts (QAS) present a promising alternative for these transformations offering significantly reduced hazards as they are non-cancerogenic, non-mutagenic, non-flammable, and non-corrosive. Despite their potential, their use in direct organic transformations remains relatively unexplored. This review outlines strategies for utilizing QAS as alternative reagents in alkylation reactions, providing researchers with safer approaches to chemical synthesis.
Collapse
Affiliation(s)
- Johanna Templ
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060, Wien, AUSTRIA
| | - Michael Schnürch
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060, Wien, AUSTRIA
| |
Collapse
|
5
|
Ojea V, Ruiz M. DLPNO-CCSD(T) and DFT study of the acetate-assisted C-H activation of benzaldimine at [RuCl 2( p-cymene)] 2: the relevance of ligand exchange processes at ruthenium(II) complexes in polar protic media. Dalton Trans 2024; 53:8662-8679. [PMID: 38695752 DOI: 10.1039/d4dt00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
To gain mechanistic insights into the acetate-assisted cyclometallations of arylimines promoted by [RuCl2(p-cymene)]2 in polar protic media, DFT geometry optimizations (with M06 and ωB97X-D3 functionals and the cc-pVDZ-PP[Ru] basis set) followed by DLPNO-CCSD(T)/CBS energy evaluations were performed using benzaldimine as a model substrate and methanol as the solvent (with CPCM or SMD models). The calculation results show that coordination of the imine to an acetate ruthenium precursor is followed by anion (chloride or acetate) dissociation as the rate-determining step of the process. H-Bonding of two explicit MeOH to the anion reduces the calculated activation energy to ca. 23 kcal mol-1, in good agreement with the experimental half-life at room temperature. Subsequent AMLA/CMD C-H activation of the intermediate cationic complexes is a faster, reversible process. Alternative reaction pathways involving neutral diacetate ruthenium complexes offer AMLA/CMD transition state structures of lower energy but are precluded due to higher energy barriers for the initial ligand exchange processes at ruthenium. Solvent assistance accelerates the final chloride/acetate exchange processes on the cycloruthenate intermediates, particularly when compression in the condensed phase is taken into consideration. The performance of six DFT functionals (with the aug-pVTZ-PP[Ru] basis set) was assessed using the DLPNO-CCSD(T)/CBS reference energies. Neutral diacetate ruthenium complexes were incorrectly predicted as being kinetically relevant when using hybrid DFT methods (PBE0-D3(BJ), M06-2X or ωB97M-V). Good agreement between the calculated barrier heights and our benchmark energy results was obtained by using double-hybrid DFT methods. PWPB95 with D3(BJ) or D4 dispersion energy corrections was found to be the most accurate (ΔG≠ MUE of ca. 1 kcal mol-1). This study may aid our understanding of and help with further experimental investigations of synthetically useful carboxylate-assisted C-H bond functionalizations involving (N,C)-cyclometallated (p-cymene)Ru(II) intermediate complexes in sustainable polar protic solvents.
Collapse
Affiliation(s)
- Vicente Ojea
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| | - María Ruiz
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| |
Collapse
|
6
|
Kopp A, Oyama T, Ackermann L. Fluorescent coumarin-alkynes for labeling of amino acids and peptides via manganese(I)-catalyzed C-H alkenylation. Chem Commun (Camb) 2024. [PMID: 38683668 DOI: 10.1039/d4cc00361f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The late-stage fluorescent labeling of structurally complex peptides bears immense potential for molecular imaging. Herein, we report on a manganese(I)-catalyzed peptide C-H alkenylation under exceedingly mild conditions with natural fluorophores as coumarin- and chromone-derivatives. The robustness and efficiency of the manganese(I) catalysis regime was reflected by a broad functional group tolerance and low catalyst loading in a resource- and atom-economical fashion.
Collapse
Affiliation(s)
- Adelina Kopp
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
| | - Tsuyoshi Oyama
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
- Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany
| |
Collapse
|
7
|
Bandyopadhyay A, Biswas P, Kundu SK, Sarkar R. Electrochemistry-enabled residue-specific modification of peptides and proteins. Org Biomol Chem 2024; 22:1085-1101. [PMID: 38231504 DOI: 10.1039/d3ob01857a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Selective chemical reactions at precise amino acid residues of peptides and proteins have become an exploding field of research in the last few decades. With the emerging utility of bioconjugated peptides and proteins as drug leads and therapeutic agents, the design of smart protocols to modulate and conjugate biomolecules has become necessary. During this modification, the most important concern of biochemists is to keep intact the structural integrity of the biomolecules. Hence, a soft and selective biocompatible reaction environment is necessary. Electrochemistry, a mild and elegant tunable reaction platform to synthesize complex molecules while avoiding harsh and toxic chemicals, can provide such a reaction condition. However, this strategy is yet to be fully exploited in the field of selective modification of polypeptides. With this possibility, the use of electrochemistry as a reaction toolbox in peptide and protein chemistry is flourishing day by day. Unfortunately, there is no suitable review article summarizing the residue-specific modification of biomolecules. The present review provides a comprehensive summary of the latest manifested electrochemical approaches for the modulation of five redox-active amino acid residues, namely cysteine, tyrosine, tryptophan, histidine and methionine, found in peptides and proteins. The article also highlights the incredible potential of electrochemistry for the regio- as well as chemoselective bioconjugation strategy of biomolecules.
Collapse
Affiliation(s)
- Ayan Bandyopadhyay
- Department of Chemistry, Chapra Government College, Nadia-741123, West Bengal, India
| | - Pranay Biswas
- Department of Physics, Dinabandhu Mahavidyalaya, 24 Parganas (N), 743235, West Bengal, India
| | - Sudipta K Kundu
- Department of Chemistry, Muragachha Government College, Nadia-741154, West Bengal, India.
| | - Rajib Sarkar
- Department of Chemistry, Muragachha Government College, Nadia-741154, West Bengal, India.
| |
Collapse
|
8
|
Delgado JAC, Tian YM, Marcon M, König B, Paixão MW. Side-Selective Solid-Phase Metallaphotoredox N(in)-Arylation of Peptides. J Am Chem Soc 2023; 145:26452-26462. [PMID: 37976043 DOI: 10.1021/jacs.3c10792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Postsynthetic diversification of peptides through selective modification of endogenous amino acid side chains has enabled significant advances in peptide drug discovery while expanding the biological and medical chemistry space. However, current tools have been focused on the modification of reactive polar and ionizable side chains, whereas the decoration of aromatic systems (e.g., the N(in) of the tryptophan) has been a long-standing challenge. Here, we introduce metallaphotocatalysis in solid-phase peptide synthesis for the on-resin orthogonal N-arylation of relevant tryptophan-containing peptides. The protocol allows the chemoselective introduction of a new C(sp2)-N bond at the N(in) of tryptophan in biologically active protected peptide sequences in the presence of native redox-sensitive side chains. The fusion of metallaphotocatalysis with solid-phase peptide synthesis opens new perspectives in diversifying native amino acid side chains.
Collapse
Affiliation(s)
- José A C Delgado
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos─UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Ya-Ming Tian
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Michela Marcon
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Márcio W Paixão
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos─UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
9
|
Mao M, Li J, Dong K, Li RP, Chen X, Liu J, Tang S. Metal-Free Late-Stage Alkylation of Tryptophan and Tryptophan-Containing Peptides with 1,3-Dithiane Derivatives. Org Lett 2023; 25:5784-5789. [PMID: 37503958 DOI: 10.1021/acs.orglett.3c02033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Late-stage diversification of structurally complex peptides has enormous potential for drug discovery and molecular imaging. We report a simple, metal-free, late-stage reductive C2 alkylation of tryptophan and tryptophan-containing peptides using readily available 1,3-dithianes. This alkylation protocol has a wide substrate scope and an excellent tolerance for reactive functional groups.
Collapse
Affiliation(s)
- Mingming Mao
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jia Li
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kang Dong
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Rui-Peng Li
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xi Chen
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jian Liu
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shouchu Tang
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
10
|
Lee JC, Cuthbertson JD, Mitchell NJ. Chemoselective Late-Stage Functionalization of Peptides via Photocatalytic C2-Alkylation of Tryptophan. Org Lett 2023; 25:5459-5464. [PMID: 37462428 PMCID: PMC10391624 DOI: 10.1021/acs.orglett.3c01795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Across eukaryotic proteomes, tryptophan is the least abundant of the 20 canonical amino acids, which makes it an ideal chemical handle for the late-stage functionalization of peptide and protein scaffolds with minimal production of undesired isoforms. Herein, we report the photocatalytic C2-alkylation of tryptophan using bromodifluoroacetate/acetamide-derived radical precursors. This rapid visible-light-mediated reaction is additive-free, operationally simple, and tolerates diverse functionality. We demonstrate the late-stage modification of a variety of complex peptides, including examples of biological significance.
Collapse
Affiliation(s)
- Joanna C Lee
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- School of Chemistry, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
| | - James D Cuthbertson
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- School of Chemistry, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
| | - Nicholas J Mitchell
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
11
|
Wang P, Liu J, Zhu X, Yan Z, Yan J, Jiang J, Fu M, Ge J, Zhu Q, Zheng Y. Modular synthesis of clickable peptides via late-stage maleimidation on C(7)-H tryptophan. Nat Commun 2023; 14:3973. [PMID: 37407547 DOI: 10.1038/s41467-023-39703-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Cyclic peptides have attracted tremendous attention in the pharmaceutical industry owing to their excellent cell penetrability, stability, thermostability, and drug-like properties. However, the currently available facile methodologies for creating such peptides are rather limited. Herein, we report an efficient and direct peptide cyclization via rhodium(III)-catalyzed C(7)-H maleimidation. Notably, this catalytical system has excellent regioselectivity and high tolerance of functional groups which enable late-stage cyclization of peptides. This architecture of cyclic peptides exhibits higher bioactivity than its parent linear peptides. Moreover, the Trp-substituted maleimide displays excellent reactivity toward Michael addition, indicating its potential as a click functional group for applications in chemical biology and medicinal chemistry. As a proof of principle, RGD-GFLG-DOX, which is a peptide-drug-conjugate, is constructed and it displays a strong binding affinity and high antiproliferative activity toward integrin-αvβ3 overexpressed cancer cell lines. The proposed strategy for rapid preparation of stapled peptides would be a robust tool for creating peptide-drug conjugates.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaomei Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhengqing Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiahui Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jitong Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Manlin Fu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
12
|
Oyama T, Mendive-Tapia L, Cowell V, Kopp A, Vendrell M, Ackermann L. Late-stage peptide labeling with near-infrared fluorogenic nitrobenzodiazoles by manganese-catalyzed C-H activation. Chem Sci 2023; 14:5728-5733. [PMID: 37265715 PMCID: PMC10231426 DOI: 10.1039/d3sc01868g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Late-stage diversification of structurally complex amino acids and peptides provides tremendous potential for drug discovery and molecular imaging. Specifically, labeling peptides with fluorescent tags is one of the most important methods for visualizing their mode of operation. Despite major recent advances in the field, direct molecular peptide labeling by C-H activation is largely limited to dyes with relatively short emission wavelengths, leading to high background signals and poor signal-to-noise ratios. In sharp contrast, here we report on the fluorescent labeling of peptides catalyzed by non-toxic manganese(i) via C(sp2)-H alkenylation in chemo- and site-selective manners, providing modular access to novel near-infrared (NIR) nitrobenzodiazole-based peptide fluorogenic probes.
Collapse
Affiliation(s)
- Tsuyoshi Oyama
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammanstraße 2 37077 Göttingen Germany
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh EH16 4TJ Edinburgh UK
| | - Verity Cowell
- Centre for Inflammation Research, The University of Edinburgh EH16 4TJ Edinburgh UK
| | - Adelina Kopp
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammanstraße 2 37077 Göttingen Germany
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh EH16 4TJ Edinburgh UK
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammanstraße 2 37077 Göttingen Germany
- German Center for Cardiovascular Research (DZHK) Potsdamer Straße 58 10785 Berlin Germany
| |
Collapse
|
13
|
Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Transition-Metal-Catalyzed C-H Bond Activation for the Formation of C-C Bonds in Complex Molecules. Chem Rev 2023. [PMID: 37163671 DOI: 10.1021/acs.chemrev.2c00888] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Site-predictable and chemoselective C-H bond functionalization reactions offer synthetically powerful strategies for the step-economic diversification of both feedstock and fine chemicals. Many transition-metal-catalyzed methods have emerged for the selective activation and functionalization of C-H bonds. However, challenges of regio- and chemoselectivity have emerged with application to highly complex molecules bearing significant functional group density and diversity. As molecular complexity increases within molecular structures the risks of catalyst intolerance and limited applicability grow with the number of functional groups and potentially Lewis basic heteroatoms. Given the abundance of C-H bonds within highly complex and already diversified molecules such as pharmaceuticals, natural products, and materials, design and selection of reaction conditions and tolerant catalysts has proved critical for successful direct functionalization. As such, innovations within transition-metal-catalyzed C-H bond functionalization for the direct formation of carbon-carbon bonds have been discovered and developed to overcome these challenges and limitations. This review highlights progress made for the direct metal-catalyzed C-C bond forming reactions including alkylation, methylation, arylation, and olefination of C-H bonds within complex targets.
Collapse
Affiliation(s)
- Jamie H Docherty
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Thomas M Lister
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gillian Mcarthur
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael T Findlay
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Pablo Domingo-Legarda
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jacob Kenyon
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Shweta Choudhary
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Igor Larrosa
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
14
|
Song L, Lv Z, Li Y, Zhang K, Van der Eycken EV, Cai L. Construction of Peptide-Isoquinolone Conjugates via Rh(III)-Catalyzed C-H Activation/Annulation. Org Lett 2023; 25:2996-3000. [PMID: 37129283 DOI: 10.1021/acs.orglett.3c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Herein, we disclose a Rh(III)-catalyzed C-H activation/annulation reaction for the derivatization of Lys-based peptides, in situ affording diverse peptide-isoquinolone conjugates. This approach features racemization-free conditions, high atom- and step-economy, excellent chemo- and site-selectivity, and broad scope including substrates bearing unprotected Trp and Tyr, free Ser and Gln, and Met residues. The peptide-isoquinolone conjugates also display good fluorescent properties with maximum emission wavelengths up to 460 nm. Importantly, preliminary antifungal activity studies indicate that peptide-isoquinolone conjugates show potential activities toward crop and forest pathogenic fungi, in which the peptide-isoquinolone conjugate bearing unprotected Tyr residue exhibits much better antifungal activities toward B. cinerea Pers. and C. chrysosperma than the positive control.
Collapse
Affiliation(s)
- Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhenwei Lv
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yan Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kui Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya street, Moscow, 117198, Russia
| | - Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
15
|
Chatterjee S, Bandyopadhyay A. Cysteine-Selective Installation of Functionally Diverse Boronic Acid Probes on Peptides. Org Lett 2023; 25:2223-2227. [PMID: 36988909 DOI: 10.1021/acs.orglett.3c00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The current methods for direct late-stage and residue-selective installation of a versatile boronic acid (BA) repertoire on peptides are inadequate for a wide range of applications. Here, we show the suitability and efficiency of thiol-ene radical click chemistry to install functionally versatile BA derivatives on numerous bioactive, native peptides. Our work highlights that the methodology is operationally simple and adaptable for applications with BA-modified peptides, such as cyclization, conjugation, and functional group alteration.
Collapse
Affiliation(s)
- Saurav Chatterjee
- Anupam Bandyopadhyay - Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Anupam Bandyopadhyay
- Anupam Bandyopadhyay - Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
16
|
Baroliya PK, Dhaker M, Panja S, Al-Thabaiti SA, Albukhari SM, Alsulami QA, Dutta A, Maiti D. Transition Metal-Catalyzed C-H Functionalization Through Electrocatalysis. CHEMSUSCHEM 2023:e202202201. [PMID: 36881013 DOI: 10.1002/cssc.202202201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Electrochemically promoted transition metal-catalyzed C-H functionalization has emerged as a promising area of research over the last few decades. However, development in this field is still at an early stage compared to traditional functionalization reactions using chemical-based oxidizing agents. Recent reports have shown increased attention on electrochemically promoted metal-catalyzed C-H functionalization. From the standpoint of sustainability, environmental friendliness, and cost effectiveness, electrochemically promoted oxidation of a metal catalyst offers a mild, efficient, and atom-economical alternative to traditional chemical oxidants. This Review discusses advances in the field of transition metal-electrocatalyzed C-H functionalization over the past decade and describes how the unique features of electricity enable metal-catalyzed C-H functionalization in an economic and sustainable way.
Collapse
Affiliation(s)
- Prabhat Kumar Baroliya
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Mukesh Dhaker
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Shaeel Ahmed Al-Thabaiti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Soha M Albukhari
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Qana A Alsulami
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
17
|
Sousa-Castillo A, Mariño-López A, Puértolas B, Correa-Duarte MA. Nanostructured Heterogeneous Catalysts for Bioorthogonal Reactions. Angew Chem Int Ed Engl 2023; 62:e202215427. [PMID: 36479797 DOI: 10.1002/anie.202215427] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Bioorthogonal chemistry has inspired a new subarea of chemistry providing a powerful tool to perform novel biocompatible chemospecific reactions in living systems. Following the premise that they do not interfere with biological functions, bioorthogonal reactions are increasingly applied in biomedical research, particularly with respect to genetic encoding systems, fluorogenic reactions for bioimaging, and cancer therapy. This Minireview compiles recent advances in the use of heterogeneous catalysts for bioorthogonal reactions. The synthetic strategies of Pd-, Au-, and Cu-based materials, their applicability in the activation of caged fluorophores and prodrugs, and the possibilities of using external stimuli to release therapeutic substances at a specific location in a diseased tissue are discussed. Finally, we highlight frontiers in the field, identifying challenges, and propose directions for future development in this emerging field.
Collapse
|
18
|
Sharma K, Sharma KK, Sharma A, Jain R. Peptide-based drug discovery: Current status and recent advances. Drug Discov Today 2023; 28:103464. [PMID: 36481586 DOI: 10.1016/j.drudis.2022.103464] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The progressive development of peptides from reaction vessels to life-saving drugs via rigorous preclinical and clinical assessments is fascinating. Peptide therapeutics have gained momentum with the evolution of techniques in peptide chemistry, such as microwave irradiation in solid- and solution-phase synthesis, ligation chemistry, recombinant synthesis, and amalgamation with synthetic tools, including metal catalysis. Diverse emerging technologies, such as DNA-encoded libraries (DELs) and display techniques, are changing the status quo in the discovery of peptide therapeutics. In this review, we analyzed US Food and Drug Administration (FDA)-approved peptide drugs and those in clinical trials, highlighting recent advances in peptide-based drug discovery.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Anku Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India.
| |
Collapse
|
19
|
Schnepel C, Moritzer A, Gäfe S, Montua N, Minges H, Nieß A, Niemann HH, Sewald N. Enzymatic Late-Stage Halogenation of Peptides. Chembiochem 2023; 24:e202200569. [PMID: 36259362 PMCID: PMC10099709 DOI: 10.1002/cbic.202200569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Indexed: 01/05/2023]
Abstract
The late-stage site-selective derivatisation of peptides has many potential applications in structure-activity relationship studies and postsynthetic modification or conjugation of bioactive compounds. The development of orthogonal methods for C-H functionalisation is crucial for such peptide derivatisation. Among them, biocatalytic methods are increasingly attracting attention. Tryptophan halogenases emerged as valuable catalysts to functionalise tryptophan (Trp), while direct enzyme-catalysed halogenation of synthetic peptides is yet unprecedented. Here, it is reported that the Trp 6-halogenase Thal accepts a wide range of amides and peptides containing a Trp moiety. Increasing the sequence length and reaction optimisation made bromination of pentapeptides feasible with good turnovers and a broad sequence scope, while regioselectivity turned out to be sequence dependent. Comparison of X-ray single crystal structures of Thal in complex with d-Trp and a dipeptide revealed a significantly altered binding mode for the peptide. The viability of this bioorthogonal approach was exemplified by halogenation of a cyclic RGD peptide.
Collapse
Affiliation(s)
- Christian Schnepel
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
- Present address: Department of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Ann‐Christin Moritzer
- StrukturbiochemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Simon Gäfe
- StrukturbiochemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Nicolai Montua
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Hannah Minges
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Anke Nieß
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Hartmut H. Niemann
- StrukturbiochemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Norbert Sewald
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
20
|
Diversification of pharmaceutical molecules via late-stage C(sp2)–H functionalization. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
21
|
Weng Y, Xu X, Chen H, Zhang Y, Zhuo X. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan‐Containing Peptides under Buffer Conditions. Angew Chem Int Ed Engl 2022; 61:e202206308. [DOI: 10.1002/anie.202206308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yiyi Weng
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Xiaobin Xu
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Hantao Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Yiyang Zhang
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Xianfeng Zhuo
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| |
Collapse
|
22
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
23
|
Weng Y, Xu X, Chen H, Zhang Y, Zhuo X. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan‐Containing Peptides under Buffer Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yiyi Weng
- Zhejiang University of Technology College of Pharmaceutical Science Chaowang road 18 310014 Hangzhou CHINA
| | - Xiaobin Xu
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Hantao Chen
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Yiyang Zhang
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Xianfeng Zhuo
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| |
Collapse
|
24
|
Liu L, Fan X, Wang B, Deng H, Wang T, Zheng J, Chen J, Shi Z, Wang H. P
III
‐Directed Late‐Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206177. [DOI: 10.1002/anie.202206177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Lei Liu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Xinlong Fan
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Boning Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Hong Deng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Tianhang Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Jie Zheng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Jun Chen
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| |
Collapse
|
25
|
Cornier PG, Delpiccolo CM, Martiren NL, Mata EG, Mendez L, Permingeat Squizatto C, Pizzio MG. Transition Metal‐Catalyzed Reactions and Solid‐Phase Synthesis: A Convenient Blend. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Patricia G. Cornier
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 2000 Rosario ARGENTINA
| | - Carina M.L. Delpiccolo
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 2000 Rosario ARGENTINA
| | - Nadia L. Martiren
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 S2000 Rosario ARGENTINA
| | - Ernesto G Mata
- Instituto de Química Rosario Chemistry Suipacha 531 2000 Rosario ARGENTINA
| | - Luciana Mendez
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 S2000 ROSARIO ARGENTINA
| | | | - Marianela G. Pizzio
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 S2000 Rosario ARGENTINA
| |
Collapse
|
26
|
Jei BB, Yang L, Ackermann L. Selective Labeling of Peptides with o-Carboranes via Manganese(I)-Catalyzed C-H Activation. Chemistry 2022; 28:e202200811. [PMID: 35420234 PMCID: PMC9320968 DOI: 10.1002/chem.202200811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 12/15/2022]
Abstract
A robust method for the selective labeling of peptides via manganese(I) catalysis was devised to achieve the C-2 alkenylation of tryptophan containing peptides with 1-ethynyl-o-carboranes. The manganese-catalyzed C-H activation was accomplished with high catalytic efficiency, and featured low toxicity, high functional group tolerance and excellent E-stereoselectivity. This approach unravels a promising tool for the assembly of o-carborane with structurally complex peptides of relevance to applications in boron neutron capture therapy.
Collapse
Affiliation(s)
- Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Long Yang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
27
|
Empel C, Jana S, Koodan A, Koenigs RM. Unlocking C–H Functionalization at Room Temperature via a Light-Mediated Protodemetalation Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Sripati Jana
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Adithyaraj Koodan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M. Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
28
|
LIU LEI, FAN XINLONG, WANG BONING, DENG HONG, WANG TIANHANG, ZHENG JIE, CHEN JUN, SHI ZHUANGZHI, Wang H. P(III)‐Directed Late‐Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- LEI LIU
- Nanjing University CHEMISTRY AND CHEMICAL ENGINEERING CHINA
| | | | | | | | | | | | - JUN CHEN
- Nanjing University CHEMISTRY CHINA
| | | | - Huan Wang
- Nanjing University Chemistry and Chemical Engineering 163 Xianlin Ave.Chemistry Building, E504 210023 Nanjing CHINA
| |
Collapse
|
29
|
Mendive‐Tapia L, Mendive‐Tapia D, Zhao C, Gordon D, Benson S, Bromley MJ, Wang W, Wu J, Kopp A, Ackermann L, Vendrell M. Rationales Design von Phe-BODIPY-Aminosäuren als fluorogene Bausteine für den peptidbasierten Nachweis von Candida-Infektionen im Harntrakt. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117218. [PMID: 38505242 PMCID: PMC10946803 DOI: 10.1002/ange.202117218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/08/2022]
Abstract
AbstractPilzinfektionen, die durch Candida‐Arten verursacht werden, gehören zu den häufigsten Infektionen bei Krankenhauspatienten. Die derzeitigen Methoden zum Nachweis von Candida‐Pilzzellen in klinischen Proben beruhen jedoch auf zeitaufwändigen Analysen, die eine schnelle und zuverlässige Diagnose erschweren. In diesem Beitrag beschreiben wir die rationale Entwicklung neuer Phe‐BODIPY‐Aminosäuren als kleine fluorogene Bausteine und ihre Anwendung zur Erzeugung fluoreszierender antimikrobieller Peptide für die schnelle Markierung von Candida‐Zellen im Urin. Mit Hilfe von computergestützten Berechnungen haben wir das fluorogene Verhalten von BODIPY‐substituierten aromatischen Aminosäuren analysiert und Bioaktivitäts‐ und konfokale Mikroskopieexperimente bei verschiedenen Stämmen durchgeführt, um den Nutzen und die Vielseitigkeit von Peptiden mit Phe‐BODIPYs zu bestätigen. Schließlich haben wir einen einfachen und sensitiven fluoreszensbasierten Test zum Nachweis von Candida albicans in menschlichen Urinproben entwickelt.
Collapse
Affiliation(s)
- Lorena Mendive‐Tapia
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| | - David Mendive‐Tapia
- Abteilung Theoretische ChemiePhysikalisch-Chemisches InstitutUniversität Heidelberg69120HeidelbergDeutschland
| | - Can Zhao
- Manchester Fungal Infection GroupAbteilung für EvolutionInfektion und GenomikM139NTManchesterGroßbritannien
| | - Doireann Gordon
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| | - Sam Benson
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| | - Michael J. Bromley
- Manchester Fungal Infection GroupAbteilung für EvolutionInfektion und GenomikM139NTManchesterGroßbritannien
| | - Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Adelina Kopp
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Marc Vendrell
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| |
Collapse
|
30
|
Mendive‐Tapia L, Mendive‐Tapia D, Zhao C, Gordon D, Benson S, Bromley MJ, Wang W, Wu J, Kopp A, Ackermann L, Vendrell M. Rational Design of Phe-BODIPY Amino Acids as Fluorogenic Building Blocks for Peptide-Based Detection of Urinary Tract Candida Infections. Angew Chem Int Ed Engl 2022; 61:e202117218. [PMID: 35075763 PMCID: PMC9305947 DOI: 10.1002/anie.202117218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 12/11/2022]
Abstract
Fungal infections caused by Candida species are among the most prevalent in hospitalized patients. However, current methods for the detection of Candida fungal cells in clinical samples rely on time-consuming assays that hamper rapid and reliable diagnosis. Herein, we describe the rational development of new Phe-BODIPY amino acids as small fluorogenic building blocks and their application to generate fluorescent antimicrobial peptides for rapid labelling of Candida cells in urine. We have used computational methods to analyse the fluorogenic behaviour of BODIPY-substituted aromatic amino acids and performed bioactivity and confocal microscopy experiments in different strains to confirm the utility and versatility of peptides incorporating Phe-BODIPYs. Finally, we have designed a simple and sensitive fluorescence-based assay for the detection of Candida albicans in human urine samples.
Collapse
Affiliation(s)
| | - David Mendive‐Tapia
- Department Theoretische ChemiePhysikalisch-Chemisches InstitutUniversität Heidelberg69120HeidelbergGermany
| | - Can Zhao
- Manchester Fungal Infection GroupDivision of EvolutionInfection and GenomicsUniversity of ManchesterM139NTManchesterUK
| | - Doireann Gordon
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Michael J. Bromley
- Manchester Fungal Infection GroupDivision of EvolutionInfection and GenomicsUniversity of ManchesterM139NTManchesterUK
| | - Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Adelina Kopp
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| |
Collapse
|
31
|
Cai C, Wang F, Xiao X, Sheng W, Liu S, Chen J, Zheng J, Xie R, Bai Z, Wang H. Macrocyclization of bioactive peptides with internal thiazole motifs via palladium-catalyzed C-H olefination. Chem Commun (Camb) 2022; 58:4861-4864. [PMID: 35348132 DOI: 10.1039/d1cc06764h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptides containing thiazole fragments represent a large group of bioactive compounds with potential medicinal applications. However, methods for efficient synthesis of these compounds with structural diversity are limited. Herein, we report a method for modification and macrocyclization of thiazole-containing peptides through palladium-catalyzed δ-C(sp2)-H olefination. In this protocol, the thiazole and neighboring amide bonds act as directing groups, which allows site-specific olefination of phenylalanine, tryptophan and tyrosine residues. This chemistry exhibits broad substrate scope and provides facile access to peptide-peptide conjugates and peptide macrocycles. Our results highlight the potency and applicability of thiazole motifs in promoting Pd-catalyzed functionalization of peptides.
Collapse
Affiliation(s)
- Chuangxu Cai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Feifei Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiuyun Xiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Wangjian Sheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shu Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jun Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jie Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zengbing Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
32
|
Li S, Pissarnitski D, Nowak T, Wleklinski M, Krska SW. Merging Late-Stage Diversification with Solid-Phase Peptide Synthesis Enabled by High-Throughput On-Resin Reaction Screening. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shasha Li
- Department of Analytical R&D, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dmitri Pissarnitski
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Timothy Nowak
- Department of Analytical R&D, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Wleklinski
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Shane W. Krska
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
33
|
Son J. Sustainable manganese catalysis for late-stage C-H functionalization of bioactive structural motifs. Beilstein J Org Chem 2021; 17:1733-1751. [PMID: 34386100 PMCID: PMC8329386 DOI: 10.3762/bjoc.17.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/15/2021] [Indexed: 01/31/2023] Open
Abstract
The late-stage C–H functionalization of bioactive structural motifs is a powerful synthetic strategy for accessing advanced agrochemicals, bioimaging materials, and drug candidates, among other complex molecules. While traditional late-stage diversification relies on the use of precious transition metals, the utilization of 3d transition metals is an emerging approach in organic synthesis. Among the 3d metals, manganese catalysts have gained increasing attention for late-stage diversification due to the sustainability, cost-effectiveness, ease of operation, and reduced toxicity. Herein, we summarize recent manganese-catalyzed late-stage C–H functionalization reactions of biologically active small molecules and complex peptides.
Collapse
Affiliation(s)
- Jongwoo Son
- Department of Chemistry, Dong-A University, Busan 49315, South Korea.,Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan 49315, South Korea
| |
Collapse
|
34
|
Zhao X, Li B, Xu J, Tang Q, Cai Z, Jiang X. Visible-Light-Driven Redox Neutral Direct C-H Amination of Glycine Derivatives and Peptides with N-Acyloxyphthalimides. Chemistry 2021; 27:12540-12544. [PMID: 34164860 DOI: 10.1002/chem.202101982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 12/12/2022]
Abstract
A room temperature, visible-light-promoted and redox neutral direct C-H amination of glycine and peptides has been firstly accomplished by using N-acyloxyphthalimide or -succinimide as nitrogen-radical precursor. The present strategy provides ways to introduce functionalities such as N-acyloxyphthalimide or -succinimide specifically to terminal glycine segment of peptides. Herein, mild conditions and high functional-group tolerance allow the preparation of non-natural α-amino acids and modification of corresponding peptides in this way.
Collapse
Affiliation(s)
- Xiaoyun Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bai Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jingyao Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Qinglin Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zhengjun Cai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
35
|
Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. C–H activation. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00041-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Nipate DS, Shinde VN, Rangan K, Kumar A. Switchable regioselective hydroalkylation of 2-arylindoles with maleimides. Org Biomol Chem 2021; 19:4910-4921. [PMID: 34008673 DOI: 10.1039/d1ob00690h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A condition-based switchable regioselective hydroalkylation of 2-arylindoles with maleimides has been developed. The reaction in the presence of a Ru(ii)-catalyst resulted in hydroalkylation at the ortho-position of the C2-aryl ring via C-H activation whereas the reaction in the absence of the catalyst in TFE resulted in C3-hydroalkylation. Various functional groups both on the indole ring and on the 2-phenyl ring were tolerated and a wide range of hydroalkylated products were obtained in moderate to high (37-88%) yields.
Collapse
Affiliation(s)
- Dhananjay S Nipate
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| | - Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
37
|
Song L, Ojeda‐Carralero GM, Parmar D, González‐Martínez DA, Van Meervelt L, Van der Eycken J, Goeman J, Rivera DG, Van der Eycken EV. Chemoselective Peptide Backbone Diversification and Bioorthogonal Ligation by Ruthenium‐Catalyzed C−H Activation/Annulation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Gerardo M. Ojeda‐Carralero
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Center for Natural Product Research Faculty of Chemistry University of Havana Zapata y G 10400 Havana Cuba
| | - Divyaakshar Parmar
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - David A. González‐Martínez
- Center for Natural Product Research Faculty of Chemistry University of Havana Zapata y G 10400 Havana Cuba
| | - Luc Van Meervelt
- Biomolecular Architecture Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Johan Van der Eycken
- Laboratory for Organic and Bio-Organic Synthesis Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 (S.4) B-9000 Ghent Belgium
| | - Jan Goeman
- Laboratory for Organic and Bio-Organic Synthesis Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 (S.4) B-9000 Ghent Belgium
| | - Daniel G. Rivera
- Center for Natural Product Research Faculty of Chemistry University of Havana Zapata y G 10400 Havana Cuba
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Street 6 Moscow 117198 Russia
| |
Collapse
|
38
|
Weng Y, Ding B, Liu Y, Song C, Chan LY, Chiang CW. Late-Stage Photoredox C-H Amidation of N-Unprotected Indole Derivatives: Access to N-(Indol-2-yl)amides. Org Lett 2021; 23:2710-2714. [PMID: 33749289 DOI: 10.1021/acs.orglett.1c00609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The late-stage functionalization of N-unprotected indoles can be useful for modifying low-molecular-weight drugs and bioactive peptides. Whereas indole carboxamides are valuable in pharmaceutical applications, the preparation N-(indol-2-yl)amides with similar structures continues to be challenging. Herein we report on visible-light-induced late-stage photoredox C-H amidation with N-unprotected indoles and tryptophan-containing peptides, leading to the formation of N-(indol-2-yl)amide derivatives. N-Unprotected indoles and aryloxyamides that contain an electron-withdrawing group could be coupled directly to eosin Y as the photocatalyst by irradiation with a green light-emitting diode at room temperature. Mechanistic studies and density functional theory calculations indicate that the transformation might proceed through the oxidative C-H functionalization of indole with a PS* to PS•- cycle. This protocol provides a new toolkit for the late-stage modification labeling and peptide-drug conjugation of N-unprotected indole derivatives.
Collapse
Affiliation(s)
- Yue Weng
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecule & School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Bo Ding
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yunqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Chunlan Song
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Lo-Ying Chan
- Department of Chemistry, Soochow University, No. 70, Linhsi Road, Shihlin District, Taipei 111002, Taiwan
| | - Chien-Wei Chiang
- Department of Chemistry, Soochow University, No. 70, Linhsi Road, Shihlin District, Taipei 111002, Taiwan
| |
Collapse
|
39
|
Kaplaneris N, Kaltenhӓuser F, Sirvinskaite G, Fan S, De Oliveira T, Conradi LC, Ackermann L. Late-stage stitching enabled by manganese-catalyzed C─H activation: Peptide ligation and access to cyclopeptides. SCIENCE ADVANCES 2021; 7:eabe6202. [PMID: 33637533 PMCID: PMC7909873 DOI: 10.1126/sciadv.abe6202] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 05/03/2023]
Abstract
Bioorthogonal late-stage diversification of structurally complex peptides bears enormous potential for drug discovery and molecular imaging. Despite major accomplishments, these strategies heavily rely on noble-metal catalysis. Herein, we report on a manganese(I)-catalyzed peptide C─H hydroarylation that enabled the stitching of peptidic and sugar fragments, under exceedingly mild and racemization-free conditions. This convergent approach represents an atom-economical alternative to traditional iterative peptide synthesis. The robustness of the manganese(I) catalysis regime is reflected by the full tolerance of a plethora of sensitive functional groups. Our strategy enabled an expedient access to challenging cyclic peptides by a modular late-stage macrocyclization of structurally complex peptides.
Collapse
Affiliation(s)
- Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Felix Kaltenhӓuser
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Giedre Sirvinskaite
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Shuang Fan
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Tiago De Oliveira
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Lena-Christin Conradi
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), Potsdamer Straße 58, 10785 Berlin, Germany
- Wöhler Research Institute for Sustainable Chemistry, Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammastraße 2, 37077, Göttingen, Germany
| |
Collapse
|
40
|
Chowdhury A, Chatterjee S, Pongen A, Sarania D, Tripathi NM, Bandyopadhyay A. nSite-Selective, Chemical Modification of Protein at Aromatic Side Chain and Their Emergent Applications. Protein Pept Lett 2021; 28:788-808. [PMID: 33511938 DOI: 10.2174/0929866528666210129152535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/20/2020] [Indexed: 11/22/2022]
Abstract
Site-selective chemical modification of protein side chain has probed enormous opportunities in the fundamental understanding of cellular biology and therapeutic applications. Primarily, in the field of biopharmaceutical where formulation of bioconjugates is found to be potential medicine than an individual constituent. In this regard, Lysine and Cysteine are the most widely used endogenous amino acid for these purposes. Recently, the aromatic side chain residues (Trp, Tyr, and His) that are low abundant in protein have gained more attention in therapeutic applications due to their advantages of chemical reactivity and specificity. This review discusses the site-selective bioconjugation methods for aromatic side chains (Trp, Tyr and His) and highlights the developed strategies in the last three years, along with their applications. Also, the review highlights the prevalent methods published earlier. We have examined that metal-catalyzed and photocatalytic reactions are gaining more attention for bioconjugation, though their practical operation is under development. The review has been summarized with the future perspective of protein and peptide conjugations contemplating therapeutic applications and challenges.
Collapse
Affiliation(s)
- Arnab Chowdhury
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology, Ropar, Birla Farms, Punjab-781039. India
| | - Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology, Ropar, Birla Farms, Punjab-781039. India
| | - Akumlong Pongen
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology, Ropar, Birla Farms, Punjab-781039. India
| | - Dhanjit Sarania
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology, Ropar, Birla Farms, Punjab-781039. India
| | - Nitesh Mani Tripathi
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology, Ropar, Birla Farms, Punjab-781039. India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology, Ropar, Birla Farms, Punjab-781039. India
| |
Collapse
|
41
|
Hammarback LA, Aucott BJ, Bray JTW, Clark IP, Towrie M, Robinson A, Fairlamb IJS, Lynam JM. Direct Observation of the Microscopic Reverse of the Ubiquitous Concerted Metalation Deprotonation Step in C-H Bond Activation Catalysis. J Am Chem Soc 2021; 143:1356-1364. [PMID: 33428402 DOI: 10.1021/jacs.0c10409] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of carboxylate groups to promote the direct functionalization of C-H bonds in organic compounds is unquestionably one of the most important discoveries in modern chemical synthesis. Extensive computational studies have indicated that this process proceeds through the deprotonation of a metal-coordinated C-H bond by the basic carboxylate, yet experimental validation of these predicted mechanistic pathways is limited and fraught with difficulty, mainly as rapid proton transfer is frequently obscured in ensemble measures in multistep reactions (i.e., a catalytic cycle consisting of several steps). In this paper, we describe a strategy to experimentally observe the microscopic reverse of the key C-H bond activation step underpinning functionalization processes (viz. M-C bond protonation). This has been achieved by utilizing photochemical activation of the thermally robust precursor [Mn(ppy)(CO)4] (ppy = metalated 2-phenylpyridine) in neat acetic acid. Time-resolved infrared spectroscopy on the picosecond-millisecond time scale allows direct observation of the states involved in the proton transfer from the acetic acid to the cyclometalated ligand, providing direct experimental evidence for the computationally predicted reaction pathways. The power of this approach to probe the mechanistic pathways in transition-metal-catalyzed reactions is demonstrated through experiments performed in toluene solution in the presence of PhC2H and HOAc. These allowed for the observation of sequential displacement of the metal-bound solvent by the alkyne, C-C bond formation though insertion in the Mn-C bond, and a slower protonation step by HOAc to generate the product of a Mn(I)-catalyzed C-H bond functionalization reaction.
Collapse
Affiliation(s)
| | - Benjamin J Aucott
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Joshua T W Bray
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Ian P Clark
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, U.K
| | - Michael Towrie
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, U.K
| | - Alan Robinson
- Syngenta Crop Protection AG, Breitenloh 5, Münchwilen 433, Switzerland
| | - Ian J S Fairlamb
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Jason M Lynam
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
42
|
Lou J, Han W, Liu Z, Xiao J. Rhodium-catalyzed enone carbonyl directed C–H activation for the synthesis of indanones containing all-carbon quaternary centers. Org Chem Front 2021. [DOI: 10.1039/d1qo00056j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rhodium(iii)-catalyzed enone carbonyl directed C–H activation/annulation of α-aroyl ketene dithioacetals with diazo compounds has been realized for the synthesis of β-quaternary indanones.
Collapse
Affiliation(s)
- Jiang Lou
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- P. R. China
| | - Wenjia Han
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- P. R. China
| | - Zhuqing Liu
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- P. R. China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- P. R. China
| |
Collapse
|
43
|
Sikari R, Chakraborty G, Guin AK, Paul ND. Nickel-Catalyzed [4 + 2] Annulation of Nitriles and Benzylamines by C-H/N-H Activation. J Org Chem 2021; 86:279-290. [PMID: 33314935 DOI: 10.1021/acs.joc.0c02069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nickel-catalyzed [4 + 2] annulation of benzylamines and nitriles via C-H/N-H bond activation, providing straightforward atom-economic access to a wide variety of multisubstituted quinazolines, is reported. Mechanistic investigation revealed that the in situ formed amidines from the coupling of benzylamines and nitriles direct the nickel catalyst to activate the ortho-C-H bond of the phenyl ring of the benzylamine.
Collapse
Affiliation(s)
- Rina Sikari
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
44
|
Wang W, Wu J, Kuniyil R, Kopp A, Lima RN, Ackermann L. Peptide Late-Stage Diversifications by Rhodium-Catalyzed Tryptophan C7 Amidation. Chem 2020. [DOI: 10.1016/j.chempr.2020.10.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Shen H, Cheng D, Li Y, Liu T, Yi X, Liu L, Ling F, Zhong W. Late-stage diversification by rutheniumelectro-catalyzed C–H mono- and di-acyloxylation. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
46
|
Hu JJ, He PY, Li YM. Chemical modifications of tryptophan residues in peptides and proteins. J Pept Sci 2020; 27:e3286. [PMID: 32945039 DOI: 10.1002/psc.3286] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/27/2022]
Abstract
Chemical protein modifications facilitate the investigation of natural posttranslational protein modifications and allow the design of proteins with new functions. Proteins can be modified at a late stage on amino acid side chains by chemical methods. The indole moiety of tryptophan residues is an emerging target of such chemical modification strategies because of its unique reactivity and low abundance. This review provides an overview of the recently developed methods of tryptophan modification at the peptide and protein levels.
Collapse
Affiliation(s)
- Jin-Jian Hu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Pei-Yang He
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China
| |
Collapse
|
47
|
Han B, Li B, Qi L, Yang P, He G, Chen G. Construction of Cyclophane-Braced Peptide Macrocycles via Palladium-Catalyzed Picolinamide-Directed Intramolecular C(sp2)–H Arylation. Org Lett 2020; 22:6879-6883. [DOI: 10.1021/acs.orglett.0c02422] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Boyang Han
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liping Qi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
48
|
Hu QL, Hou KQ, Li J, Ge Y, Song ZD, Chan ASC, Xiong XF. Silanol: a bifunctional group for peptide synthesis and late-stage functionalization. Chem Sci 2020; 11:6070-6074. [PMID: 34094099 PMCID: PMC8159358 DOI: 10.1039/d0sc02439b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/24/2020] [Indexed: 12/27/2022] Open
Abstract
Chemical modification of a specific amino acid residue on peptides represents an efficient strategy to improve their pharmacokinetics and facilitates the potential to achieve post-synthetic diversification of peptides. Herein, we reported the first Pd-catalyzed late-stage ortho-olefination of Tyr residues on peptides with high chemo- and site-selectivity, by employing the easily attached and removable silanol as a bifunctional protecting group and directing group. Up to hexapeptides with variation on amino acid sequences or locations of the Tyr residue and different olefins were compatible with this protocol, which enriched the chemical toolbox for late-stage modification via C(sp2)-H functionalization. Furthermore, the orthogonal protection strategies of Tyr were also developed and could be applied to SPPS.
Collapse
Affiliation(s)
- Qi-Long Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University 510006 Guangzhou Guangdong P. R. China
| | - Ke-Qiang Hou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University 510006 Guangzhou Guangdong P. R. China
| | - Jian Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University 510006 Guangzhou Guangdong P. R. China
| | - Yang Ge
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University 510006 Guangzhou Guangdong P. R. China
| | - Zhen-Dong Song
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University 510006 Guangzhou Guangdong P. R. China
| | - Albert S C Chan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University 510006 Guangzhou Guangdong P. R. China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University 510006 Guangzhou Guangdong P. R. China
| |
Collapse
|
49
|
Fluorescent amino acids as versatile building blocks for chemical biology. Nat Rev Chem 2020; 4:275-290. [PMID: 37127957 DOI: 10.1038/s41570-020-0186-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Fluorophores have transformed the way we study biological systems, enabling non-invasive studies in cells and intact organisms, which increase our understanding of complex processes at the molecular level. Fluorescent amino acids have become an essential chemical tool because they can be used to construct fluorescent macromolecules, such as peptides and proteins, without disrupting their native biomolecular properties. Fluorescent and fluorogenic amino acids with unique photophysical properties have been designed for tracking protein-protein interactions in situ or imaging nanoscopic events in real time with high spatial resolution. In this Review, we discuss advances in the design and synthesis of fluorescent amino acids and how they have contributed to the field of chemical biology in the past 10 years. Important areas of research that we review include novel methodologies to synthesize building blocks with tunable spectral properties, their integration into peptide and protein scaffolds using site-specific genetic encoding and bioorthogonal approaches, and their application to design novel artificial proteins, as well as to investigate biological processes in cells by means of optical imaging.
Collapse
|
50
|
Wu J, Kaplaneris N, Ni S, Kaltenhäuser F, Ackermann L. Late-stage C(sp 2)-H and C(sp 3)-H glycosylation of C-aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling. Chem Sci 2020; 11:6521-6526. [PMID: 34094117 PMCID: PMC8152807 DOI: 10.1039/d0sc01260b] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
C(sp3)–H and C(sp2)–H glycosylations of structurally complex amino acids and peptides were accomplished through the assistance of triazole peptide-isosteres. The palladium-catalyzed peptide–saccharide conjugation provided modular access to structurally complex C-alkyl glycoamino acids, glycopeptides and C-aryl glycosides, while enabling the assembly of fluorescent-labeled glycoamino acids. The C–H activation approach represents an expedient and efficient strategy for peptide late-stage diversification in a programmable as well as chemo-, regio-, and diastereo-selective fashion. C–H glycosylations of complex amino acids and peptides were accomplished through the assistance of triazole peptide-isosteres. The palladium-catalyzed glycosylation provided access to complex C-glycosides and fluorescent-labeled glycoamino acids.![]()
Collapse
Affiliation(s)
- Jun Wu
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Nikolaos Kaplaneris
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Shaofei Ni
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Felix Kaltenhäuser
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany .,German Center for Cardiovascular Research (DZHK) Potsdamer Strasse 58 10785 Berlin Germany
| |
Collapse
|