1
|
Lee H, Lee S, Lee S, Lee J, Chou N, Shin H. A Highly Efficient Low-Cost Flexible Neural Probe for Scalable Mass Fabrication. ACS OMEGA 2025; 10:10733-10740. [PMID: 40124055 PMCID: PMC11923641 DOI: 10.1021/acsomega.5c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Neural probes capable of the precise recording and control of brain signals are essential tools for brain-computer interfaces and neuroscience research. However, conventional neural probes have not been widely adopted due to the high costs associated with semiconductor fabrication and complex packaging procedures. Herein, we present a breakthrough in this area in the form of a highly efficient flexible neural probe with a production cost of only 1.5 dollars per unit that can be mass-produced (1000 units within 3 days). The probe design is based on a standardized flexible printed circuit board (PCB) process that ensures large-scale producibility and minimizes device performance variation. The device features four independent neural probes that enable flexible targeting of multiple brain regions and a reusable interface PCB that minimizes packaging complexity. The neural signal recording performance of the fabricated probe is comparable to that of traditional silicon-based probes and is scalable with eight electrodes capable of simultaneous measurements. We anticipate that our innovative device will significantly improve the accessibility of neuroscience research.
Collapse
Affiliation(s)
- Haeyun Lee
- School
of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seungbin Lee
- School
of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seungjun Lee
- Emotion,
Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| | - Jimin Lee
- Emotion,
Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| | - Namsun Chou
- Emotion,
Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| | - Hyogeun Shin
- School
of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
- School
of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Du Le VN. Monte Carlo Guidance for Better Imaging of Boreal Lakes in the Wavelength Region of 400-800 nm. SENSORS (BASEL, SWITZERLAND) 2025; 25:1020. [PMID: 40006249 PMCID: PMC11859520 DOI: 10.3390/s25041020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
Boreal lake depth, one of the most important parameters in numerical weather prediction and climate models through parametrization, helps in identifying notable environmental changes across the globe and in estimating its effect on the ecosystem in remote regions. However, there is no quantitative tool to effectively estimate lake depth from satellite images, leaving scientists to infer lake depth from extrapolation of statistics by relying on certain geological knowledge (such as those used in the Global Lake Database). The bottoms of boreal forest lakes are mainly composed of woody debris, and thus spectral imaging revealing contrast of woody debris can be used to estimate lake depth. Here, we use well-established Monte Carlo software to construct spectral images of boreal lakes that house woody debris, phytoplankton, and chlorophyll. This is accomplished by modeling the dynamic optical properties of selected boreal lakes and simulating the propagation of photons in the wavelength region of 400-800 nm. The results show that the spectral image contrast of boreal lakes is not only determined by the depth level and concentration level of phytoplankton and chlorophyll in water but is also affected by the spectral shape of background absorption, especially the contribution of pure water absorption in the total absorption of lake water.
Collapse
Affiliation(s)
- Vinh Nguyen Du Le
- Department of Physics and Astronomy, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
3
|
Ban S, Yi H, Park J, Huang Y, Yu KJ, Yeo WH. Advances in Photonic Materials and Integrated Devices for Smart and Digital Healthcare: Bridging the Gap Between Materials and Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416899. [PMID: 39905874 DOI: 10.1002/adma.202416899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/06/2024] [Indexed: 02/06/2025]
Abstract
Recent advances in developing photonic technologies using various materials offer enhanced biosensing, therapeutic intervention, and non-invasive imaging in healthcare. Here, this article summarizes significant technological advancements in materials, photonic devices, and bio-interfaced systems, which demonstrate successful applications for impacting human healthcare via improved therapies, advanced diagnostics, and on-skin health monitoring. The details of required materials, necessary properties, and device configurations are described for next-generation healthcare systems, followed by an explanation of the working principles of light-based therapeutics and diagnostics. Next, this paper shares the recent examples of integrated photonic systems focusing on translation and immediate applications for clinical studies. In addition, the limitations of existing materials and devices and future directions for smart photonic systems are discussed. Collectively, this review article summarizes the recent focus and trends of technological advancements in developing new nanomaterials, light delivery methods, system designs, mechanical structures, material functionalization, and integrated photonic systems to advance human healthcare and digital healthcare.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hoon Yi
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jaejin Park
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Yunuo Huang
- School of Industrial Design, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
- The Biotech Center, Pohang University of Science and Technology (POSTECH), Gyeongbuk, 37673, South Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, Seoul, 03722, South Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
4
|
Ahmed Taha B, Addie AJ, Saeed AQ, Haider AJ, Chaudhary V, Arsad N. Nanostructured Photonics Probes: A Transformative Approach in Neurotherapeutics and Brain Circuitry. Neuroscience 2024; 562:106-124. [PMID: 39490518 DOI: 10.1016/j.neuroscience.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Neuroprobes that use nanostructured photonic interfaces are capable of multimodal sensing, stimulation, and imaging with unprecedented spatio-temporal resolution. In addition to electrical recording, optogenetic modulation, high-resolution optical imaging, and molecular sensing, these advanced probes combine nanophotonic waveguides, optical transducers, nanostructured electrodes, and biochemical sensors. The potential of this technology lies in unraveling the mysteries of neural coding principles, mapping functional connectivity in complex brain circuits, and developing new therapeutic interventions for neurological disorders. Nevertheless, achieving the full potential of nanostructured photonic neural probes requires overcoming challenges such as ensuring long-term biocompatibility, integrating nanoscale components at high density, and developing robust data-analysis pipelines. In this review, we summarize and discuss the role of photonics in neural probes, trends in electrode diameter for neural interface technologies, nanophotonic technologies using nanostructured materials, advances in nanofabrication photonics interface engineering, and challenges and opportunities. Finally, interdisciplinary efforts are required to unlock the transformative potential of next-generation neuroscience therapies.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia.
| | - Ali J Addie
- Center of Industrial Applications and Materials Technology, Scientific Research Commission, Iraq
| | - Ali Q Saeed
- Computer Center / Northern Technical University, Iraq
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, Iraq.
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi 110045, India; Centre for Research Impact & Outcome, Chitkara University, Punjab, 140401 India
| | - Norhana Arsad
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia.
| |
Collapse
|
5
|
Kim J, Gilbert E, Arndt K, Huang H, Oleniacz P, Jiang S, Kimbrough I, Sontheimer H, English DF, Jia X. Multifunctional Tetrode-like Drug delivery, Optical stimulation, and Electrophysiology (Tetro-DOpE) probes. Biosens Bioelectron 2024; 265:116696. [PMID: 39208508 PMCID: PMC11475332 DOI: 10.1016/j.bios.2024.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Having reliable tools for recording and manipulating circuit activity are essential to understand the complex patterns of neural dynamics that underlie brain function. We present Tetro-DOpE (Tetrode-like Drug delivery, Optical stimulation, and Electrophysiology) probes that can simultaneously record and manipulate neural activity in behaving rodents. We fabricated thin multifunctional fibers (<50 μm) using the scalable convergence thermal drawing process. Then, the thin fibers are bundled, similar to tetrode fabrication, to produce Tetro-DOpE probes. We demonstrated the multifunctionality (i.e., electrophysiology, optical stimulation, and drug delivery) of our probe in head-fixed behaving mice. Furthermore, we assembled a six-shank probe mounted on a microdrive which enabled stable recordings of over months when chronically implanted in freely behaving mice. These in vivo experiments demonstrate the potential of customizable, low cost, and accessible multifunctional Tetro-DOpE probes for investigation of neural circuitry in behaving animals.
Collapse
Affiliation(s)
- Jongwoon Kim
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Earl Gilbert
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Kaiser Arndt
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Hengji Huang
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Patrycja Oleniacz
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Shan Jiang
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Ian Kimbrough
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Harald Sontheimer
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | - Xiaoting Jia
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA, USA; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
6
|
Shin H, Nam MH, Lee SE, Yang SH, Yang E, Jung JT, Kim H, Woo J, Cho Y, Yoon Y, Cho IJ. Transcranial optogenetic brain modulator for precise bimodal neuromodulation in multiple brain regions. Nat Commun 2024; 15:10423. [PMID: 39613730 DOI: 10.1038/s41467-024-54759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
Transcranial brain stimulation is a promising technology for safe modulation of brain function without invasive procedures. Recent advances in transcranial optogenetic techniques with external light sources, using upconversion particles and highly sensitive opsins, have shown promise for precise neuromodulation with improved spatial resolution in deeper brain regions. However, these methods have not yet been used to selectively excite or inhibit specific neural populations in multiple brain regions. In this study, we created a wireless transcranial optogenetic brain modulator that combines highly sensitive opsins and upconversion particles and allows for precise bimodal neuromodulation of multiple brain regions without optical crosstalk. We demonstrate the feasibility of our approach in freely behaving mice. Furthermore, we demonstrate its usefulness in studies of complex behaviors and brain dysfunction by controlling extorting behavior in mice in food competition tests and alleviating the symptoms of Parkinson's disease. Our approach has potential applications in the study of neural circuits and development of treatments for various brain disorders.
Collapse
Affiliation(s)
- Hyogeun Shin
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Min-Ho Nam
- Center for Brain Function, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resources Center, Research Resources Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Soo Hyun Yang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Esther Yang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jin Taek Jung
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyun Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jiwan Woo
- Research Animal Resources Center, Research Resources Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yakdol Cho
- Research Animal Resources Center, Research Resources Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Youngsam Yoon
- Department of Electrical Engineering, Korea Military Academy, Seoul, Republic of Korea
| | - Il-Joo Cho
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea.
- Department of Convergence Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Huang Y, Li G, Bai T, Shin Y, Wang X, More AI, Boucher P, Chandrasekaran C, Liu J, Fang H. Flexible electronic-photonic 3D integration from ultrathin polymer chiplets. NPJ FLEXIBLE ELECTRONICS 2024; 8:61. [PMID: 39780990 PMCID: PMC11709425 DOI: 10.1038/s41528-024-00344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/27/2024] [Indexed: 01/11/2025]
Abstract
The integration of flexible electronics and photonics has the potential to create revolutionary technologies, yet it has been challenging to marry electronic and photonic components on a single polymer device, especially through high-volume manufacturing. Here, we present a robust, chiplet-level heterogeneous integration of polymer-based circuits (CHIP), where several post-fabricated, ultrathin, polymer electronic, and optoelectronic chiplets are vertically bonded into one single chip at room temperature and then shaped into application-specific form factors with monolithic Input/Output (I/O). As a demonstration, we applied this process and developed a flexible 3D-integrated optrode with high-density arrays of microelectrodes for electrical recording and micro light-emitting diodes (μLEDs) for optogenetic stimulation while with unprecedented integration of additional temperature sensors for bio-safe operations and shielding designs for optoelectronic artifact prevention. Besides achieving simple, high-yield, and scalable 3D integration of much-needed functionalities, CHIP also enables double-sided area utilization and miniaturization of connection I/O. Systematic device characterization demonstrated the successfulness of this scheme and also revealed frequency-dependent origins of optoelectronic artifacts in flexible 3D-integrated optrodes. In addition to enabling excellent manufacturability and scalability, we envision CHIP to be generally applicable to numerous polymer-based devices to achieve wide-ranging applications.
Collapse
Affiliation(s)
- Yunxiang Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Gen Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Tianyu Bai
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yieljae Shin
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Xiaoxin Wang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Alexander Ian More
- Department of Psychological and Brain Sciences, Boston University, MA, 02118, USA
| | - Pierre Boucher
- Department of Psychological and Brain Sciences, Boston University, MA, 02118, USA
| | | | - Jifeng Liu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Hui Fang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
8
|
Yi D, Yao Y, Wang Y, Chen L. Design, Fabrication, and Implantation of Invasive Microelectrode Arrays as in vivo Brain Machine Interfaces: A Comprehensive Review. JOURNAL OF MANUFACTURING PROCESSES 2024; 126:185-207. [PMID: 39185373 PMCID: PMC11340637 DOI: 10.1016/j.jmapro.2024.07.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Invasive Microelectrode Arrays (MEAs) have been a significant and useful tool for us to gain a fundamental understanding of how the brain works through high spatiotemporal resolution neuron-level recordings and/or stimulations. Through decades of research, various types of microwire, silicon, and flexible substrate-based MEAs have been developed using the evolving new materials, novel design concepts, and cutting-edge advanced manufacturing capabilities. Surgical implantation of the latest minimal damaging flexible MEAs through the hard-to-penetrate brain membranes introduces new challenges and thus the development of implantation strategies and instruments for the latest MEAs. In this paper, studies on the design considerations and enabling manufacturing processes of various invasive MEAs as in vivo brain-machine interfaces have been reviewed to facilitate the development as well as the state-of-art of such brain-machine interfaces from an engineering perspective. The challenges and solution strategies developed for surgically implanting such interfaces into the brain have also been evaluated and summarized. Finally, the research gaps have been identified in the design, manufacturing, and implantation perspectives, and future research prospects in invasive MEA development have been proposed.
Collapse
Affiliation(s)
- Dongyang Yi
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA 01854
| | - Yao Yao
- Department of Industrial and Systems Engineering, University of Missouri, Columbia, MO 65211
| | - Yi Wang
- Department of Industrial and Systems Engineering, University of Missouri, Columbia, MO 65211
| | - Lei Chen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA 01854
| |
Collapse
|
9
|
Li L, Zhang B, Zhao W, Sheng D, Yin L, Sheng X, Yao D. Multimodal Technologies for Closed-Loop Neural Modulation and Sensing. Adv Healthc Mater 2024; 13:e2303289. [PMID: 38640468 DOI: 10.1002/adhm.202303289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/11/2024] [Indexed: 04/21/2024]
Abstract
Existing methods for studying neural circuits and treating neurological disorders are typically based on physical and chemical cues to manipulate and record neural activities. These approaches often involve predefined, rigid, and unchangeable signal patterns, which cannot be adjusted in real time according to the patient's condition or neural activities. With the continuous development of neural interfaces, conducting in vivo research on adaptive and modifiable treatments for neurological diseases and neural circuits is now possible. In this review, current and potential integration of various modalities to achieve precise, closed-loop modulation, and sensing in neural systems are summarized. Advanced materials, devices, or systems that generate or detect electrical, magnetic, optical, acoustic, or chemical signals are highlighted and utilized to interact with neural cells, tissues, and networks for closed-loop interrogation. Further, the significance of developing closed-loop techniques for diagnostics and treatment of neurological disorders such as epilepsy, depression, rehabilitation of spinal cord injury patients, and exploration of brain neural circuit functionality is elaborated.
Collapse
Affiliation(s)
- Lizhu Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bozhen Zhang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Wenxin Zhao
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - David Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Dezhong Yao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
10
|
Xu Y, Yang X, Liang Z, Lin L, Zhao W, Wang L, Xia Y, Lin X, Vai MI, Pun SH, Zhang B. An Integrated Neural Optrode with Modification of Polymer-Carbon Composite Films for Suppression of the Photoelectric Artifacts. ACS OMEGA 2024; 9:33119-33129. [PMID: 39100334 PMCID: PMC11292809 DOI: 10.1021/acsomega.4c04534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Optogenetics-based integrated photoelectrodes with high spatiotemporal resolution play an important role in studying complex neural activities. However, the photostimulation artifacts caused by the high level of integration and the high impedance of metal recording electrodes still hinder the application of photoelectrodes for optogenetic studies of neural circuits. In this study, a neural optrode fabricated on sapphire GaN material was proposed, and 4 μLEDs and 14 recording microelectrodes were monolithically integrated on a shank. Poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate and multiwalled carbon nanotubes (PEDOT:PSS-MWCNT) and poly(3,4-ethylenedioxythiophene) and graphene oxide (PEDOT-GO) composite films were deposited on the surface of the recording microelectrode by electrochemical deposition. The results demonstrate that compared with the gold microelectrode, the impedances of both composite films reduced by more than 98%, and the noise amplitudes decreased by 70.73 and 87.15%, respectively, when exposed to light stimulation. Adjusting the high and low levels, we further reduced the noise amplitude by 48.3%. These results indicate that modifying the electrode surface by a polymer composite film can effectively enhance the performance of the microelectrode and further promote the application of the optrode in the field of neuroscience.
Collapse
Affiliation(s)
- Yanyan Xu
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xien Yang
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiwen Liang
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lizhang Lin
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenbo Zhao
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liyang Wang
- State
Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Yu Xia
- State
Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Xudong Lin
- School
of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mang I. Vai
- State
Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Sio Hang Pun
- State
Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Baijun Zhang
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Yang C, Cheng Z, Li P, Tian B. Exploring Present and Future Directions in Nano-Enhanced Optoelectronic Neuromodulation. Acc Chem Res 2024; 57:1398-1410. [PMID: 38652467 PMCID: PMC11650687 DOI: 10.1021/acs.accounts.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Electrical neuromodulation has achieved significant translational advancements, including the development of deep brain stimulators for managing neural disorders and vagus nerve stimulators for seizure treatment. Optoelectronics, in contrast to wired electrical systems, offers the leadless feature that guides multisite and high spatiotemporal neural system targeting, ensuring high specificity and precision in translational therapies known as "photoelectroceuticals". This Account provides a concise overview of developments in novel optoelectronic nanomaterials that are engineered through innovative molecular, chemical, and nanostructure designs to facilitate neural interfacing with high efficiency and minimally invasive implantation.This Account outlines the progress made both within our laboratory and across the broader scientific community, with particular attention to implications in materials innovation strategies, studying bioelectrical activation with spatiotemporal methods, and applications in regenerative medicine. In materials innovation, we highlight a nongenetic, biocompatible, and minimally invasive approach for neuromodulation that spans various length scales, from single neurons to nerve tissues using nanosized particles and monolithic membranes. Furthermore, our discussion exposes the critical unresolved questions in the field, including mechanisms of interaction at the nanobio interface, the precision of cellular or tissue targeting, and integration into existing neural networks with high spatiotemporal modulation. In addition, we present the challenges and pressing needs for long-term stability and biocompatibility, scalability for clinical applications, and the development of noninvasive monitoring and control systems.In addressing the existing challenges in the field of nanobio interfaces, particularly for neural applications, we envisage promising strategic directions that could significantly advance this burgeoning domain. This involves a deeper theoretical understanding of nanobiointerfaces, where simulations and experimental validations on how nanomaterials interact spatiotemporally with biological systems are crucial. The development of more durable materials is vital for prolonged applications in dynamic neural interfaces, and the ability to manipulate neural activity with high specificity and spatial resolution, paves the way for targeting individual neurons or specific neural circuits. Additionally, integrating these interfaces with advanced control systems, possibly leveraging artificial intelligence and machine learning algorithms and programming dynamically responsive materials designs, could significantly ease the implementation of stimulation and recording. These innovations hold the potential to introduce novel treatment modalities for a wide range of neurological and systemic disorders.
Collapse
Affiliation(s)
- Chuanwang Yang
- The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Zhe Cheng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Pengju Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bozhi Tian
- The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Barros BJ, Cunha JPS. Neurophotonics: a comprehensive review, current challenges and future trends. Front Neurosci 2024; 18:1382341. [PMID: 38765670 PMCID: PMC11102054 DOI: 10.3389/fnins.2024.1382341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
The human brain, with its vast network of billions of neurons and trillions of synapses (connections) between diverse cell types, remains one of the greatest mysteries in science and medicine. Despite extensive research, an understanding of the underlying mechanisms that drive normal behaviors and response to disease states is still limited. Advancement in the Neuroscience field and development of therapeutics for related pathologies requires innovative technologies that can provide a dynamic and systematic understanding of the interactions between neurons and neural circuits. In this work, we provide an up-to-date overview of the evolution of neurophotonic approaches in the last 10 years through a multi-source, literature analysis. From an initial corpus of 243 papers retrieved from Scopus, PubMed and WoS databases, we have followed the PRISMA approach to select 56 papers in the area. Following a full-text evaluation of these 56 scientific articles, six main areas of applied research were identified and discussed: (1) Advanced optogenetics, (2) Multimodal neural interfaces, (3) Innovative therapeutics, (4) Imaging devices and probes, (5) Remote operations, and (6) Microfluidic platforms. For each area, the main technologies selected are discussed according to the photonic principles applied, the neuroscience application evaluated and the more indicative results of efficiency and scientific potential. This detailed analysis is followed by an outlook of the main challenges tackled over the last 10 years in the Neurophotonics field, as well as the main technological advances regarding specificity, light delivery, multimodality, imaging, materials and system designs. We conclude with a discussion of considerable challenges for future innovation and translation in Neurophotonics, from light delivery within the brain to physical constraints and data management strategies.
Collapse
Affiliation(s)
- Beatriz Jacinto Barros
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| | - João P. S. Cunha
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
- Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
13
|
Chen FD, Sharma A, Roszko DA, Xue T, Mu X, Luo X, Chua H, Lo PGQ, Sacher WD, Poon JKS. Development of wafer-scale multifunctional nanophotonic neural probes for brain activity mapping. LAB ON A CHIP 2024; 24:2397-2417. [PMID: 38623840 DOI: 10.1039/d3lc00931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Optical techniques, such as optogenetic stimulation and functional fluorescence imaging, have been revolutionary for neuroscience by enabling neural circuit analysis with cell-type specificity. To probe deep brain regions, implantable light sources are crucial. Silicon photonics, commonly used for data communications, shows great promise in creating implantable devices with complex optical systems in a compact form factor compatible with high volume manufacturing practices. This article reviews recent developments of wafer-scale multifunctional nanophotonic neural probes. The probes can be realized on 200 or 300 mm wafers in commercial foundries and integrate light emitters for photostimulation, microelectrodes for electrophysiological recording, and microfluidic channels for chemical delivery and sampling. By integrating active optical devices to the probes, denser emitter arrays, enhanced on-chip biosensing, and increased ease of use may be realized. Silicon photonics technology makes possible highly versatile implantable neural probes that can transform neuroscience experiments.
Collapse
Affiliation(s)
- Fu Der Chen
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Ankita Sharma
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - David A Roszko
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Tianyuan Xue
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Xin Mu
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Xianshu Luo
- Advanced Micro Foundry Pte Ltd, 11 Science Park Road, Singapore Science Park II, 117685, Singapore
| | - Hongyao Chua
- Advanced Micro Foundry Pte Ltd, 11 Science Park Road, Singapore Science Park II, 117685, Singapore
| | - Patrick Guo-Qiang Lo
- Advanced Micro Foundry Pte Ltd, 11 Science Park Road, Singapore Science Park II, 117685, Singapore
| | - Wesley D Sacher
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
| | - Joyce K S Poon
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
14
|
Park YG, Kwon YW, Koh CS, Kim E, Lee DH, Kim S, Mun J, Hong YM, Lee S, Kim JY, Lee JH, Jung HH, Cheon J, Chang JW, Park JU. In-vivo integration of soft neural probes through high-resolution printing of liquid electronics on the cranium. Nat Commun 2024; 15:1772. [PMID: 38413568 PMCID: PMC10899244 DOI: 10.1038/s41467-024-45768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Current soft neural probes are still operated by bulky, rigid electronics mounted to a body, which deteriorate the integrity of the device to biological systems and restrict the free behavior of a subject. We report a soft, conformable neural interface system that can monitor the single-unit activities of neurons with long-term stability. The system implements soft neural probes in the brain, and their subsidiary electronics which are directly printed on the cranial surface. The high-resolution printing of liquid metals forms soft neural probes with a cellular-scale diameter and adaptable lengths. Also, the printing of liquid metal-based circuits and interconnections along the curvature of the cranium enables the conformal integration of electronics to the body, and the cranial circuit delivers neural signals to a smartphone wirelessly. In the in-vivo studies using mice, the system demonstrates long-term recording (33 weeks) of neural activities in arbitrary brain regions. In T-maze behavioral tests, the system shows the behavior-induced activation of neurons in multiple brain regions.
Collapse
Affiliation(s)
- Young-Geun Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Yong Won Kwon
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Enji Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Dong Ha Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Sumin Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Jongmin Mun
- Department of Statistics and Data Science, Yonsei University, Seoul, 03722, South Korea
| | - Yeon-Mi Hong
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Sanghoon Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Ju-Young Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, South Korea
| | - Jae-Hyun Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, South Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, South Korea.
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea.
| | - Jin Woo Chang
- Department of Neurosurgery, Korea University Anam Hospital, Seoul, 02841, South Korea.
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea.
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, South Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
15
|
Kim J, Huang H, Gilbert ET, Arndt KC, English DF, Jia X. T-DOpE probes reveal sensitivity of hippocampal oscillations to cannabinoids in behaving mice. Nat Commun 2024; 15:1686. [PMID: 38402238 PMCID: PMC10894268 DOI: 10.1038/s41467-024-46021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
Understanding the neural basis of behavior requires monitoring and manipulating combinations of physiological elements and their interactions in behaving animals. We developed a thermal tapering process enabling fabrication of low-cost, flexible probes combining ultrafine features: dense electrodes, optical waveguides, and microfluidic channels. Furthermore, we developed a semi-automated backend connection allowing scalable assembly. We demonstrate T-DOpE (Tapered Drug delivery, Optical stimulation, and Electrophysiology) probes achieve in single neuron-scale devices (1) high-fidelity electrophysiological recording (2) focal drug delivery and (3) optical stimulation. The device tip can be miniaturized (as small as 50 µm) to minimize tissue damage while the ~20 times larger backend allows for industrial-scale connectorization. T-DOpE probes implanted in mouse hippocampus revealed canonical neuronal activity at the level of local field potentials (LFP) and neural spiking. Taking advantage of the triple-functionality of these probes, we monitored LFP while manipulating cannabinoid receptors (CB1R; microfluidic agonist delivery) and CA1 neuronal activity (optogenetics). Focal infusion of CB1R agonist downregulated theta and sharp wave-ripple oscillations (SPW-Rs). Furthermore, we found that CB1R activation reduces sharp wave-ripples by impairing the innate SPW-R-generating ability of the CA1 circuit.
Collapse
Affiliation(s)
- Jongwoon Kim
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Hengji Huang
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Earl T Gilbert
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Kaiser C Arndt
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | | | - Xiaoting Jia
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA.
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
16
|
Lee CH, Park YK, Lee K. Recent strategies for neural dynamics observation at a larger scale and wider scope. Biosens Bioelectron 2023; 240:115638. [PMID: 37647685 DOI: 10.1016/j.bios.2023.115638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
The tremendous technical progress in neuroscience offers opportunities to observe a more minor or/and broader dynamic picture of the brain. Moreover, the large-scale neural activity of individual neurons enables the dissection of detailed mechanistic links between neural populations and behaviors. To measure neural activity in-vivo, multi-neuron recording, and neuroimaging techniques are employed and developed to acquire more neurons. The tools introduced concurrently recorded dozens to hundreds of neurons in the coordinated brain regions and elucidated the neuronal ensembles from a massive population perspective of diverse neurons at cellular resolution. In particular, the increasing spatiotemporal resolution of neuronal monitoring across the whole brain dramatically facilitates our understanding of additional nervous system functions in health and disease. Here, we will introduce state-of-the-art neuroscience tools involving large-scale neural population recording and the long-range connections spanning multiple brain regions. Their synergic effects provide to clarify the controversial circuitry underlying neuroscience. These challenging neural tools present a promising outlook for the fundamental dynamic interplay across levels of synaptic cellular, circuit organization, and brain-wide. Hence, more observations of neural dynamics will provide more clues to elucidate brain functions and push forward innovative technology at the intersection of neural engineering disciplines. We hope this review will provide insight into the use or development of recent neural techniques considering spatiotemporal scales of brain observation.
Collapse
Affiliation(s)
- Chang Hak Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Young Kwon Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Kwang Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea.
| |
Collapse
|
17
|
Lee JM, Pyo YW, Kim YJ, Hong JH, Jo Y, Choi W, Lin D, Park HG. The ultra-thin, minimally invasive surface electrode array NeuroWeb for probing neural activity. Nat Commun 2023; 14:7088. [PMID: 37925553 PMCID: PMC10625630 DOI: 10.1038/s41467-023-42860-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Electrophysiological recording technologies can provide valuable insights into the functioning of the central and peripheral nervous systems. Surface electrode arrays made of soft materials or implantable multi-electrode arrays with high electrode density have been widely utilized as neural probes. However, neither of these probe types can simultaneously achieve minimal invasiveness and robust neural signal detection. Here, we present an ultra-thin, minimally invasive neural probe (the "NeuroWeb") consisting of hexagonal boron nitride and graphene, which leverages the strengths of both surface electrode array and implantable multi-electrode array. The NeuroWeb open lattice structure with a total thickness of 100 nm demonstrates high flexibility and strong adhesion, establishing a conformal and tight interface with the uneven mouse brain surface. In vivo electrophysiological recordings show that NeuroWeb detects stable single-unit activity of neurons with high signal-to-noise ratios. Furthermore, we investigate neural interactions between the somatosensory cortex and the cerebellum using transparent dual NeuroWebs and optical stimulation, and measure the times of neural signal transmission between the brain regions depending on the pathway. Therefore, NeuroWeb can be expected to pave the way for understanding complex brain networks with optical and electrophysiological mapping of the brain.
Collapse
Affiliation(s)
- Jung Min Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Woo Pyo
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Yeon Jun Kim
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Hee Hong
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - Yonghyeon Jo
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - Wonshik Choi
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - Dingchang Lin
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Hong-Gyu Park
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Chen T, Lau KSK, Hong SH, Shi HTH, Iwasa SN, Chen JXM, Li T, Morrison T, Kalia SK, Popovic MR, Morshead CM, Naguib HE. Cryogel-based neurostimulation electrodes to activate endogenous neural precursor cells. Acta Biomater 2023; 171:392-405. [PMID: 37683963 DOI: 10.1016/j.actbio.2023.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The delivery of electrical pulses to the brain via penetrating electrodes, known as brain stimulation, has been recognized as an effective clinical approach for treating neurological disorders. Resident brain neural precursor cells (NPCs) are electrosensitive cells that respond to electrical stimulation by expanding in number, migrating and differentiating which are important characteristics that support neural repair. Here, we report the design of a conductive cryogel brain stimulation electrode specifically developed for NPC activation. The cryogel electrode has a modulus switching mechanism permitting facile penetration and reducing the mechanical mismatch between brain tissue and the penetrating electrode. The cryogel demonstrated good in vivo biocompatibility and reduced the interfacial impedance to deliver the stimulating electric field with lower voltage under charge-balanced current controlled stimulation. An ex vivo assay reveals that electrical stimulation using the cryogel electrodes results in significant expansion in the size of NPC pool. Hence, the cryogel electrodes have the potential to be used for NPC activation to support endogenous neural repair. STATEMENT OF SIGNIFICANCE: The objective of this study is to develop a cryogel-based stimulation electrode as an alternative to traditional electrode materials to be used in regenerative medicine applications for enhancing neural regeneration in brain. The electrode offers benefits such as adaptive modulus for implantation, high charge storage and injection capacities, and modulus matching with brain tissue, allowing for stable delivery of electric field for long-term neuromodulation. The electrochemical properties of cryogel electrodes were characterized in living tissue with an ex vivo set-up, providing a deeper understanding of stimulation capacity in brain environments. The cryogel electrode is biocompatible and enables low voltage, current-controlled stimulation for effective activation of endogenous neural precursor cells, revealing their potential utility in neural stem cell-mediated brain repair.
Collapse
Affiliation(s)
- Tianhao Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kylie Sin Ki Lau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sung Hwa Hong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hao Tian Harvey Shi
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| | - Stephanie N Iwasa
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jia Xi Mary Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Terek Li
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Taylor Morrison
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada; Department of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Cindi M Morshead
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Hani E Naguib
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada; Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Qin Y, Zhang Y, Zhang Y, Liu S, Guo X. Application and Development of EEG Acquisition and Feedback Technology: A Review. BIOSENSORS 2023; 13:930. [PMID: 37887123 PMCID: PMC10605290 DOI: 10.3390/bios13100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
This review focuses on electroencephalogram (EEG) acquisition and feedback technology and its core elements, including the composition and principles of the acquisition devices, a wide range of applications, and commonly used EEG signal classification algorithms. First, we describe the construction of EEG acquisition and feedback devices encompassing EEG electrodes, signal processing, and control and feedback systems, which collaborate to measure faint EEG signals from the scalp, convert them into interpretable data, and accomplish practical applications using control feedback systems. Subsequently, we examine the diverse applications of EEG acquisition and feedback across various domains. In the medical field, EEG signals are employed for epilepsy diagnosis, brain injury monitoring, and sleep disorder research. EEG acquisition has revealed associations between brain functionality, cognition, and emotions, providing essential insights for psychologists and neuroscientists. Brain-computer interface technology utilizes EEG signals for human-computer interaction, driving innovation in the medical, engineering, and rehabilitation domains. Finally, we introduce commonly used EEG signal classification algorithms. These classification tasks can identify different cognitive states, emotional states, brain disorders, and brain-computer interface control and promote further development and application of EEG technology. In conclusion, EEG acquisition technology can deepen the understanding of EEG signals while simultaneously promoting developments across multiple domains, such as medicine, science, and engineering.
Collapse
Affiliation(s)
- Yong Qin
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China;
| | - Yanpeng Zhang
- Beijing Perfect-Protection Technology Co., Ltd., Beijing 101601, China; (Y.Z.); (Y.Z.); (S.L.)
| | - Yan Zhang
- Beijing Perfect-Protection Technology Co., Ltd., Beijing 101601, China; (Y.Z.); (Y.Z.); (S.L.)
| | - Sheng Liu
- Beijing Perfect-Protection Technology Co., Ltd., Beijing 101601, China; (Y.Z.); (Y.Z.); (S.L.)
| | - Xiaogang Guo
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China;
| |
Collapse
|
20
|
Juska VB, Maxwell G, Estrela P, Pemble ME, O'Riordan A. Silicon microfabrication technologies for biology integrated advance devices and interfaces. Biosens Bioelectron 2023; 237:115503. [PMID: 37481868 DOI: 10.1016/j.bios.2023.115503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
Miniaturization is the trend to manufacture ever smaller devices and this process requires knowledge, experience, understanding of materials, manufacturing techniques and scaling laws. The fabrication techniques used in semiconductor industry deliver an exceptionally high yield of devices and provide a well-established platform. Today, these miniaturized devices are manufactured with high reproducibility, design flexibility, scalability and multiplexed features to be used in several applications including micro-, nano-fluidics, implantable chips, diagnostics/biosensors and neural probes. We here provide a review on the microfabricated devices used for biology driven science. We will describe the ubiquity of the use of micro-nanofabrication techniques in biology and biotechnology through the fabrication of high-aspect-ratio devices for cell sensing applications, intracellular devices, probes developed for neuroscience-neurotechnology and biosensing of the certain biomarkers. Recently, the research on micro and nanodevices for biology has been progressing rapidly. While the understanding of the unknown biological fields -such as human brain- has been requiring more research with advanced materials and devices, the development protocols of desired devices has been advancing in parallel, which finally meets with some of the requirements of biological sciences. This is a very exciting field and we aim to highlight the impact of micro-nanotechnologies that can shed light on complex biological questions and needs.
Collapse
Affiliation(s)
- Vuslat B Juska
- Tyndall National Institute, University College Cork, T12R5CP, Ireland.
| | - Graeme Maxwell
- Tyndall National Institute, University College Cork, T12R5CP, Ireland
| | - Pedro Estrela
- Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, United Kingdom; Centre for Bioengineering & Biomedical Technologies (CBio), University of Bath, Bath, BA2 7AY, United Kingdom
| | | | - Alan O'Riordan
- Tyndall National Institute, University College Cork, T12R5CP, Ireland
| |
Collapse
|
21
|
Yao X, Kang JH, Kim KP, Shin H, Jin ZL, Guo H, Xu YN, Li YH, Hali S, Kwon J, La H, Park C, Kim YJ, Wang L, Hong K, Cao Q, Cho IJ, Kim NH, Han DW. Production of Highly Uniform Midbrain Organoids from Human Pluripotent Stem Cells. Stem Cells Int 2023; 2023:3320211. [PMID: 37810631 PMCID: PMC10558263 DOI: 10.1155/2023/3320211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/05/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Brain organoids have been considered as an advanced platform for in vitro disease modeling and drug screening, but numerous roadblocks exist, such as lack of large-scale production technology and lengthy protocols with multiple manipulation steps, impeding the industrial translation of brain organoid technology. Here, we describe the high-speed and large-scale production of midbrain organoids using a high-throughput screening-compatible platform within 30 days. Micro midbrain organoids (µMOs) exhibit a highly uniform morphology and gene expression pattern with minimal variability. Notably, µMOs show dramatically accelerated maturation, resulting in the generation of functional µMOs within only 30 days of differentiation. Furthermore, individual µMOs display highly consistent responsiveness to neurotoxin, suggesting their usefulness as an in vitro high-throughput drug toxicity screening platform. Collectively, our data indicate that µMO technology could represent an advanced and robust platform for in vitro disease modeling and drug screening for human neuronal diseases.
Collapse
Affiliation(s)
- Xuerui Yao
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China
- Research and Development Department, Qingdao Haier Biotech Co. Ltd., Qingdao, China
| | - Ji Hyun Kang
- Laboratory of Stem Cells and Organoids, OrganFactory Co. Ltd., Cheongju 28864, Republic of Korea
| | - Kee-Pyo Kim
- Department of Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyogeun Shin
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Zhe-Long Jin
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China
| | - Hao Guo
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Sai Hali
- Institute of Ophthalmology, University College London, London, UK
| | - Jeongwoo Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, The Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, The Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong-June Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Lin Wang
- Research and Development Department, Qingdao Haier Biotech Co. Ltd., Qingdao, China
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, The Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Qilong Cao
- Research and Development Department, Qingdao Haier Biotech Co. Ltd., Qingdao, China
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China
- Research and Development Department, Qingdao Haier Biotech Co. Ltd., Qingdao, China
- Laboratory of Stem Cells and Organoids, OrganFactory Co. Ltd., Cheongju 28864, Republic of Korea
| | - Dong Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China
- Research and Development Department, Qingdao Haier Biotech Co. Ltd., Qingdao, China
- Laboratory of Stem Cells and Organoids, OrganFactory Co. Ltd., Cheongju 28864, Republic of Korea
| |
Collapse
|
22
|
Yan M, Wang L, Wu Y, Liao X, Zhong C, Wang L, Lu Y. Conducting Polymer-Hydrogel Interpenetrating Networks for Improving the Electrode-Neural Interface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41310-41323. [PMID: 37590473 DOI: 10.1021/acsami.3c07189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Implantable neural microelectrodes are recognized as a bridge for information exchange between inner organisms and outer devices. Combined with novel modulation technologies such as optogenetics, it offers a highly precise methodology for the dissection of brain functions. However, achieving chronically effective and stable microelectrodes to explore the electrophysiological characteristics of specific neurons in free-behaving animals continually poses great challenges. To resolve this, poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)/poly(vinyl alcohol) (PEDOT/PSS/PVA) interpenetrating conducting polymer networks (ICPN) are fabricated via a hydrogel scaffold precoating and electrochemical polymerization process to improve the performance of neural microelectrodes. The ICPN films exhibit robust interfacial adhesion, a significantly lower electrochemical impedance, superior mechanical properties, and improved electrochemical stability compared to the pure poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)(PEDOT/PSS) films, which may be attributed to the three-dimensional (3D) porous microstructure of the ICPN. Hippocampal neurons and rat pheochromocytoma cells (PC12 cells) adhesion on ICPN and neurite outgrowth are observed, indicating enhanced biocompatibility. Furthermore, alleviated tissue response at the electrode-neural tissue interface and improved recording signal quality are confirmed by histological and electrophysiological studies, respectively. Owing to these merits, optogenetic modulations and electrophysiological recordings are performed in vivo, and an anxiolytic effect of hippocampal glutamatergic neurons on behavior is shown. This study demonstrates the effectiveness and advantages of ICPN-modified neural implants for in vivo applications.
Collapse
Affiliation(s)
- Mengying Yan
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Lulu Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Yiyong Wu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Xin Liao
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Cheng Zhong
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Yi Lu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| |
Collapse
|
23
|
Shang X, Ling W, Chen Y, Li C, Huang X. Construction of a Flexible Optogenetic Device for Multisite and Multiregional Optical Stimulation Through Flexible µ-LED Displays on the Cerebral Cortex. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302241. [PMID: 37260144 DOI: 10.1002/smll.202302241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Precisely delivering light to multiple locations in biological tissue is crucial for advancing multiregional optogenetics in neuroscience research. However, conventional implantable devices typically have rigid geometries and limited light sources, allowing only single or dual probe placement with fixed spacing. Here, a fully flexible optogenetic device with multiple thin-film microscale light-emitting diode (µ-LED) displays scattering from a central controller is presented. Each display is heterogeneously integrated with thin-film 5 × 10 µ-LEDs and five optical fibers 125 µm in diameter to achieve cellular-scale spatial resolution. Meanwhile, the device boasts a compact, flexible circuit capable of multichannel configuration and wireless transmission, with an overall weight of 1.31 g, enabling wireless, real-time neuromodulation of freely moving rats. Characterization results and finite element analysis have demonstrated excellent optical properties and mechanical stability, while cytotoxicity tests further ensure the biocompatibility of the device for implantable applications. Behavior studies under optogenetic modulation indicate great promise for wirelessly modulating neural functions in freely moving animals. The device with multisite and multiregional optogenetic modulation capability offers a comprehensive platform to advance both fundamental neuroscience studies and potential applications in brain-computer interfaces.
Collapse
Affiliation(s)
- Xue Shang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wei Ling
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Ying Chen
- Institute of Flexible Electronic Technology of Tsinghua, Jiaxing, 314006, China
- Jiaxing Key Laboratory of Flexible Electronics based Intelligent Sensing and Advanced Manufacturing Technology, Jiaxing, 314000, China
| | - Chenxi Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Institute of Wearable Technology and Bioelectronics, Qiantang Science and Technology Innovation Center, 1002 23rd Street, Hangzhou, 310018, China
| |
Collapse
|
24
|
Kwak Y, Lim S, Cho HU, Sim J, Lee S, Jeong S, Jeon SJ, Im CH, Jang DP. Effect of temporal interference electrical stimulation on phasic dopamine release in the striatum. Brain Stimul 2023; 16:1377-1383. [PMID: 37716638 DOI: 10.1016/j.brs.2023.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Temporal interference stimulation (TIS) is a neuromodulation technique that could stimulate deep brain regions by inducing interfering electrical signals based on high-frequency electrical stimulations of multiple electrode pairs from outside the brain. Despite numerous TIS studies, however, there has been limited investigation into the neurochemical effects of TIS. OBJECTIVE We performed two experiments to investigate the effect of TIS on the medial forebrain bundle (MFB)-evoked phasic dopamine (DA) response. METHODS In the first experiment, we applied TIS next to a carbon fiber microelectrode (CFM) to examine the modulation of the MFB-evoked phasic DA response in the striatum (STr). Beat frequencies and intensities of TIS were 0, 2, 6, 10, 20, 60, 130 Hz and 0, 100, 200, 300, 400, 500 μA. In the second experiment, we examined the effect of TIS with a 2 Hz beat frequency (based on the first experiment) on MFB-evoked phasic DA release when applied above the cortex (with a simulation-based stimulation site targeting the striatum). We employed 0 Hz and 2 Hz beat frequencies and a control condition without stimulation. RESULTS In the first experiment, TIS with a beat frequency of 2 Hz and an intensity of 400 μA or greater decreased MFB-evoked phasic DA release by roughly 40%, which continued until the experiment's end. In contrast, TIS at beat frequencies other than 2 Hz and intensities less than 400 μA did not affect MFB-evoked phasic DA release. In the second experiment, TIS with a 2 Hz beat frequency decreased only the MFB-evoked phasic DA response, but the reduction in DA release was not sustained. CONCLUSIONS STr-applied and cortex-applied TIS with delta frequency dampens evoked phasic DA release in the STr. These findings demonstrate that TIS could influence the neurochemical modulation of the brain.
Collapse
Affiliation(s)
- Youngjong Kwak
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seokbeen Lim
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun-U Cho
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jeongeun Sim
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sangjun Lee
- Department of Biomedical Engineering, University of Minnesota, MN, USA
| | - Suhyeon Jeong
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, Republic of Korea
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Gangwon, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dong Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Chatterjee S, Joshi RK, Sakorikar T, Behera B, Bhaskar N, Kv SG, Jayachandra M, Pandya HJ. Design and fabrication of a microelectrode array for studying epileptiform discharges from rodents. Biomed Microdevices 2023; 25:31. [PMID: 37584876 DOI: 10.1007/s10544-023-00672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Local field potentials, the extracellular electrical activities from brain regions, provide clinically relevant information about the status of neurophysiological conditions, including epilepsy. In this study, a 13-channel silicon-based single-shank microelectrode array (MEA) was designed and fabricated to record local field potentials (LFPs) from the different depths of a rat's brain. A titanium/gold layer was patterned as electrodes on an oxidized silicon substrate, and silicon dioxide was deposited as a passivation layer. The fabricated array was implanted in the somatosensory cortex of the right hemisphere of an anesthetized rat. The developed MEA was interfaced with an OpenBCI Cyton Daisy Biosensing Board to acquire the local field potentials. The LFPs were acquired at three different neurophysiological conditions, including baseline signals, chemically-induced epileptiform discharges, and recovered baseline signals after anti-epileptic drug (AED) administration. Further, time-frequency analyses were performed on the acquired biopotentials to study the difference in spatiotemporal features. The processed signals and time-frequency analyses clearly distinguish between pre-convulsant and post-AED baselines and evoked epileptiform discharges.
Collapse
Affiliation(s)
- Suman Chatterjee
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Rathin K Joshi
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Tushar Sakorikar
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Bhagaban Behera
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Nitu Bhaskar
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Shabari Girishan Kv
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
- MS Ramaiah Memorial Hospital, Bangalore, India
| | - Mahesh Jayachandra
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Hardik J Pandya
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
26
|
Mu X, Chen FD, Dang KM, Brunk MGK, Li J, Wahn H, Stalmashonak A, Ding P, Luo X, Chua H, Lo GQ, Poon JKS, Sacher WD. Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging. Front Neurosci 2023; 17:1213265. [PMID: 37521687 PMCID: PMC10373094 DOI: 10.3389/fnins.2023.1213265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/13/2023] [Indexed: 08/01/2023] Open
Abstract
Advances in chip-scale photonic-electronic integration are enabling a new generation of foundry-manufacturable implantable silicon neural probes incorporating nanophotonic waveguides and microelectrodes for optogenetic stimulation and electrophysiological recording in neuroscience research. Further extending neural probe functionalities with integrated microfluidics is a direct approach to achieve neurochemical injection and sampling capabilities. In this work, we use two-photon polymerization 3D printing to integrate microfluidic channels onto photonic neural probes, which include silicon nitride nanophotonic waveguides and grating emitters. The customizability of 3D printing enables a unique geometry of microfluidics that conforms to the shape of each neural probe, enabling integration of microfluidics with a variety of existing neural probes while avoiding the complexities of monolithic microfluidics integration. We demonstrate the photonic and fluidic functionalities of the neural probes via fluorescein injection in agarose gel and photoloysis of caged fluorescein in solution and in fixed brain tissue.
Collapse
Affiliation(s)
- Xin Mu
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Fu-Der Chen
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| | - Ka My Dang
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| | - Michael G. K. Brunk
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| | - Jianfeng Li
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| | - Hannes Wahn
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | | | - Peisheng Ding
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Xianshu Luo
- Advanced Micro Foundry Pte. Ltd., Singapore, Singapore
| | - Hongyao Chua
- Advanced Micro Foundry Pte. Ltd., Singapore, Singapore
| | - Guo-Qiang Lo
- Advanced Micro Foundry Pte. Ltd., Singapore, Singapore
| | - Joyce K. S. Poon
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| | - Wesley D. Sacher
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| |
Collapse
|
27
|
Akram MM, Nazila Hosseini S, Levesque J, Shi W, Gosselin B. A fully-flexible and thermally adjustable implantable neural probe with a U-turn polyester microchannel. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083455 DOI: 10.1109/embc40787.2023.10340838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
This work presents a fully flexible implantable neural probe fabricated with Polydimethylsiloxane (PDMS) and including a thermally-tunable stiffness microchannel filled with Polyester. The probe includes an optimized microfluidics mixer for drug delivery. Polyester, which is solid at room temperature and has a low melting point close to body temperature, is used to decrease the stiffness of the probe after insertion, after getting in contact with tissues. We designed a U-turn microchannel inside the PDMS neural probe and filled it up with melted polyester. The microchannel has a cross-section of 30 μm × 5 μm and a length of 14.7 mm. The following probe dimensions were chosen after extensive simulation: thickness = 20 μm, width = 300 μm, and length = 7 mm. These values yield a buckling force above 1 mN, which is sufficient for proper insertion into the brain tissues. Simulation results show that the microfluidics mixer with a cross-section of 90 μm × 5 μm and a length of 7 mm has optimum performance for the desired flow rate and quantity of drug to deliver. The pressure drop inside the microfluidic channel is less than 0.43 kPa, which is appropriate for PDMS-PDMS bonding, whereas the Reynolds number is near 1.91k in the laminar regime. No leakage or bubble occurred during the experimental validation, which suggests an appropriate pressure and a laminar flow in the channel.
Collapse
|
28
|
Afraz A. Behavioral optogenetics in nonhuman primates; a psychological perspective. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100101. [PMID: 38020813 PMCID: PMC10663131 DOI: 10.1016/j.crneur.2023.100101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 12/01/2023] Open
Abstract
Optogenetics has been a promising and developing technology in systems neuroscience throughout the past decade. It has been difficult though to reliably establish the potential behavioral effects of optogenetic perturbation of the neural activity in nonhuman primates. This poses a challenge on the future of optogenetics in humans as the concepts and technology need to be developed in nonhuman primates first. Here, I briefly summarize the viable approaches taken to improve nonhuman primate behavioral optogenetics, then focus on one approach: improvements in the measurement of behavior. I bring examples from visual behavior and show how the choice of method of measurement might conceal large behavioral effects. I will then discuss the "cortical perturbation detection" task in detail as an example of a sensitive task that can record the behavioral effects of optogenetic cortical stimulation with high fidelity. Finally, encouraged by the rich scientific landscape ahead of behavioral optogenetics, I invite technology developers to improve the chronically implantable devices designed for simultaneous neural recording and optogenetic intervention in nonhuman primates.
Collapse
Affiliation(s)
- Arash Afraz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institute of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Kim J, Huang H, Gilbert E, Arndt K, English DF, Jia X. Tapered Drug delivery, Optical stimulation, and Electrophysiology (T-DOpE) probes reveal the importance of cannabinoid signaling in hippocampal CA1 oscillations in behaving mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544251. [PMID: 37333172 PMCID: PMC10274863 DOI: 10.1101/2023.06.08.544251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Understanding the neural basis of behavior requires monitoring and manipulating combinations of physiological elements and their interactions in behaving animals. Here we developed a thermal tapering process (TTP) which enables the fabrication of novel, low-cost, flexible probes that combine ultrafine features of dense electrodes, optical waveguides, and microfluidic channels. Furthermore, we developed a semi-automated backend connection allowing scalable assembly of the probes. We demonstrate that our T-DOpE ( T apered D rug delivery, Op tical stimulation, and E lectrophysiology) probe achieves in a single neuron-scale device (1) high-fidelity electrophysiological recording (2) focal drug delivery and (3) optical stimulation. With a tapered geometry, the device tip can be minimized (as small as 50 μm) to ensure minimal tissue damage while the backend is ~20 times larger allowing for direct integration with industrial-scale connectorization. Acute and chronic implantation of the probes in mouse hippocampus CA1 revealed canonical neuronal activity at the level of local field potentials and spiking. Taking advantage of the triple-functionality of the T-DOpE probe, we monitored local field potentials with simultaneous manipulation of endogenous type 1 cannabinoid receptors (CB1R; via microfluidic agonist delivery) and CA1 pyramidal cell membrane potential (optogenetic activation). Electro-pharmacological experiments revealed that focal infusion of CB1R agonist CP-55,940 in dorsal CA1 downregulated theta and sharp wave-ripple oscillations. Furthermore, using the full electro-pharmacological-optical feature set of the T-DOpE probe we found that CB1R activation reduces sharp wave-ripples (SPW-Rs) by impairing the innate SPW-R-generating ability of the CA1 circuit.
Collapse
|
30
|
Qi Y, Kang SK, Fang H. Advanced materials for implantable neuroelectronics. MRS BULLETIN 2023; 48:475-483. [PMID: 37485070 PMCID: PMC10361212 DOI: 10.1557/s43577-023-00540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 07/25/2023]
Abstract
Materials innovation has arguably played one of the most important roles in the development of implantable neuroelectronics. Such technologies explore biocompatible working systems for reading, triggering, and manipulating neural signals for neuroscience research and provide the additional potential to develop devices for medical diagnostics and/or treatment. The past decade has witnessed a golden era in neuroelectronic materials research. For example, R&D on soft material-based devices have exploded and taken center stage for many applications, including both central and peripheral nerve interfaces. Recent developments have also witnessed the emergence of biodegradable and multifunctional devices. In this article, we aim to overview recent advances in implantable neuroelectronics with an emphasis on chronic biocompatibility, biodegradability, and multifunctionality. In addition to highlighting fundamental materials innovations, we also discuss important challenges and future opportunities.
Collapse
Affiliation(s)
- Yongli Qi
- Thayer School of Engineering, Dartmouth College, Hanover, USA
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | | |
Collapse
|
31
|
Lee JM, Lin D, Pyo YW, Kim HR, Park HG, Lieber CM. Stitching Flexible Electronics into the Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300220. [PMID: 37127888 DOI: 10.1002/advs.202300220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Understanding complex neuronal networks requires monitoring long-term neuronal activity in various regions of the brain. Significant progress has been made in multisite implantations of well-designed probes, such as multisite implantation of Si-based and polymer-based probes. However, these multiprobe strategies are limited by the sizes and weights of interfaces to the multiple probes and the inability to track the activity of the same neurons and changes in neuronal activity over longer time periods. Here, a long single flexible probe that can be implanted by stitching into multiple regions of the mouse brain and subsequently transmit chronically stable neuronal signals from the multiple sites via a single low-mass interface is reported. The probe at four different sites is implemented using a glass capillary needle or two sites using an ultrathin metal needle. In vitro tests in brain-mimicking hydrogel show that multisite probe implantations achieve a high connection yield of >86%. In vivo histological images at each site of probes, implanted by stitching using either glass capillary or ultrathin metal insertion needles exhibit seamless tissue-probe interfaces with negligible chronic immune response. In addition, electrophysiology studies demonstrate the ability to track single neuron activities at every injection site with chronic stability over at least one month. Notably, the measured spike amplitudes and signal-to-noise ratios at different implantation sites show no statistically significant differences. Multisite stitching implantation of flexible electronics in the brain opens up new opportunities for both fundamental neuroscience research and electrotherapeutic applications.
Collapse
Affiliation(s)
- Jung Min Lee
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Dingchang Lin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Young-Woo Pyo
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Ha-Reem Kim
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
32
|
Liang Q, Shen Z, Sun X, Yu D, Liu K, Mugo SM, Chen W, Wang D, Zhang Q. Electron Conductive and Transparent Hydrogels for Recording Brain Neural Signals and Neuromodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211159. [PMID: 36563409 DOI: 10.1002/adma.202211159] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Recording brain neural signals and optogenetic neuromodulations open frontiers in decoding brain neural information and neurodegenerative disease therapeutics. Conventional implantable probes suffer from modulus mismatch with biological tissues and an irreconcilable tradeoff between transparency and electron conductivity. Herein, a strategy is proposed to address these tradeoffs, which generates conductive and transparent hydrogels with polypyrrole-decorated microgels as cross-linkers. The optical transparency of the electrodes can be attributed to the special structures that allow light waves to bypass the microgel particles and minimize their interaction. Demonstrated by probing the hippocampus of rat brains, the biomimetic electrode shows a prolonged capacity for simultaneous optogenetic neuromodulation and recording of brain neural signals. More importantly, an intriguing brain-machine interaction is realized, which involves signal input to the brain, brain neural signal generation, and controlling limb behaviors. This breakthrough work represents a significant scientific advancement toward decoding brain neural information and developing neurodegenerative disease therapies.
Collapse
Affiliation(s)
- Quanduo Liang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhenzhen Shen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiguang Sun
- Department of Hand Surgery, Public Research Platform, The First Hospital of Jilin University, Changchun, 130061, P. R. China
| | - Dehai Yu
- Department of Hand Surgery, Public Research Platform, The First Hospital of Jilin University, Changchun, 130061, P. R. China
| | - Kewei Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dong Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
33
|
Luo J, Xue N, Chen J. A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface. BIOSENSORS 2022; 12:bios12121167. [PMID: 36551135 PMCID: PMC9775442 DOI: 10.3390/bios12121167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 06/01/2023]
Abstract
Neural probes, as an invasive physiological tool at the mesoscopic scale, can decipher the code of brain connections and communications from the cellular or even molecular level, and realize information fusion between the human body and external machines. In addition to traditional electrodes, two new types of neural probes have been developed in recent years: optoprobes based on optogenetics and magnetrodes that record neural magnetic signals. In this review, we give a comprehensive overview of these three kinds of neural probes. We firstly discuss the development of microelectrodes and strategies for their flexibility, which is mainly represented by the selection of flexible substrates and new electrode materials. Subsequently, the concept of optogenetics is introduced, followed by the review of several novel structures of optoprobes, which are divided into multifunctional optoprobes integrated with microfluidic channels, artifact-free optoprobes, three-dimensional drivable optoprobes, and flexible optoprobes. At last, we introduce the fundamental perspectives of magnetoresistive (MR) sensors and then review the research progress of magnetrodes based on it.
Collapse
Affiliation(s)
- Jiahui Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xue
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiamin Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Liu Z, Zhu Y, Zhang L, Jiang W, Liu Y, Tang Q, Cai X, Li J, Wang L, Tao C, Yin X, Li X, Hou S, Jiang D, Liu K, Zhou X, Zhang H, Liu M, Fan C, Tian Y. Structural and functional imaging of brains. Sci China Chem 2022; 66:324-366. [PMID: 36536633 PMCID: PMC9753096 DOI: 10.1007/s11426-022-1408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 12/23/2022]
Abstract
Analyzing the complex structures and functions of brain is the key issue to understanding the physiological and pathological processes. Although neuronal morphology and local distribution of neurons/blood vessels in the brain have been known, the subcellular structures of cells remain challenging, especially in the live brain. In addition, the complicated brain functions involve numerous functional molecules, but the concentrations, distributions and interactions of these molecules in the brain are still poorly understood. In this review, frontier techniques available for multiscale structure imaging from organelles to the whole brain are first overviewed, including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), serial-section electron microscopy (ssEM), light microscopy (LM) and synchrotron-based X-ray microscopy (XRM). Specially, XRM for three-dimensional (3D) imaging of large-scale brain tissue with high resolution and fast imaging speed is highlighted. Additionally, the development of elegant methods for acquisition of brain functions from electrical/chemical signals in the brain is outlined. In particular, the new electrophysiology technologies for neural recordings at the single-neuron level and in the brain are also summarized. We also focus on the construction of electrochemical probes based on dual-recognition strategy and surface/interface chemistry for determination of chemical species in the brain with high selectivity and long-term stability, as well as electrochemophysiological microarray for simultaneously recording of electrochemical and electrophysiological signals in the brain. Moreover, the recent development of brain MRI probes with high contrast-to-noise ratio (CNR) and sensitivity based on hyperpolarized techniques and multi-nuclear chemistry is introduced. Furthermore, multiple optical probes and instruments, especially the optophysiological Raman probes and fiber Raman photometry, for imaging and biosensing in live brain are emphasized. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Ying Zhu
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Liming Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Weiping Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Qiaowei Tang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Xiaoqing Cai
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Jiang Li
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Lihua Wang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Changlu Tao
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | | | - Xiaowei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055 China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
35
|
Wang Y, Liu S, Wang H, Zhao Y, Zhang XD. Neuron devices: emerging prospects in neural interfaces and recognition. MICROSYSTEMS & NANOENGINEERING 2022; 8:128. [PMID: 36507057 PMCID: PMC9726942 DOI: 10.1038/s41378-022-00453-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/17/2023]
Abstract
Neuron interface devices can be used to explore the relationships between neuron firing and synaptic transmission, as well as to diagnose and treat neurological disorders, such as epilepsy and Alzheimer's disease. It is crucial to exploit neuron devices with high sensitivity, high biocompatibility, multifunctional integration and high-speed data processing. During the past decades, researchers have made significant progress in neural electrodes, artificial sensory neuron devices, and neuromorphic optic neuron devices. The main part of the review is divided into two sections, providing an overview of recently developed neuron interface devices for recording electrophysiological signals, as well as applications in neuromodulation, simulating the human sensory system, and achieving memory and recognition. We mainly discussed the development, characteristics, functional mechanisms, and applications of neuron devices and elucidated several key points for clinical translation. The present review highlights the advances in neuron devices on brain-computer interfaces and neuroscience research.
Collapse
Affiliation(s)
- Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Shuangjie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Yue Zhao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, 300350 Tianjin, China
| |
Collapse
|
36
|
Yi D, Yao Y, Wang Y, Chen L. Manufacturing Processes of Implantable Microelectrode Array for In Vivo Neural Electrophysiological Recordings and Stimulation: A State-Of-the-Art Review. JOURNAL OF MICRO- AND NANO-MANUFACTURING 2022; 10:041001. [PMID: 37860671 PMCID: PMC10583290 DOI: 10.1115/1.4063179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Indexed: 10/21/2023]
Abstract
Electrophysiological recording and stimulation of neuron activities are important for us to understand the function and dysfunction of the nervous system. To record/stimulate neuron activities as voltage fluctuation extracellularly, microelectrode array (MEA) implants are a promising tool to provide high temporal and spatial resolution for neuroscience studies and medical treatments. The design configuration and recording capabilities of the MEAs have evolved dramatically since their invention and manufacturing process development has been a key driving force for such advancement. Over the past decade, since the White House Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative launched in 2013, advanced manufacturing processes have enabled advanced MEAs with increased channel count and density, access to more brain areas, more reliable chronic performance, as well as minimal invasiveness and tissue reaction. In this state-of-the-art review paper, three major types of electrophysiological recording MEAs widely used nowadays, namely, microwire-based, silicon-based, and flexible MEAs are introduced and discussed. Conventional design and manufacturing processes and materials used for each type are elaborated, followed by a review of further development and recent advances in manufacturing technologies and the enabling new designs and capabilities. The review concludes with a discussion on potential future directions of manufacturing process development to enable the long-term goal of large-scale high-density brain-wide chronic recordings in freely moving animals.
Collapse
Affiliation(s)
- Dongyang Yi
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854
| | - Yao Yao
- Department of Industrial and Systems Engineering, University of Missouri, 416 South 6th Street, Columbia, MO 65211
| | - Yi Wang
- Department of Industrial and Systems Engineering, University of Missouri, E3437C Thomas & Nell Lafferre Hall, 416 South 6th Street, Columbia, MO 65211
| | - Lei Chen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854
| |
Collapse
|
37
|
Erofeev A, Antifeev I, Bolshakova A, Bezprozvanny I, Vlasova O. In Vivo Penetrating Microelectrodes for Brain Electrophysiology. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239085. [PMID: 36501805 PMCID: PMC9735502 DOI: 10.3390/s22239085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
In recent decades, microelectrodes have been widely used in neuroscience to understand the mechanisms behind brain functions, as well as the relationship between neural activity and behavior, perception and cognition. However, the recording of neuronal activity over a long period of time is limited for various reasons. In this review, we briefly consider the types of penetrating chronic microelectrodes, as well as the conductive and insulating materials for microelectrode manufacturing. Additionally, we consider the effects of penetrating microelectrode implantation on brain tissue. In conclusion, we review recent advances in the field of in vivo microelectrodes.
Collapse
Affiliation(s)
- Alexander Erofeev
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Correspondence: (A.E.); (O.V.)
| | - Ivan Antifeev
- Laboratory of Methods and Instruments for Genetic and Immunoassay Analysis, Institute for Analytical Instrumentation of the Russian Academy of Sciences, 198095 Saint Petersburg, Russia
| | - Anastasia Bolshakova
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga Vlasova
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Correspondence: (A.E.); (O.V.)
| |
Collapse
|
38
|
Dong M, Coleman HA, Tonta MA, Xiong Z, Li D, Thomas S, Liu M, Fallon JB, Parkington HC, Forsythe JS. Rapid electrophoretic deposition of biocompatible graphene coatings for high-performance recording neural electrodes. NANOSCALE 2022; 14:15845-15858. [PMID: 36259692 DOI: 10.1039/d2nr04421h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The electrical and biological interfacial properties of invasive electrodes have a significant impact on the performance and longevity of neural recordings in the brain. In this study, we demonstrated rapid electrophoretic deposition and electrochemical reduction of graphene oxide (GO) on metal-based neural electrodes. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and other characterizations confirmed the existence of a uniform and effectively reduced graphene oxide coating. Electrochemically reduced graphene oxide (ErGO) coated Pt/Ir neural electrodes exhibited 15.2-fold increase in charge storage capacity (CSC) and 90% decrease in impedance with only 3.8% increase in electrode diameter. Patch clamp electrophysiology and calcium imaging of primary rat hippocampus neurons cultured on ErGO demonstrated that there was no adverse impact on the functional development of neurons. Immunostaining showed a balanced growth of excitatory and inhibitory neurons, and astrocytes. Acute recordings from the auditory cortex and chronic recordings (19 days) from the somatosensory cortex found ErGO coating improved the performance of neural electrodes in signal-to-noise ratio (SNR) and amplitude of signals. The proposed approach not only provides an in-depth evaluation of the effect of ErGO coating on neural electrodes but also widens the coating methods of commercial neural electrodes.
Collapse
Affiliation(s)
- Miheng Dong
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC 3800, Australia.
- Monash Suzhou Research Institute, Monash University, Suzhou SIP 250000, China
| | - Harold A Coleman
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Mary A Tonta
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zhiyuan Xiong
- Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Dan Li
- Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Sebastian Thomas
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Minsu Liu
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC 3800, Australia.
- Monash Suzhou Research Institute, Monash University, Suzhou SIP 250000, China
- Foshan (Southern China) Institute for New Materials, Foshan 528200, China
| | - James B Fallon
- The Bionics Institute, East Melbourne, Victoria 3002, Australia
- Medical Bionics Department, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
39
|
Yoon Y, Shin H, Byun D, Woo J, Cho Y, Choi N, Cho IJ. Neural probe system for behavioral neuropharmacology by bi-directional wireless drug delivery and electrophysiology in socially interacting mice. Nat Commun 2022; 13:5521. [PMID: 36130965 PMCID: PMC9492903 DOI: 10.1038/s41467-022-33296-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Assessing the neurological and behavioral effects of drugs is important in developing pharmacological treatments, as well as understanding the mechanisms associated with neurological disorders. Herein, we present a miniaturized, wireless neural probe system with the capability of delivering drugs for the real-time investigation of the effects of the drugs on both behavioral and neural activities in socially interacting mice. We demonstrate wireless drug delivery and simultaneous monitoring of the resulting neural, behavioral changes, as well as the dose-dependent and repeatable responses to drugs. Furthermore, in pairs of mice, we use a food competition assay in which social interaction was modulated by the delivery of the drug, and the resulting changes in their neural activities are analyzed. During modulated food competition by drug injection, we observe changes in neural activity in mPFC region of a participating mouse over time. Our system may provide new opportunities for the development of studying the effects of drugs on behaviour and neural activity. Technologies for monitoring electrophysiological effects of drugs in behaving animals have limitations. Here the authors report a wireless neural probe system with drug delivery capability for real-time monitoring of drug effects.
Collapse
Affiliation(s)
- Yousang Yoon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyogeun Shin
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Donghak Byun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jiwan Woo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yakdol Cho
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Il-Joo Cho
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
40
|
Mariello M, Kim K, Wu K, Lacour SP, Leterrier Y. Recent Advances in Encapsulation of Flexible Bioelectronic Implants: Materials, Technologies, and Characterization Methods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201129. [PMID: 35353928 DOI: 10.1002/adma.202201129] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Bioelectronic implantable systems (BIS) targeting biomedical and clinical research should combine long-term performance and biointegration in vivo. Here, recent advances in novel encapsulations to protect flexible versions of such systems from the surrounding biological environment are reviewed, focusing on material strategies and synthesis techniques. Considerable effort is put on thin-film encapsulation (TFE), and specifically organic-inorganic multilayer architectures as a flexible and conformal alternative to conventional rigid cans. TFE is in direct contact with the biological medium and thus must exhibit not only biocompatibility, inertness, and hermeticity but also mechanical robustness, conformability, and compatibility with the manufacturing of microfabricated devices. Quantitative characterization methods of the barrier and mechanical performance of the TFE are reviewed with a particular emphasis on water-vapor transmission rate through electrical, optical, or electrochemical principles. The integrability and functionalization of TFE into functional bioelectronic interfaces are also discussed. TFE represents a must-have component for the next-generation bioelectronic implants with diagnostic or therapeutic functions in human healthcare and precision medicine.
Collapse
Affiliation(s)
- Massimo Mariello
- Laboratory for Processing of Advanced Composites (LPAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Kyungjin Kim
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Electrical and MicroEngineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Kangling Wu
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Electrical and MicroEngineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Electrical and MicroEngineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Yves Leterrier
- Laboratory for Processing of Advanced Composites (LPAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
41
|
Ryu D, Lee Y, Lee Y, Lee Y, Hwang S, Kim YK, Jun SB, Lee HW, Ji CH. Silicon optrode array with monolithically integrated SU-8 waveguide and single LED light source. J Neural Eng 2022; 19. [PMID: 35797969 DOI: 10.1088/1741-2552/ac7f5f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 11/11/2022]
Abstract
This paper presents a conventional LED (light emitting diode) and polymer waveguide coupled silicon optrode array. Unique lens design at the waveguide inlet enables a high light coupling efficiency with a single LED light source, and provides small power consumption compatible with a wireless optogenetic neuromodulation system. To increase the light intensity at the waveguide tip, a lensed waveguide is fabricated with epoxy-based photoresist SU-8, which has a plano-convex lens shape at the waveguide inlet to focus the light in the horizontal direction. In addition, a cylindrical lens is assembled in front of the waveguide inlet to focus the source light in the vertical direction. The glass cylindrical lens and SU-8 plano-convex lens increased the light coupling efficiency by 6.7 dB and 6.6 dB, respectively. The fabricated 1×4 array of optrodes is assembled with a single LED with 465 nm wavelength, which produces a light intensity of approximately 2.7 mW/mm2 at the SU-8 waveguide outlet when 50 mA input current is applied to the LED. Each optrode has four recording electrodes at the SU-8 waveguide outlet. The average impedance of the iridium oxide (IrOx) electroplated recording electrodes is 43.6 kΩ. In-vivo experiment at the hippocampus region CA1 and CA2 demonstrated the capability of optical stimulation and neural signal recording through the LED and SU-8 waveguide coupled silicon optrode array.
Collapse
Affiliation(s)
- Daeho Ryu
- Electrical and computer engineering, Seoul National University, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Korea (the Republic of)
| | - Youjin Lee
- Department of Electronic and Electrical Engineering, Graduate Program in Smart Factory, Ewha Womans University, Asan Engineering Building, Seoul, 03760, Korea (the Republic of)
| | - Yongseung Lee
- Department of Electrical and Computer Engineering, , Seoul National University, 301 Dong 1116 Ho, Gwanak-gu, Seoul, 08826, Korea (the Republic of)
| | - Yena Lee
- Department of Electronic and Electrical Engineering, Ewha Womans University, Asan Engineering Building, Seoul, 03760, Korea (the Republic of)
| | - Seoyoung Hwang
- Department of Electronic and Electrical Engineering, Ewha Womans University, Asan Engineering Building, Seoul, 03760, Korea (the Republic of)
| | - Yong-Kweon Kim
- Department of Electrical and Computer Engineering, Graduate School of Engineering Practice, Seoul National University, Seoul National University, PO Box 34, Kwanak, Seoul 151-600, Korea, Gwanak-gu, Seoul, 08826, Korea (the Republic of)
| | - Sang Beom Jun
- Department of Electronic and Electrical Engineering, Graduate Program in Smart Factory, Ewha Womans University, Department of Brain and Cognitive Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemungu, Seoul, 03760, Korea (the Republic of)
| | - Hyang Woon Lee
- Departments of Neurology, Medical Science, and Computational Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, Ewha Womans University Medical Center, Seoul, 03760, Korea (the Republic of)
| | - Chang-Hyeon Ji
- Department of Electronics and Electrical Engineering, Graduate Program in Smart Factory, Ewha Womans University, Asan Engineering Building #432, Seoul, Republic of Korea, Seoul, 03760, Korea (the Republic of)
| |
Collapse
|
42
|
Hee Lee J, Lee S, Kim D, Jae Lee K. Implantable Micro-Light-Emitting Diode (µLED)-based optogenetic interfaces toward human applications. Adv Drug Deliv Rev 2022; 187:114399. [PMID: 35716898 DOI: 10.1016/j.addr.2022.114399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Optogenetics has received wide attention in biomedical fields because of itsadvantages in temporal precision and spatial resolution. Beyond contributions to important advances in fundamental research, optogenetics is inspiring a shift towards new methods of improving human well-being and treating diseases. Soft, flexible and biocompatible systems using µLEDs as a light source have been introduced to realize brain-compatible optogenetic implants, but there are still many technical challenges to overcome before their human applications. In this review, we address progress in the development of implantable µLED probes and recent achievements in (i) device engineering design, (ii) driving power, (iii) multifunctionality and (iv) closed-loop systems. (v) Expanded optogenetic applications based on remarkable advances in µLED implants will also be discussed.
Collapse
Affiliation(s)
- Jae Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sinjeong Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
43
|
Bhaskara S, Sakorikar T, Chatterjee S, Shabari Girishan K, Pandya HJ. Recent advancements in Micro-engineered devices for surface and deep brain animal studies: A review. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
44
|
Fang J, Huang S, Liu F, He G, Li X, Huang X, Chen HJ, Xie X. Semi-Implantable Bioelectronics. NANO-MICRO LETTERS 2022; 14:125. [PMID: 35633391 PMCID: PMC9148344 DOI: 10.1007/s40820-022-00818-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
Developing techniques to effectively and real-time monitor and regulate the interior environment of biological objects is significantly important for many biomedical engineering and scientific applications, including drug delivery, electrophysiological recording and regulation of intracellular activities. Semi-implantable bioelectronics is currently a hot spot in biomedical engineering research area, because it not only meets the increasing technical demands for precise detection or regulation of biological activities, but also provides a desirable platform for externally incorporating complex functionalities and electronic integration. Although there is less definition and summary to distinguish it from the well-reviewed non-invasive bioelectronics and fully implantable bioelectronics, semi-implantable bioelectronics have emerged as highly unique technology to boost the development of biochips and smart wearable device. Here, we reviewed the recent progress in this field and raised the concept of "Semi-implantable bioelectronics", summarizing the principle and strategies of semi-implantable device for cell applications and in vivo applications, discussing the typical methodologies to access to intracellular environment or in vivo environment, biosafety aspects and typical applications. This review is meaningful for understanding in-depth the design principles, materials fabrication techniques, device integration processes, cell/tissue penetration methodologies, biosafety aspects, and applications strategies that are essential to the development of future minimally invasive bioelectronics.
Collapse
Affiliation(s)
- Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Fanmao Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
45
|
Frank JA. Optofluidic neural interfaces for in vivo photopharmacology. Curr Opin Pharmacol 2022; 63:102195. [DOI: 10.1016/j.coph.2022.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 11/03/2022]
|
46
|
Lee JH, Shin H, Shaker MR, Kim HJ, Park SH, Kim JH, Lee N, Kang M, Cho S, Kwak TH, Kim JW, Song MR, Kwon SH, Han DW, Lee S, Choi SY, Rhyu IJ, Kim H, Geum D, Cho IJ, Sun W. Production of human spinal-cord organoids recapitulating neural-tube morphogenesis. Nat Biomed Eng 2022; 6:435-448. [PMID: 35347276 DOI: 10.1038/s41551-022-00868-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
Human spinal-cord-like tissues induced from human pluripotent stem cells are typically insufficiently mature and do not mimic the morphological features of neurulation. Here, we report a three-dimensional culture system and protocol for the production of human spinal-cord-like organoids (hSCOs) recapitulating the neurulation-like tube-forming morphogenesis of the early spinal cord. The hSCOs exhibited neurulation-like tube-forming morphogenesis, cellular differentiation into the major types of spinal-cord neurons as well as glial cells, and mature synaptic functional activities, among other features of the development of the spinal cord. We used the hSCOs to screen for antiepileptic drugs that can cause neural-tube defects. hSCOs may also facilitate the study of the development of the human spinal cord and the modelling of diseases associated with neural-tube defects.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyogeun Shin
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mohammed R Shaker
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Si-Hyung Park
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Hoan Kim
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Namwon Lee
- InterMinds Inc., Seongnam, Republic of Korea
| | - Minjin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Subin Cho
- Department of Bio-Information Science, Ewha Womans University, Seoul, Republic of Korea
| | - Tae Hwan Kwak
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jong Woon Kim
- Department of Obstetrics and Gynecology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Seung-Hae Kwon
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sanghyuk Lee
- Department of Bio-Information Science, Ewha Womans University, Seoul, Republic of Korea.,Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Im Joo Rhyu
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dongho Geum
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,School of Electrical and Electronics Engineering, Yonsei University, Seoul, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Lu B, Fan P, Wang Y, Dai Y, Xie J, Yang G, Mo F, Xu Z, Song Y, Liu J, Cai X. Neuronal Electrophysiological Activities Detection of Defense Behaviors Using an Implantable Microelectrode Array in the Dorsal Periaqueductal Gray. BIOSENSORS 2022; 12:bios12040193. [PMID: 35448253 PMCID: PMC9032743 DOI: 10.3390/bios12040193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 06/07/2023]
Abstract
Defense is the basic survival mechanism of animals when facing dangers. Previous studies have shown that the midbrain periaqueduct gray (PAG) was essential for the production of defense responses. However, the correlation between the endogenous neuronal activities of the dorsal PAG (dPAG) and different defense behaviors was still unclear. In this article, we designed and manufactured microelectrode arrays (MEAs) whose detection sites were arranged to match the shape and position of dPAG in rats, and modified it with platinum-black nanoparticles to improve the detection performance. Subsequently, we successfully recorded the electrophysiological activities of dPAG neurons via designed MEAs in freely behaving rats before and after exposure to the potent analog of predator odor 2-methyl-2-thiazoline (2-MT). Results demonstrated that 2-MT could cause strong innate fear and a series of defensive behaviors, accompanied by the significantly increased average firing rate and local field potential (LFP) power of neurons in dPAG. We also observed that dPAG participated in different defense behaviors with different degrees of activation, which was significantly stronger in the flight stage. Further analysis showed that the neuronal activities of dPAG neurons were earlier than flight, and the intensity of activation was inversely proportional to the distance from predator odor. Overall, our results indicate that dPAG neuronal activities play a crucial role in controlling different types of predator odor-evoked innate fear/defensive behaviors, and provide some guidance for the prediction of defense behavior.
Collapse
Affiliation(s)
- Botao Lu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penghui Fan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchuan Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
49
|
Shin H, Byun J, Roh D, Choi N, Shin HS, Cho IJ. Interference-free, lightweight wireless neural probe system for investigating brain activity during natural competition. Biosens Bioelectron 2022; 195:113665. [PMID: 34610533 DOI: 10.1016/j.bios.2021.113665] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
Competition is one of the most fundamental, yet complex, conflicts between social animals, and previous studies have indicated that the medial prefrontal cortex (mPFC) region of a brain is involved in social interactions. However, because we do not have a lightweight, wireless recording system that is free of interference, it is still unclear how the neural activity of the mPFC region is involved in the diverse, interacting behaviors that comprise competition. Herein, we present an interference-free, lightweight, wireless neural probe system that we applied to two mice to measure mPFC neural activities during a food competition test. In the test, we categorized 18 behavioral repertoires expressed by the mice. From the analysis of the neural signals during each repetition of the test, we found that the mPFC neural activity had the most positive correlation with goal-driven competitive behaviors, such as guarding resources and behaviors related to the extortion of resources. Remarkably, we found that the neural activity associated with guarding behavior was higher than that of extorting behavior, and this highlighted the importance of resource-guarding behavior for winning the competition, i.e., 'winning a trophy is hard, but keeping it is harder'. Our approach in which a wireless system is used will enable in-depth studies of the brains of mice in their natural social interactions.
Collapse
Affiliation(s)
- Hyogeun Shin
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Junweon Byun
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea; Department for Basic Science, IBS School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Donghyun Roh
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea; Department for Basic Science, IBS School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea; School of Electrical and Electronics Engineering, Yonsei University, Seoul, Republic of Korea; Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Chou N, Shin H, Kim K, Chae U, Jang M, Jeong U, Hwang K, Yi B, Lee SE, Woo J, Cho Y, Lee C, Baker BJ, Oh S, Nam M, Choi N, Cho I. A Multimodal Multi-Shank Fluorescence Neural Probe for Cell-Type-Specific Electrophysiology in Multiple Regions across a Neural Circuit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103564. [PMID: 34796701 PMCID: PMC8805556 DOI: 10.1002/advs.202103564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Indexed: 05/27/2023]
Abstract
Cell-type-specific, activity-dependent electrophysiology can allow in-depth analysis of functional connectivity inside complex neural circuits composed of various cell types. To date, optics-based fluorescence recording devices enable monitoring cell-type-specific activities. However, the monitoring is typically limited to a single brain region, and the temporal resolution is significantly low. Herein, a multimodal multi-shank fluorescence neural probe that allows cell-type-specific electrophysiology from multiple deep-brain regions at a high spatiotemporal resolution is presented. A photodiode and an electrode-array pair are monolithically integrated on each tip of a minimal-form-factor silicon device. Both fluorescence and electrical signals are successfully measured simultaneously in GCaMP6f expressing mice, and the cell type from sorted neural spikes is identified. The probe's capability of combined electro-optical recordings for cell-type-specific electrophysiology at multiple brain regions within a neural circuit is demonstrated. The new experimental paradigm to enable the precise investigation of functional connectivity inside and across complex neural circuits composed of various cell types is expected.
Collapse
Affiliation(s)
- Namsun Chou
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Hyogeun Shin
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Kanghwan Kim
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Uikyu Chae
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- School of Electrical EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Minsu Jang
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Ui‐Jin Jeong
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- School of Electrical EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Kyeong‐Seob Hwang
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- School of Mechanical EngineeringYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Bumjun Yi
- Center for Functional ConnectomicsBrain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource CenterBrain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Jiwan Woo
- Center for Neuroscience, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Yakdol Cho
- Center for Neuroscience, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Changhyuk Lee
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Bradley J. Baker
- Center for Functional ConnectomicsBrain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Soo‐Jin Oh
- Center for Neuroscience, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Min‐Ho Nam
- Center for Neuroscience, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST SchoolKorea University of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Il‐Joo Cho
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- School of Electrical and Electronics EngineeringYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| |
Collapse
|