1
|
Deng B, Xu J, Wei Y, Zhang J, Zeng N, He Y, Zeng Q, Zou D, Guo R. CircFNDC3B inhibits vascular smooth muscle cells proliferation in abdominal aortic aneurysms by targeting the miR-1270/PDCD10 axis. SCAND CARDIOVASC J 2025; 59:2441114. [PMID: 39658211 DOI: 10.1080/14017431.2024.2441114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/30/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Objectives. This study investigated the role and underlying regulatory mechanisms of circular RNA fibronectin type III domain containing 3B (circFNDC3B) in abdominal aortic aneurysm (AAA). Methods. The expression of circFNDC3B in AAA and normal tissues was assessed by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). To evaluate the biological functions of circFNDC3B, assays were employed including 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry, and Caspase-3 activity assays. Additionally, RNA immunoprecipitation (RIP), dual-luciferase reporter assay, Western blotting, and rescue experiments were utilized to elucidate the molecular mechanism of circFNDC3B. Results. Our findings revealed a significant upregulation of circFNDC3B expression in AAA clinical specimens compared to normal tissues. Functionally, overexpression of circFNDC3B inhibited vascular smooth muscle cells (VSMCs) proliferation and induced apoptosis, contributing to AAA formation in the Ang II-induced AAA model. Mechanistically, circFNDC3B acted as a molecular sponge for miR-1270, leading to the upregulation of programmed cell death 10 (PDCD10). Decreased expression of PDCD10 abrogated the -promoting effects of circFNDC3B overexpression on AAA development. Conclusions. This study demonstrates that circFNDC3B promotes the progression of AAA by targeting the miR-1270/PDCD10 pathway. Our findings suggest that circFNDC3B as well as miR-1270/PDCD10 pathway may serve as a potential therapeutic target for AAA treatment.
Collapse
MESH Headings
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Cell Proliferation
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Apoptosis Regulatory Proteins/metabolism
- Apoptosis Regulatory Proteins/genetics
- Signal Transduction
- Apoptosis
- Male
- Animals
- Cells, Cultured
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Fibronectins/metabolism
- Fibronectins/genetics
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Mice, Inbred C57BL
- Case-Control Studies
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Gene Expression Regulation
Collapse
Affiliation(s)
- Baoping Deng
- Department of Interventional Vascular Surgery, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- Department of Vascular Surgery, Affiliated Hospital of Guilin Medical University, Guilin, P.R. China
| | - Jing Xu
- Department of Interventional Vascular Surgery, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province, P.R. China
| | - Yue Wei
- Maternal and Child Research Institute, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, P.R. China
| | - Jinfeng Zhang
- Maternal and Child Research Institute, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, P.R. China
| | - Na Zeng
- Maternal and Child Research Institute, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, P.R. China
| | - Yulan He
- Maternal and Child Research Institute, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, P.R. China
| | - Qiaoli Zeng
- Maternal and Child Research Institute, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, P.R. China
| | - Dehua Zou
- Maternal and Child Research Institute, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, P.R. China
| | - Runmin Guo
- Maternal and Child Research Institute, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, P.R. China
| |
Collapse
|
2
|
Yifan D, Jiaheng Z, Yili X, Junxia D, Chao T. CircRNA: A new target for ischemic stroke. Gene 2025; 933:148941. [PMID: 39270759 DOI: 10.1016/j.gene.2024.148941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Ischemic stroke, a clinical emergency and disease with a poor prognosis, has a negative impact on the survival index of patients. It is frequently precipitated by a multitude of risk factors, including trauma. Currently, there is a paucity of predictive indicators for early intervention. As stable and abundant RNA in the body, circRNAs play a regulatory role in miRNAs and proteins, which affect the occurrence and development of diseases. Moreover, circRNAs can serve as predictors of clinical diseases. Several studies have demonstrated that circRNAs play pivotal roles in numerous aspects of ischemic stroke. Consequently, circRNAs have emerged as key areas of investigation in the field of ischemic stroke.
Collapse
Affiliation(s)
- Dong Yifan
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhang Jiaheng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiao Yili
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Duan Junxia
- The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China
| | - Tan Chao
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China.
| |
Collapse
|
3
|
Xu H, Su J, Chen X, Li J, Li Z, Zheng N, Yu R, Li X, Song Y, Li J, Xu F, Li C, Fei X, Du W, Yu Q. Identification of hsa_circ_0076957 and miR-4512-targeted COL19A1 as regulators in clopidogrel resistance among stable coronary heart disease patients through comprehensive circRNA and miRNA analysis. Eur J Pharmacol 2025; 986:177156. [PMID: 39615866 DOI: 10.1016/j.ejphar.2024.177156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Clopidogrel resistance (CR) increases the risk of atherothrombotic events. Emerging evidence suggests that circRNAs may influence pharmacodynamic responses to clopidogrel. METHODS A total of 25 CR and 25 non-clopidogrel resistance (NCR) patients were enrolled. To identify circRNAs and miRNAs associated with CR, a microarray analysis was performed on RNA samples from 5 CR to 5 NCR patients. Based on the 10 most dysregulated circRNAs, a circRNA-miRNA network was constructed to explore target interactions. Next, the expression of selected circRNAs and their targeted mRNAs was measured, and their diagnostic value for CR was evaluated. Through joint analysis, the candidate miRNAs were identified and verified by RT‒PCR. Finally, after THLE-2 cells were cultivated and transfected with plasmids, the interactions among circ_007695, miR-4512 and COL19A1 were detected. RESULTS Our present study revealed circRNA and miRNA microarray expression profiles in CR and NCR patients and constructed a circRNA‒miRNA network. Moreover, in the CR group, hsa_circ_0076837, hsa_circ_0057714, and hsa_circ_0076957 were downregulated, and the mRNA expression of AOX1 and COL19A1 was also lower in these CR patients. ROC curve analysis indicated that hsa_circ_0057714 (targeting AOX1) and hsa_circ_0076957 (targeting COL19A1) may serve as reliable biomarkers for distinguishing CR. Furthermore, we revealed that the level of miR-4512 was greater in CR and circ-0076957 could regulate COL19A1 expression by targeting miR4512 in THLE-2 cells. CONCLUSION These findings highlight hsa_circ_0057714 and hsa_circ_0076957 as novel biomarkers for CR and suggest that circ-0076957 may regulate COL19A1 expression by targeting miR-4512, providing insights that could improve management of clopidogrel resistance in CAD.
Collapse
Affiliation(s)
- Hongyu Xu
- Department of Geriatrics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jia Su
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China.
| | - Xiaomin Chen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Jiyi Li
- Department of Cardiology, Yuyao People's Hospital of Zhejiang Province, Yuyao, Zhejiang, China
| | - Zhengwei Li
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Nan Zheng
- Department of Cardiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Ruoyan Yu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Xiaojing Li
- Department of Geriatrics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yudie Song
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Jiahui Li
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Fan Xu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Cui Li
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Xiaohong Fei
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Weiping Du
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China.
| | - Qinglin Yu
- Department of Traditional Chinese Internal Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
4
|
Bibi A, Bartekova M, Gandhi S, Greco S, Madè A, Sarkar M, Stopa V, Tastsoglou S, de Gonzalo-Calvo D, Devaux Y, Emanueli C, Hatzigeorgiou AG, Nossent AY, Zhou Z, Martelli F. Circular RNA regulatory role in pathological cardiac remodelling. Br J Pharmacol 2025; 182:316-339. [PMID: 38830749 DOI: 10.1111/bph.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024] Open
Abstract
Cardiac remodelling involves structural, cellular and molecular alterations in the heart after injury, resulting in progressive loss of heart function and ultimately leading to heart failure. Circular RNAs (circRNAs) are a recently rediscovered class of non-coding RNAs that play regulatory roles in the pathogenesis of cardiovascular diseases, including heart failure. Thus, a more comprehensive understanding of the role of circRNAs in the processes governing cardiac remodelling may set the ground for the development of circRNA-based diagnostic and therapeutic strategies. In this review, the current knowledge about circRNA origin, conservation, characteristics and function is summarized. Bioinformatics and wet-lab methods used in circRNA research are discussed. The regulatory function of circRNAs in cardiac remodelling mechanisms such as cell death, cardiomyocyte hypertrophy, inflammation, fibrosis and metabolism is highlighted. Finally, key challenges and opportunities in circRNA research are discussed, and orientations for future work to address the pharmacological potential of circRNAs in heart failure are proposed. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Shrey Gandhi
- Institute of Immunology, University of Münster, Münster, Germany
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Moumita Sarkar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Spyros Tastsoglou
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
5
|
Bernasconi R, Kuster GM. Non-coding RNAs and their potential exploitation in cancer therapy-related cardiotoxicity. Br J Pharmacol 2025; 182:296-315. [PMID: 38802331 DOI: 10.1111/bph.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
Life expectancy in cancer patients has been extended in recent years, thanks to major breakthroughs in therapeutic developments. However, this also unmasked an increased incidence of cardiovascular diseases in cancer survivors, which is in part attributable to cancer therapy-related cardiovascular toxicity. Non-coding RNAs (ncRNAs) have received much appreciation due to their impact on gene expression. NcRNAs, which include microRNAs, long ncRNAs and circular RNAs, are non-protein-coding transcripts that are involved in the regulation of various biological processes, hence shaping cell identity and behaviour. They have also been implicated in disease development, including cardiovascular diseases, cancer and, more recently, cancer therapy-associated cardiotoxicity. This review outlines key features of cancer therapy-associated cardiotoxicity, what is known about the roles of ncRNAs in these processes and how ncRNAs could be exploited as therapeutic targets for cardioprotection. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Riccardo Bernasconi
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gabriela M Kuster
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Cardiology, University Heart Center Basel, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
6
|
Rai AK, Garikipati VNS. Quantitative Real-Time PCR for Circular RNA Detection and Analysis. Methods Mol Biol 2025; 2894:133-141. [PMID: 39699815 DOI: 10.1007/978-1-0716-4342-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
In eukaryotes, nearly 2% of the genome represented by the coding proteins. However, emerging evidence suggest more than 75% of the human genome referred to as noncoding part also plays a crucial role in governing major regulatory pathways. Noncoding RNAs can be categorized into several groups, such as microRNAs (miRNAs), small nuclear RNA (snRNAs), small nucleolar RNA (snoRNAs), transfer RNA (tRNA), and circular RNA (circRNAs), which contribute to this regulatory landscape. Circular RNAs (circRNAs) are identified as a new class of regulatory noncoding RNAs with gene regulatory roles by acting as miRNA or RNA binding protein sponges or interacting with proteins. Researchers employ quantitative real-time PCR methods to examine circular RNA expression utilizing divergent primers for identification and quantification.
Collapse
Affiliation(s)
- Amit Kumar Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Zheng L, Tang R, Fang J, Hu H, Ahmad F, Tang Q, Liu J, Zhong M, Li J. Circular RNA hsa_circ_0081343 modulates trophoblast autophagy through Rbm8a nuclear translocation. Placenta 2024; 158:89-101. [PMID: 39413593 DOI: 10.1016/j.placenta.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Fetal growth restriction (FGR) is a kind of obstetric complication that seriously endangers fetal life. Recent studies reported significant reduction of hsa_circ_0081343 in human placenta developed in FGR and is involved in cell migration, invasion, and apoptosis of trophoblast by acting as microRNA sponges. Autophagy is required for invasion of trophoblast cells and for vascular remodeling during placentation. In this study, we aimed to explore the mechanistic link between hsa_circ_0081343 and autophagy. METHODS We investigated the interactions between hsa_circ_0081343 and RNA-binding proteins were studied by RNA pull-down assay, mass spectrometry and RNA immunoprecipitation assay. The mechanism of nuclear translocation of Rbm8a were assessed by reverse transcription-quantitative PCR, Western blot, immunofluorescence and Co-Immunoprecipitation. Western blot, immunofluorescence and transmission electron microscopy were performed to elucidate the mechanism underlying hsa_circ_0081343 and/or Rbm8a mediated regulation of autophagy. RESULTS hsa_circ_0081343 served as an RNA-binding protein (RBP) sponge. RNA binding motif protein 8A (Rbm8a) was directly bound to hsa_circ_0081343 in the cytoplasm, while knockdown of hsa_circ_0081343 facilitated Rbm8a localization in the nucleus. We also identified Rbm8a as a potential import cargo for Importin13 (Ipo13), which transported Rbm8a across the nuclear membrane into the nucleus. Ipo13 recognized Rbm8a via a functional nuclear localization signal (NLS). Furthermore, the mechanistic study revealed that hsa_circ_0081343-mediated nuclear translocation of Rbm8a activated trophoblast autophagy. DISCUSSION Our results suggest that hsa_circ_0081343 could bind to RBP and the interaction between hsa_circ_0081343 and Rbm8a participate in regulating autophagy. These findings offer novel molecular targets and insights for a potential therapeutic strategy against FGR.
Collapse
Affiliation(s)
- Linmei Zheng
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China; Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Rong Tang
- Department of Hepatological Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Junbo Fang
- Department of Pathology, Southern Medical University, Guangzhou, 510515, China
| | - Haoyue Hu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fiaz Ahmad
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, Shaanxi, China
| | - Qiong Tang
- Department of Pathology, Southern Medical University, Guangzhou, 510515, China
| | - Jinfu Liu
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Huang F, Wang F, Hu Q, Li Y, Jiang D. PTGR1-mediated immune evasion mechanisms in late-stage triple-negative breast cancer: mechanisms of M2 macrophage infiltration and CD8 + T cell suppression. Apoptosis 2024; 29:2002-2024. [PMID: 39068625 DOI: 10.1007/s10495-024-01991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by metabolic dysregulation. Tumor cell immune escape plays an indispensable role in the development of TNBC tumors. Furthermore, in the abstract, we explicitly mention the techniques used and enhance the clarity and impact of our findings. "Based on bioinformatics analysis results, we utilized CRISPR/Cas9 technology to knockout the target gene and established a mouse model of breast cancer. Through experiments such as CCK8, scratch assay, and Transwell assay, we further investigated the impact of target gene knockout on the malignant behavior of tumor cells. Subsequently, we conducted immunohistochemistry and Western Blot experiments to study the expression of macrophage polarization and infiltration-related markers and evaluate the effect of the target gene on macrophage polarization. Next, through co-culture experiments, we simulated the tumor microenvironment and used immunohistochemistry staining to observe and analyze the distribution and activation status of M2 macrophages and CD8+ T cells in the co-culture system. We validated in vivo experiments the molecular mechanism by which the target gene regulates immune cell impact on TNBC progression.
Collapse
Affiliation(s)
- Fang Huang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, East Campus, No.169 Tianshan Street, Shijiazhuang, 050000, Hebei Province, P. R. China
| | - Fuhe Wang
- Department of General surgery, Hebei Yiling Hospital, Shijiazhuang, 050000, P. R. China
| | - Qilu Hu
- Department of Radiotherapy, Heze Traditional Chinese Medicine Hospital, Heze, 274008, P. R. China
| | - Ying Li
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, East Campus, No.169 Tianshan Street, Shijiazhuang, 050000, Hebei Province, P. R. China
| | - Da Jiang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, East Campus, No.169 Tianshan Street, Shijiazhuang, 050000, Hebei Province, P. R. China.
| |
Collapse
|
9
|
Cheng KY, Wang SW, Lan T, Mao ZJ, Xu YY, Shen Q, Zeng XX. CircRNA-mediated regulation of cardiovascular disease. Front Cardiovasc Med 2024; 11:1411621. [PMID: 39660120 PMCID: PMC11628502 DOI: 10.3389/fcvm.2024.1411621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) encompass a range of disorders affecting the heart and blood vessels, such as coronary heart disease, cerebrovascular disease (e.g., stroke), peripheral arterial disease, congenital heart anomalies, deep vein thrombosis, and pulmonary embolism. CVDs are often referred to as the leading cause of mortality worldwide. Recent advancements in deep sequencing have unveiled a plethora of noncoding RNA transcripts, including circular RNAs (circRNAs), which play pivotal roles in the regulation of CVDs. A decade of research has differentiated various circRNAs by their vasculoprotective or deleterious functions, revealing potential therapeutic targets. This review provides an overview of circRNAs and a comprehensive examination of CVDs, the regulatory circRNAs within the vasculature, and the burgeoning research domain dedicated to these noncoding RNAs.
Collapse
Affiliation(s)
- Ke-yun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Si-wei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Tian Lan
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Zhu-jun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - You-yao Xu
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Department of Cardiovascular Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xi-xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Department of Cardiovascular Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
10
|
Jia Y, Yuan X, Feng L, Xu Q, Fang X, Xiao D, Li Q, Wang Y, Ye L, Wang P, Ao X, Wang J. m 6A-modified circCacna1c regulates necroptosis and ischemic myocardial injury by inhibiting Hnrnpf entry into the nucleus. Cell Mol Biol Lett 2024; 29:140. [PMID: 39533214 PMCID: PMC11558890 DOI: 10.1186/s11658-024-00649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are differentially expressed in various cardiovascular diseases, including myocardial infarction (MI) injury. However, their functional role in necroptosis-induced loss of cardiomyocytes remains unclear. We identified a cardiac necroptosis-associated circRNA transcribed from the Cacna1c gene (circCacna1c) to investigate the involvement of circRNAs in cardiomyocyte necroptosis. METHODS To investigate the role of circCacna1c during oxidative stress, H9c2 cells and neonatal rat cardiomyocytes were treated with hydrogen peroxide (H2O2) to induce reactive oxygen species (ROS)-induced cardiomyocyte death. The N6-methyladenosine (m6A) modification level of circCacna1c was determined by methylated RNA immunoprecipitation quantitative polymerase chain reaction (MeRIP-qPCR) analysis. Additionally, an RNA pull-down assay was performed to identify interacting proteins of circCacna1c in cardiomyocytes, and the regulatory role of circCacna1c in target protein expression was tested using a western blotting assay. Furthermore, the MI mouse model was constructed to analyze the effect of circCacna1c on heart function and cardiomyocyte necroptosis. RESULTS The expression of circCacna1c was found to be reduced in cardiomyocytes exposed to oxidative stress and in mouse hearts injured by MI. Overexpression of circCacna1c inhibited necroptosis of cardiomyocytes induced by hydrogen peroxide and MI injury, resulting in a significant reduction in myocardial infarction size and improved cardiac function. Mechanistically, circCacna1c directly interacts with heterogeneous nuclear ribonucleoprotein F (Hnrnpf) in the cytoplasm, preventing its nuclear translocation and leading to reduced Hnrnpf levels within the nucleus. This subsequently suppresses Hnrnpf-dependent receptor-interacting protein kinase 1 (RIPK1) expression. Furthermore, fat mass and obesity-associated protein (FTO) mediates demethylation of m6A modification on circCacna1c during necrosis and facilitates degradation of circCacna1c. CONCLUSION Our study demonstrates that circCacna1c can improve cardiac function following MI-induced heart injury by inhibiting the Hnrnpf/RIPK1-mediated cardiomyocyte necroptosis. Therefore, the FTO/circCacna1c/Hnrnpf/RIPK1 axis holds great potential as an effective target for attenuating cardiac injury caused by necroptosis in ischemic heart disease.
Collapse
Affiliation(s)
- Yi Jia
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaosu Yuan
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Luxin Feng
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
| | - Qingling Xu
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xinyu Fang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Dandan Xiao
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qi Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- School of Nursing, Qingdao University, Qingdao, 266071, China
| | - Yu Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Lin Ye
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Peiyan Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiang Ao
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
11
|
Zhang X, Gao YP, Dong WS, Li K, Hu YX, Ye YJ, Hu C. FNDC4 alleviates cardiac ischemia/reperfusion injury through facilitating HIF1α-dependent cardiomyocyte survival and angiogenesis in male mice. Nat Commun 2024; 15:9667. [PMID: 39516487 PMCID: PMC11549404 DOI: 10.1038/s41467-024-53564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Fibronectin type III domain-containing (FNDC) proteins play critical roles in cellular homeostasis and cardiac injury, and our recent findings define FNDC5 as a promising cardioprotectant against doxorubicin- and aging-related cardiac injury. FNDC4 displays a high homology with FNDC5; however, its role and mechanism in cardiac ischemia/reperfusion (I/R) injury remain elusive. Here, we show that cardiac and plasma FNDC4 levels are elevated during I/R injury in a hypoxia-inducible factor 1α (HIF1α)-dependent manner. Cardiac-specific FNDC4 overexpression facilitates, while cardiac-specific FNDC4 knockdown inhibits cardiomyocyte survival and angiogenesis in I/R-stressed hearts of male mice through regulating the proteasomal degradation of HIF1α. Interestingly, FNDC4 does not directly stimulate angiogenesis of endothelial cells, but increases the expression and secretion of fibroblast growth factor 1 from cardiomyocytes to enhance angiogenesis in a paracrine manner. Moreover, therapeutic administration of recombinant FNDC4 protein is sufficient to alleviate cardiac I/R injury in male mice, without resulting in significant side effects. In this work, we reveal that FNDC4 alleviates cardiac I/R injury through facilitating HIF1α-dependent cardiomyocyte survival and angiogenesis, and define FNDC4 as a promising predictive and therapeutic target of cardiac I/R injury.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| | - Yi-Peng Gao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Wen-Sheng Dong
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Kang Li
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yu-Xin Hu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yun-Jia Ye
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Can Hu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Research Center for Medical Imaging in Hubei Province, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
12
|
Adao DMT, Ching C, Fish JE, Simmons CA, Billia F. Endothelial cell-cardiomyocyte cross-talk: understanding bidirectional paracrine signaling in cardiovascular homeostasis and disease. Clin Sci (Lond) 2024; 138:1395-1419. [PMID: 39492693 DOI: 10.1042/cs20241084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
To maintain homeostasis in the heart, endothelial cells and cardiomyocytes engage in dynamic cross-talk through paracrine signals that regulate both cardiac development and function. Here, we review the paracrine signals that endothelial cells release to regulate cardiomyocyte growth, hypertrophy and contractility, and the factors that cardiomyocytes release to influence angiogenesis and vascular tone. Dysregulated communication between these cell types can drive pathophysiology of disease, as seen in ischemia-reperfusion injury, diabetes, maladaptive hypertrophy, and chemotherapy-induced cardiotoxicity. Investingating the role of cross-talk is critical in developing an understanding of tissue homeostasis, regeneration, and disease pathogenesis, with the potential to identify novel targets for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Doris M T Adao
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto, Ontario, Canada, M5S 3G8
| | - Filio Billia
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| |
Collapse
|
13
|
Liu J, Wang Z, Lin A, Zhang N. Exosomes from Hypoxic Pretreatment ADSCs Ameliorate Cardiac Damage Post-MI via Activated circ-Stt3b/miR-15a-5p/GPX4 Signaling and Decreased Ferroptosis. Cardiovasc Toxicol 2024; 24:1215-1225. [PMID: 39192160 PMCID: PMC11445277 DOI: 10.1007/s12012-024-09915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Accumulation studies confirmed that oxidative stress caused by ischemia after myocardial infarction (MI) is an important cause of ventricular remodeling. Exosome secretion through hypoxic pretreatment adipose-derived mesenchymal stem cells (ADSCs) ameliorates myocardial damaging post-MI. However, if ADSCs exosome can improve the microenvironment and ameliorate cardiac damage post-MI still unknown. Next-generation sequencing (NGS) was used to study abnormally expressed circRNAs in hypoxic pretreatment ADSC exosomes (HExos) and untreated ADSC exosomes (Exos). Bioinformatics and luciferase reporting were used to elucidate interaction correlation related to circRNA, mRNA, and miRNA. HL-1 cells were used to analyze the reactive oxygen species (ROS) and apoptosis under hypoxic conditions using immunofluorescence and flow cytometry. An MI mouse model was constructed and the therapeutic effect of Exos was determined using immunohistochemistry, immunofluorescence, and ELISA. The results showed that HExos had a more pronounced treatment effect than ADSC Exos on cardiac damage amelioration after MI. NGS showed that circ-Stt3b plays a role in HExo-mediated cardiac damage repair after MI. Overexpression of circ-Stt3b decreased apoptosis, ROS level, and inflammatory factor expression in HL-1 cells under hypoxic conditions. Bioinformatics and luciferase reporting data validated miR-15a-5p and GPX4 as downstream circ-Stt3b targets. GPX4 downregulation or miR-15a-5p overexpression reversed protective effect regarding circ-Stt3b upon HL-1 cells after exposure to a hypoxic microenvironment. Overexpression of circ-Stt3b increased the treatment effect of ASDSC Exos on cardiac damage amelioration after MI. Taken together, the study results demonstrated that Exos from hypoxic pretreatment ADSCs ameliorate cardiac damage post-MI through circ-Stt3b/miR-15a-5p/GPX4 signaling activation and decreased ferroptosis.
Collapse
Affiliation(s)
- Jili Liu
- Department of Geriatrics, The First Hospital, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhaolin Wang
- Department of Traditional Chinese Medicine, The Second Hospital, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Anhua Lin
- Department of Endocrinology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 152, Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, China.
| | - Na Zhang
- Department of Hematology, Shanxi Hospital of Traditional Chinese Medicine, No. 46, Bingzhou West Street, Taiyuan, 030012, Shanxi, China.
| |
Collapse
|
14
|
Tang Y, Ji H, Yan Y, Hu D, Xu M, Xu M, Zhao X, Chen M. Enhancing diabetic foot ulcer healing: Impact of the regulation of the FUS and ILF2 RNA‑binding proteins through negative pressure wound therapy. Int J Mol Med 2024; 54:103. [PMID: 39301661 PMCID: PMC11414528 DOI: 10.3892/ijmm.2024.5427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Diabetic foot ulcer (DFU) is a destructive complication of diabetes. Negative pressure wound therapy (NPWT) promotes DFU wound healing through an undetermined mechanism. In the present study, RNA sequencing was performed on wound granulation tissue from 3 patients with DFU before and after 1 week of NPWT. The fused in sarcoma (FUS) and interleukin enhancer binding factor 2 (ILF2) encoding RNA‑binding proteins (RBPs) were screened from the sequencing data, and wound tissue samples from 24 patients with DFU were validated and analyzed before and after receiving NPWT by reverse transcription‑quantitative PCR, western blotting and immunohistochemistry. In addition, in vitro and in vivo experiments were conducted to determine the effect of the expression of FUS and ILF2 on the function of human epidermal keratinocyte cells (HaCaT cells) and the healing of diabetic skin wounds. The results indicated that NPWT induced the upregulation of 101 genes and the downregulation of 98 genes in DFU wound granulation tissue. After NPWT, the expression of FUS and ILF2 was significantly upregulated (P<0.05). Pearson's correlation coefficient showed that the changes in FUS and ILF2 before and after NPWT were negatively correlated with changes in white blood cells, the neutrophil percentage, C‑reactive protein, tumor necrosis factor‑α, reactive oxygen species, lipid peroxides, matrix metalloproteinase (MMP) 2 and MMP9 (P<0.05), but positively correlated with the anti‑inflammatory factor, IL‑4 (P<0.01). There was also a positive correlation (P<0.05) with the 4‑week ulcer healing rate. Additionally, the knockdown of FUS and ILF2 expression inhibited the proliferation and migration of HaCaT cells, while increasing cell apoptosis. In vivo, the knockdown of FUS and ILF2 significantly reduced the rate of skin wound healing in diabetic mice. The results of the present study therefore provide new insights into the mechanism by which NPWT promotes DFU wound healing. In conclusion, the RBPs, FUS and ILF2, promoted DFU wound healing by regulating the function of keratinocytes and reducing the inflammatory response and oxidative stress.
Collapse
Affiliation(s)
| | | | - Yanyan Yan
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Die Hu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Min Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
15
|
Liu X, Li X, Li H, Guan B, Jiang Y, Zheng C, Kong D. Annexin A1: a key regulator of T cell function and bone marrow adiposity in aplastic anaemia. J Physiol 2024; 602:6125-6152. [PMID: 39373986 DOI: 10.1113/jp286148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/31/2024] [Indexed: 10/08/2024] Open
Abstract
This study investigates the role of Annexin A1 (ANXA1) in regulating T cell function and its implications in bone marrow adiposity in aplastic anaemia (AA). Utilizing single-cell sequencing analysis, we compared bone marrow tissues from AA patients and healthy individuals, focusing on T cell subgroups and their impact on bone marrow pathology. Our findings reveal a significant activation of CD8+ T cells in AA, driven by reduced ANXA1 expression. This heightened T cell activity promotes adipogenesis in bone marrow-derived mesenchymal stem cells via IFN-γ secretion. Overexpression of ANXA1 was found to suppress this process, suggesting its therapeutic potential in AA treatment. The study highlights ANXA1 as a crucial regulator in the AA-associated immune microenvironment and bone marrow adiposity. KEY POINTS: This study found that ANXA1 is significantly downregulated in AA and provides detailed insights into its critical role in the disease. The study demonstrates the excessive activation of CD8+ T cells in the progression of AA. The research shows that the overexpression of ANXA1 can effectively inhibit the activation of CD8+ T cells. The study confirms that overexpression of ANXA1 reduces the secretion of the cytokine IFN-γ, decreases adipogenesis in bone marrow-derived mesenchymal stem cells and may improve AA symptoms. This research provides new molecular targets for the treatment of AA.
Collapse
Affiliation(s)
- Xia Liu
- Department of Respiratory Intervention, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaomei Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- JiNan Key Laboratory of Basic and Clinical Translational Research in Radiobiology, Jinan, China
| | - Hui Li
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Jiang
- Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China
- Shandong University-Karolinska Institute Collaborative Laboratory for Stem Cell Research, Shandong University, Jinan, China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China
- Shandong University-Karolinska Institute Collaborative Laboratory for Stem Cell Research, Shandong University, Jinan, China
| | - Dexiao Kong
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China
- Shandong University-Karolinska Institute Collaborative Laboratory for Stem Cell Research, Shandong University, Jinan, China
| |
Collapse
|
16
|
Yuan Z, Huang S, Jin X, Li S. Circular RNAs in Cardiovascular Diseases: Molecular Mechanisms, Therapeutic Advances, and Innovations. Genes (Basel) 2024; 15:1423. [PMID: 39596623 PMCID: PMC11593509 DOI: 10.3390/genes15111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as promising therapeutic targets due to their unique covalently closed-loop structures and their regulatory roles in gene expression. Despite their potential, challenges in circRNA-based therapies include ensuring stability, tissue specificity, and efficient intracellular delivery. This review explores the implications of circRNAs in cardiovascular diseases (CVDs), providing an overview of their biogenesis, molecular mechanisms, and roles in disease pathology. In addition to discussing molecular features, this review highlights therapeutic advances, including small-molecule drugs targeting circRNAs, synthetic circRNA sponges, and innovations in drug delivery systems that enhance the effectiveness of these therapies. Finally, current challenges and future directions are addressed, emphasizing the need for continued research to fully unlock the therapeutic potential of circRNA-based strategies in cardiovascular medicine.
Collapse
Affiliation(s)
- Zheng Yuan
- College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shaoyuan Huang
- School of Medicine, Nankai University, Tianjin 300071, China; (S.H.); (X.J.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (S.H.); (X.J.)
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (S.H.); (X.J.)
| |
Collapse
|
17
|
Zhao Y, He X, Yang X, Hong Z, Xu Y, Xu J, Zheng H, Zhang L, Zuo Z, Hu X. CircFndc3b Mediates Exercise-Induced Neuroprotection by Mitigating Microglial/Macrophage Pyroptosis via the ENO1/KLF2 Axis in Stroke Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403818. [PMID: 39467260 DOI: 10.1002/advs.202403818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/28/2024] [Indexed: 10/30/2024]
Abstract
Circular RNA (circRNA) plays a pivotal role in regulating neurological damage post-ischemic stroke. Previous researches demonstrated that exercise mitigates neurological dysfunction after ischemic stroke, yet the specific contributions of circRNAs to exercise-induced neuroprotection remain unclear. This study reveals that mmu_circ_0001113 (circFndc3b) is markedly downregulated in the penumbral cortex of a mouse model subjected to middle cerebral artery occlusion (MCAO). However, exercise increased circFndc3b expression in microglia/macrophages, alleviating pyroptosis, reducing infarct volume, and enhancing neurological recovery in MCAO mice. Mechanistically, circFndc3b interacted with Enolase 1 (ENO1), facilitating ENO1's binding to the 3' Untranslated Region (3'UTR) of Krüppel-like Factor 2 (Klf2) mRNA, thereby stabilizing Klf2 mRNA and increasing its protein expression, which suppressed NOD-like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome-mediated microglial/macrophage pyroptosis. Additionally, circFndc3b enhanced ENO1's interaction with the 3'UTR of Fused in Sarcoma (FUS) mRNA, leading to increased FUS protein levels and promoting circFndc3b cyclization. These results suggest that circFndc3b mediates exercise-induced anti-pyroptotic effects via the ENO1/Klf2 axis, and a circFndc3b/ENO1/FUS positive feedback loop may potentiate exercise's neuroprotective effects. This study unveils a novel mechanism underlying exercise-induced neuroprotection in ischemic stroke and positions circFndc3b as a promising therapeutic target for stroke management, mimicking the beneficial effects of exercise.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, 253 Industrial Middle Road, Guangzhou, Guangdong, 510282, China
| | - Xiaofei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Xiaofeng Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Zhongqiu Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Yin Xu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, 253 Industrial Middle Road, Guangzhou, Guangdong, 510282, China
| | - Jinghui Xu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Zejie Zuo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| |
Collapse
|
18
|
Joladarashi D, Thej C, Mallaredy V, Magadum A, Cimini M, Gonzalez C, Truongcao M, Nigro JT, Sethi MK, Gibb AA, Benedict C, Koch WJ, Kishore R. GPC3-mediated metabolic rewiring of diabetic mesenchymal stromal cells enhances their cardioprotective functions via PKM2 activation. iScience 2024; 27:111021. [PMID: 39429777 PMCID: PMC11490746 DOI: 10.1016/j.isci.2024.111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Mesenchymal stromal cells (MSC) are promising stem cell therapy for treating cardiovascular and other degenerative diseases. Diabetes affects the functional capability of MSC and impedes cell-based therapy. Despite numerous studies, the impact of diabetes on MSC myocardial reparative activity, metabolic fingerprint, and the mechanism of dysfunction remains inadequately perceived. We demonstrated that the transplantation of diabetic-MSC (db/db-MSC) into the ischemic myocardium of mice does not confer cardiac benefit post-MI. Metabolomic studies identified defective energy metabolism in db/db-MSC. Furthermore, we found that glypican-3 (GPC3), a heparan sulfate proteoglycan, is highly upregulated in db/db-MSC and is involved in metabolic alterations in db/db-MSC via pyruvate kinase M2 (PKM2) activation. GPC3-knockdown reprogrammed-db/db-MSC restored their energy metabolic rates, immunomodulation, angiogenesis, and cardiac reparative activities. Together, these data indicate that GPC3-metabolic reprogramming in diabetic MSC may represent a strategy to enhance MSC-based therapeutics for myocardial repair in diabetic patients.
Collapse
Affiliation(s)
- Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - May Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Joseph T. Nigro
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Manveen K. Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andrew A. Gibb
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, 580 South Preston Street, Louisville, KY, USA
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J. Koch
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
19
|
Rai AK, Muthukumaran NS, Nisini N, Lee T, Kyriazis ID, de Lucia C, Piedepalumbo M, Roy R, Uchida S, Drosatos K, Bisserier M, Katare R, Goukassian D, Kishore R, Garikipati VNS. Transcriptome wide changes in long noncoding RNAs in diabetic ischemic heart disease. Cardiovasc Diabetol 2024; 23:365. [PMID: 39420368 PMCID: PMC11488282 DOI: 10.1186/s12933-024-02441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
More than 10% of adults in the United States have type 2 diabetes mellitus (DM) with a 2-4 times higher prevalence of ischemic heart disease than the non-diabetics. Despite extensive research approaches to limit this life-threatening condition have proven unsuccessful, highlighting the need for understanding underlying molecular mechanisms. Long noncoding RNAs (lncRNAs), which regulate gene expression by acting as signals, decoys, guides, or scaffolds have been implicated in diverse cardiovascular conditions. However, their role in ischemic heart disease in DM remains poorly understood. We provide new insights into the lncRNA expression profile after ischemic heart disease in DM mice. We performed unbiased RNA sequencing of well-characterized type 2 DM model db/db mice or its control db/+ subjected to sham or MI surgery. Computational analysis of the RNA sequencing of these LV tissues identified several differentially expressed lncRNAs between (db/db sham vs. db/db MI) including Gm19522 and Gm8075. lncRNA Gm-19522 may regulate DNA replication via DNA protein kinases, while lncRNA Gm-8075 is associated with cancer gene dysregulation and PI3K/Akt pathways. Thus, the downregulation of lncRNAs Gm19522 and Gm8075 post-MI may serve as potential biomarkers or novel therapeutic targets to improve cardiac repair/recovery in diabetic ischemic heart disease.
Collapse
Affiliation(s)
- Amit Kumar Rai
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Natarajaseenivasan Suriya Muthukumaran
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Noemi Nisini
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Tiffany Lee
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Ioannis D Kyriazis
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Laboratory of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Claudio de Lucia
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- ASL (Azienda Sanitaria Locale-Local Health Authority), Napoli 1 Centro, Naples, Italy
- ASL (Azienda Sanitaria Locale-Local Health Authority), Salerno, D.S. 60, Nocera Inferiore, SA, Italy
| | - Michela Piedepalumbo
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- ASL (Azienda Sanitaria Locale-Local Health Authority, Napoli 3 Sud, Naples, Italy
| | - Rajika Roy
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Shizuka Uchida
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Frederikskaj 10B, 2. (Building C), Copenhagen SV, 2450, Denmark
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Department of Pharmacology and Systems Physiology, Cardiovascular Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Malik Bisserier
- Department of Cell Biology and Anatomy and Physiology, New York Medical College, Valhalla, NY, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Raj Kishore
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA.
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA.
| |
Collapse
|
20
|
Yan D, Zhan S, Guo C, Han J, Zhan L, Zhou Q, Bing D, Wang X. The role of myocardial regeneration, cardiomyocyte apoptosis in acute myocardial infarction: A review of current research trends and challenges. J Cardiol 2024:S0914-5087(24)00193-X. [PMID: 39393490 DOI: 10.1016/j.jjcc.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
PURPOSE This paper aims to review the research progress in repairing injury caused by acute myocardial infarction, focusing on myocardial regeneration, cardiomyocyte apoptosis, and fibrosis. The goal is to investigate the current research trends and challenges in the field of myocardial injury repair. METHODS The review delves into the latest research on myocardial regeneration, cardiomyocyte apoptosis, and fibrosis following acute myocardial infarction. It highlights stem cell transplantation and gene therapy as key areas of current research focus, while emphasizing the significance of cardiomyocyte apoptosis and fibrosis in the myocardial injury repair process. Additionally, the review addresses the challenges and unresolved issues that require further investigation in the field of myocardial injury repair. SUMMARY Acute myocardial infarction is a prevalent cardiovascular condition that results in myocardial damage necessitating repair. Myocardial regeneration plays a crucial role in repairing myocardial injury, with current research focusing on stem cell transplantation and gene therapy. Cardiomyocyte apoptosis and fibrosis are key factors in the repair process, significantly impacting the restoration of myocardial structure and function. Nonetheless, there remain numerous challenges and unresolved issues that warrant further investigation in the realm of myocardial injury repair.
Collapse
Affiliation(s)
- Dan Yan
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Wuhan Asia Heart Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China.
| | - Shifang Zhan
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Chenyu Guo
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jiawen Han
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Lin Zhan
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qianyi Zhou
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Dan Bing
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoyan Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China.
| |
Collapse
|
21
|
Liu CX, Yang L, Chen LL. Dynamic conformation: Marching toward circular RNA function and application. Mol Cell 2024; 84:3596-3609. [PMID: 39366349 DOI: 10.1016/j.molcel.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 08/15/2024] [Indexed: 10/06/2024]
Abstract
Circular RNA is a group of covalently closed, single-stranded transcripts with unique biogenesis, stability, and conformation that play distinct roles in modulating cellular functions and also possess a great potential for developing circular RNA-based therapies. Importantly, due to its circular conformation, circular RNA generates distinct intramolecular base pairing that is different from the linear transcript. In this perspective, we review how circular RNA conformation can affect its turnover and modes of action, as well as what factors can modulate circular RNA conformation. We also discuss how understanding circular RNA conformation can facilitate learning about their functions as well as the remaining technological issues to further address their conformation. These efforts will ultimately inform the design of circular RNA-based platforms for biomedical applications.
Collapse
Affiliation(s)
- Chu-Xiao Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; New Cornerstone Science Laboratory, Shenzhen, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
22
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
23
|
Chen YX, Zhao AR, Wei TW, Wang H, Wang LS. Progress of Mitochondrial Function Regulation in Cardiac Regeneration. J Cardiovasc Transl Res 2024; 17:1097-1105. [PMID: 38647881 DOI: 10.1007/s12265-024-10514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Heart failure and myocardial infarction, global health concerns, stem from limited cardiac regeneration post-injury. Myocardial infarction, typically caused by coronary artery blockage, leads to cardiac muscle cell damage, progressing to heart failure. Addressing the adult heart's minimal self-repair capability is crucial, highlighting cardiac regeneration research's importance. Studies reveal a metabolic shift from anaerobic glycolysis to oxidative phosphorylation in neonates as a key factor in impaired cardiac regeneration, with mitochondria being central. The heart's high energy demands rely on a robust mitochondrial network, essential for cellular energy, cardiac health, and regenerative capacity. Mitochondria's influence extends to redox balance regulation, signaling molecule interactions, and apoptosis. Changes in mitochondrial morphology and quantity also impact cardiac cell regeneration. This article reviews mitochondria's multifaceted role in cardiac regeneration, particularly in myocardial infarction and heart failure models. Understanding mitochondrial function in cardiac regeneration aims to enhance myocardial infarction and heart failure treatment methods and insights.
Collapse
Affiliation(s)
- Yi-Xi Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - An-Ran Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tian-Wen Wei
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lian-Sheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
24
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
25
|
Tibenda JJ, Wang N, Li N, Dang Y, Zhu Y, Wang X, Zhang Z, Zhao Q. Research progress of circular RNAs in myocardial ischemia. Life Sci 2024; 352:122809. [PMID: 38908786 DOI: 10.1016/j.lfs.2024.122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
Circular RNAs (circRNAs) are a type of single-stranded RNA that forms a covalently closed continuous loop. Its structure, stability, properties, and cell- and tissue-specificity have gained considerable recognition in the research and clinical sectors, as its role has been observed in different diseases, such as cardiovascular diseases, cancers, and central nervous system diseases, etc. Cardiovascular disease is still named as the number one cause of death globally, with myocardial ischemia (MI) accounting for 15 % of mortality annually. A number of circRNAs have been identified and are being studied for their ability to reduce MI by inhibiting the molecular mechanisms associated with myocardial ischemia reperfusion injury, such as inflammation, oxidative stress, autophagy, apoptosis, and so on. CircRNAs play a significant role as crucial regulatory elements at transcriptional levels, regulating different proteins, and at posttranscriptional levels, having interactions with RNA-binding proteins, ribosomal proteins, micro-RNAS, and long non-coding RNAS, making it possible to exert their effects through the circRNA-miRNA-mRNA axis. CircRNAs are a potential novel biomarker and therapeutic target for myocardial ischemia and cardiovascular diseases in general. The purpose of this review is to summarize the relationship, function, and mechanism observed between circRNAs and MI injury, as well as to provide directions for future research and clinical trials.
Collapse
Affiliation(s)
- Jonnea Japhet Tibenda
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Niuniu Wang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Nuan Li
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Yanning Dang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Yafei Zhu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhengjun Zhang
- Department of Cardiology, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Qipeng Zhao
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
26
|
Thej C, Kishore R. Epigenetic regulation of sex dimorphism in cardiovascular health. Can J Physiol Pharmacol 2024; 102:498-510. [PMID: 38427976 DOI: 10.1139/cjpp-2023-0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality, affecting people of all races, ages, and sexes. Substantial sex dimorphism exists in the prevalence, manifestation, and outcomes of CVDs. Understanding the role of sex hormones as well as sex-hormone-independent epigenetic mechanisms could play a crucial role in developing effective and sex-specific cardiovascular therapeutics. Existing research highlights significant disparities in sex hormones, epigenetic regulators, and gene expression related to cardiac health, emphasizing the need for a nuanced understanding of these variations between men and women. Despite these differences, current treatment approaches for CVDs often lack sex-specific considerations. A pivotal shift toward personalized medicine, informed by comprehensive insights into sex-specific DNA methylation, histone modifications, and non-coding RNA dynamics, holds the potential to revolutionize CVD management. By understanding sex-specific epigenetic complexities, independent of sex hormone influence, future cardiovascular research can be tailored to achieve effective diagnostic and therapeutic interventions for both men and women. This review summarizes the current knowledge and gaps in epigenetic mechanisms and sex dimorphism implicated in CVDs.
Collapse
Affiliation(s)
- Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
27
|
Lin L, Chu J, An S, Liu X, Tan R. The Biological Mechanisms and Clinical Roles of RNA-Binding Proteins in Cardiovascular Diseases. Biomolecules 2024; 14:1056. [PMID: 39334823 PMCID: PMC11430443 DOI: 10.3390/biom14091056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
RNA-binding proteins (RBPs) have pivotal roles in cardiovascular biology, influencing various molecular mechanisms underlying cardiovascular diseases (CVDs). This review explores the significant roles of RBPs, focusing on their regulation of RNA alternative splicing, polyadenylation, and RNA editing, and their impact on CVD pathogenesis. For instance, RBPs are crucial in myocardial injury, contributing to disease progression and repair mechanisms. This review systematically analyzes the roles of RBPs in myocardial injury, arrhythmias, myocardial infarction, and heart failure, revealing intricate interactions that influence disease outcomes. Furthermore, the potential of RBPs as therapeutic targets for cardiovascular dysfunction is explored, highlighting the advances in drug development and clinical research. This review also discusses the emerging role of RBPs as biomarkers for cardiovascular diseases, offering insights into their diagnostic and prognostic potential. Despite significant progress, current research faces several limitations, which are critically examined. Finally, this review identifies the major challenges and outlines future research directions to advance the understanding and application of RBPs in cardiovascular medicine.
Collapse
Affiliation(s)
- Lizhu Lin
- Department of Anaesthesiology, The First People’s Hospital of Qinzhou, The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou 535000, China;
| | - Jiemei Chu
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; (J.C.); (S.A.)
| | - Sanqi An
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; (J.C.); (S.A.)
| | - Xinli Liu
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; (J.C.); (S.A.)
| | - Runxian Tan
- Department of Laboratory Medicine, The First People’s Hospital of Qinzhou, The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou 535000, China
| |
Collapse
|
28
|
Mei S, Ma X, Zhou L, Wuyun Q, Cai Z, Yan J, Ding H. Circular RNA in Cardiovascular Diseases: Biogenesis, Function and Application. Biomolecules 2024; 14:952. [PMID: 39199340 PMCID: PMC11352787 DOI: 10.3390/biom14080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases pose a significant public health challenge globally, necessitating the development of effective treatments to mitigate the risk of cardiovascular diseases. Recently, circular RNAs (circRNAs), a novel class of non-coding RNAs, have been recognized for their role in cardiovascular disease. Aberrant expression of circRNAs is closely linked with changes in various cellular and pathophysiological processes within the cardiovascular system, including metabolism, proliferation, stress response, and cell death. Functionally, circRNAs serve multiple roles, such as acting as a microRNA sponge, providing scaffolds for proteins, and participating in protein translation. Owing to their unique properties, circRNAs may represent a promising biomarker for predicting disease progression and a potential target for cardiovascular drug development. This review comprehensively examines the properties, biogenesis, and potential mechanisms of circRNAs, enhancing understanding of their role in the pathophysiological processes impacting cardiovascular disease. Furthermore, the prospective clinical applications of circRNAs in the diagnosis, prognosis, and treatment of cardiovascular disease are addressed.
Collapse
Affiliation(s)
- Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China
| |
Collapse
|
29
|
Caporali A, Anwar M, Devaux Y, Katare R, Martelli F, Srivastava PK, Pedrazzini T, Emanueli C. Non-coding RNAs as therapeutic targets and biomarkers in ischaemic heart disease. Nat Rev Cardiol 2024; 21:556-573. [PMID: 38499868 DOI: 10.1038/s41569-024-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
The adult heart is a complex, multicellular organ that is subjected to a series of regulatory stimuli and circuits and has poor reparative potential. Despite progress in our understanding of disease mechanisms and in the quality of health care, ischaemic heart disease remains the leading cause of death globally, owing to adverse cardiac remodelling, leading to ischaemic cardiomyopathy and heart failure. Therapeutic targets are urgently required for the protection and repair of the ischaemic heart. Moreover, personalized clinical biomarkers are necessary for clinical diagnosis, medical management and to inform the individual response to treatment. Non-coding RNAs (ncRNAs) deeply influence cardiovascular functions and contribute to communication between cells in the cardiac microenvironment and between the heart and other organs. As such, ncRNAs are candidates for translation into clinical practice. However, ncRNA biology has not yet been completely deciphered, given that classes and modes of action have emerged only in the past 5 years. In this Review, we discuss the latest discoveries from basic research on ncRNAs and highlight both the clinical value and the challenges underscoring the translation of these molecules as biomarkers and therapeutic regulators of the processes contributing to the initiation, progression and potentially the prevention or resolution of ischaemic heart disease and heart failure.
Collapse
Affiliation(s)
- Andrea Caporali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Maryam Anwar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxemburg
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
30
|
Jiang P, Zhu X, Jiang Y, Li H, Luo Q. Targeting JUNB to modulate M2 macrophage polarization in preeclampsia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167194. [PMID: 38663490 DOI: 10.1016/j.bbadis.2024.167194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 06/17/2024]
Abstract
Preeclampsia (PE) is a complex disorder affecting pregnant women, leading to significant maternal and fetal morbidity and mortality. Understanding the cellular dynamics and molecular mechanisms underlying PE is crucial for developing effective therapeutic strategies. This study utilized single-cell RNA sequencing (scRNA-seq) to delineate the cellular landscape of the placenta in PE, identifying 11 distinct cell subpopulations, with macrophages playing a pivotal role in mediating cell-cell communication. Specifically, the transcription factor JUNB was found to be a key gene in macrophages from PE samples, influencing the interaction between macrophages and both epithelial and endothelial cells. Functional experiments indicated that interference with JUNB expression promoted macrophage polarization towards an M2 phenotype, which facilitated trophoblast invasion, migration, and angiogenesis. Mechanistically, JUNB regulated the MIIP/PI3K/AKT pathway, as evidenced by gene expression analysis following JUNB knockdown. The study further demonstrated that targeting JUNB could activate the PI3K/AKT pathway by transcriptionally activating MIIP, thus promoting M2 polarization and potentially delaying the onset of PE. These findings present new insights into the pathogenesis of PE and suggest a novel therapeutic approach by modulating macrophage polarization.
Collapse
Affiliation(s)
- Peiyue Jiang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Xiaojun Zhu
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Hetong Li
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China.
| |
Collapse
|
31
|
de Abreu FMC, de Oliveira DA, de Araujo Romero Ferrari SS, E Silva KHCV, Titze-de-Almeida R, Titze-de-Almeida SS. Exploring circular RNAs as biomarkers for Parkinson's disease and their expression changes after aerobic exercise rehabilitation. Funct Integr Genomics 2024; 24:130. [PMID: 39069524 DOI: 10.1007/s10142-024-01409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Circular RNAs (circRNAs) are circularized single-stranded ribonucleic acids that interacts with DNA, RNA, and proteins to play critical roles in cell biology. CircRNAs regulate microRNA content, gene expression, and may code for specific peptides. Indeed, circRNAs are differentially expressed in neurodegenerative disorders like Parkinson's disease (PD), playing a potential role in the mechanisms of brain pathology. The RNA molecules with aberrant expression in the brain can cross the blood-brain barrier and reach the bloodstream, which enable their use as non-invasive PD disease biomarker. Promising targets with valuable discriminatory ability in combined circRNA signatures include MAPK9_circ_0001566, SLAIN1_circ_0000497, SLAIN2_circ_0126525, PSEN1_circ_0003848, circ_0004381, and circ_0017204. On the other hand, regular exercises are effective therapy for mitigating PD symptoms, promoting neuroprotective effects with epigenetic modulation. Aerobic exercises slow symptom progression in PD by improving motor control, ameliorating higher functions, and enhancing brain activity and neuropathology. These improvements are accompanied by changes circRNA expression, including hsa_circ_0001535 (circFAM13B) and hsa_circ_0000437 (circCORO1C). The sensitivity of current methods for detecting circulating circRNAs is considered a limitation. While amplification kits already exist for low-abundant microRNAs, similar kits are needed for circRNAs. Alternatively, the use of digital PCR can help overcome this constraint. The current review examines the potential use of circRNAs as non-invasive biomarkers of PD and to assess the effects of rehabilitation. Although circRNAs hold promise as targets for PD diagnosis and therapeutics, further validation is needed before their clinical implementation.
Collapse
Affiliation(s)
- Flávia Maria Campos de Abreu
- Graduate Program in Gerontology, Campus Taguatinga, Universidade Católica de Brasília, Brasília DF, Brazil
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
| | - Deborah Almeida de Oliveira
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil
| | - Sabrina Simplício de Araujo Romero Ferrari
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil
| | | | - Ricardo Titze-de-Almeida
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil
| | - Simoneide Souza Titze-de-Almeida
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil.
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil.
| |
Collapse
|
32
|
Bontempo P, Capasso L, De Masi L, Nebbioso A, Rigano D. Therapeutic Potential of Natural Compounds Acting through Epigenetic Mechanisms in Cardiovascular Diseases: Current Findings and Future Directions. Nutrients 2024; 16:2399. [PMID: 39125279 PMCID: PMC11314203 DOI: 10.3390/nu16152399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain a leading global cause of morbidity and mortality. These diseases have a multifaceted nature being influenced by a multitude of biochemical, genetic, environmental, and behavioral factors. Epigenetic modifications have a crucial role in the onset and progression of CVD. Epigenetics, which regulates gene activity without altering the DNA's primary structure, can modulate cardiovascular homeostasis through DNA methylation, histone modification, and non-coding RNA regulation. The effects of environmental stimuli on CVD are mediated by epigenetic changes, which can be reversible and, hence, are susceptible to pharmacological interventions. This represents an opportunity to prevent diseases by targeting harmful epigenetic modifications. Factors such as high-fat diets or nutrient deficiencies can influence epigenetic enzymes, affecting fetal growth, metabolism, oxidative stress, inflammation, and atherosclerosis. Recent studies have shown that plant-derived bioactive compounds can modulate epigenetic regulators and inflammatory responses, contributing to the cardioprotective effects of diets. Understanding these nutriepigenetic effects and their reversibility is crucial for developing effective interventions to combat CVD. This review delves into the general mechanisms of epigenetics, its regulatory roles in CVD, and the potential of epigenetics as a CVD therapeutic strategy. It also examines the role of epigenetic natural compounds (ENCs) in CVD and their potential as intervention tools for prevention and therapy.
Collapse
Affiliation(s)
- Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Portici, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Daniela Rigano
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
33
|
Jiang J, Wu H, Ji Y, Han K, Tang JM, Hu S, Lei W. Development and disease-specific regulation of RNA splicing in cardiovascular system. Front Cell Dev Biol 2024; 12:1423553. [PMID: 39045460 PMCID: PMC11263117 DOI: 10.3389/fcell.2024.1423553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Alternative splicing is a complex gene regulatory process that distinguishes itself from canonical splicing by rearranging the introns and exons of an immature pre-mRNA transcript. This process plays a vital role in enhancing transcriptomic and proteomic diversity from the genome. Alternative splicing has emerged as a pivotal mechanism governing complex biological processes during both heart development and the development of cardiovascular diseases. Multiple alternative splicing factors are involved in a synergistic or antagonistic manner in the regulation of important genes in relevant physiological processes. Notably, circular RNAs have only recently garnered attention for their tissue-specific expression patterns and regulatory functions. This resurgence of interest has prompted a reevaluation of the topic. Here, we provide an overview of our current understanding of alternative splicing mechanisms and the regulatory roles of alternative splicing factors in cardiovascular development and pathological process of different cardiovascular diseases, including cardiomyopathy, myocardial infarction, heart failure and atherosclerosis.
Collapse
Affiliation(s)
- Jinxiu Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hongchun Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yabo Ji
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kunjun Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
34
|
Mallaredy V, Roy R, Cheng Z, Gurrala CT, Benedict C, Truongcao M, Joladarashi D, Magadum A, Ibetti J, Cimini M, Gonzalez C, Garikipati VNS, Koch WJ, Kishore R. Tipifarnib Reduces Extracellular Vesicles and Protects From Heart Failure. Circ Res 2024; 135:280-297. [PMID: 38847080 PMCID: PMC11223950 DOI: 10.1161/circresaha.123.324110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Heart failure (HF) is one of the leading causes of mortality worldwide. Extracellular vesicles, including small extracellular vesicles or exosomes, and their molecular cargo are known to modulate cell-to-cell communication during multiple cardiac diseases. However, the role of systemic extracellular vesicle biogenesis inhibition in HF models is not well documented and remains unclear. METHODS We investigated the role of circulating exosomes during cardiac dysfunction and remodeling in a mouse transverse aortic constriction (TAC) model of HF. Importantly, we investigate the efficacy of tipifarnib, a recently identified exosome biogenesis inhibitor that targets the critical proteins (Rab27a [Ras associated binding protein 27a], nSMase2 [neutral sphingomyelinase 2], and Alix [ALG-2-interacting protein X]) involved in exosome biogenesis for this mouse model of HF. In this study, 10-week-old male mice underwent TAC surgery were randomly assigned to groups with and without tipifarnib treatment (10 mg/kg 3 times/wk) and monitored for 8 weeks, and a comprehensive assessment was conducted through performed echocardiographic, histological, and biochemical studies. RESULTS TAC significantly elevated circulating plasma exosomes and markedly increased cardiac left ventricular dysfunction, cardiac hypertrophy, and fibrosis. Furthermore, injection of plasma exosomes from TAC mice induced left ventricular dysfunction and cardiomyocyte hypertrophy in uninjured mice without TAC. On the contrary, treatment of tipifarnib in TAC mice reduced circulating exosomes to baseline and remarkably improved left ventricular functions, hypertrophy, and fibrosis. Tipifarnib treatment also drastically altered the miRNA profile of circulating post-TAC exosomes, including miR 331-5p, which was highly downregulated both in TAC circulating exosomes and in TAC cardiac tissue. Mechanistically, miR 331-5p is crucial for inhibiting the fibroblast-to-myofibroblast transition by targeting HOXC8, a critical regulator of fibrosis. Tipifarnib treatment in TAC mice upregulated the expression of miR 331-5p that acts as a potent repressor for one of the fibrotic mechanisms mediated by HOXC8. CONCLUSIONS Our study underscores the pathological role of exosomes in HF and fibrosis in response to pressure overload. Tipifarnib-mediated inhibition of exosome biogenesis and cargo sorting may serve as a viable strategy to prevent progressive cardiac remodeling in HF.
Collapse
Affiliation(s)
- Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Rajika Roy
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, NC 27710
| | - Zhongjian Cheng
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Charan Thej Gurrala
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - May Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Jessica Ibetti
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Venkata Naga Srikanth Garikipati
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | - Walter J. Koch
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, NC 27710
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| |
Collapse
|
35
|
Tang L, Nyarige V, Li P, Wang J, Zhu W. Identification of circular RNAs regulating cardiomyocyte proliferation in neonatal pig hearts. JCI Insight 2024; 9:e175625. [PMID: 38916964 PMCID: PMC11383601 DOI: 10.1172/jci.insight.175625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Little is known about the expression patterns and functions of circular RNAs (circRNAs) in the heart of large mammals. In this study, we examined the expression profiles of circRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) in neonatal pig hearts. Pig heart samples collected on postnatal days 1 (P1), 3 (P3), 7 (P7), and 28 (P28) were sent for total RNA sequencing. Our data revealed a total of 7,000 circRNAs in the 24 pig hearts. Pathway enrichment analysis of hallmark gene sets demonstrated that differentially expressed circRNAs were engaged in different pathways. The most significant difference was observed between P1 and the other 3 groups (P3, P7, and P28) in pathways related to cell cycle and muscle development. Out of the 10 circRNAs that were validated through real-time quantitative PCR to verify their expression, 6 exhibited significant effects on cell cycle activity in human induced pluripotent stem cell-derived cardiomyocytes following small interfering RNA-mediated knockdown. circRNA-miRNA-mRNA networks were constructed to understand the potential mechanisms of circRNAs in the heart. In conclusion, our study provided a data set for exploring the roles of circRNAs in pig hearts. In addition, we identified several circRNAs that regulate cardiomyocyte cell cycle.
Collapse
Affiliation(s)
- Ling Tang
- Departments of Cardiovascular Medicine and Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, and
| | - Verah Nyarige
- Departments of Cardiovascular Medicine and Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, and
- Department of Quantitative Health Sciences Research, Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Pengsheng Li
- Departments of Cardiovascular Medicine and Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, and
| | - Junwen Wang
- Department of Quantitative Health Sciences Research, Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Wuqiang Zhu
- Departments of Cardiovascular Medicine and Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, and
| |
Collapse
|
36
|
Chen T, Wu J, Pan Q, Dong M. The association of female reproductive factors with history of cardiovascular disease: a large cross-sectional study. BMC Public Health 2024; 24:1616. [PMID: 38886693 PMCID: PMC11181605 DOI: 10.1186/s12889-024-19130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND This study aimed to explore the association of female reproductive factors (age at first birth (AFB), age at last birth (ALB), number of pregnancies, and live births) with history of cardiovascular disease (CVD). METHODS A total of 15,715 women aged 20 years or over from the National Health and Nutrition Examination Surveys from 1999 to 2018 were included in our analysis. Weighted multivariable logistic regression analysis and restricted cubic spline (RCS) model were used to evaluate the association of AFB and ALB with history of CVD in women. Additionally, the relationship between the number of pregnancies, and live births and history of CVD was also explored. RESULTS After adjusting for potential confounding factors, the RCS plot showed a U-curve relationship between AFB, ALB and history of CVD. Among them, AFB was associated with congestive heart failure (CHF), heart attack, and stroke in a U-shaped curve. Additionally, this U-shaped correlation also exists between ALB and CHF and stroke. However, the number of pregnancies and live births was liner positive associated with history of CVD, including coronary heart disease, CHF, angina pectoris, heart attack, and stroke. CONCLUSIONS Women with younger or later AFB and ALB have higher odds of CVD in later life. Further study is warranted to verify the underlying mechanisms of this association.
Collapse
Affiliation(s)
- Tiehan Chen
- Department of Internal Medicine, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, 222000, China.
| | - Jingwen Wu
- Department of Cardiology, Lianyungang First People's Hospital, Lianyungang, Jiangsu, 222000, China
| | - Qinyuan Pan
- Department of Intensive Care Unit, Lianyungang First People's Hospital, Lianyungang, Jiangsu, 222000, China
| | - Mingmei Dong
- Department of Internal Medicine, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, 222000, China
| |
Collapse
|
37
|
Zhang Y, Zhan L, Jiang X, Tang X. Comprehensive review for non-coding RNAs: From mechanisms to therapeutic applications. Biochem Pharmacol 2024; 224:116218. [PMID: 38643906 DOI: 10.1016/j.bcp.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Non-coding RNAs (ncRNAs) are an assorted collection of transcripts that are not translated into proteins. Since their discovery, ncRNAs have gained prominence as crucial regulators of various biological functions across diverse cell types and tissues, and their abnormal functioning has been implicated in disease. Notably, extensive research has focused on the relationship between microRNAs (miRNAs) and human cancers, although other types of ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as significant contributors to human disease. In this review, we provide a comprehensive summary of our current knowledge regarding the roles of miRNAs, lncRNAs, and circRNAs in cancer and other major human diseases, particularly cancer, cardiovascular, neurological, and infectious diseases. Moreover, we discuss the potential utilization of ncRNAs as disease biomarkers and as targets for therapeutic interventions.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
38
|
Liu X, Yao X, Chen L. Expanding roles of circRNAs in cardiovascular diseases. Noncoding RNA Res 2024; 9:429-436. [PMID: 38511061 PMCID: PMC10950605 DOI: 10.1016/j.ncrna.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
CircRNAs are a class of single-stranded RNAs characterized by covalently looped structures. Emerging advances have promoted our understanding of circRNA biogenesis, nuclear export, biological functions, and functional mechanisms. Roles of circRNAs in diverse diseases have been increasingly recognized in the past decade, with novel approaches in bioinformatics analysis and new strategies in modulating circRNA levels, which have made circRNAs the hot spot for therapeutic applications. Moreover, due to the intrinsic features of circRNAs such as high stability, conservation, and tissue-/stage-specific expression, circRNAs are believed to be promising prognostic and diagnostic markers for diseases. Aiming cardiovascular disease (CVD), one of the leading causes of mortality worldwide, we briefly summarize the current understanding of circRNAs, provide the recent progress in circRNA functions and functional mechanisms in CVD, and discuss the future perspectives both in circRNA research and therapeutics based on existing knowledge.
Collapse
Affiliation(s)
- Xu Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xuelin Yao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
39
|
Acharya P, Parkins S, Tranter M. RNA binding proteins as mediators of pathological cardiac remodeling. Front Cell Dev Biol 2024; 12:1368097. [PMID: 38818408 PMCID: PMC11137256 DOI: 10.3389/fcell.2024.1368097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
RNA binding proteins (RBPs) play a central in the post-transcriptional regulation of gene expression, which can account for up to 50% of all variations in protein expression within a cell. Following their binding to target RNAs, RBPs most typically confer changes in gene expression through modulation of alternative spicing, RNA stabilization/degradation, or ribosome loading/translation rate. All of these post-transcriptional regulatory processes have been shown to play a functional role in pathological cardiac remodeling, and a growing body of evidence is beginning to identify the mechanistic contribution of individual RBPs and their cardiac RNA targets. This review highlights the mechanisms of RBP-dependent post-transcriptional gene regulation in cardiomyocytes and fibroblasts and our current understanding of how RNA binding proteins functionally contribute to pathological cardiac remodeling.
Collapse
Affiliation(s)
- Pooja Acharya
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sharon Parkins
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michael Tranter
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
40
|
Han D, Zhou T, Li L, Ma Y, Chen S, Yang C, Ma N, Song M, Zhang S, Wu J, Cao F, Wang Y. AVCAPIR: A Novel Procalcific PIWI-Interacting RNA in Calcific Aortic Valve Disease. Circulation 2024; 149:1578-1597. [PMID: 38258575 DOI: 10.1161/circulationaha.123.065213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Calcification of the aortic valve leads to increased leaflet stiffness and consequently results in the development of calcific aortic valve disease (CAVD). However, the underlying molecular and cellular mechanisms of calcification remain unclear. Here, we identified a novel aortic valve calcification-associated PIWI-interacting RNA (piRNA; AVCAPIR) that increases valvular calcification and promotes CAVD progression. METHODS Using piRNA sequencing, we identified piRNAs contributing to the pathogenesis of CAVD that we termed AVCAPIRs. High-cholesterol diet-fed ApoE-/- mice with AVCAPIR knockout were used to examine the role of AVCAPIR in aortic valve calcification (AVC). Gain- and loss-of-function assays were conducted to determine the role of AVCAPIR in the induced osteogenic differentiation of human valvular interstitial cells. To dissect the mechanisms underlying AVCAPIR-elicited procalcific effects, we performed various analyses, including an RNA pulldown assay followed by liquid chromatography-tandem mass spectrometry, methylated RNA immunoprecipitation sequencing, and RNA sequencing. RNA pulldown and RNA immunoprecipitation assays were used to study piRNA interactions with proteins. RESULTS We found that AVCAPIR was significantly upregulated during AVC and exhibited potential diagnostic value for CAVD. AVCAPIR deletion markedly ameliorated AVC in high-cholesterol diet-fed ApoE-/- mice, as shown by reduced thickness and calcium deposition in the aortic valve leaflets, improved echocardiographic parameters (decreased peak transvalvular jet velocity and mean transvalvular pressure gradient, as well as increased aortic valve area), and diminished levels of osteogenic markers (Runx2 and Osterix) in aortic valves. These results were confirmed in osteogenic medium-induced human valvular interstitial cells. Using unbiased protein-RNA screening and molecular validation, we found that AVCAPIR directly interacts with FTO (fat mass and obesity-associated protein), subsequently blocking its N6-methyladenosine demethylase activity. Further transcriptomic and N6-methyladenosine modification epitranscriptomic screening followed by molecular validation confirmed that AVCAPIR hindered FTO-mediated demethylation of CD36 mRNA transcripts, thus enhancing CD36 mRNA stability through the N6-methyladenosine reader IGF2BP1 (insulin-like growth factor 2 mRNA binding protein 1). In turn, the AVCAPIR-dependent increase in CD36 stabilizes its binding partner PCSK9 (proprotein convertase subtilisin/kexin type 9), a procalcific gene, at the protein level, which accelerates the progression of AVC. CONCLUSIONS We identified a novel piRNA that induced AVC through an RNA epigenetic mechanism and provide novel insights into piRNA-directed theranostics in CAVD.
Collapse
Affiliation(s)
- Dong Han
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
- National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China (D.H., Y.M., F.C.)
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
| | - Lifu Li
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou China (L.L.)
| | - Yan Ma
- National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China (D.H., Y.M., F.C.)
| | - Shiqi Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
| | - Chunguang Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (C.Y.)
| | - Ning Ma
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, China (N.M.)
| | - Moshi Song
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China (M.S.)
| | - Shaoshao Zhang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (S.Z.)
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China (D.H., Y.M., F.C.)
| | - Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
| |
Collapse
|
41
|
Rossen J, Shi H, Strober BJ, Zhang MJ, Kanai M, McCaw ZR, Liang L, Weissbrod O, Price AL. MultiSuSiE improves multi-ancestry fine-mapping in All of Us whole-genome sequencing data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.13.24307291. [PMID: 38798542 PMCID: PMC11118590 DOI: 10.1101/2024.05.13.24307291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Leveraging data from multiple ancestries can greatly improve fine-mapping power due to differences in linkage disequilibrium and allele frequencies. We propose MultiSuSiE, an extension of the sum of single effects model (SuSiE) to multiple ancestries that allows causal effect sizes to vary across ancestries based on a multivariate normal prior informed by empirical data. We evaluated MultiSuSiE via simulations and analyses of 14 quantitative traits leveraging whole-genome sequencing data in 47k African-ancestry and 94k European-ancestry individuals from All of Us. In simulations, MultiSuSiE applied to Afr47k+Eur47k was well-calibrated and attained higher power than SuSiE applied to Eur94k; interestingly, higher causal variant PIPs in Afr47k compared to Eur47k were entirely explained by differences in the extent of LD quantified by LD 4th moments. Compared to very recently proposed multi-ancestry fine-mapping methods, MultiSuSiE attained higher power and/or much lower computational costs, making the analysis of large-scale All of Us data feasible. In real trait analyses, MultiSuSiE applied to Afr47k+Eur94k identified 579 fine-mapped variants with PIP > 0.5, and MultiSuSiE applied to Afr47k+Eur47k identified 44% more fine-mapped variants with PIP > 0.5 than SuSiE applied to Eur94k. We validated MultiSuSiE results for real traits via functional enrichment of fine-mapped variants. We highlight several examples where MultiSuSiE implicates well-studied or biologically plausible fine-mapped variants that were not implicated by other methods.
Collapse
|
42
|
Zheng Q, Li X, Xu X, Tang X, Hammad B, Xing J, Zhang D. The mmu_circ_003062, hsa_circ_0075663/miR-490-3p/CACNA1H axis mediates apoptosis in renal tubular cells in association with endoplasmic reticulum stress following ischemic acute kidney injury. Int Immunopharmacol 2024; 132:111956. [PMID: 38554447 DOI: 10.1016/j.intimp.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND While recent studies have suggested a potential involvement of circRNAs in acute kidney injury (AKI) after ischemia, mmu_circ_003062 role is undetermined. METHODS The levels of mmu_circ_003062, miR-490-3p, CACNA1H, GRP78, CHOP and hsa_circ_0075663 were detected by Relative qPCR in Boston University mouse proximal tubule (BUMPT) cells, mouse kidneys, and human renal tubular epithelial (HK-2) cells. Moreover, the levels of hsa_circ_0075663 in serum and urine of patients with AKI following cardiopulmonary resuscitation (CPR) were detected by absolute quantitative PCR. Western blot was used to detect the relative expression of the protein. The function and regulatory mechanism of mmu_circ_003062 and hsa_circ_0075663 were investigated through a series of in vitro and in vivo experiments, including bioinformatic prediction, luciferase reporter assays, FISH, FCM, TUNEL staining, and H&E staining. RESULTS It was found that mmu_circ_003062, hsa_circ_0075663 mediated apoptosis after ischemia/reperfusion (I/R) by interaction with miR-490-3p to enhance CACNA1H expression, thereby leading to the upregulation of endoplasmic reticulum stress (ERS)-relevant proteins GRP78 and CHOP. Ultimately, mmu_circ_003062 downregulation significantly ameliorated ischemic AKI by modulating the miR-490-3p/CACNA1H/GRP78 and CHOP pathway. Furthermore, the plasma and urinary levels of hsa_circ_0075663 in patients with AKI following CPR were significantly higher than non-AKI patients, exhibited a strongly correlation with serum creatinine. CONCLUSION The involvement of mmu_circ_003062, hsa_circ_0075663/miR-490-3p/CACNA1H/GRP78 and CHOP axis is significant in the development of ischemic AKI. Moreover, hsa_circ_0075663 has potential as an early diagnostic biomarker.
Collapse
Affiliation(s)
- Qiang Zheng
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaozhou Li
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuan Xu
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xianming Tang
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bacha Hammad
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jihong Xing
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Dongshan Zhang
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
43
|
Cui YH, Liu CQ, Song XL, Yi WZ, Liu Q, Liu JM, Wu YN, Chen JY, Yang LJ, He HY, Meng J, Pan HW. Integrative Analysis of miRNA and circRNA Expression Profiles and Interaction Network in HSV-1-Infected Primary Corneal Epithelial Cells. Curr Eye Res 2024; 49:368-379. [PMID: 38164922 DOI: 10.1080/02713683.2023.2297345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Circular RNAs (circRNAs) are products of alternative splicing with roles as competitive endogenous RNAs or microRNA sponges, regulating gene expression and biological processes. However, the involvement of circRNAs in herpes simplex keratitis remains largely unexplored. METHODS This study examines circRNA and miRNA expression profiles in primary human corneal epithelial cells infected with HSV-1, compared to uninfected controls, using microarray analysis. Bioinformatic analysis predicted the potential function of the dysregulated circRNAs and microRNA response elements (MREs) in these circRNAs, forming an interaction network between dysregulated circRNAs and miRNAs. RESULTS A total of 332 circRNAs and 16 miRNAs were upregulated, while 80 circRNAs and six miRNAs were downregulated (fold change ≥2.0 and p < 0.05). Gene ontology (GO) and KEGG pathway analyses were performed on parental genes of dysregulated circRNAs to uncover potential functions in HSV-1 infection. Notably, miR-181b-5p, miR-338-3p, miR-635, and miR-222-3p emerged as pivotal miRNAs interacting with multiple dysregulated circRNAs. CONCLUSIONS This comprehensive study offers insights into differentially expressed circRNAs and miRNAs during HSV-1 infection in corneal epithelial cells, shedding light on circRNA-miRNA interactions' potential role in herpes simplex keratitis pathogenesis.
Collapse
Affiliation(s)
- Yu-Hong Cui
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chao-Qun Liu
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xi-Ling Song
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wan-Zhao Yi
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qi Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jing-Min Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ya-Ni Wu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jian-Ying Chen
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lv-Jun Yang
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hui-Ying He
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing Meng
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hong-Wei Pan
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
44
|
Jasim SA, Al-Hawary SIS, Kaur I, Ahmad I, Hjazi A, Petkov I, Ali SHJ, Redhee AH, Shuhata Alubiady MH, Al-Ani AM. Critical role of exosome, exosomal non-coding RNAs and non-coding RNAs in head and neck cancer angiogenesis. Pathol Res Pract 2024; 256:155238. [PMID: 38493725 DOI: 10.1016/j.prp.2024.155238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/13/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024]
Abstract
Head and neck cancer (HNC) refers to the epithelial malignancies of the upper aerodigestive tract. HNCs have a constant yet slow-growing rate with an unsatisfactory overall survival rate globally. The development of new blood vessels from existing blood conduits is regarded as angiogenesis, which is implicated in the growth, progression, and metastasis of cancer. Aberrant angiogenesis is a known contributor to human cancer progression. Representing a promising therapeutic target, the blockade of angiogenesis aids in the reduction of the tumor cells oxygen and nutrient supplies. Despite the promise, the association of existing anti-angiogenic approaches with severe side effects, elevated cancer regrowth rates, and limited survival advantages is incontrovertible. Exosomes appear to have an essential contribution to the support of vascular proliferation, the regulation of tumor growth, tumor invasion, and metastasis, as they are a key mediator of information transfer between cells. In the exocrine region, various types of noncoding RNAs (ncRNAs) identified to be enriched and stable and contribute to the occurrence and progression of cancer. Mounting evidence suggest that exosome-derived ncRNAs are implicated in tumor angiogenesis. In this review, the characteristics of angiogenesis, particularly in HNC, and the impact of ncRNAs on HNC angiogenesis will be outlined. Besides, we aim to provide an insight on the regulatory role of exosomes and exosome-derived ncRNAs in angiogenesis in different types of HNC.
Collapse
Affiliation(s)
| | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Iliya Petkov
- Medical University - Sofia, Department of Neurology, Sofia, Bulgaria
| | - Saad Hayif Jasim Ali
- Department of medical laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | | | |
Collapse
|
45
|
Zhang L, Li X, Gao H, Li P. The Role of Circular RNA Variants Generated from the NFIX Gene in Different Diseases. Mol Pharm 2024; 21:1027-1037. [PMID: 38315004 DOI: 10.1021/acs.molpharmaceut.3c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Circular RNAs (circRNAs) have been identified as important regulators in different developmental processes and disease pathogenesis. The loop structure of circRNAs makes them very stable in different conditions and microenvironments. circRNAs can affect microRNA (miRNA) and RNA binding protein (RBP) activity, encode functional proteins and regulate gene transcription. Recently, two circNFIX variants derived from the same gene, the Nuclear Factor I X (NFIX) gene, were determined as participants in the pathological processes of various diseases such as heart diseases and cancers. Both circNFIX variants are exonic circular RNAs and mainly function by sponging miRNAs. In this review, we summarize the current knowledge on circRNAs, elucidate the origins and properties of two circNFIX variants, explore the roles of two circNFIX variants in different diseases, and present clinical perspectives.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| | - Xin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| | - Huijuan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| |
Collapse
|
46
|
Mariappan V, Srinivasan R, Pratheesh R, Jujjuvarapu MR, Pillai AB. Predictive biomarkers for the early detection and management of heart failure. Heart Fail Rev 2024; 29:331-353. [PMID: 37702877 DOI: 10.1007/s10741-023-10347-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
Cardiovascular disease (CVD) is a serious public health concern whose incidence has been on a rise and is projected by the World Health Organization to be the leading global cause of mortality by 2030. Heart failure (HF) is a complicated syndrome resulting from various CVDs of heterogeneous etiologies and exhibits varying pathophysiology, including activation of inflammatory signaling cascade, apoptosis, fibrotic pathway, and neuro-humoral system, thereby leading to compromised cardiac function. During this process, several biomolecules involved in the onset and progression of HF are released into circulation. These circulating biomolecules could serve as unique biomarkers for the detection of subclinical changes and can be utilized for monitoring disease severity. Hence, it is imperative to identify these biomarkers to devise an early predictive strategy to stop the deterioration of cardiac function caused by these complex cellular events. Furthermore, measurement of multiple biomarkers allows clinicians to divide HF patients into sub-groups for treatment and management based on early health outcomes. The present article provides a comprehensive overview of current omics platform available for discovering biomarkers for HF management. Some of the existing and novel biomarkers for the early detection of HF with special reference to endothelial biology are also discussed.
Collapse
Affiliation(s)
- Vignesh Mariappan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Rajesh Srinivasan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Ravindran Pratheesh
- Department of Neurosurgery, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Muraliswar Rao Jujjuvarapu
- Radiodiagnosis and Imageology, Aware Gleneagles Global Hospital, LB Nagar, Hyderabad, Telangana, 500035, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
| |
Collapse
|
47
|
Ding W, Ding L, Lu Y, Sun W, Wang Y, Wang J, Gao Y, Li M. Circular RNA-circLRP6 protects cardiomyocyte from hypoxia-induced apoptosis by facilitating hnRNPM-mediated expression of FGF-9. FEBS J 2024; 291:1246-1263. [PMID: 38105623 DOI: 10.1111/febs.17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/30/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Coronary atherosclerosis-induced myocardial ischemia leads to cardiomyocyte apoptosis. The regulatory mechanisms for cardiomyocyte apoptosis have not been fully understood. Circular RNAs are non-coding RNAs which play important roles in heart function maintenance and progression of heart diseases by regulating gene transcription and protein translation. Here, we reported a conserved cardiac circular RNA, which is generated from the second exon of LRP6 and named circLRP62-2 . CircLRP62-2 can protect cardiomyocyte from hypoxia-induced apoptosis. The expression of circLRP62-2 in cardiomyocytes was down-regulated under hypoxia, while forced expression of circLRP62-2 inhibited cell apoptosis. Normally, circLRP62-2 was mainly localized in the nucleus. Under hypoxia, circLRP62-2 is associated with heterogeneous nuclear ribonucleoprotein M (hnRNPM) to be translocated into the cytoplasm. It recruited hnRNPM to fibroblast growth factor 9 (FGF9) mRNA to enhance the expression of FGF9 protein, promoting hypoxia-adaption and viability of cardiomyocytes. In summary, this study uncovers a new inhibitor of apoptosis and reveals a novel anti-apoptotic pathway composed of circLRP62-2 , hnRNPM, and FGF9, which may provide therapeutic targets for coronary heart disease and ischemic myocardial injury.
Collapse
Affiliation(s)
- Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, China
| | - Lin Ding
- School of Basic Medical Sciences, Qingdao University, China
| | - Yijian Lu
- School of Basic Medical Sciences, Qingdao University, China
| | - Weihan Sun
- School of Basic Medical Sciences, Qingdao University, China
| | - Yu Wang
- School of Basic Medical Sciences, Qingdao University, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, China
| | - Yufang Gao
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, China
| | - Mengyang Li
- School of Basic Medical Sciences, Qingdao University, China
| |
Collapse
|
48
|
Wang L, Li ZW, You ZH, Huang DS, Wong L. GSLCDA: An Unsupervised Deep Graph Structure Learning Method for Predicting CircRNA-Disease Association. IEEE J Biomed Health Inform 2024; 28:1742-1751. [PMID: 38127594 DOI: 10.1109/jbhi.2023.3344714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Growing studies reveal that Circular RNAs (circRNAs) are broadly engaged in physiological processes of cell proliferation, differentiation, aging, apoptosis, and are closely associated with the pathogenesis of numerous diseases. Clarification of the correlation among diseases and circRNAs is of great clinical importance to provide new therapeutic strategies for complex diseases. However, previous circRNA-disease association prediction methods rely excessively on the graph network, and the model performance is dramatically reduced when noisy connections occur in the graph structure. To address this problem, this paper proposes an unsupervised deep graph structure learning method GSLCDA to predict potential CDAs. Concretely, we first integrate circRNA and disease multi-source data to constitute the CDA heterogeneous network. Then the network topology is learned using the graph structure, and the original graph is enhanced in an unsupervised manner by maximize the inter information of the learned and original graphs to uncover their essential features. Finally, graph space sensitive k-nearest neighbor (KNN) algorithm is employed to search for latent CDAs. In the benchmark dataset, GSLCDA obtained 92.67% accuracy with 0.9279 AUC. GSLCDA also exhibits exceptional performance on independent datasets. Furthermore, 14, 12 and 14 of the top 16 circRNAs with the most points GSLCDA prediction scores were confirmed in the relevant literature in the breast cancer, colorectal cancer and lung cancer case studies, respectively. Such results demonstrated that GSLCDA can validly reveal underlying CDA and offer new perspectives for the diagnosis and therapy of complex human diseases.
Collapse
|
49
|
Wang M, Yan M, Tan L, Zhao X, Liu G, Zhang Z, Zhang J, Gao H, Qin W. Non-coding RNAs: targets for Chinese herbal medicine in treating myocardial fibrosis. Front Pharmacol 2024; 15:1337623. [PMID: 38476331 PMCID: PMC10928947 DOI: 10.3389/fphar.2024.1337623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases have become the leading cause of death in urban and rural areas. Myocardial fibrosis is a common pathological manifestation at the adaptive and repair stage of cardiovascular diseases, easily predisposing to cardiac death. Non-coding RNAs (ncRNAs), RNA molecules with no coding potential, can regulate gene expression in the occurrence and development of myocardial fibrosis. Recent studies have suggested that Chinese herbal medicine can relieve myocardial fibrosis through targeting various ncRNAs, mainly including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Thus, ncRNAs are novel drug targets for Chinese herbal medicine. Herein, we summarized the current understanding of ncRNAs in the pathogenesis of myocardial fibrosis, and highlighted the contribution of ncRNAs to the therapeutic effect of Chinese herbal medicine on myocardial fibrosis. Further, we discussed the future directions regarding the potential applications of ncRNA-based drug screening platform to screen drugs for myocardial fibrosis.
Collapse
Affiliation(s)
- Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
50
|
Wu R, Xu F, Li J, Wang F, Chen N, Wang X, Chen Q. Circ-CIMIRC inhibition alleviates CIH-induced myocardial damage via FbxL4-mediated ubiquitination of PINK1. iScience 2024; 27:108982. [PMID: 38333696 PMCID: PMC10850785 DOI: 10.1016/j.isci.2024.108982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a common sleep disordered breathing diseases that characterized by chronic intermittent hypoxia (CIH). This work aimed to explore the role of circ-CIMIRC in CIH-induced myocardial injury. CIH aggravated myocardial tissue damage in rats. Circ_CIMIRC overexpression promoted apoptosis and reduced the colocalization of Tom20 and Parkin and mitophagy in CIH-treated H9c2 cells. Additionally, FbxL4 interacted with PINK1, FbxL4 silencing reduced PINK1 ubiquitination in H9c2 cells. Two major ubiquitination sites (K319 and K433) were responsible for ubiquitination of PINK1. Circ_CIMIRC promoted FbxL4-mediated ubiquitination and degradation of PINK1. Furthermore, circ_CIMIRC inhibition alleviated the pathological damage, fibrosis and apoptosis of myocardial tissues, reduced oxidative stress in CIH rats. In conclusion, circ_CIMIRC silencing repressed FbxL4-mediated ubiquitination and degradation of PINK1 and then enhanced PINK1/Parkin-mediated mitophagy, thereby alleviating myocardial damage in CIH rats. Thus, circ_CIMIRC may be a potential strategy to alleviate CIH-induced myocardial damage.
Collapse
Affiliation(s)
- Runhua Wu
- College of Integrated Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Fengsheng Xu
- College of Integrated Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Jingyi Li
- College of Integrated Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Feng Wang
- College of Integrated Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Naijie Chen
- College of Integrated Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Xiaoting Wang
- Clinical Skills Teaching Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Qin Chen
- Clinical Skills Teaching Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| |
Collapse
|