1
|
Lo CH. TNF receptors: Structure-function relationships and therapeutic targeting strategies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184394. [PMID: 39442606 DOI: 10.1016/j.bbamem.2024.184394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Tumor necrosis factor receptors (TNFR1 and TNFR2) play key roles in mediating inflammatory response and cell death signaling, which are associated with autoimmune disorders, neurodegenerative diseases, and cancers. The structure-function relationships of TNF receptors and their ligands determine the activation or inhibition of downstream signaling pathways. Available crystal structures have provided critical insights into the therapeutic targeting strategies of TNF receptors and their signaling networks. In this review, we discuss the potential of targeting receptor-ligand and receptor-receptor interactions in a competitive manner as well as perturbing receptor conformational dynamics through an allosteric mechanism to modulate TNF receptor signaling. We propose that conformational states of TNF receptors can act as a molecular switch in determining their functions and are important therapeutic targets. The knowledge of the structure-function relationships of TNF receptors can be applied to translational high-throughput drug screening and design of novel receptor-specific modulators with enhanced pharmacological properties.
Collapse
MESH Headings
- Humans
- Structure-Activity Relationship
- Signal Transduction/drug effects
- Ligands
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Animals
- Protein Conformation
- Receptors, Tumor Necrosis Factor, Type II/chemistry
- Receptors, Tumor Necrosis Factor, Type II/metabolism
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; Department of Biology, Syracuse University, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, NY 13244, USA.
| |
Collapse
|
2
|
Ali DE, El-Shiekh RA, El Sawy MA, Khalifa AA, Elblehi SS, Elsokkary NH, Ali MA. In vivo anti-gastric ulcer activity of 7-O-methyl aromadendrin and sakuranetin via mitigating inflammatory and oxidative stress trails. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118617. [PMID: 39053715 DOI: 10.1016/j.jep.2024.118617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eucalyptus genus has been used for a very long time in conventional treatment as an anti-ulcer remedy. AIM OF THE STUDY The study aimed to explore the gastroprotective potential of 7-O-methyl aromadendrin (7-OMA), and sakuranetin (SKN) in comparison with omeprazole. The study tackled the contribution of their anti-inflammatory, antioxidant, and antiapoptotic capabilities to their anti-gastric ulcer effects. MATERIALS AND METHODS An ethanol-induced gastric ulcer model in rats was adopted and the consequences were confirmed by a molecular docking study. RESULTS The oral pretreatment of rats 1 h before ethanol using omeprazole (20 mg/kg) or 7-OMA (20 or 40 mg/kg) or SKN (20 or 40 mg/kg) exhibited gastroprotective and anti-inflammatory properties to different extents. These amendments witnessed as restorations in the stomach histological architecture in H and E-stained sections, mucus content in periodic acid-Schiff (PAS) stained sections with increased cellular proliferation, as demonstrated by increased immunohistochemical staining of PCNA, and increments in stomach COX-1 activity and eNOS. The highest dose of SKN showed the best corrections to reach 4.8, 1.8, and 2.1 folds increase in PAS, COX-1 and eNOS, respectively as compared to the untreated ethanol-induced gastric ulcer group; effects that were comparable to that of omeprazole. Moreover, reductions in COX-2 activity, and the protein expression of NF-κB, IL-6, TNF-α and NOx, in addition to the gene expression of inducible iNOS were also noted. Moreover, the antioxidant and antiapoptotic capabilities of omeprazole, 7-OMA, and SKN were perceived. SKN (40 mg/kg) succeeded to show the unsurpassed results to reach 293.6%, 237.1%, 274.7%, 248.2%, and 175.4% in total and reduced GSH, catalase, SOD, and Bcl2, respectively, as well as 50.0%, 46.8%, and 52.1 % in oxidized GSSG, TBARS and caspase-3, respectively. The gastroprotective potential of the tested compounds can be assigned to their anti-inflammatory, antioxidant and antiapoptotic properties.7-OMA and SKN were studied using molecular docking into the binding sites of the most significant inflammatory targets, including COX-2, TNF-α, iNOS, and NF-κB. Pharmacokinetic and physicochemical parameters in silico were appropriate. CONCLUSION The prophylactic use of 7-OMA and SKN could be considered as an add-on to recurrent gastric ulcers and might influence its therapeutic approaches.
Collapse
Affiliation(s)
- Dalia E Ali
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Maged A El Sawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Asmaa A Khalifa
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nahed H Elsokkary
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
3
|
Veerasubramanian PK, Wynn TA, Quan J, Karlsson FJ. Targeting TNF/TNFR superfamilies in immune-mediated inflammatory diseases. J Exp Med 2024; 221:e20240806. [PMID: 39297883 PMCID: PMC11413425 DOI: 10.1084/jem.20240806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulated signaling from TNF and TNFR proteins is implicated in several immune-mediated inflammatory diseases (IMIDs). This review centers around seven IMIDs (rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease, ulcerative colitis, psoriasis, atopic dermatitis, and asthma) with substantial unmet medical needs and sheds light on the signaling mechanisms, disease relevance, and evolving drug development activities for five TNF/TNFR signaling axes that garner substantial drug development interest in these focus conditions. The review also explores the current landscape of therapeutics, emphasizing the limitations of the approved biologics, and the opportunities presented by small-molecule inhibitors and combination antagonists of TNF/TNFR signaling.
Collapse
Affiliation(s)
| | - Thomas A. Wynn
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | - Jie Quan
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | | |
Collapse
|
4
|
Zhu J, Yu H, Xie L, Shuai D, Huang Z, Chen Y, Ni C, Jia C, Rong X, Zhang L, Chu M. A novel format of TNF-α binding affibody molecule ameliorate coronary artery endothelial injury in a mouse model of Kawasaki disease. Int J Biol Macromol 2024; 281:136255. [PMID: 39366611 DOI: 10.1016/j.ijbiomac.2024.136255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Kawasaki disease (KD) is a disease characterized by systemic immune vasculitis that often involves coronary arteries and can result in long-term cardiovascular sequelae. Different strategies for treatment of KD-and KD-induced coronary artery lesions are currently under investigation, including passive immunization with anti-TNFα monoclonal antibodies (mAbs). Herein, we examine the potential therapeutic capabilities of a novel type of TNFα-targeting agent based on an affibody molecule possessing fundamentally different properties than mAbs. Using phage display technology, we successfully screened and obtained three TNF-α binding affibody molecules and confirmed their high binding affinity and specificity for recombinant and native TNF-α by surface plasmon resonance (SPR), confocal double immunofluorescence and coimmunoprecipitation assays. Moreover, by binding to TNF-α, the affibody molecules could effectively neutralize TNFα-induced L929 cytotoxicity. To increase the targeting properties and serum half-life, one preferred affibody molecule ZTNF-α263 was redesigned to assemble drugs with bivalent TNFα binding with added specificity for serum albumin (ZTNF-α263-ABD035-ZTNF-α263, hereinafter denoted ZTAT). We further determined its binding ability, TNF-α signal blocking and neutralizing capacity, serum half-life and immunogenicity. Most importantly, our study provides strong evidence that the engineered ZTAT protein was therapeutically effective against KD induced-endothelial injury, as judged by both in vitro and in vivo assessments. These data suggested that because of the flexibility inherent, low-molecular weight anti-TNFα affibody construct ZTAT, can be developed into a potent therapeutic agent that can be produced and purified cost-effectively.
Collapse
Affiliation(s)
- Jinshun Zhu
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huan Yu
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Longzhi Xie
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dujuan Shuai
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixian Huang
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yufei Chen
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chao Ni
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chang Jia
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xing Rong
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Maoping Chu
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
5
|
Shi W, Zhao Q, Gao H, Yang Y, Tan Z, Li N, Wang H, Ji Y, Zhou Y. Exploring the bioactive ingredients of three traditional Chinese medicine formulas against age-related hearing loss through network pharmacology and experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03464-2. [PMID: 39356317 DOI: 10.1007/s00210-024-03464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024]
Abstract
Traditional Chinese medicine (TCM) formulas, including the Er-Long-Zuo-Ci pill, Tong-Qiao-Er-Long pill, and Er-Long pill, have long been utilized in China for managing age-related hearing loss (ARHL). However, the specific bioactive compounds, pharmacological targets, and underlying mechanisms remain elusive. This study aims to find the shared bioactive ingredients among these three formulas, uncover the molecular pathways they regulate, and identify potential therapeutic targets for ARHL. Furthermore, it seeks to validate the efficacy of these major components through both in vivo and in vitro experiments. Common bioactive ingredients were extracted from the TCMSP database, and their putative target proteins were predicted using the Swiss Target Prediction database. ARHL-related target proteins were collected from GeneCards and OMIM databases. Our approach involved constructing drug-target networks and drug-disease-specific protein-protein interaction networks and conducting clustering, topological property analyses, and functional annotation through GO and KEGG enrichment analysis. Molecular docking analysis was utilized to delineate interaction mechanisms between major bioactive ingredients and key target proteins. Finally, in vivo and in vitro experiments involving ABR recording, immunofluorescent staining, HE staining, and quantitative PCR were conducted to validate the treatment effects of flavonoids on the declining auditory function in DBA/2 J mice. We identified 11 common chemical compounds across the three formulas and their associated 276 putative targets. Additionally, 3350 ARHL-related targets were compiled. As an intersection of the putative targets of the common compounds and ARHL-related proteins, 145 shared targets were determined. Functional enrichment analysis indicated that these compounds may modulate various biological processes, including cell proliferation, apoptosis, inflammatory response, and synaptic connections. Notably, potential targets such as TNFα, MAPK1, SRC, AKT, EGFR, ESR1, and AR were implicated. Flavonoids emerged as major bioactive components against ARHL based on target numbers, with molecular docking demonstrating diverse interaction models between these flavonoids and protein targets. Furthermore, baicalin could mitigate the age-related cochlear damage and hearing loss of DBA/2 J mice through its multi-target and multi-pathway mechanism, involving anti-inflammation, modulation of sex hormone-related pathways, and activation of potassium channels. This study offers an integrated network pharmacology approach, validated by in vivo and in vitro experiments, shedding light on the potential mechanisms, major active components, and therapeutic targets of TCM formulas for treating ARHL.
Collapse
Affiliation(s)
- Wenying Shi
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Qi Zhao
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Hongwei Gao
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Yaxin Yang
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Zhiyong Tan
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Na Li
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Hongjie Wang
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Yonghua Ji
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - You Zhou
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China.
| |
Collapse
|
6
|
Wilken MB, Fonar G, Qiu R, Bennett L, Tober J, Nations C, Pavani G, Tsao V, Garifallou J, Petit C, Maguire JA, Gagne A, Okoli N, Gadue P, Chou ST, French DL, Speck NA, Thom CS. Tropomyosin 1 deficiency facilitates cell state transitions and enhances hemogenic endothelial cell specification during hematopoiesis. Stem Cell Reports 2024; 19:1264-1276. [PMID: 39214082 PMCID: PMC11411305 DOI: 10.1016/j.stemcr.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Tropomyosins coat actin filaments to impact actin-related signaling and cell morphogenesis. Genome-wide association studies have linked Tropomyosin 1 (TPM1) with human blood trait variation. TPM1 has been shown to regulate blood cell formation in vitro, but it remains unclear how or when TPM1 affects hematopoiesis. Using gene-edited induced pluripotent stem cell (iPSC) model systems, we found that TPM1 knockout augmented developmental cell state transitions and key signaling pathways, including tumor necrosis factor alpha (TNF-α) signaling, to promote hemogenic endothelial (HE) cell specification and hematopoietic progenitor cell (HPC) production. Single-cell analyses revealed decreased TPM1 expression during human HE specification, suggesting that TPM1 regulated in vivo hematopoiesis via similar mechanisms. Analyses of a TPM1 gene trap mouse model showed that TPM1 deficiency enhanced HE formation during embryogenesis, without increasing the number of hematopoietic stem cells. These findings illuminate novel effects of TPM1 on developmental hematopoiesis.
Collapse
Affiliation(s)
- Madison B Wilken
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gennadiy Fonar
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rong Qiu
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura Bennett
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanna Tober
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catriana Nations
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Victor Tsao
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - James Garifallou
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chayanne Petit
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alyssa Gagne
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nkemdilim Okoli
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher S Thom
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Yilmaz O, Pinto JP, Torres T. New and emerging oral therapies for psoriasis. Drugs Context 2024; 13:2024-5-6. [PMID: 39131603 PMCID: PMC11313207 DOI: 10.7573/dic.2024-5-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease affecting 2-3% of the global population. Traditional systemic treatments, such as methotrexate, cyclosporine, acitretin and fumaric acid esters, have limited efficacy and are associated with significant adverse effects, necessitating regular monitoring and posing risks of long-term toxicity. Recent advancements have introduced biologic drugs that offer improved efficacy and safety profiles. However, their high cost and the inconvenience of parenteral administration limit their accessibility. Consequently, there is a growing interest in developing new, targeted oral therapies. Small molecules, such as phosphodiesterase 4 inhibitors (e.g. apremilast) and TYK2 inhibitor (e.g. deucravacitinib), have shown promising results with favourable safety profiles. Additionally, other novel oral agents targeting specific pathways, including IL-17, IL-23, TNF, S1PR1 and A3AR, are under investigation. These treatments aim to combine the efficacy of biologics with the convenience and accessibility of oral administration, addressing the limitations of current therapies. This narrative review synthesizes the emerging oral therapeutic agents for psoriasis, focusing on their mechanisms of action, stages of development and clinical trial results.
Collapse
Affiliation(s)
- Orhan Yilmaz
- College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan,
Canada
| | - João Pedro Pinto
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto,
Portugal
| | - Tiago Torres
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto,
Portugal
- Department of Dermatology, Centro Hospitalar Universitário do Porto, Porto,
Portugal
| |
Collapse
|
8
|
Kaur M, Cooper JC, Van Humbeck JF. Site-selective benzylic C-H hydroxylation in electron-deficient azaheterocycles. Org Biomol Chem 2024; 22:4888-4894. [PMID: 38819259 DOI: 10.1039/d4ob00268g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Benzylic C-H bonds can be converted into numerous functional groups, often by mechanisms that involve hydrogen atom transfer as the key bond breaking step. The abstracting species is most often an electrophilic radical, which makes these reactions best suited to electron-rich C-H bonds to achieve appropriate polarity matching. Thus, electron deficient systems such as pyridine and pyrimidine are relatively unreactive, and therefore underrepresented in substrate scopes. In this report, we describe a new method for heterobenzylic hydroxylation-essentially an unknown reaction in the case of pyrimidines-that makes use of an iodine(III) reagent to afford very high selectivity towards electron-deficient azaheterocycles in substrates with more than one reactive position and prevents over-oxidation to carbonyl products. The identification of key reaction byproducts supports a mechanism that involves radical coupling in the bond forming step.
Collapse
Affiliation(s)
- Milanpreet Kaur
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Julian C Cooper
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jeffrey F Van Humbeck
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
9
|
Brenner M, Zink C, Witzinger L, Keller A, Hadamek K, Bothe S, Neuenschwander M, Villmann C, von Kries JP, Schindelin H, Jeanclos E, Gohla A. 7,8-Dihydroxyflavone is a direct inhibitor of human and murine pyridoxal phosphatase. eLife 2024; 13:RP93094. [PMID: 38856179 PMCID: PMC11164532 DOI: 10.7554/elife.93094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal 5'-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5'-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small-molecule screening, protein crystallography, and biolayer interferometry, we discover, visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.
Collapse
Affiliation(s)
- Marian Brenner
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Christoph Zink
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Linda Witzinger
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Angelika Keller
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Kerstin Hadamek
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Sebastian Bothe
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of WürzburgWürzburgGermany
| | | | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, University of WürzburgWürzburgGermany
| | | | - Hermann Schindelin
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of WürzburgWürzburgGermany
| | - Elisabeth Jeanclos
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Antje Gohla
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| |
Collapse
|
10
|
Konnova EA, Deftu AF, Chu Sin Chung P, Kirschmann G, Decosterd I, Suter MR. Potassium channel modulation in macrophages sensitizes dorsal root ganglion neurons after nerve injury. Glia 2024; 72:677-691. [PMID: 38108588 DOI: 10.1002/glia.24496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Macrophages and satellite glial cells are found between injured and uninjured neurons in the lumbar dorsal root ganglia (DRG). We explored the mechanism of neuro-immune and neuron-glia crosstalk leading to hyperexcitability of DRG neurons. After spared nerve injury (SNI), CX3CR1+ resident macrophages became activated, proliferated, and increased inward-rectifying potassium channel Kir 2.1 currents. Conditioned medium (CM) by macrophages, obtained from DRG of SNI mice, sensitized small DRG neurons from naïve mice. However, treatment with CM from GFAP+ glial cells did not affect neuronal excitability. When subjected to this macrophage-derived CM, DRG neurons had increased spontaneous activity, current-evoked responses and voltage-gated NaV 1.7 and NaV 1.8 currents. Silencing Kir 2.1 in macrophages after SNI prevented the induction of neuronal hyperexcitability from their CM. Blocking vesicular exocytosis or soluble tumor necrosis factor in CM or interfering with the downstream intracellular p38 pathway in neurons, also prevented neuronal hyperexcitability. Blocking protein trafficking in neurons reduced the effect of CM, suggesting that the hyperexcitable state resulted from changes in NaV channel trafficking. These results suggest that DRG macrophages, primed by peripheral nerve injury, contribute to neuron-glia crosstalk, NaV channel dysregulation and neuronal hyperexcitability implicated in the development of neuropathic pain.
Collapse
Affiliation(s)
- Elena A Konnova
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alexandru-Florian Deftu
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paul Chu Sin Chung
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Guylène Kirschmann
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Isabelle Decosterd
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Marc R Suter
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Carmona-Rocha E, Rusiñol L, Puig L. New and Emerging Oral/Topical Small-Molecule Treatments for Psoriasis. Pharmaceutics 2024; 16:239. [PMID: 38399292 PMCID: PMC10892104 DOI: 10.3390/pharmaceutics16020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The introduction of biologic therapies has led to dramatic improvements in the management of moderate-to-severe psoriasis. Even though the efficacy and safety of the newer biologic agents are difficult to match, oral administration is considered an important advantage by many patients. Current research is focused on the development of oral therapies with improved efficacy and safety compared with available alternatives, as exemplified by deucravacitinib, the first oral allosteric Tyk2 inhibitor approved for the treatment of moderate to severe psoriasis in adults. Recent advances in our knowledge of psoriasis pathogenesis have also led to the development of targeted topical molecules, mostly focused on intracellular signaling pathways such as AhR, PDE-4, and Jak-STAT. Tapinarof (an AhR modulator) and roflumilast (a PDE-4 inhibitor) have exhibited favorable efficacy and safety outcomes and have been approved by the FDA for the topical treatment of plaque psoriasis. This revision focuses on the most recent oral and topical therapies available for psoriasis, especially those that are currently under evaluation and development for the treatment of psoriasis.
Collapse
Affiliation(s)
- Elena Carmona-Rocha
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Lluís Rusiñol
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| |
Collapse
|
12
|
Akçadağ G, Cansaran-Duman D, Aras ES, Ataoğlu H. Study on Cloning and Expression of TNF-α Variants in E. coli: Production, Purification, and Interaction with Anti-TNF-α Inhibitors. Protein Pept Lett 2024; 31:395-408. [PMID: 38847260 DOI: 10.2174/0109298665312592240516111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND TNF-α is a proinflammatory cytokine and plays a role in cell proliferation, differentiation, survival, and death pathways. When administered at high doses, it may cause damage to the tumor vasculature, thereby increasing the permeability of the blood vessels. Therefore, monitoring the dose and the response of the TNF-α molecule is essential for patients' health. OBJECTIVES This study aimed to clone, express, and purify the active form of the TNF-α protein, which can interact with various anti-TNF-α inhibitors with high efficiency. METHODS Recombinant DNA technology was used to clone three different versions of codon-optimized human TNF-α sequences to E. coli. Colony PCR protocol was used for verification and produced proteins were analyzed through SDS-PAGE and western blot. Size exclusion chromatography was used to purify sTNF-α. ELISA techniques were used to analyze and compare binding efficiency of sTNF-α against three different standards. RESULTS Under native condition (25°C), interaction between sTNF-α and anti-TNF-α antibody was 3,970, compared to positive control. The interaction was 0,587, whereas it was 0,535 for TNF- α and anti-TNF-α antibodies under denaturing conditions (37°C). F7 of sTNF-α (920 μg/mL) had the same/higher binding efficiency to adalimumab, etanercept, and infliximab, compared to commercial TNF-α. CONCLUSION This study was the first to analyze binding efficiency of homemade sTNF-α protein against three major TNF-α inhibitors (adalimumab, etanercept, and infliximab) in a single study. The high binding efficiency of sTNF-α with adalimumab, etanercept, and infliximab, evidenced in this study supports the feasibility of its use in therapeutic applications, contributing to more sustainable, cost-effective, and independent healthcare system.
Collapse
Affiliation(s)
- Gülşah Akçadağ
- Department of Biology, Science Faculty, Ankara University, Tandogan, Ankara, Turkey
- Matriks Biotechnology Industry and Trade Ltd. Co., Gazi Teknopark, Ankara, Turkey
| | | | - Emine Sümer Aras
- Department of Biology, Science Faculty, Ankara University, Tandogan, Ankara, Turkey
| | - Haluk Ataoğlu
- Matriks Biotechnology Industry and Trade Ltd. Co., Gazi Teknopark, Ankara, Turkey
| |
Collapse
|
13
|
Xiang Y, Zhang M, Jiang D, Su Q, Shi J. The role of inflammation in autoimmune disease: a therapeutic target. Front Immunol 2023; 14:1267091. [PMID: 37859999 PMCID: PMC10584158 DOI: 10.3389/fimmu.2023.1267091] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Autoimmune diseases (AIDs) are immune disorders whose incidence and prevalence are increasing year by year. AIDs are produced by the immune system's misidentification of self-antigens, seemingly caused by excessive immune function, but in fact they are the result of reduced accuracy due to the decline in immune system function, which cannot clearly identify foreign invaders and self-antigens, thus issuing false attacks, and eventually leading to disease. The occurrence of AIDs is often accompanied by the emergence of inflammation, and inflammatory mediators (inflammatory factors, inflammasomes) play an important role in the pathogenesis of AIDs, which mediate the immune process by affecting innate cells (such as macrophages) and adaptive cells (such as T and B cells), and ultimately promote the occurrence of autoimmune responses, so targeting inflammatory mediators/pathways is one of emerging the treatment strategies of AIDs. This review will briefly describe the role of inflammation in the pathogenesis of different AIDs, and give a rough introduction to inhibitors targeting inflammatory factors, hoping to have reference significance for subsequent treatment options for AIDs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxue Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Die Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qian Su
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Bae CH, Kim HY, Seo JE, Lee H, Kim S. In Silico Analysis of Pyeongwi-San Involved in Inflammatory Bowel Disease Treatment Using Network Pharmacology, Molecular Docking, and Molecular Dynamics. Biomolecules 2023; 13:1322. [PMID: 37759722 PMCID: PMC10526905 DOI: 10.3390/biom13091322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGOUND Pyeongwi-san (PWS) is a widely used formula for treating digestive disorders in Korea and China. Inflammatory bowel disease (IBD) is characterized by progressive inflammation of the gastrointestinal tract. Emerging evidence supports the protective effect of PWS against IBD, but specific mechanisms are still elusive. METHODS Active compounds of PWS were screened from the medicinal materials and chemical compounds in Northeast Asian traditional medicine (TM-MC) in the consideration of drug-likeness and oral bioavailability. Target candidates of active compounds were predicted using the ChEMBL database. IBD-related targets were obtained from the GeneCards and DisGeNET databases. The network of composition-targets-disease was constructed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were analyzed. Molecular docking was used to simulate the binding affinity of active compounds on target proteins and molecular dynamics was used to validate the molecular docking result. RESULTS A total of 26 core target proteins of PWS were related to IBD. Enrichment analysis suggested that PWS is highly associated with tumor necrosis factor signaling pathway, apoptosis, and the collapse of tight junctions. Moreover, molecular docking and molecular dynamics simulation proposed β-eudesmol and (3R,6R,7S)-1,10-bisaboladien-3-ol to ameliorate IBD through the binding to TNF and MMP9, respectively. CONCLUSION Present in silico analysis revealed potential pathways and insight of PWS to regulate IBD. These results imply that the therapeutic effect of PWS might be achieved via an inhibitory effect.
Collapse
Affiliation(s)
- Chang-Hwan Bae
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (C.-H.B.); (J.E.S.); (H.L.)
| | - Hee-Young Kim
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Ji Eun Seo
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (C.-H.B.); (J.E.S.); (H.L.)
| | - Hanul Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (C.-H.B.); (J.E.S.); (H.L.)
| | - Seungtae Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (C.-H.B.); (J.E.S.); (H.L.)
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea;
| |
Collapse
|
15
|
Dewey JA, Delalande C, Azizi SA, Lu V, Antonopoulos D, Babnigg G. Molecular Glue Discovery: Current and Future Approaches. J Med Chem 2023; 66:9278-9296. [PMID: 37437222 PMCID: PMC10805529 DOI: 10.1021/acs.jmedchem.3c00449] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The intracellular interactions of biomolecules can be maneuvered to redirect signaling, reprogram the cell cycle, or decrease infectivity using only a few dozen atoms. Such "molecular glues," which can drive both novel and known interactions between protein partners, represent an enticing therapeutic strategy. Here, we review the methods and approaches that have led to the identification of small-molecule molecular glues. We first classify current FDA-approved molecular glues to facilitate the selection of discovery methods. We then survey two broad discovery method strategies, where we highlight the importance of factors such as experimental conditions, software packages, and genetic tools for success. We hope that this curation of methodologies for directed discovery will inspire diverse research efforts targeting a multitude of human diseases.
Collapse
Affiliation(s)
- Jeffrey A Dewey
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Clémence Delalande
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Saara-Anne Azizi
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Vivian Lu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Dionysios Antonopoulos
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gyorgy Babnigg
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
16
|
Rusiñol L, Carmona-Rocha E, Puig L. Psoriasis: a focus on upcoming oral formulations. Expert Opin Investig Drugs 2023; 32:583-600. [PMID: 37507233 DOI: 10.1080/13543784.2023.2242767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Targeted therapies have greatly improved the quality of life of patients with psoriasis. Despite the extensive list of treatments available, multiple new drugs are being developed, especially oral therapies with potential advantages as regards comfort of administration. However, the efficacy and safety of these new oral therapies need to be improved to match those of novel biologics. AREAS COVERED We provide a narrative review of the oral therapies for psoriasis that are currently under development, from Jak inhibitors to oral IL-17 and IL-23 inhibitors, among others. A literature search was performed for articles published from 1 January 2020, to 6 June 2023. EXPERT OPINION The approval of deucravacitinib, the first Jak inhibitor for the treatment of moderate-to-severe plaque psoriasis, heralds a bright therapeutic future with multiple new oral formulations. A great number of oral treatments with singular mechanism of action, like A3AR agonists, HSP90 inhibitors, ROCK-2 inhibitors, oral TNF inhibitors, oral IL-23 inhibitors, oral IL-17 inhibitors, PD4 inhibitors (orismilast) and several Tyk2 inhibitors, are currently being evaluated in clinical trials and could be suitable for approval in the future. Growing variation in treatment modes of administration will allow dermatologists to better integrate patient preferences in the therapeutic decision process.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Dermatology Department IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Elena Carmona-Rocha
- Dermatology Department IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Lluís Puig
- Dermatology Department IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| |
Collapse
|
17
|
Vunnam N, Yang M, Lo CH, Paulson C, Fiers WD, Huber E, Been M, Ferguson DM, Sachs JN. Zafirlukast Is a Promising Scaffold for Selectively Inhibiting TNFR1 Signaling. ACS BIO & MED CHEM AU 2023; 3:270-282. [PMID: 37363080 PMCID: PMC10288500 DOI: 10.1021/acsbiomedchemau.2c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2023]
Abstract
Tumor necrosis factor (TNF) plays an important role in the pathogenesis of inflammatory and autoimmune diseases such as rheumatoid arthritis and Crohn's disease. The biological effects of TNF are mediated by binding to TNF receptors, TNF receptor 1 (TNFR1), or TNF receptor 2 (TNFR2), and this coupling makes TNFR1-specific inhibition by small-molecule therapies essential to avoid deleterious side effects. Recently, we engineered a time-resolved fluorescence resonance energy transfer biosensor for high-throughput screening of small molecules that modulate TNFR1 conformational states and identified zafirlukast as a compound that inhibits receptor activation, albeit at low potency. Here, we synthesized 16 analogues of zafirlukast and tested their potency and specificity for TNFR1 signaling. Using cell-based functional assays, we identified three analogues with significantly improved efficacy and potency, each of which induces a conformational change in the receptor (as measured by fluorescence resonance energy transfer (FRET) in cells). The best analogue decreased NF-κB activation by 2.2-fold, IκBα efficiency by 3.3-fold, and relative potency by two orders of magnitude. Importantly, we showed that the analogues do not block TNF binding to TNFR1 and that binding to the receptor's extracellular domain is strongly cooperative. Despite these improvements, the best candidate's maximum inhibition of NF-κB is only 63%, leaving room for further improvements to the zafirlukast scaffold to achieve full inhibition and prove its potential as a therapeutic lead. Interestingly, while we find that the analogues also bind to TNFR2 in vitro, they do not inhibit TNFR2 function in cells or cause any conformational changes upon binding. Thus, these lead compounds should also be used as reagents to study conformational-dependent activation of TNF receptors.
Collapse
Affiliation(s)
- Nagamani Vunnam
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mu Yang
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chih Hung Lo
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carolyn Paulson
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - William D. Fiers
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Evan Huber
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - MaryJane Been
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - David M. Ferguson
- Department
of Medicinal Chemistry and Center for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jonathan N. Sachs
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Akter R, Rahman MR, Ahmed ZS, Afrose A. Plausibility of natural immunomodulators in the treatment of COVID-19-A comprehensive analysis and future recommendations. Heliyon 2023; 9:e17478. [PMID: 37366526 PMCID: PMC10284624 DOI: 10.1016/j.heliyon.2023.e17478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
The COVID-19 pandemic has inflicted millions of deaths worldwide. Despite the availability of several vaccines and some special drugs approved for emergency use to prevent or treat this disease still, there is a huge concern regarding their effectiveness, adverse effects, and most importantly, their efficacy against the new variants. A cascade of immune-inflammatory responses is involved with the pathogenesis and severe complications with COVID-19. People with dysfunctional and compromised immune systems display severe complications, including acute respiratory distress syndrome, sepsis, multiple organ failure etc., when they get infected with the SARS-CoV-2 virus. Plant-derived natural immune-suppressant compounds, such as resveratrol, quercetin, curcumin, berberine, luteolin, etc., have been reported to inhibit pro-inflammatory cytokines and chemokines. Therefore, natural products with immunomodulatory and anti-inflammatory potential could be plausible targets to treat this contagious disease. This review aims to delineate the clinical trials status and outcomes of natural compounds with immunomodulatory potential in COVID-19 patients along with the outcomes of their in-vivo studies. In clinical trials several natural immunomodulators resulted in significant improvement of COVID-19 patients by diminishing COVID-19 symptoms such as fever, cough, sore throat, and breathlessness. Most importantly, they reduced the duration of hospitalization and the need for supplemental oxygen therapy, improved clinical outcomes in patients with COVID-19, especially weakness, and eliminated acute lung injury and acute respiratory distress syndrome. This paper also discusses many potent natural immunomodulators yet to undergo clinical trials. In-vivo studies with natural immunomodulators demonstrated reduction of a wide range of proinflammatory cytokines. Natural immunomodulators that were found effective, safe, and well tolerated in small-scale clinical trials are warranted to undergo large-scale trials to be used as drugs to treat COVID-19 infections. Alongside, compounds yet to test clinically must undergo clinical trials to find their effectiveness and safety in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Md. Rashidur Rahman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zainab Syed Ahmed
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Afrina Afrose
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
19
|
Wang H, Wang J, Zhao X, Ye R, Sun L, Wang J, Li L, Liang H, Wang S, Lu Y. Discovery of an Anti-TNF-α 9-mer Peptide from a T7 Phage Display Library for the Treatment of Inflammatory Bowel Disease. J Med Chem 2023; 66:6981-6993. [PMID: 37191335 DOI: 10.1021/acs.jmedchem.3c00436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Inhibiting TNF-α-mediated acute inflammation is an effective treatment against inflammatory bowel disease. In this study, TNF-α-based T7 phage display library screening combined with in vitro and in vivo assays was applied. A lead peptide, pep2 (ACHAWAPTR, KD = 5.14 μM), could directly bind to TNF-α and block TNF-α-triggered signaling activation. Peptide pep2 inhibits TNF-α-induced cytotoxicity and attenuates the inflammation by decreasing NF-κB and MAPK signaling activities in a variety of cells. Furthermore, pep2 attenuated colitis induced by dextran sodium sulfate in mice in both prophylactic and therapeutic settings. Moreover, pep2 reduced the phosphorylation of p38, ERK1/2, JNK1/2, p65, and IκBα in colonic tissues as well as downregulated inflammatory genes. And HIS3, TRP5, and ARG9 may be the key amino acids in pep2 to bind TNF-α by molecular docking. Collectively, targeting TNF-α with pep2 can attenuate the inflammation in vivo and vitro by inhibiting NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Helin Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Junjie Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xin Zhao
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ruiwei Ye
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Li Sun
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Jiaojiao Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Linxue Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Sheng Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yiming Lu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
20
|
Thompson AA, Harbut MB, Kung PP, Karpowich NK, Branson JD, Grant JC, Hagan D, Pascual HA, Bai G, Zavareh RB, Coate HR, Collins BC, Côte M, Gelin CF, Damm-Ganamet KL, Gholami H, Huff AR, Limon L, Lumb KJ, Mak PA, Nakafuku KM, Price EV, Shih AY, Tootoonchi M, Vellore NA, Wang J, Wei N, Ziff J, Berger SB, Edwards JP, Gardet A, Sun S, Towne JE, Venable JD, Shi Z, Venkatesan H, Rives ML, Sharma S, Shireman BT, Allen SJ. Identification of small-molecule protein-protein interaction inhibitors for NKG2D. Proc Natl Acad Sci U S A 2023; 120:e2216342120. [PMID: 37098070 PMCID: PMC10160951 DOI: 10.1073/pnas.2216342120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
NKG2D (natural-killer group 2, member D) is a homodimeric transmembrane receptor that plays an important role in NK, γδ+, and CD8+ T cell-mediated immune responses to environmental stressors such as viral or bacterial infections and oxidative stress. However, aberrant NKG2D signaling has also been associated with chronic inflammatory and autoimmune diseases, and as such NKG2D is thought to be an attractive target for immune intervention. Here, we describe a comprehensive small-molecule hit identification strategy and two distinct series of protein-protein interaction inhibitors of NKG2D. Although the hits are chemically distinct, they share a unique allosteric mechanism of disrupting ligand binding by accessing a cryptic pocket and causing the two monomers of the NKG2D dimer to open apart and twist relative to one another. Leveraging a suite of biochemical and cell-based assays coupled with structure-based drug design, we established tractable structure-activity relationships with one of the chemical series and successfully improved both the potency and physicochemical properties. Together, we demonstrate that it is possible, albeit challenging, to disrupt the interaction between NKG2D and multiple protein ligands with a single molecule through allosteric modulation of the NKG2D receptor dimer/ligand interface.
Collapse
Affiliation(s)
- Aaron A. Thompson
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Michael B. Harbut
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Pei-Pei Kung
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Nathan K. Karpowich
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Jeffrey D. Branson
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Joanna C. Grant
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Deborah Hagan
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Heather A. Pascual
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Guoyun Bai
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | | | - Heather R. Coate
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Bernard C. Collins
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Marjorie Côte
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Christine F. Gelin
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | | | - Hadi Gholami
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Adam R. Huff
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Luis Limon
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Kevin J. Lumb
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Puiying A. Mak
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Kohki M. Nakafuku
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Edmund V. Price
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Amy Y. Shih
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Mandana Tootoonchi
- Discovery Immunology, Janssen Research & Development, San Diego, CA92121
| | - Nadeem A. Vellore
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Jocelyn Wang
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Na Wei
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Jeannie Ziff
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Scott B. Berger
- Discovery Immunology, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - James P. Edwards
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Agnès Gardet
- Discovery Immunology, Janssen Research & Development, San Diego, CA92121
| | - Siquan Sun
- Discovery Immunology, Janssen Research & Development, San Diego, CA92121
| | - Jennifer E. Towne
- Discovery Immunology, Janssen Research & Development, San Diego, CA92121
| | | | - Zhicai Shi
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | | | - Marie-Laure Rives
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Sujata Sharma
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Brock T. Shireman
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Samantha J. Allen
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| |
Collapse
|
21
|
Agnihotri P, Deka H, Chakraborty D, Monu, Saquib M, Kumar U, Biswas S. Anti-inflammatory potential of selective small compounds by targeting TNF-α & NF-kB signaling: a comprehensive molecular docking and simulation study. J Biomol Struct Dyn 2023; 41:13815-13828. [PMID: 37013999 DOI: 10.1080/07391102.2023.2196692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/11/2023] [Indexed: 04/05/2023]
Abstract
Tumor necrosis factor alpha (TNF-α) is the major cause of inflammation in autoimmune diseases like rheumatoid arthritis (RA). It's mechanisms of signal transduction through nuclear factor kappa B (NF-kB) pathway via small molecules such as metabolite crosstalk are still elusive. In this study, we have targeted TNF-α and NF-kB through metabolites of RA, to inhibit TNF-α activity and deter NF-kB signaling pathways, thereby mitigating the disease severity of RA. TNF-α and NF-kB structure was obtained from PDB database and metabolites of RA were selected from literature survey. In-silico studies were carried out by molecular docking using AutoDock Vina software and further, known TNF-α and NF-kB inhibitors were compared and revealed metabolite's capacity to targets the respective proteins. Most suitable metabolite was then validated by MD simulation to verify its efficiency against TNF-α. Total 56 known differential metabolites of RA were docked with TNF-α and NF-kB compared to their corresponding inhibitor compounds. Four metabolites such as Chenodeoxycholic acid, 2-Hydroxyestrone, 2-Hydroxyestradiol (2-OHE2), and 16-Hydroxyestradiol were identified as a common TNF-α inhibitor's having binding energies ranging from -8.3 to -8.6 kcal/mol, followed by docking with NF-kB. Further, 2-OHE2 was selected because of having binding energy -8.5 kcal/mol, found to inhibit inflammation and the effectiveness was validated by root mean square fluctuation, radius of gyration and molecular mechanics with generalized born and surface area solvation against TNF-α. Thus 2-OHE2, an estrogen metabolite was identified as the potential inhibitor, attenuated inflammatory activation and can be utilized as a therapeutic target to disseminate severity of RA.
Collapse
Affiliation(s)
- Prachi Agnihotri
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hemchandra Deka
- Gauhati University Institute of Science and Technology, Guwahati University, Guwahati, India
| | - Debolina Chakraborty
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Monu
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohd Saquib
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Uma Kumar
- All India Institute of Medical Sciences, New Delhi, India
| | - Sagarika Biswas
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
22
|
Xu H, Gan C, Xiang Z, Xiang T, Li J, Huang X, Qin X, Liu T, Sheng J, Wang X. Targeting the TNF-α-TNFR interaction with EGCG to block NF-κB signaling in human synovial fibroblasts. Biomed Pharmacother 2023; 161:114575. [PMID: 36963358 DOI: 10.1016/j.biopha.2023.114575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
The tumor necrosis factor alpha (TNF-α)-TNF-α receptor (TNFR) interaction plays a central role in the pathogenesis of various autoimmune diseases, particularly rheumatoid arthritis, and is therefore considered a key target for drug discovery. However, natural compounds that can specifically block the TNF-α-TNFR interaction are rarely reported. (-)-Epigallocatechin-3-gallate (EGCG) is the most active, abundant, and thoroughly investigated polyphenolic compound in green tea. However, the molecular mechanism by which EGCG ameliorates autoimmune arthritis remains to be elucidated. In the present study, we found that EGCG can directly bind to TNF-α, TNFR1, and TNFR2 with similar μM affinity and disrupt the interactions between TNF-α and TNFR1 and TNFR2, which inhibits TNF-α-induced L929 cell death, blocks TNF-α-induced NF-κB activation in 293-TNF-α response cell line, and eventually leads to inhibition of TNF-α-induced NF-κB signaling pathway in HFLS and MH7A cells. Thus, regular consumption of EGCG in green tea may represent a potential therapeutic agent for the treatment of TNF-α-associated diseases.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Chunxia Gan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Zemin Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Ting Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jin Li
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xueqin Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Xiangdong Qin
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Titi Liu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| |
Collapse
|
23
|
Dimitrova YN, Gutierrez JA, Huard K. It's ok to be outnumbered - sub-stoichiometric modulation of homomeric protein complexes. RSC Med Chem 2023; 14:22-46. [PMID: 36760737 PMCID: PMC9890894 DOI: 10.1039/d2md00212d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
An arsenal of molecular tools with increasingly diversified mechanisms of action is being developed by the scientific community to enable biological interrogation and pharmaceutical modulation of targets and pathways of ever increasing complexity. While most small molecules interact with the target of interest in a 1 : 1 relationship, a noteworthy number of recent examples were reported to bind in a sub-stoichiometric manner to a homomeric protein complex. This approach requires molecular understanding of the physiologically relevant protein assemblies and in-depth characterization of the compound's mechanism of action. The recent literature examples summarized here were selected to illustrate methods used to identify and characterize molecules with such mechanisms. The concept of one small molecule targeting a homomeric protein assembly is not new but the subject deserves renewed inspection in light of emerging technologies and increasingly diverse target biology, to ensure relevant in vitro systems are used and valuable compounds with potentially novel sub-stoichiometric mechanisms of action aren't overlooked.
Collapse
Affiliation(s)
| | | | - Kim Huard
- Genentech 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
24
|
Taghipour F, Motamed N, Amoozegar MA, Shahhoseini M, Mahdian S. Carotenoids as potential inhibitors of TNFα in COVID-19 treatment. PLoS One 2022; 17:e0276538. [PMID: 36574379 PMCID: PMC9794061 DOI: 10.1371/journal.pone.0276538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 10/08/2022] [Indexed: 12/29/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a multifunctional pro-inflammatory cytokine, responsible for autoimmune and inflammatory disorders. In COVID-19 patients, increased TNF-α concentration may provoke inflammatory cascade and induce the initiation of cytokine storm that may result in fatal pneumonia and acute respiratory distress syndrome (ADRS). Hence, TNFα is assumed to be a promising drug target against cytokine storm in COVID-19 patients. In the present study, we focused on finding novel small molecules that can directly block TNF-α-hTNFR1 (human TNF receptor 1) interaction. In this regards, TNF-α-inhibiting capacity of natural carotenoids was investigated in terms of blocking TNF-α-hTNFR1 interaction in COVID-19 patients with the help of a combination of in silico approaches, based on virtual screening, molecular docking, and molecular dynamics (MD) simulation. A total of 125 carotenoids were selected out of 1204 natural molecules, based on their pharmacokinetics properties and they all met Lipinski's rule of five. Among them, Sorgomol, Strigol and Orobanchol had the most favorable ΔG with the best ADME (absorption, distribution, metabolism, excretion) properties, and were selected for MD simulation studies, which explored the complex stability and the impact of ligands on protein conformation. Our results showed that Sorgomol formed the most hydrogen bonds, resulting in the highest binding energy with lowest RMSD and RMSF, which made it the most appropriate candidate as TNF-α inhibitor. In conclusion, the present study could serve to expand possibilities to develop new therapeutic small molecules against TNF-α.
Collapse
Affiliation(s)
- Farzaneh Taghipour
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Soodeh Mahdian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
25
|
Engineered nanoparticles as emerging gene/drug delivery systems targeting the nuclear factor-κB protein and related signaling pathways in cancer. Biomed Pharmacother 2022; 156:113932. [DOI: 10.1016/j.biopha.2022.113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
26
|
Vugler A, O’Connell J, Nguyen MA, Weitz D, Leeuw T, Hickford E, Verbitsky A, Ying X, Rehberg M, Carrington B, Merriman M, Moss A, Nicholas JM, Stanley P, Wright S, Bourne T, Foricher Y, Zhu Z, Brookings D, Horsley H, Heer J, Schio L, Herrmann M, Rao S, Kohlmann M, Florian P. An orally available small molecule that targets soluble TNF to deliver anti-TNF biologic-like efficacy in rheumatoid arthritis. Front Pharmacol 2022; 13:1037983. [PMID: 36467083 PMCID: PMC9709720 DOI: 10.3389/fphar.2022.1037983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine belonging to a family of trimeric proteins with both proinflammatory and immunoregulatory functions. TNF is a key mediator in autoimmune diseases and during the last couple of decades several biologic drugs have delivered new therapeutic options for patients suffering from chronic autoimmune diseases such as rheumatoid arthritis and chronic inflammatory bowel disease. Attempts to design small molecule therapies directed to this cytokine have not led to approved products yet. Here we report the discovery and development of a potent small molecule inhibitor of TNF that was recently moved into phase 1 clinical trials. The molecule, SAR441566, stabilizes an asymmetrical form of the soluble TNF trimer, compromises downstream signaling and inhibits the functions of TNF in vitro and in vivo. With SAR441566 being studied in healthy volunteers we hope to deliver a more convenient orally bioavailable and effective treatment option for patients suffering with chronic autoimmune diseases compared to established biologic drugs targeting TNF.
Collapse
Affiliation(s)
- Alexander Vugler
- Immunology Therapeutic Area, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - James O’Connell
- Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Mai Anh Nguyen
- Sanofi R&D, TMED Pharmacokinetics Dynamics and Metabolism, Frankfurt am Main, Germany
| | - Dietmar Weitz
- Sanofi R&D, Drug Metabolism and Pharmacokinetics, Frankfurt am Main, Germany
| | - Thomas Leeuw
- Sanofi R&D, Type 1/17 Immunology, Immunology & Inflammation Research TA, Frankfurt, Germany
| | - Elizabeth Hickford
- Development Science, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | | | - Xiaoyou Ying
- Sanofi R&D, Translation In vivo Models, Cambridge, MA, United States
| | - Markus Rehberg
- Sanofi R&D, Translational Disease Modelling, Frankfurt am Main, Germany
| | - Bruce Carrington
- Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Mark Merriman
- Immunology Therapeutic Area, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Andrew Moss
- Translational Medicine Immunology, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Jean-Marie Nicholas
- Development Science, Drug Metabolism and Pharmacokinetics, UCB Pharma, Braine-I’Alleud, Belgium
| | - Phil Stanley
- Immunology Therapeutic Area, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Sara Wright
- Early PV Missions, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Tim Bourne
- Milvuswood Consultancy, Penn, United Kingdom
| | - Yann Foricher
- Sanofi R&D, Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Zhaoning Zhu
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Daniel Brookings
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Helen Horsley
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Jag Heer
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Laurent Schio
- Sanofi R&D, Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Matthias Herrmann
- Sanofi R&D, Type 1/17 Immunology, Immunology & Inflammation Research TA, Frankfurt, Germany
| | - Srinivas Rao
- Sanofi R&D, Translation In vivo Models, Cambridge, MA, United States
| | - Markus Kohlmann
- Sanofi R&D, Early Clinical Development, Therapeutic Area Immunology and Inflammation, Frankfurt am Main, Germany
| | - Peter Florian
- Sanofi R&D, Type 1/17 Immunology, Immunology & Inflammation Research TA, Frankfurt, Germany
| |
Collapse
|
27
|
Javaid N, Patra MC, Cho DE, Batool M, Kim Y, Choi GM, Kim MS, Hahm DH, Choi S. An orally active, small-molecule TNF inhibitor that disrupts the homotrimerization interface improves inflammatory arthritis in mice. Sci Signal 2022; 15:eabi8713. [DOI: 10.1126/scisignal.abi8713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excessive signaling by the proinflammatory cytokine TNF is involved in several autoimmune diseases, including rheumatoid arthritis (RA). However, unlike the approved biologics currently used to treat this and other conditions, commercially available small-molecule inhibitors of TNF trimerization are cytotoxic or exhibit low potency. Here, we report a TNF-inhibitory molecule (TIM) that reduced TNF signaling in vitro and was an effective treatment in a mouse model of RA. The initial lead compound, TIM1, attenuated TNF-induced apoptosis of human and mouse cells by delaying the induction of proinflammatory NF-κB and MAPK signaling and caspase 3– and caspase 8–dependent apoptosis. TIM1 inhibited the secretion of the proinflammatory cytokines IL-6 and IL-8 by disrupting TNF homotrimerization, thereby preventing its association with the TNF receptor. In a mouse model of collagen-induced polyarthritis, the more potent TIM1 analog TIM1c was orally bioavailable and reduced paw swelling, histological indicators of knee joint pathology, inflammatory infiltration of the joint, and the overall arthritis index. Orally delivered TIM1c showed immunological effects similar to those elicited by intraperitoneal injection of the FDA-approved TNF receptor decoy etanercept. Thus, TIM1c is a promising lead compound for the development of small-molecule therapies for the treatment of RA and other TNF-dependent systemic inflammation disorders.
Collapse
Affiliation(s)
- Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Mahesh Chandra Patra
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Da-Eun Cho
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Yoongeun Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Gwang Muk Choi
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Dae-Hyun Hahm
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| |
Collapse
|
28
|
Verzella D, Cornice J, Arboretto P, Vecchiotti D, Di Vito Nolfi M, Capece D, Zazzeroni F, Franzoso G. The NF-κB Pharmacopeia: Novel Strategies to Subdue an Intractable Target. Biomedicines 2022; 10:2233. [PMID: 36140335 PMCID: PMC9496094 DOI: 10.3390/biomedicines10092233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022] Open
Abstract
NF-κB transcription factors are major drivers of tumor initiation and progression. NF-κB signaling is constitutively activated by genetic alterations or environmental signals in many human cancers, where it contributes to almost all hallmarks of malignancy, including sustained proliferation, cell death resistance, tumor-promoting inflammation, metabolic reprogramming, tissue invasion, angiogenesis, and metastasis. As such, the NF-κB pathway is an attractive therapeutic target in a broad range of human cancers, as well as in numerous non-malignant diseases. Currently, however, there is no clinically useful NF-κB inhibitor to treat oncological patients, owing to the preclusive, on-target toxicities of systemic NF-κB blockade. In this review, we discuss the principal and most promising strategies being developed to circumvent the inherent limitations of conventional IκB kinase (IKK)/NF-κB-targeting drugs, focusing on new molecules that target upstream regulators or downstream effectors of oncogenic NF-κB signaling, as well as agents targeting individual NF-κB subunits.
Collapse
Affiliation(s)
- Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| |
Collapse
|
29
|
Evangelatos G, Bamias G, Kitas GD, Kollias G, Sfikakis PP. The second decade of anti-TNF-a therapy in clinical practice: new lessons and future directions in the COVID-19 era. Rheumatol Int 2022; 42:1493-1511. [PMID: 35503130 PMCID: PMC9063259 DOI: 10.1007/s00296-022-05136-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Since the late 1990s, tumor necrosis factor alpha (TNF-α) inhibitors (anti-TNFs) have revolutionized the therapy of immune-mediated inflammatory diseases (IMIDs) affecting the gut, joints, skin and eyes. Although the therapeutic armamentarium in IMIDs is being constantly expanded, anti-TNFs remain the cornerstone of their treatment. During the second decade of their application in clinical practice, a large body of additional knowledge has accumulated regarding various aspects of anti-TNF-α therapy, whereas new indications have been added. Recent experimental studies have shown that anti-TNFs exert their beneficial effects not only by restoring aberrant TNF-mediated immune mechanisms, but also by de-activating pathogenic fibroblast-like mesenchymal cells. Real-world data on millions of patients further confirmed the remarkable efficacy of anti-TNFs. It is now clear that anti-TNFs alter the physical course of inflammatory arthritis and inflammatory bowel disease, leading to inhibition of local and systemic bone loss and to a decline in the number of surgeries for disease-related complications, while anti-TNFs improve morbidity and mortality, acting beneficially also on cardiovascular comorbidities. On the other hand, no new safety signals emerged, whereas anti-TNF-α safety in pregnancy and amid the COVID-19 pandemic was confirmed. The use of biosimilars was associated with cost reductions making anti-TNFs more widely available. Moreover, the current implementation of the "treat-to-target" approach and treatment de-escalation strategies of IMIDs were based on anti-TNFs. An intensive search to discover biomarkers to optimize response to anti-TNF-α treatment is currently ongoing. Finally, selective targeting of TNF-α receptors, new forms of anti-TNFs and combinations with other agents, are being tested in clinical trials and will probably expand the spectrum of TNF-α inhibition as a therapeutic strategy for IMIDs.
Collapse
Affiliation(s)
- Gerasimos Evangelatos
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Giorgos Bamias
- Gastrointestinal Unit, Third Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George D Kitas
- Department of Rheumatology, Russells Hall Hospital, Dudley Group NHS Foundation Trust, Dudley, UK
- Arthritis Research UK Centre for Epidemiology, University of Manchester, Manchester, UK
| | - George Kollias
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Exploring the phytoconstituents targeting TNF-α as potential lead compounds to treat inflammatory diseases: an in-silico approach. DIGITAL CHINESE MEDICINE 2022. [DOI: 10.1016/j.dcmed.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Mayol GF, Defelipe LA, Arcon JP, Turjanski AG, Marti MA. Solvent Sites Improve Docking Performance of Protein–Protein Complexes and Protein–Protein Interface-Targeted Drugs. J Chem Inf Model 2022; 62:3577-3588. [DOI: 10.1021/acs.jcim.2c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gonzalo F. Mayol
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Lucas A. Defelipe
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
- European Molecular Biology Laboratory - Hamburg Unit, Notkestrasse 85, Hamburg 22607, Germany
| | - Juan Pablo Arcon
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
- Institute for Research in Biomedicine (IRB), 08028 Barcelona, Spain
- The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Adrian G. Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Marcelo A. Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| |
Collapse
|
32
|
Andrews MD, Dack KN, de Groot MJ, Lambert M, Sennbro CJ, Larsen M, Stahlhut M. Discovery of an Oral, Rule of 5 Compliant, Interleukin 17A Protein-Protein Interaction Modulator for the Potential Treatment of Psoriasis and Other Inflammatory Diseases. J Med Chem 2022; 65:8828-8842. [PMID: 35767390 DOI: 10.1021/acs.jmedchem.2c00422] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin 17A (IL-17A) is an interleukin cytokine whose dysregulation is implicated in autoimmune disorders such as psoriasis, and monoclonal antibodies against the IL-17A pathway are now well-established and very effective treatments. This article outlines the work that led to the identification of 23 as an oral, small-molecule protein-protein interaction modulator (PPIm) clinical development candidate. Protein crystallography provided knowledge of the key binding interactions between small-molecule ligands and the IL-17A dimer, and this helped in the multiparameter optimization toward identifying an orally bioavailable, Rule of 5 compliant PPIm of IL-17A. Overlap of early ligands led to a series of benzhydrylglycine-containing compounds that allowed the identification of dimethylpyrazole as a key substituent that gave PPIm with oral bioavailability. Exploration of the amino acid portion of the structure then led to dicyclopropylalanine as a group that gave potent and metabolically stable compounds, including the development candidate 23.
Collapse
Affiliation(s)
- Mark D Andrews
- Drug Design, LEO Pharma Research & Early Development, 2750 Ballerup, Denmark
| | - Kevin N Dack
- Drug Design, LEO Pharma Research & Early Development, 2750 Ballerup, Denmark
| | - Marcel J de Groot
- Drug Design, LEO Pharma Research & Early Development, 2750 Ballerup, Denmark
| | - Maja Lambert
- Drug Design, LEO Pharma Research & Early Development, 2750 Ballerup, Denmark
| | - Carl J Sennbro
- Drug Design, LEO Pharma Research & Early Development, 2750 Ballerup, Denmark
| | - Mogens Larsen
- Drug Design, LEO Pharma Research & Early Development, 2750 Ballerup, Denmark
| | - Martin Stahlhut
- Skin Research, LEO Pharma Research & Early Development, 2750 Ballerup, Denmark
| |
Collapse
|
33
|
Zhou M, Jiang S, Chen C, Li J, Lou H, Wang M, Liu G, Liu H, Liu T, Pan W. Bioactive Bibenzyl Enantiomers From the Tubers of Bletilla striata. Front Chem 2022; 10:911201. [PMID: 35755263 PMCID: PMC9218944 DOI: 10.3389/fchem.2022.911201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Six new bibenzyls (three pairs of enantiomers), bletstrins D-F (1-3), were isolated from the ethyl acetate-soluble (EtOAc) extract of tubers of Bletilla striata (Thunb.) Rchb f. Their structures, including absolute configurations, were determined by 1D/2D NMR spectroscopy, optical rotation value, and experimental electronic circular dichroism (ECD) data analyses, respectively. Compounds 1-3 possess a hydroxyl-substituted chiral center on the aliphatic bibenzyl bridge, which represented the first examples of natural bibenzyl enantiomers from the genus of Bletilla. The antibacterial, antitumor necrosis factor (anti-TNF-α), and neuroprotective effects of the isolates have been evaluated. Compounds 3a and 3b were effective against three Gram-positive bacteria with minimum inhibitory concentrations (MICs) of 52-105 μg/ml. Compounds 2a and 2b exhibited significant inhibitory effects on TNF-α-mediated cytotoxicity in L929 cells with IC50 values of 25.7 ± 2.3 μM and 21.7 ± 1.7 μM, respectively. Subsequently, the possible anti-TNF-α mechanism of 2 was investigated by molecular docking simulation. Furthermore, the neuroprotective activities were tested on the H2O2-induced PC12 cell injury model, and compounds 2b, 3a, and 3b (10 μM) could obviously protect the cells with the cell viabilities of 57.86 ± 2.08%, 64.82 ± 2.84%, and 64.11 ± 2.52%, respectively.
Collapse
Affiliation(s)
- Mei Zhou
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Sai Jiang
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, China
| | - Changfen Chen
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Jinyu Li
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Huayong Lou
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Mengyun Wang
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, China
| | - Gezhou Liu
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Hanfei Liu
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Ting Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Weidong Pan
- School of Basic Medical Sciences/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
34
|
De Vita S, Finamore C, Chini MG, Saviano G, De Felice V, De Marino S, Lauro G, Casapullo A, Fantasma F, Trombetta F, Bifulco G, Iorizzi M. Phytochemical Analysis of the Methanolic Extract and Essential Oil from Leaves of Industrial Hemp Futura 75 Cultivar: Isolation of a New Cannabinoid Derivative and Biological Profile Using Computational Approaches. PLANTS 2022; 11:plants11131671. [PMID: 35807623 PMCID: PMC9269227 DOI: 10.3390/plants11131671] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
Cannabis sativa L. is a plant belonging to the Cannabaceae family, cultivated for its psychoactive cannabinoid (Δ9-THC) concentration or for its fiber and nutrient content in industrial use. Industrial hemp shows a low Δ9-THC level and is a valuable source of phytochemicals, mainly represented by cannabinoids, flavones, terpenes, and alkaloids, with health-promoting effects. In the present study, we investigated the phytochemical composition of leaves of the industrial hemp cultivar Futura 75, a monoecious cultivar commercially used for food preparations or cosmetic purposes. Leaves are generally discarded, and represent waste products. We analyzed the methanol extract of Futura 75 leaves by HPLC and NMR spectroscopy and the essential oil by GC-MS. In addition, in order to compare the chemical constituents, we prepared the water infusion. One new cannabinoid derivative (1) and seven known components, namely, cannabidiol (2), cannabidiolic acid (3), β-cannabispirol (4), β-cannabispirol (5), canniprene (6), cannabiripsol (7), and cannflavin B (8) were identified. The content of CBD was highest in all preparations. In addition, we present the outcomes of a computational study focused on elucidating the role of 2α-hydroxy-Δ3,7-cannabitriol (1), CBD (2), and CBDA (3) in inflammation and thrombogenesis.
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
| | - Claudia Finamore
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.F.); (S.D.M.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Vincenzo De Felice
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Simona De Marino
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.F.); (S.D.M.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
| | - Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Federico Trombetta
- Societa Cooperativa Agricola MarcheSana, Localita San Biagio 40, 61032 Fano, Italy;
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
- Correspondence: (G.B.); (M.I.); Tel.: +39-089969741 (G.B.); +39-087-4404100 (M.I.)
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
- Correspondence: (G.B.); (M.I.); Tel.: +39-089969741 (G.B.); +39-087-4404100 (M.I.)
| |
Collapse
|
35
|
Niu J, Cederstrand AJ, Eddinger GA, Yin B, Checco JW, Bingman CA, Outlaw VK, Gellman SH. Trimer-to-Monomer Disruption Mechanism for a Potent, Protease-Resistant Antagonist of Tumor Necrosis Factor-α Signaling. J Am Chem Soc 2022; 144:9610-9617. [PMID: 35613436 PMCID: PMC9749406 DOI: 10.1021/jacs.1c13717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aberrant tumor necrosis factor-α (TNFα) signaling is associated with many inflammatory diseases. The homotrimeric quaternary structure of TNFα is essential for receptor recognition and signal transduction. Previously, we described an engineered α/β-peptide inhibitor that potently suppresses TNFα activity and resists proteolysis. Here, we present structural evidence that both the α/β-peptide inhibitor and an all-α analogue bind to a monomeric form of TNFα. Calorimetry data support a 1:1 inhibitor/TNFα stoichiometry in solution. In contrast, previous cocrystal structures involving peptide or small-molecule inhibitors have shown the antagonists engaging a TNFα dimer. The structural data reveal why our inhibitors favor monomeric TNFα. Previous efforts to block TNFα-induced cell death with peptide inhibitors revealed that surfactant additives to the assay conditions cause a more rapid manifestation of inhibitory activity than is observed in the absence of additives. We attributed this effect to a loose surfactant TNFα association that lowers the barrier to trimer dissociation. Here, we used the new structural data to design peptide inhibitors bearing a surfactant-inspired appendage intended to facilitate TNFα trimer dissociation. The appendage modified the time course of protection from cell death.
Collapse
Affiliation(s)
- Jiani Niu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Annika J. Cederstrand
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Geoffrey A. Eddinger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Boyu Yin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - James W. Checco
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Craig A. Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Victor K. Outlaw
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
36
|
Hadfield TE, Imrie F, Merritt A, Birchall K, Deane CM. Incorporating Target-Specific Pharmacophoric Information into Deep Generative Models for Fragment Elaboration. J Chem Inf Model 2022; 62:2280-2292. [PMID: 35499971 PMCID: PMC9131447 DOI: 10.1021/acs.jcim.1c01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Despite recent interest in deep generative models for scaffold elaboration, their applicability to fragment-to-lead campaigns has so far been limited. This is primarily due to their inability to account for local protein structure or a user's design hypothesis. We propose a novel method for fragment elaboration, STRIFE, that overcomes these issues. STRIFE takes as input fragment hotspot maps (FHMs) extracted from a protein target and processes them to provide meaningful and interpretable structural information to its generative model, which in turn is able to rapidly generate elaborations with complementary pharmacophores to the protein. In a large-scale evaluation, STRIFE outperforms existing, structure-unaware, fragment elaboration methods in proposing highly ligand-efficient elaborations. In addition to automatically extracting pharmacophoric information from a protein target's FHM, STRIFE optionally allows the user to specify their own design hypotheses.
Collapse
Affiliation(s)
- Thomas E Hadfield
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| | - Fergus Imrie
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| | - Andy Merritt
- LifeArc, SBC Open Innovation Campus, Stevenage SG1 2FX, United Kingdom
| | - Kristian Birchall
- LifeArc, SBC Open Innovation Campus, Stevenage SG1 2FX, United Kingdom
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| |
Collapse
|
37
|
Xu H, Liu T, Li J, Chen F, Xu J, Hu L, Jiang L, Xiang Z, Wang X, Sheng J. Roburic Acid Targets TNF to Inhibit the NF-κB Signaling Pathway and Suppress Human Colorectal Cancer Cell Growth. Front Immunol 2022; 13:853165. [PMID: 35222445 PMCID: PMC8864141 DOI: 10.3389/fimmu.2022.853165] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor (TNF)-stimulated nuclear factor-kappa B (NF-κB) signaling plays very crucial roles in cancer development and progression, and represents a potential target for drug discovery. Roburic acid is a newly discovered tetracyclic triterpene acid isolated from oak galls and exhibits anti-inflammatory activity. However, whether roburic acid exerts antitumor effects through inhibition of TNF-induced NF-κB signaling remains unknown. Here, we demonstrated that roburic acid bound directly to TNF with high affinity (KD = 7.066 μM), blocked the interaction between TNF and its receptor (TNF-R1), and significantly inhibited TNF-induced NF-κB activation. Roburic acid exhibited antitumor activity in numerous cancer cells and could effectively induce G0/G1 cell cycle arrest and apoptosis in colorectal cancer cells. Importantly, roburic acid inhibited the TNF-induced phosphorylation of IKKα/β, IκBα, and p65, degradation of IκBα, nuclear translocation of p65, and NF-κB-target gene expression, including that of XIAP, Mcl-1, and Survivin, in colorectal cancer cells. Moreover, roburic acid suppressed tumor growth by blocking NF-κB signaling in a xenograft nude mouse model of colorectal cancer. Taken together, our findings showed that roburic acid directly binds to TNF with high affinity, thereby disrupting its interaction with TNF-R1 and leading to the inhibition of the NF-κB signaling pathway, both in vitro and in vivo. The results indicated that roburic acid is a novel TNF-targeting therapeutics agent in colorectal cancer as well as other cancer types.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Titi Liu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Jin Li
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Fei Chen
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Jing Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Lihong Hu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Li Jiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Zemin Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
38
|
Tang R, Chen P, Wang Z, Wang L, Hao H, Hou T, Sun H. Characterizing the stabilization effects of stabilizers in protein-protein systems with end-point binding free energy calculations. Brief Bioinform 2022; 23:6565618. [PMID: 35395683 DOI: 10.1093/bib/bbac127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Drug design targeting protein-protein interactions (PPIs) associated with the development of diseases has been one of the most important therapeutic strategies. Besides interrupting the PPIs with PPI inhibitors/blockers, increasing evidence shows that stabilizing the interaction between two interacting proteins may also benefit the therapy, such as the development of various types of molecular glues/stabilizers that mostly work by stabilizing the two interacting proteins to regulate the downstream biological effects. However, characterizing the stabilization effect of a stabilizer is usually hard or too complicated for traditional experiments since it involves ternary interactions [protein-protein-stabilizer (PPS) interaction]. Thus, developing reliable computational strategies will facilitate the discovery/design of molecular glues or PPI stabilizers. Here, by fully analyzing the energetic features of the binary interactions in the PPS ternary complex, we systematically investigated the performance of molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) and molecular mechanics generalized Born surface area (MM/GBSA) methods on characterizing the stabilization effects of stabilizers in 14-3-3 systems. The results show that both MM/PBSA and MM/GBSA are powerful tools in distinguishing the stabilizers from the decoys (with area under the curves of 0.90-0.93 for all tested cases) and are reasonable for ranking protein-peptide interactions in the presence or absence of stabilizers as well (with the average Pearson correlation coefficient of ~0.6 at a relatively high dielectric constant for both methods). Moreover, to give a detailed picture of the stabilization effects, the stabilization mechanism is also analyzed from the structural and energetic points of view for individual systems containing strong or weak stabilizers. This study demonstrates a potential strategy to accelerate the discovery of PPI stabilizers.
Collapse
Affiliation(s)
- Rongfan Tang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Pengcheng Chen
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, Zhejiang, P. R. China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Lingling Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009 Nanjing, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| |
Collapse
|
39
|
Combarnous Y, Nguyen TMD. Membrane Hormone Receptors and Their Signaling Pathways as Targets for Endocrine Disruptors. J Xenobiot 2022; 12:64-73. [PMID: 35466213 PMCID: PMC9036253 DOI: 10.3390/jox12020007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
The endocrine disruptors are mostly small organic molecules developed for numerous and very diverse industrial applications. They essentially act through nuclear receptors with small and hydrophobic endogenous ligands. Nevertheless, potential adverse effects through membrane hormone receptors cannot be ruled out, and have indeed been observed. The present paper reviews how orthosteric and allosteric binding sites of the different families of membrane receptors can be targets for man-made hydrophobic molecules (components of plastics, paints, flame retardants, herbicides, pesticides, etc.). We also review potential target proteins for such small hydrophobic molecules downstream of membrane receptors at the level of their intracellular signaling pathways. From the currently available information, although endocrine disruptors primarily affect nuclear receptors’ signaling, membrane receptors for hormones, cytokines, neuro-mediators, and growth factors can be affected as well and deserve attention.
Collapse
Affiliation(s)
- Yves Combarnous
- INRAe, CNRS, Tours University Joint Unit, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France;
- Correspondence: ; Tel.: +33-(0)24-7427-650
| | - Thi Mong Diep Nguyen
- INRAe, CNRS, Tours University Joint Unit, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France;
- Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 820000, Vietnam
| |
Collapse
|
40
|
Design and synthesis of novel caffeic acid phenethyl ester (CAPE) derivatives and their biological Activity studies in glioblastoma (GBM) cancer cell lines. J Mol Graph Model 2022; 113:108160. [DOI: 10.1016/j.jmgm.2022.108160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/16/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
|
41
|
Eguida M, Rognan D. Unexpected similarity between HIV-1 reverse transcriptase and tumor necrosis factor binding sites revealed by computer vision. J Cheminform 2021; 13:90. [PMID: 34814950 PMCID: PMC8609734 DOI: 10.1186/s13321-021-00567-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/06/2021] [Indexed: 11/10/2022] Open
Abstract
Rationalizing the identification of hidden similarities across the repertoire of druggable protein cavities remains a major hurdle to a true proteome-wide structure-based discovery of novel drug candidates. We recently described a new computational approach (ProCare), inspired by numerical image processing, to identify local similarities in fragment-based subpockets. During the validation of the method, we unexpectedly identified a possible similarity in the binding pockets of two unrelated targets, human tumor necrosis factor alpha (TNF-α) and HIV-1 reverse transcriptase (HIV-1 RT). Microscale thermophoresis experiments confirmed the ProCare prediction as two of the three tested and FDA-approved HIV-1 RT inhibitors indeed bind to soluble human TNF-α trimer. Interestingly, the herein disclosed similarity could be revealed neither by state-of-the-art binding sites comparison methods nor by ligand-based pairwise similarity searches, suggesting that the point cloud registration approach implemented in ProCare, is uniquely suited to identify local and unobvious similarities among totally unrelated targets.
Collapse
Affiliation(s)
- Merveille Eguida
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, 67400, Illkirch, France
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, 67400, Illkirch, France.
| |
Collapse
|
42
|
Martino E, Chiarugi S, Margheriti F, Garau G. Mapping, Structure and Modulation of PPI. Front Chem 2021; 9:718405. [PMID: 34692637 PMCID: PMC8529325 DOI: 10.3389/fchem.2021.718405] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Because of the key relevance of protein–protein interactions (PPI) in diseases, the modulation of protein-protein complexes is of relevant clinical significance. The successful design of binding compounds modulating PPI requires a detailed knowledge of the involved protein-protein system at molecular level, and investigation of the structural motifs that drive the association of the proteins at the recognition interface. These elements represent hot spots of the protein binding free energy, define the complex lifetime and possible modulation strategies. Here, we review the advanced technologies used to map the PPI involved in human diseases, to investigate the structure-function features of protein complexes, and to discover effective ligands that modulate the PPI for therapeutic intervention.
Collapse
Affiliation(s)
- Elisa Martino
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy
| | - Sara Chiarugi
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy.,BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Pisa, Italy
| | | | - Gianpiero Garau
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Pisa, Italy
| |
Collapse
|
43
|
Alizadeh AA, Morris MB, Church WB, Yaqoubi S, Dastmalchi S. A mechanistic perspective, clinical applications, and phage-display-assisted discovery of TNFα inhibitors. Drug Discov Today 2021; 27:503-518. [PMID: 34628042 DOI: 10.1016/j.drudis.2021.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/20/2021] [Accepted: 09/30/2021] [Indexed: 11/03/2022]
Abstract
TNFα participates in a variety of physiological processes, but at supra-physiological concentrations it has been implicated in the pathology of inflammatory and autoimmune diseases. Therefore, much attention has been devoted to the development of strategies that overcome the effects of aberrant TNFα concentration. Promising strategies include drugs that destabilize the active (trimeric) form of TNFα and antagonists of TNFα receptor type I. Underpinning these strategies is the successful application of phage-display technology to identify anti-TNFα peptides and antibodies. Here, we review the development of inhibitors of the TNFα-TNF receptor system, with particular focus on the phage-display-assisted identification of molecules that interfere with this system by acting as inhibitors of TNFα or by sequestering TNFα away from its receptor.
Collapse
Affiliation(s)
- Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael B Morris
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - W Bret Church
- Group in Biomolecular Structure and Informatics, Faculty of Pharmacy A15, University of Sydney, Sydney, NSW 2006, Australia
| | - Shadi Yaqoubi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO Box 99138, Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
44
|
Papadopoulou D, Drakopoulos A, Lagarias P, Melagraki G, Kollias G, Afantitis A. In Silico Identification and Evaluation of Natural Products as Potential Tumor Necrosis Factor Function Inhibitors Using Advanced Enalos Asclepios KNIME Nodes. Int J Mol Sci 2021; 22:10220. [PMID: 34638561 PMCID: PMC8508374 DOI: 10.3390/ijms221910220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Tumor necrosis factor (TNF) is a regulator of several chronic inflammatory diseases, such as rheumatoid arthritis. Although anti-TNF biologics have been used in clinic, they render several drawbacks, such as patients' progressive immunodeficiency and loss of response, high cost, and intravenous administration. In order to find new potential anti-TNF small molecule inhibitors, we employed an in silico approach, aiming to find natural products, analogs of Ampelopsin H, a compound that blocks the formation of TNF active trimer. Two out of nine commercially available compounds tested, Nepalensinol B and Miyabenol A, efficiently reduced TNF-induced cytotoxicity in L929 cells and production of chemokines in mice joints' synovial fibroblasts, while Nepalensinol B also abolished TNF-TNFR1 binding in non-toxic concentrations. The binding mode of the compounds was further investigated by molecular dynamics and free energy calculation studies, using and advancing the Enalos Asclepios pipeline. Conclusively, we propose that Nepalensinol B, characterized by the lowest free energy of binding and by a higher number of hydrogen bonds with TNF, qualifies as a potential lead compound for TNF inhibitors' drug development. Finally, the upgraded Enalos Asclepios pipeline can be used for improved identification of new therapeutics against TNF-mediated chronic inflammatory diseases, providing state-of-the-art insight on their binding mode.
Collapse
Affiliation(s)
- Dimitra Papadopoulou
- Biomedical Sciences Research Center "Alexander Fleming", Institute for Bioinnovation, 16672 Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | | | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, 16673 Vari, Greece
| | - George Kollias
- Biomedical Sciences Research Center "Alexander Fleming", Institute for Bioinnovation, 16672 Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | | |
Collapse
|
45
|
Nagano M, Oguro T, Sawada R, Yoshitomi T, Yoshimoto K. Accelerated Discovery of Potent Bioactive anti-TNFα Aptamers by Microbead-Assisted Capillary Electrophoresis (MACE)-SELEX. Chembiochem 2021; 22:3341-3347. [PMID: 34549879 DOI: 10.1002/cbic.202100478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/22/2021] [Indexed: 11/09/2022]
Abstract
Dysregulation of tumor necrosis factor-α (TNFα), a pro-inflammatory cytokine, causes several diseases, making it an important therapeutic target. Here, we identified a novel DNA aptamer against human TNFα using in vitro selection, which included a high exclusion pressure process against non-binding and weak binders through microbead-assisted capillary electrophoresis (MACE) in only three rounds. Among the 15 most enriched aptamers, Apt14 exhibited the highest inhibitory activity for the interaction between TNFα and its cognate receptor in mouse L929 cells. For further improving the bioactivity of the aptamer, dimerization programed by hybridization was evaluated, resulting in the Apt14 dimer exhibited a twofold higher binding affinity and stronger inhibition compared to the monomer counterpart. Rapid identification of bioactive aptamers using MACE in combination with facile dimerization by hybridization accelerates the discovery of novel bioactive aptamers, paving the way toward replacing current monoclonal antibody therapy with the less expensive and non-immunogenic aptamer therapy.
Collapse
Affiliation(s)
- Masanobu Nagano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Takumi Oguro
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Ryo Sawada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Present address: Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
46
|
A Novel Competitive Binding Screening Assay Reveals Sennoside B as a Potent Natural Product Inhibitor of TNF-α. Biomedicines 2021; 9:biomedicines9091250. [PMID: 34572435 PMCID: PMC8465676 DOI: 10.3390/biomedicines9091250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Natural products (NPs) have played a significant role in drug discovery for diverse diseases, and numerous attempts have been made to discover promising NP inhibitors of tumor necrosis factor α (TNF-α), a major therapeutic target in autoimmune diseases. However, NP inhibitors of TNF-α, which have the potential to be developed as new drugs, have not been reported for over a decade. To facilitate the search for new promising inhibitors of TNF-α, we developed an efficient competitive binding screening assay based on analytical size exclusion chromatography coupled with liquid chromatography-tandem mass spectrometry. Application of this screening method to the NP library led to the discovery of a potent inhibitor of TNF-α, sennoside B, with an IC50 value of 0.32 µM in TNF-α induced HeLa cell toxicity assays. Surprisingly, the potency of sennoside B was 5.7-fold higher than that of the synthetic TNF-α inhibitor SPD304. Molecular docking was performed to determine the binding mode of sennoside B to TNF-α. In conclusion, we successfully developed a novel competition binding screening method to discover small molecule TNF-α inhibitors and identified the natural compound sennoside B as having exceptional potency.
Collapse
|
47
|
Dömling A, Li X. TNF-α: The shape of small molecules to come? Drug Discov Today 2021; 27:3-7. [PMID: 34229081 DOI: 10.1016/j.drudis.2021.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/11/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
In 2020, the anti-tumor necrosis factor (TNF) monoclonal antibody Humira® generated US$165.8 billion in cumulative sales and snatched the crown for the industry's most successful drug from Lipitor (atorvastatin). TNF-α is a major component in beneficial and disease-related inflammation and TNF-α-inhibitor biologics have gained widespread use in autoimmune diseases, such as rheumatoid arthritis (RA). Many more diseases could benefit from TNF-α inhibitors, such as Alzheimer's disease (AD) or major depression. However, the nature of TNF-α-inhibitor biologics prohibits central nervous system (CNS) applications. Moreover, high drug production costs and pricing, together with antidrug immune reactions and insufficient patient coverage, argue for the development of small-molecule drugs. Recently, drug-like orally available small molecules were described with high activity in animal disease models with activities comparable to those of antibodies.
Collapse
Affiliation(s)
| | - Xin Li
- Drug Design Department, University of Groningen, the Netherlands
| |
Collapse
|
48
|
Manrique-Suárez V, Macaya L, Contreras MA, Parra N, Maura R, González A, Toledo JR, Sánchez O. Design and characterization of a novel dimeric blood-brain barrier penetrating TNFα inhibitor. Proteins 2021; 89:1508-1521. [PMID: 34219271 DOI: 10.1002/prot.26173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022]
Abstract
Tumor necrosis factor-alpha (TNFα) inhibitors could prevent neurological disorders systemically, but their design generally relies on molecules unable to cross the blood-brain barrier (BBB). This research was aimed to design and characterize a novel TNFα inhibitor based on the angiopeptide-2 as a BBB shuttle molecule fused to the extracellular domain of human TNFα receptor 2 and a mutated vascular endothelial growth factor (VEGF) dimerization domain. This new chimeric protein (MTV) would be able to trigger receptor-mediated transcytosis across the BBB via low-density lipoprotein receptor-related protein-1 (LRP-1) and inhibit the cytotoxic effect of TNFα more efficiently because of its dimeric structure. Stably transformed CHO cells successfully expressed MTV, and its purification by Immobilized-Metal Affinity Chromatography (IMAC) rendered high purity degree. Mutated VEGF domain included in MTV did not show cell proliferation or angiogenic activities measured by scratch and aortic ring assays, which corroborate that the function of this domain is restricted to dimerization. The pairs MTV-TNFα (Kd 279 ± 40.9 nM) and MTV-LRP1 (Kd 399 ± 50.5 nM) showed high affinity by microscale thermophoresis, and a significant increase in cell survival was observed after blocking TNFα with MTV in a cell cytotoxicity assay. Also, the antibody staining in CHOK1 and bEnd3 cells demonstrated the adhesion of MTV to the LRP1 receptor located in the cell membrane. These results provide compelling evidence for the proper functioning of the three main domains of MTV individually, which encourage us to continue the research with this new molecule as a potential candidate for the systemic treatment of neurological disorders.
Collapse
Affiliation(s)
- Viana Manrique-Suárez
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Luis Macaya
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Maria Angélica Contreras
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Natalie Parra
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Rafael Maura
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Alaín González
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile.,Faculty of Basic Sciences, University of Medellin, Medellin, Colombia
| | - Jorge R Toledo
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Science, Universidad de Concepción, Concepcion, Chile.,Center of Biotechnology and Biomedicine Spa, Concepción, Chile
| | - Oliberto Sánchez
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile.,Center of Biotechnology and Biomedicine Spa, Concepción, Chile
| |
Collapse
|
49
|
Zheng J, Chen D, Xu J, Ding X, Wu Y, Shen HC, Tan X. Small molecule approaches to treat autoimmune and inflammatory diseases (Part III): Targeting cytokines and cytokine receptor complexes. Bioorg Med Chem Lett 2021; 48:128229. [PMID: 34214508 DOI: 10.1016/j.bmcl.2021.128229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/14/2023]
Abstract
Chronic and dysregulated cytokine signaling plays an important role in the pathogenic development of many autoimmune and inflammatory diseases. Despite intrinsic challenges in the disruption of interactions between cytokines and cytokine receptors, many first-in-class small-molecule inhibitors have been discovered over the past few years. The third part of the digest series presents recent progress in identifying such inhibitors and highlights the application of novel research tools in the fields of structural biology, computational analysis, screening methods, biophysical/biochemical assays and medicinal chemistry strategy.
Collapse
Affiliation(s)
- Jiamin Zheng
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Dongdong Chen
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Jie Xu
- Department of Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Xiao Ding
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Yao Wu
- Computer Aided Drug Design, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Hong C Shen
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Xuefei Tan
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China.
| |
Collapse
|
50
|
Baker D, Hadjicharalambous C, Gnanapavan S, Giovannoni G. Can rheumatologists stop causing demyelinating disease? Mult Scler Relat Disord 2021; 53:103057. [PMID: 34126373 DOI: 10.1016/j.msard.2021.103057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Perhaps the most informative experiments in human disease are clinical trials and notably, responses to specific therapies can be highly-informative to help understand disease pathogenesis. There are reagents that inhibit a variety of different autoimmune conditions, such as CD20 memory B cell depleters that are active in both multiple sclerosis (MS), rheumatoid arthritis (RA) and other conditions, suggesting influences on common immune mechanisms in different diseases. However, a notable exception seemed to be the use of tumour necrosis factor (TNF) inhibitors that limits RA, yet seem to, rarely, trigger demyelination and induce MS. This was first seen with TNF-inhibiting monoclonal antibodies and TNF-receptor-immunoglobulin fusion proteins. However, this is also seen with tyrosine and Janus kinase inhibitors that inhibit RA, yet induce demyelinating disease in some individuals PURPOSE: To provide an overview, from a B cell centric perspective, that may underpin the biology that links arthritis treatments to the development of demyelinating disease. CONCLUSIONS It is apparent that the disease modifying anti-rheumatoid drugs that cause demyelination share a number of common features. These agents tend to inhibit TNF-receptor signalling, augment or exhibit limited inhibitor activity on class-switched memory B cells and importantly appear to be relatively excluded from the central nervous system (CNS). They will thus not target ectopic B cell follicles in the CNS, unlike that occurring in peripheral autoimmunity as seen with anti-TNF treatments in RA. Agents such as ibudilast and some Janus kinase inhibitors that inhibit TNF and clearly penetrate the CNS do not appear to induce demyelination and may even be neuroprotective. It remains to be established whether selection or development of CNS penetrant agents may avoid CNS-complications of treatments for RA. Clearly, further studies are warranted.
Collapse
Affiliation(s)
- David Baker
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, E1 2AT, United Kingdom.
| | - Charalambos Hadjicharalambous
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, E1 2AT, United Kingdom
| | - Sharmilee Gnanapavan
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, E1 2AT, United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Gavin Giovannoni
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, E1 2AT, United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|