1
|
Dong W, Luo Y, He D, Zhang M, Zeng J, Chen Y. Oncolytic virotherapy against lung cancer: key receptors and signaling pathways of viral entry. Front Immunol 2024; 15:1473288. [PMID: 39430750 PMCID: PMC11486668 DOI: 10.3389/fimmu.2024.1473288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Lung cancer accounts for the highest cancer-related mortality worldwide. While immunotherapies targeting anti-tumor immune responses have demonstrated efficacy in clinical practice, the demand for novel treatment modalities remains urgent. Oncolytic viruses (OVs), which selectively kill tumor cells while stimulating an anti-tumor immune response, represent a potential breakthrough in lung cancer therapy. The induction of anti-tumor immunity by OVs is central to their overall therapeutic effectiveness. Many natural receptors on the surface of cancer cells are dysregulated, providing potential entry points for OVs. Furthermore, the inherent dysregulation of some key signaling pathways in lung cancer cells promotes proliferation, progression and metastasis, which may facilitate selective viral replication. In this review, we explore the application of OVs in lung cancer by analyzing several major OVs and their corresponding entry receptors. Then, we also examine the key signaling pathways and molecules with the potential to synergize with OVs in modulating the immune tumor microenvironment. Finally, we discuss the combination and administration strategies that warrant further clinical trials for validation. Despite certain limitations, the tolerability of OVs positions virotherapy as a promising avenue in the future of lung cancer treatment.
Collapse
Affiliation(s)
- Wenxun Dong
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Ying Luo
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Daqian He
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
| | - Jingtong Zeng
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Ying Chen
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| |
Collapse
|
2
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Le T Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yana D Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Denis O Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Alshiban NM, Aleyiydi MS, Nassar MS, Alhumaid NK, Almangour TA, Tawfik YM, Damiati LA, Almutairi AS, Tawfik EA. Epidemiologic and clinical updates on viral infections in Saudi Arabia. Saudi Pharm J 2024; 32:102126. [PMID: 38966679 PMCID: PMC11223122 DOI: 10.1016/j.jsps.2024.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
In the past two decades, the world has witnessed devastating pandemics affecting the global healthcare infrastructure and disrupting society and the economy worldwide. Among all pathogens, viruses play a critical role that is associated with outbreaks due to their wide range of species, involvement of animal hosts, easily transmitted to humans, and increased rates of infectivity. Viral disease outbreaks threaten public health globally due to the challenges associated with controlling and eradicating them. Implementing effective viral disease control programs starts with ongoing surveillance data collection and analyses to detect infectious disease trends and patterns, which is critical for maintaining public health. Viral disease control strategies include improved hygiene and sanitation facilities, eliminating arthropod vectors, vaccinations, and quarantine. The Saudi Ministry of Health (MOH) and the Public Health Authority (also known as Weqayah) in Saudi Arabia are responsible for public health surveillance to control and prevent infectious diseases. The notifiable viral diseases based on the Saudi MOH include hepatitis diseases, viral hemorrhagic fevers, respiratory viral diseases, exanthematous viral diseases, neurological viral diseases, and conjunctivitis. Monitoring trends and detecting changes in these viral diseases is essential to provide proper interventions, evaluate the established prevention programs, and develop better prevention strategies. Therefore, this review aims to highlight the epidemiological updates of the recently reported viral infections in Saudi Arabia and to provide insights into the recent clinical treatment and prevention strategies.
Collapse
Affiliation(s)
- Noura M. Alshiban
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Munirah S. Aleyiydi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Majed S. Nassar
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Nada K. Alhumaid
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Thamer A. Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yahya M.K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila A. Damiati
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | | | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
4
|
Drury RE, Camara S, Chelysheva I, Bibi S, Sanders K, Felle S, Emary K, Phillips D, Voysey M, Ferreira DM, Klenerman P, Gilbert SC, Lambe T, Pollard AJ, O'Connor D. Multi-omics analysis reveals COVID-19 vaccine induced attenuation of inflammatory responses during breakthrough disease. Nat Commun 2024; 15:3402. [PMID: 38649734 PMCID: PMC11035709 DOI: 10.1038/s41467-024-47463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
The immune mechanisms mediating COVID-19 vaccine attenuation of COVID-19 remain undescribed. We conducted comprehensive analyses detailing immune responses to SARS-CoV-2 virus in blood post-vaccination with ChAdOx1 nCoV-19 or a placebo. Samples from randomised placebo-controlled trials (NCT04324606 and NCT04400838) were taken at baseline, onset of COVID-19-like symptoms, and 7 days later, confirming COVID-19 using nucleic amplification test (NAAT test) via real-time PCR (RT-PCR). Serum cytokines were measured with multiplexed immunoassays. The transcriptome was analysed with long, short and small RNA sequencing. We found attenuation of RNA inflammatory signatures in ChAdOx1 nCoV-19 compared with placebo vaccinees and reduced levels of serum proteins associated with COVID-19 severity. KREMEN1, a putative alternative SARS-CoV-2 receptor, was downregulated in placebo compared with ChAdOx1 nCoV-19 vaccinees. Vaccination ameliorates reductions in cell counts across leukocyte populations and platelets noted at COVID-19 onset, without inducing potentially deleterious Th2-skewed immune responses. Multi-omics integration links a global reduction in miRNA expression at COVID-19 onset to increased pro-inflammatory responses at the mRNA level. This study reveals insights into the role of COVID-19 vaccines in mitigating disease severity by abrogating pro-inflammatory responses associated with severe COVID-19, affirming vaccine-mediated benefit in breakthrough infection, and highlighting the importance of clinically relevant endpoints in vaccine evaluation.
Collapse
Affiliation(s)
- Ruth E Drury
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susana Camara
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Katherine Sanders
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Salle Felle
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Katherine Emary
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel Phillips
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Paul Klenerman
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah C Gilbert
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
5
|
Pei J, Liu RL, Yang ZH, Du YX, Qian SS, Meng SL, Guo J, Zhang B, Shen S. Identification of Critical Amino Acids of Coxsackievirus A10 Associated with Cell Tropism and Viral RNA Release during Uncoating. Viruses 2023; 15:2114. [PMID: 37896891 PMCID: PMC10611408 DOI: 10.3390/v15102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Coxsackievirus A10 (CV-A10) is a prevailing causative agent of hand-foot-mouth disease, necessitating the isolation and adaptation of appropriate strains in cells allowed for human vaccine development. In this study, amino acid sequences of CV-A10 strains with different cell tropism on RD and Vero cells were compared. Various amino acids on the structural and non-structural proteins related to cell tropism were identified. The reverse genetic systems of several CV-A10 strains with RD+/Vero- and RD+/Vero+ cell tropism were developed, and a set of CV-A10 recombinants were produced. The binding, entry, uncoating, and proliferation steps in the life cycle of these viruses were evaluated. P1 replacement of CV-A10 strains with different cell tropism revealed the pivotal role of the structural proteins in cell tropism. Further, seven amino acid substitutions in VP2 and VP1 were introduced to further investigate their roles played in cell tropism. These mutations cooperated in the growth of CV-A10 in Vero cells. Particularly, the valine to isoleucine mutation at the position VP1-236 (V1236I) was found to significantly restrict viral uncoating in Vero cells. Co-immunoprecipitation assays showed that the release of viral RNA from the KREMEN1 receptor-binding virions was restricted in r0195-V1236I compared with the parental strain r0195 (a RD+/Vero+ strain). Overall, this study highlights the dominant effect of structural proteins in CV-A10 adaption in Vero cells and the importance of V1236 in viral uncoating, providing a foundation for the mechanism study of CV-A10 cell tropism, and facilitating the development of vaccine candidates.
Collapse
Affiliation(s)
- Jie Pei
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Rui-Lun Liu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Zhi-Hui Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Ya-Xin Du
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Sha-Sha Qian
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Sheng-Li Meng
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Jing Guo
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Bo Zhang
- Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Shuo Shen
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| |
Collapse
|
6
|
Li X, Liu Z, Yan X, Tian Y, Liu K, Zhao Y, Shao J, Hao P, Zhang C. VP2 residue N142 of coxsackievirus A10 is critical for the interaction with KREMEN1 receptor and neutralizing antibodies and the pathogenicity in mice. PLoS Pathog 2023; 19:e1011662. [PMID: 37788227 PMCID: PMC10547193 DOI: 10.1371/journal.ppat.1011662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Coxsackievirus A10 (CVA10) has recently emerged as one of the major causative agents of hand, foot, and mouth disease. CVA10 may also cause a variety of complications. No approved vaccine or drug is currently available for CVA10. The residues of CVA10 critical for viral attachment, infectivity and in vivo pathogenicity have not been identified by experiment. Here, we report the identification of CVA10 residues important for binding to cellular receptor KREMEN1. We identified VP2 N142 as a key receptor-binding residue by screening of CVA10 mutants resistant to neutralization by soluble KREMEN1 protein. The receptor-binding residue N142 is exposed on the canyon rim but highly conserved in all naturally occurring CVA10 strains, which provides a counterexample to the canyon hypothesis. Residue N142 when mutated drastically reduced receptor-binding activity, resulting in decreased viral attachment and infection in cell culture. More importantly, residue N142 when mutated reduced viral replication in limb muscle and spinal cord of infected mice, leading to lower mortality and less severe clinical symptoms. Additionally, residue N142 when mutated could decrease viral binding affinity to anti-CVA10 polyclonal antibodies and a neutralizing monoclonal antibody and render CVA10 resistant to neutralization by the anti-CVA10 antibodies. Overall, our study highlights the essential role of VP2 residue N142 of CVA10 in the interactions with KREMEN1 receptor and neutralizing antibodies and viral virulence in mice, facilitating the understanding of the molecular mechanisms of CVA10 infection and immunity. Our study also provides important information for rational development of antibody-based treatment and vaccines against CVA10 infection.
Collapse
Affiliation(s)
- Xue Li
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zeyu Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xingyu Yan
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yuan Tian
- Institutional Center for Shared Technologies and Facilities of Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Kexin Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yue Zhao
- Institutional Center for Shared Technologies and Facilities of Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Jiang Shao
- Institutional Center for Shared Technologies and Facilities of Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Pei Hao
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chao Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Zhu P, Ji W, Li D, Li Z, Chen Y, Dai B, Han S, Chen S, Jin Y, Duan G. Current status of hand-foot-and-mouth disease. J Biomed Sci 2023; 30:15. [PMID: 36829162 PMCID: PMC9951172 DOI: 10.1186/s12929-023-00908-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is a viral illness commonly seen in young children under 5 years of age, characterized by typical manifestations such as oral herpes and rashes on the hands and feet. These symptoms typically resolve spontaneously within a few days without complications. Over the past two decades, our understanding of HFMD has greatly improved and it has received significant attention. A variety of research studies, including epidemiological, animal, and in vitro studies, suggest that the disease may be associated with potentially fatal neurological complications. These findings reveal clinical, epidemiological, pathological, and etiological characteristics that are quite different from initial understandings of the illness. It is important to note that HFMD has been linked to severe cardiopulmonary complications, as well as severe neurological sequelae that can be observed during follow-up. At present, there is no specific pharmaceutical intervention for HFMD. An inactivated Enterovirus A71 (EV-A71) vaccine that has been approved by the China Food and Drug Administration (CFDA) has been shown to provide a high level of protection against EV-A71-related HFMD. However, the simultaneous circulation of multiple pathogens and the evolution of the molecular epidemiology of infectious agents make interventions based solely on a single agent comparatively inadequate. Enteroviruses are highly contagious and have a predilection for the nervous system, particularly in child populations, which contributes to the ongoing outbreak. Given the substantial impact of HFMD around the world, this Review synthesizes the current knowledge of the virology, epidemiology, pathogenesis, therapy, sequelae, and vaccine development of HFMD to improve clinical practices and public health efforts.
Collapse
Affiliation(s)
- Peiyu Zhu
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Wangquan Ji
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Dong Li
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Zijie Li
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Yu Chen
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Bowen Dai
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Shujie Han
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Shuaiyin Chen
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China. .,Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
8
|
Zhu W, Li J, Wu Z, Li H, Zhang Z, Zhu X, Sun M, Dong S. Dual blockages of a broad and potent neutralizing IgM antibody targeting GH loop of EV-As. Immunology 2023. [PMID: 36726218 DOI: 10.1111/imm.13629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
The reported enterovirus A 71 (EVA71) vaccines and immunoglobin G (IgG) antibodies have no cross-antiviral efficacy against other enterovirus A (EV-A) which caused hand, foot and mouth disease (HFMD). Here we constructed an IgM antibody (20-IgM) based on our previous discovery to address the resistance encountered by IgG-based immunotherapy. Although binding to the same conserved neutralizing epitope within the GH loop of EV-As VP1, the antiviral breath and potency of 20-IgM are still higher than its parental 20-IgG1. The 20-IgM blocks the interaction between the EV-As and its receptors, scavenger receptor class B, member 2 (SCARB2) and Kringle-containing transmembrane protein 1(KREMEN1) of the host cell. The 20-IgM also neutralizes the EV-As at the post-attachment stages, including postattachment neutralization, uncoating and RNA release inhibition after internalization. Mechanistically, the dual blockage effect of 20-IgM is dependent on both a conserved site targeting and high affinity binding. Meanwhile, 20-IgM provides cross-antiviral efficacy in EV-As orally infected neonatal ICR mice. Collectively, 20-IgM and its property exhibit excellent antiviral activity with a dual-blockage inhibitory effect at both the pre- and post-attachment stages. The finding enhances our understanding of IgM-mediated immunity and highlights the potential of IgM subtype antibodies against enterovirus infections.
Collapse
Affiliation(s)
- Wenbing Zhu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hui Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhixiao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xiaoyong Zhu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Shaozhong Dong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
9
|
Bräutigam K, Reinhard S, Wartenberg M, Forster S, Greif K, Granai M, Bösmüller H, Klingel K, Schürch CM. Comprehensive analysis of SARS-CoV-2 receptor proteins in human respiratory tissues identifies alveolar macrophages as potential virus entry site. Histopathology 2023; 82:846-859. [PMID: 36700825 DOI: 10.1111/his.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
AIMS COVID-19 has had enormous consequences on global health-care and has resulted in millions of fatalities. The exact mechanism and site of SARS-CoV-2 entry into the body remains insufficiently understood. Recently, novel virus receptors were identified, and alveolar macrophages were suggested as a potential viral entry cell type and vector for intra-alveolar virus transmission. Here, we investigated the protein expression of 10 well-known and novel virus entry molecules along potential entry sites in humans using immunohistochemistry. METHODS AND RESULTS Samples of different anatomical sites from up to 93 patients were incorporated into tissue microarrays. Protein expression of ACE2, TMPRSS2, furin, CD147, C-type lectin receptors (CD169, CD209, CD299), neuropilin-1, ASGR1 and KREMEN1 were analysed. In lung tissues, at least one of the three receptors ACE2, ASGR1 or KREMEN1 was expressed in the majority of cases. Moreover, all the investigated molecules were found to be expressed in alveolar macrophages, and co-localisation with SARS-CoV-2 N-protein was demonstrated using dual immunohistochemistry in lung tissue from a COVID-19 autopsy. While CD169 and CD209 showed consistent protein expression in sinonasal, conjunctival and bronchiolar tissues, neuropilin-1 and ASGR1 were mostly absent, suggesting a minor relevance of these two molecules at these specific sites. CONCLUSION Our results extend recent discoveries indicating a role for these molecules in virus entry at different anatomical sites. Moreover, they support the notion of alveolar macrophages being a potential entry cell for SARS-CoV-2.
Collapse
Affiliation(s)
| | - Stefan Reinhard
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Stefan Forster
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Karen Greif
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Massimo Granai
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Hans Bösmüller
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Karin Klingel
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Recent advances in anti-coxsackievirus A16 viral drug research. Future Med Chem 2023; 15:97-117. [PMID: 36538291 DOI: 10.4155/fmc-2022-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hand, foot and mouth disease, a childhood disorder caused by enteroviruses, is intermittently endemic in the Asia-Pacific region and endangers the lives of many infants and young children. Coxsackievirus A16 (CV-A16) is one of the major pathogens causing hand, foot, and mouth disease on occasion, resulting in catastrophic neurological sequelae and patient death. Currently, no clinical interventions are available that completely block the CV-A16 infection. Therefore, research on anti-CV-A16 treatment continues to be a significant focus of interest. This report provides a detailed background on and an introduction to CV-A16; a description of the viral gene and protein structures and a summary of the current advances in pharmaceutical targets, drug research and other related areas.
Collapse
|
11
|
Molecular mechanism of antibody neutralization of coxsackievirus A16. Nat Commun 2022; 13:7854. [PMID: 36543790 PMCID: PMC9769477 DOI: 10.1038/s41467-022-35575-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Coxsackievirus A16 (CVA16) causes hand, foot and mouth disease in infants and young children. However, no vaccine or anti-viral agent is currently available for CVA16. Here, the functions and working mechanisms of two CVA16-specific neutralizing monoclonal antibodies (MAbs), 9B5 and 8C4, are comprehensively investigated. Both 9B5 and 8C4 display potent neutralization in vitro and prophylactic and therapeutic efficacy in a mouse model of CVA16 infection. Mechanistically, 9B5 exerts neutralization primarily through inhibiting CVA16 attachment to cell surface via blockade of CVA16 binding to its attachment receptor, heparan sulfate, whereas 8C4 functions mainly at the post-attachment stage of CVA16 entry by interfering with the interaction between CVA16 and its uncoating receptor SCARB2. Cryo-EM studies show that 9B5 and 8C4 target distinct epitopes located at the 5-fold and 3-fold protrusions of CVA16 capsids, respectively, and exhibit differential binding preference to three forms of naturally occurring CVA16 particles. Moreover, 9B5 and 8C4 are compatible in formulating an antibody cocktail which displays the ability to prevent virus escape seen with individual MAbs. Together, our work elucidates the functional and structural basis of CVA16 antibody-mediated neutralization and protection, providing important information for design and development of effective CVA16 vaccines and antibody therapies.
Collapse
|
12
|
Ismail A, Saahath A, Ismail Y, Ismail MF, Zubair Z, Subbaram K. 'Tomato flu' a new epidemic in India: Virology, epidemiology, and clinical features. New Microbes New Infect 2022; 51:101070. [PMID: 36582550 PMCID: PMC9792351 DOI: 10.1016/j.nmni.2022.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022] Open
Abstract
This article aims to highlight the current update on the 'tomato flu' outbreak in India. Recently there was an outbreak of a new illness in some parts of India. The disease was very contagious and it manifested with a rash mainly noticed in children younger than nine years. The rash was very painful and blisters were the size of small tomatoes, hence it was termed 'tomato flu'. A detailed literature review was performed on the virology, replication, epidemiology, and clinical features of this disease. The current outbreak was compared with similar other diseases of the past. The affected children exhibited severe rash in the palms, soles, oral cavity, and other body parts. They developed febrile illness with a sore throat, and myalgia followed by blisters on the tongue, gums, and cheeks. The affected children did not develop any complications leading to death. The therapy involved mainly symptomatic, supportive treatment with isolation and maintaining hygienic practices. The causative agent was identified to be Coxsackievirus A16, an RNA virus belonging to the family, Picornaviridae. We conclude that the recent Indian epidemic of this disease might be due to a new variant of Coxsackievirus A16 actually causing HFMD.
Collapse
Affiliation(s)
| | | | | | | | | | - Kannan Subbaram
- Corresponding author. School of Medicine, The Maldives National University, Male’, Maldives.
| |
Collapse
|
13
|
Zhu H, Liu X, Wu Y, He Y, Zheng H, Liu H, Liu Q. Identification of a neutralizing linear epitope within the VP1 protein of coxsackievirus A10. Virol J 2022; 19:203. [PMID: 36457099 PMCID: PMC9714398 DOI: 10.1186/s12985-022-01939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Coxsackievirus A10 (CV-A10) is a leading cause of hand, foot, and mouth disease (HFMD). It is necessary to identify neutralizing epitopes to investigate and develop an epitope-based vaccine against CV-A10. The viral protein VP1 is the immunodominant capsid protein and contains the critical neutralizing epitope. However, neutralizing epitopes within VP1 protein of CV-A10 have not been well characterized. METHODS Bioinformatics techniques were applied to predict linear epitopes on the CV-A10 VP1 protein. The advanced structural features of epitopes were analyzed by three-dimensional (3D) modeling. The anticipated epitope peptides were synthesized and used to immunize mice as antigens. ELISA and micro-neutralization assay were used to determine the specific IgG antibody and neutralizing antibody titers. The protective efficacy of the epitope peptides in vivo was evaluated using a passive immunization/challenge assay. RESULTS Three linear epitopes (EP3, EP4, and EP5) were predicted on CV-A10 VP1, all spatially exposed on the capsid surface, and exhibited adequate immunogenicity. However, only EP4, corresponding to residues 162-176 of VP1, demonstrated potent neutralization against CV-A10. To determine the neutralizing capacity of EP4 further, EP4 double-peptide was synthesized and injected into mice. The mean neutralizing antibody titer of the anti-EP4 double-peptide sera was 1:50.79, which provided 40% protection against lethal infection with CV-A10 in neonatal mice. In addition, sequence and advanced structural analysis revealed that EP4 was highly conserved among representative strains of CV-A10 and localized in the EF loop region of VP1, like EV-A71 SP55 or CV-A16 PEP55. CONCLUSIONS These data demonstrate that EP4 is a specific linear neutralizing epitope on CV-A10 VP1. Its protective efficacy can be enhanced by increasing its copy number, which will be the foundation for developing a CV-A10 epitope-based vaccine.
Collapse
Affiliation(s)
- Hanyu Zhu
- grid.443385.d0000 0004 1798 9548College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi China ,grid.484105.cKey Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Xin Liu
- grid.443385.d0000 0004 1798 9548College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi China ,grid.484105.cKey Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Yue Wu
- grid.443385.d0000 0004 1798 9548Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi China
| | - Yunyi He
- grid.443385.d0000 0004 1798 9548Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi China
| | - Huanying Zheng
- grid.508326.a0000 0004 1754 9032Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong China
| | - Hongbo Liu
- grid.443385.d0000 0004 1798 9548Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi China ,Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guilin, Guangxi China ,grid.484105.cKey Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Qiliang Liu
- grid.443385.d0000 0004 1798 9548College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi China ,grid.484105.cKey Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi, China
| |
Collapse
|
14
|
ACE2-Independent Alternative Receptors for SARS-CoV-2. Viruses 2022; 14:v14112535. [PMID: 36423144 PMCID: PMC9692829 DOI: 10.3390/v14112535] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is highly contagious and remains a major public health challenge despite the availability of effective vaccines. SARS-CoV-2 enters cells through the binding of its spike receptor-binding domain (RBD) to the human angiotensin-converting enzyme 2 (ACE2) receptor in concert with accessory receptors/molecules that facilitate viral attachment, internalization, and fusion. Although ACE2 plays a critical role in SARS-CoV-2 replication, its expression profiles are not completely associated with infection patterns, immune responses, and clinical manifestations. Additionally, SARS-CoV-2 infects cells that lack ACE2, and the infection is resistant to monoclonal antibodies against spike RBD in vitro, indicating that some human cells possess ACE2-independent alternative receptors, which can mediate SARS-CoV-2 entry. Here, we discuss these alternative receptors and their interactions with SARS-CoV-2 components for ACE2-independent viral entry. These receptors include CD147, AXL, CD209L/L-SIGN/CLEC4M, CD209/DC-SIGN/CLEC4L, CLEC4G/LSECtin, ASGR1/CLEC4H1, LDLRAD3, TMEM30A, and KREMEN1. Most of these receptors are known to be involved in the entry of other viruses and to modulate cellular functions and immune responses. The SARS-CoV-2 omicron variant exhibits altered cell tropism and an associated change in the cell entry pathway, indicating that emerging variants may use alternative receptors to escape the immune pressure against ACE2-dependent viral entry provided by vaccination against RBD. Understanding the role of ACE2-independent alternative receptors in SARS-CoV-2 viral entry and pathogenesis may provide avenues for the prevention of infection by SARS-CoV-2 variants and for the treatment of COVID-19.
Collapse
|
15
|
Cryo-electron microscopy and image classification reveal the existence and structure of the coxsackievirus A6 virion. Commun Biol 2022; 5:898. [PMID: 36056184 PMCID: PMC9438360 DOI: 10.1038/s42003-022-03863-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/18/2022] [Indexed: 12/18/2022] Open
Abstract
Coxsackievirus A6 (CV-A6) has recently overtaken enterovirus A71 and CV-A16 as the primary causative agent of hand, foot, and mouth disease worldwide. Virions of CV-A6 were not identified in previous structural studies, and it was speculated that the virus is unique among enteroviruses in using altered particles with expanded capsids to infect cells. In contrast, the virions of other enteroviruses are required for infection. Here we used cryo-electron microscopy (cryo-EM) to determine the structures of the CV-A6 virion, altered particle, and empty capsid. We show that the CV-A6 virion has features characteristic of virions of other enteroviruses, including a compact capsid, VP4 attached to the inner capsid surface, and fatty acid-like molecules occupying the hydrophobic pockets in VP1 subunits. Furthermore, we found that in a purified sample of CV-A6, the ratio of infectious units to virions is 1 to 500. Therefore, it is likely that virions of CV-A6 initiate infection, like those of other enteroviruses. Our results provide evidence that future vaccines against CV-A6 should target its virions instead of the antigenically distinct altered particles. Furthermore, the structure of the virion provides the basis for the rational development of capsid-binding inhibitors that block the genome release of CV-A6. A cryo-EM structure for the three conformers of coxsackievirus A6 provides insight into the infection process of this enterovirus, which is responsible for numerous cases of hand, foot, and mouth disease.
Collapse
|
16
|
Zheng Q, Zhu R, Yin Z, Xu L, Sun H, Yu H, Wu Y, Jiang Y, Huang Q, Huang Y, Zhang D, Liu L, Yang H, He M, Zhou Z, Jiang Y, Chen Z, Zhao H, Que Y, Kong Z, Zhou L, Li T, Zhang J, Luo W, Gu Y, Cheng T, Li S, Xia N. Structural basis for the synergistic neutralization of coxsackievirus B1 by a triple-antibody cocktail. Cell Host Microbe 2022; 30:1279-1294.e6. [PMID: 36002016 DOI: 10.1016/j.chom.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Coxsackievirus B1 (CVB1) is an emerging pathogen associated with severe neonatal diseases including aseptic meningitis, myocarditis, and pancreatitis and also with the development of type 1 diabetes. We characterize the binding and therapeutic efficacies of three CVB1-specific neutralizing antibodies (nAbs) identified for their ability to inhibit host receptor engagement. High-resolution cryo-EM structures showed that these antibodies recognize different epitopes but with an overlapping region in the capsid VP2 protein and specifically the highly variable EF loop. Moreover, they perturb capsid-receptor interactions by binding various viral particle forms. Antibody combinations achieve synergetic neutralization via a stepwise capsid transition and virion disruption, indicating dynamic changes in the virion in response to multiple nAbs targeting the receptor-binding site. Furthermore, this three-antibody cocktail protects against lethal challenge in neonatal mice and limits pancreatitis and viral replication in a non-obese diabetic mouse model. These results illustrate the utility of nAbs for rational design of therapeutics against picornaviruses such as CVB.
Collapse
Affiliation(s)
- Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhichao Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yuanyuan Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Qiongzi Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Dongqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Liqin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Hongwei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhenhong Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yanan Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Huan Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Lizhi Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China.
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China; Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian 361102, People's Republic of China.
| |
Collapse
|
17
|
Abstract
Enterovirus 70 (EV70) is a human pathogen belonging to the family Picornaviridae. EV70 is transmitted by eye secretions and causes acute hemorrhagic conjunctivitis, a serious eye disease. Despite the severity of the disease caused by EV70, its structure is unknown. Here, we present the structures of the EV70 virion, altered particle, and empty capsid determined by cryo-electron microscopy. The capsid of EV70 is composed of the subunits VP1, VP2, VP3, and VP4. The partially collapsed hydrophobic pocket located in VP1 of the EV70 virion is not occupied by a pocket factor, which is commonly present in other enteroviruses. Nevertheless, we show that the pocket can be targeted by the antiviral compounds WIN51711 and pleconaril, which block virus infection. The inhibitors prevent genome release by stabilizing EV70 particles. Knowledge of the structures of complexes of EV70 with inhibitors will enable the development of capsid-binding therapeutics against this virus. IMPORTANCE Globally distributed enterovirus 70 (EV70) causes local outbreaks of acute hemorrhagic conjunctivitis. The discharge from infected eyes enables the high-efficiency transmission of EV70 in overcrowded areas with low hygienic standards. Currently, only symptomatic treatments are available. We determined the structures of EV70 in its native form, the genome release intermediate, and the empty capsid resulting from genome release. Furthermore, we elucidated the structures of EV70 in complex with two inhibitors that block virus infection, and we describe the mechanism of their binding to the virus capsid. These results enable the development of therapeutics against EV70.
Collapse
|
18
|
Atomic Structures of Coxsackievirus B5 Provide Key Information on Viral Evolution and Survival. J Virol 2022; 96:e0010522. [PMID: 35442060 PMCID: PMC9093117 DOI: 10.1128/jvi.00105-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackie virus B5 (CVB5), a main serotype in human Enterovirus B (EVB), can cause severe viral encephalitis and aseptic meningitis among infants and children. Currently, there is no approved vaccine or antiviral therapy available against CVB5 infection. Here, we determined the atomic structures of CVB5 in three forms: mature full (F) particle (2.73 Å), intermediate altered (A) particle (2.81 Å), and procapsid empty (E) particle (2.95 Å). Structural analysis of F particle of CVB5 unveiled similar structures of “canyon,” “puff,” and “knob” as those other EV-Bs. We observed structural rearrangements that are alike during the transition from F to A particle, indicative of similar antigenicity, cell entry, and uncoating mechanisms shared by all EV-Bs. Further comparison of structures and sequences among all structure-known EV-Bs revealed that while the residues targeted by neutralizing MAbs are diversified and drive the evolution of EV-Bs, the relative conserved residues recognized by uncoating receptors could serve as the basis for the development of antiviral vaccines and therapeutics. IMPORTANCE As one of the main serotypes in Enterovirus B, CVB5 has been commonly reported in recent years. The atomic structures of CVB5 shown here revealed classical features found in EV-Bs and the structural rearrangement occurring during particle expansion and uncoating. Also, structure- and sequence-based comparison between CVB5 and other structure-known EV-Bs screened out key domains important for viral evolution and survival. All these provide insights into the development of vaccine and therapeutics for EV-Bs.
Collapse
|
19
|
Wang I, Gupta SK, Ems G, Jayawardena N, Strauss M, Bostina M. Cryo-EM Structure of a Possum Enterovirus. Viruses 2022; 14:v14020318. [PMID: 35215909 PMCID: PMC8879876 DOI: 10.3390/v14020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
Enteroviruses (EVs) represent a substantial concern to global health. Here, we present the cryo-EM structure of a non-human enterovirus, EV-F4, isolated from the Australian brushtail possum to assess the structural diversity of these picornaviruses. The capsid structure, determined to ~3 Å resolution by single particle analysis, exhibits a largely smooth surface, similar to EV-F3 (formerly BEV-2). Although the cellular receptor is not known, the absence of charged residues on the outer surface of the canyon suggest a different receptor type than for EV-F3. Density for the pocket factor is clear, with the entrance to the pocket being smaller than for other enteroviruses.
Collapse
Affiliation(s)
- Ivy Wang
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada;
| | | | - Guillaume Ems
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (G.E.); (N.J.)
- Faculté des Sciences, Université de Namur, 5000 Namur, Belgium
| | - Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (G.E.); (N.J.)
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Mike Strauss
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada;
- Correspondence: (M.S.); (M.B.)
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (G.E.); (N.J.)
- Otago Micro and Nano Imaging, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (M.S.); (M.B.)
| |
Collapse
|
20
|
Jiang Z, Zhang Y, Lin H, Cheng Q, Lu X, Liu W, Zhou R, Zhong B, Tian X. A 10-Day-Old Murine Model of Coxsackievirus A6 Infection for the Evaluation of Vaccines and Antiviral Drugs. Front Immunol 2021; 12:665197. [PMID: 34054834 PMCID: PMC8155526 DOI: 10.3389/fimmu.2021.665197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Coxsackievirus A6 (CVA6) is recognized as a major enterovirus type that can cause severe hand, foot, and mouth disease and spread widely among children. Vaccines and antiviral drugs may be developed more effectively based on a stable and easy-to-operate CVA6 mouse infection model. In this study, a wild CVA6-W strain was sub-cultured in newborn mice of different ages (in days), for adaptation. Therefore, a CVA6-A mouse-adapted strain capable of stably infecting the mice was generated, and a fatal model was built. As the result indicated, CVA6-A could infect the 10-day-old mice to generate higher levels of IFN-γ, IL-6, and IL-10. The mice infected with CVA6-A were treated with IFN-α1b at a higher dose, with complete protection. Based on this strain, an animal model with active immunization was built to evaluate antiviral protection by active immunization. The three-day-old mice were pre-immunized with inactivated CVA6 thereby generating IgM and IgG antibodies within 7 days that enabled complete protection of the pre-immunized mice following the CVA6 virus challenge. There were eight mutations in the genome of CVA6-A than in that of CVA6-W, possibly attributed to the virulence of CVA6 in mice. Briefly, the CVA6 infection model of the 10-day-old mice built herein, may serve as an applicable preclinical evaluation model for CVA6 antiviral drugs and vaccine study.
Collapse
Affiliation(s)
- Zaixue Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Dongguan Institute of Paediatrics, Dongguan Children's Hospital, The Eighth People's Hospital of Dongguan City, Guangdong Medical University, Dongguan, China
| | - Yaozhong Zhang
- Dongguan Institute of Paediatrics, Dongguan Children's Hospital, The Eighth People's Hospital of Dongguan City, Guangdong Medical University, Dongguan, China
| | - Huayuan Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Qingqiu Cheng
- Dongguan Institute of Paediatrics, Dongguan Children's Hospital, The Eighth People's Hospital of Dongguan City, Guangdong Medical University, Dongguan, China
| | - Xiaomei Lu
- Dongguan Institute of Paediatrics, Dongguan Children's Hospital, The Eighth People's Hospital of Dongguan City, Guangdong Medical University, Dongguan, China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Baimao Zhong
- Dongguan Institute of Paediatrics, Dongguan Children's Hospital, The Eighth People's Hospital of Dongguan City, Guangdong Medical University, Dongguan, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Jayawardena N, Miles LA, Burga LN, Rudin C, Wolf M, Poirier JT, Bostina M. N-Linked Glycosylation on Anthrax Toxin Receptor 1 Is Essential for Seneca Valley Virus Infection. Viruses 2021; 13:v13050769. [PMID: 33924774 PMCID: PMC8145208 DOI: 10.3390/v13050769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 01/12/2023] Open
Abstract
Seneca Valley virus (SVV) is a picornavirus with potency in selectively infecting and lysing cancerous cells. The cellular receptor for SVV mediating the selective tropism for tumors is anthrax toxin receptor 1 (ANTXR1), a type I transmembrane protein expressed in tumors. Similar to other mammalian receptors, ANTXR1 has been shown to harbor N-linked glycosylation sites in its extracellular vWA domain. However, the exact role of ANTXR1 glycosylation on SVV attachment and cellular entry was unknown. Here we show that N-linked glycosylation in the ANTXR1 vWA domain is necessary for SVV attachment and entry. In our study, tandem mass spectrometry analysis of recombinant ANTXR1-Fc revealed the presence of complex glycans at N166, N184 in the vWA domain, and N81 in the Fc domain. Symmetry-expanded cryo-EM reconstruction of SVV-ANTXR1-Fc further validated the presence of N166 and N184 in the vWA domain. Cell blocking, co-immunoprecipitation, and plaque formation assays confirmed that deglycosylation of ANTXR1 prevents SVV attachment and subsequent entry. Overall, our results identified N-glycosylation in ANTXR1 as a necessary post-translational modification for establishing stable interactions with SVV. We anticipate our findings will aid in selecting patients for future cancer therapeutics, where screening for both ANTXR1 and its glycosylation could lead to an improved outcome from SVV therapy.
Collapse
Affiliation(s)
- Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (N.J.); (L.N.B.)
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Linde A. Miles
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Laura N. Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (N.J.); (L.N.B.)
| | - Charles Rudin
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (M.W.); (J.T.P.); (M.B.)
| | - John T. Poirier
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
- Correspondence: (M.W.); (J.T.P.); (M.B.)
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (N.J.); (L.N.B.)
- Otago Micro and Nano Imaging Centre, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (M.W.); (J.T.P.); (M.B.)
| |
Collapse
|
22
|
Xu L, Zheng Q, Zhu R, Yin Z, Yu H, Lin Y, Wu Y, He M, Huang Y, Jiang Y, Sun H, Zha Z, Yang H, Huang Q, Zhang D, Chen Z, Ye X, Han J, Yang L, Liu C, Que Y, Fang M, Gu Y, Zhang J, Luo W, Zhou ZH, Li S, Cheng T, Xia N. Cryo-EM structures reveal the molecular basis of receptor-initiated coxsackievirus uncoating. Cell Host Microbe 2021; 29:448-462.e5. [PMID: 33539764 DOI: 10.1016/j.chom.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Enterovirus uncoating receptors bind at the surface depression ("canyon") that encircles each capsid vertex causing the release of a host-derived lipid called "pocket factor" that is buried in a hydrophobic pocket formed by the major viral capsid protein, VP1. Coxsackievirus and adenovirus receptor (CAR) is a universal uncoating receptor of group B coxsackieviruses (CVB). Here, we present five high-resolution cryoEM structures of CVB representing different stages of virus infection. Structural comparisons show that the CAR penetrates deeper into the canyon than other uncoating receptors, leading to a cascade of events: collapse of the VP1 hydrophobic pocket, high-efficiency release of the pocket factor and viral uncoating and genome release under neutral pH, as compared with low pH. Furthermore, we identified a potent therapeutic antibody that can neutralize viral infection by interfering with virion-CAR interactions, destabilizing the capsid and inducing virion disruption. Together, these results define the structural basis of CVB cell entry and antibody neutralization.
Collapse
Affiliation(s)
- Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhichao Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuanyuan Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhenghui Zha
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongwei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qiongzi Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dongqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiangzhong Ye
- Beijing Wantai Enterprise Community Partners, Beijing 102206, China
| | - Jinle Han
- Beijing Wantai Enterprise Community Partners, Beijing 102206, China
| | - Lisheng Yang
- Beijing Wantai Enterprise Community Partners, Beijing 102206, China
| | - Che Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Z Hong Zhou
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian 361102, China.
| |
Collapse
|
23
|
Huang KYA, Zhou D, Fry EE, Kotecha A, Huang PN, Yang SL, Tsao KC, Huang YC, Lin TY, Ren J, Stuart DI. Structural and functional analysis of protective antibodies targeting the threefold plateau of enterovirus 71. Nat Commun 2020; 11:5253. [PMID: 33067459 PMCID: PMC7567869 DOI: 10.1038/s41467-020-19013-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Enterovirus 71 (EV71)-neutralizing antibodies correlate with protection and have potential as therapeutic agents. We isolate and characterize a panel of plasmablast-derived monoclonal antibodies from an infected child whose antibody response focuses on the plateau epitope near the icosahedral 3-fold axes. Eight of a total of 19 antibodies target this epitope and three of these potently neutralize the virus. Representative neutralizing antibodies 38-1-10A and 38-3-11A both confer effective protection against lethal EV71 challenge in hSCARB2-transgenic mice. The cryo-electron microscopy structures of the EV71 virion in complex with Fab fragments of these potent and protective antibodies reveal the details of a conserved epitope formed by residues in the BC and HI loops of VP2 and the BC and HI loops of VP3 spanning the region around the 3-fold axis. Remarkably, the two antibodies interact with the epitope in quite distinct ways. These plateau-binding antibodies provide templates for promising candidate therapeutics.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Capsid Proteins/chemistry
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Enterovirus A, Human/chemistry
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Enterovirus Infections/immunology
- Enterovirus Infections/virology
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Female
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Neutralization Tests
Collapse
Affiliation(s)
- Kuan-Ying A Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Daming Zhou
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Elizabeth E Fry
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Abhay Kotecha
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Li Yang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chien Tsao
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yhu-Chering Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jingshan Ren
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - David I Stuart
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK.
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
24
|
Song Y, Wang D, Zhang Y, Han Z, Xiao J, Lu H, Yan D, Ji T, Yang Q, Zhu S, Xu W. Genetic Diversity Analysis of Coxsackievirus A8 Circulating in China and Worldwide Reveals a Highly Divergent Genotype. Viruses 2020; 12:E1061. [PMID: 32977444 PMCID: PMC7598191 DOI: 10.3390/v12101061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Coxsackievirus A8 (CV-A8) is one of the pathogens associated with hand, foot and mouth disease (HFMD) and herpangina (HA), occasionally leading to severe neurological disorders such as acute flaccid paralysis (AFP). Only one study aimed at CV-A8 has been published to date, and only 12 whole-genome sequences are publicly available. In this study, complete genome sequences from 11 CV-A8 strains isolated from HFMD patients in extensive regions from China between 2013 and 2018 were determined, and all sequences from GenBank were retrieved. A phylogenetic analysis based on a total of 34 complete VP1 sequences of CV-A8 revealed five genotypes: A, B, C, D and E. The newly emerging genotype E presented a highly phylogenetic divergence compared with the other genotypes and was composed of the majority of the strains sequenced in this study. Markov chain Monte Carlo (MCMC) analysis revealed that genotype E has been evolving for nearly a century and somehow arose in approximately 2010. The Bayesian skyline plot showed that the population size of CV-A8 has experienced three dynamic fluctuations since 2001. Amino acid residues of VP1100N, 103Y, 240T and 241V, which were embedded in the potential capsid loops of genotype E, might enhance genotype E adaption to the human hosts. The CV-A8 whole genomes displayed significant intra-genotypic genetic diversity in the non-capsid region, and a total of six recombinant lineages were detected. The Chinese viruses from genotype E might have emerged recently from recombining with European CV-A6 strains. CV-A8 is a less important HFMD pathogen, and the capsid gene diversity and non-capsid recombination variety observed in CV-A8 strains indicated that the constant generation of deleterious genomes and a constant selection pressure against these deleterious mutations is still ongoing within CV-A8 quasispecies. It is possible that CV-A8 could become an important pathogen in the HFMD spectrum in the future. Further surveillance of CV-A8 is greatly needed.
Collapse
Affiliation(s)
- Yang Song
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Dongyan Wang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Tianjiao Ji
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Qian Yang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
25
|
Wang K, Zhu L, Sun Y, Li M, Zhao X, Cui L, Zhang L, Gao GF, Zhai W, Zhu F, Rao Z, Wang X. Structures of Echovirus 30 in complex with its receptors inform a rational prediction for enterovirus receptor usage. Nat Commun 2020; 11:4421. [PMID: 32887891 PMCID: PMC7474057 DOI: 10.1038/s41467-020-18251-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/12/2020] [Indexed: 01/27/2023] Open
Abstract
Receptor usage that determines cell tropism and drives viral classification closely correlates with the virus structure. Enterovirus B (EV-B) consists of several subgroups according to receptor usage, among which echovirus 30 (E30), a leading causative agent for human aseptic meningitis, utilizes FcRn as an uncoating receptor. However, receptors for many EVs remain unknown. Here we analyzed the atomic structures of E30 mature virion, empty- and A-particles, which reveals serotype-specific epitopes and striking conformational differences between the subgroups within EV-Bs. Of these, the VP1 BC loop markedly distinguishes E30 from other EV-Bs, indicative of a role as a structural marker for EV-B. By obtaining cryo-electron microscopy structures of E30 in complex with its receptor FcRn and CD55 and comparing its homologs, we deciphered the underlying molecular basis for receptor recognition. Together with experimentally derived viral receptor identifications, we developed a structure-based in silico algorithm to inform a rational prediction for EV receptor usage. Echovirus 30 (E30) belongs to the Enterovirus-B group and causes aseptic meningitis in humans. Here, the authors present the cryo-EM structures of the E30 E-particle, A-particle and the mature virion, as well as structures of E30 in complex with its receptor FcRn and CD55, and furthermore they describe a structure-based algorithm that allows the prediction of EV receptor usage.
Collapse
Affiliation(s)
- Kang Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300353, China
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Sun
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minhao Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lunbiao Cui
- NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Li Zhang
- NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Fengcai Zhu
- NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Zihe Rao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300353, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
26
|
Serotype specific epitopes identified by neutralizing antibodies underpin immunogenic differences in Enterovirus B. Nat Commun 2020; 11:4419. [PMID: 32887892 PMCID: PMC7474084 DOI: 10.1038/s41467-020-18250-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/12/2020] [Indexed: 11/23/2022] Open
Abstract
Echovirus 30 (E30), a serotype of Enterovirus B (EV-B), recently emerged as a major causative agent of aseptic meningitis worldwide. E30 is particularly devastating in the neonatal population and currently no vaccine or antiviral therapy is available. Here we characterize two highly potent E30-specific monoclonal antibodies, 6C5 and 4B10, which efficiently block binding of the virus to its attachment receptor CD55 and uncoating receptor FcRn. Combinations of 6C5 and 4B10 augment the sum of their individual anti-viral activities. High-resolution structures of E30-6C5-Fab and E30-4B10-Fab define the location and nature of epitopes targeted by the antibodies. 6C5 and 4B10 engage the capsid loci at the north rim of the canyon and in-canyon, respectively. Notably, these regions exhibit antigenic variability across EV-Bs, highlighting challenges in development of broad-spectrum antibodies. Our structures of these neutralizing antibodies of E30 are instructive for development of vaccines and therapeutics against EV-B infections. So far no vaccine or antiviral therapy is available for Echovirus 30 (E30) that causes aseptic meningitis. Here, the authors generate and characterise two E30-specific monoclonal antibodies that block binding of the virus to its attachment receptor CD55 and uncoating receptor FcRn, and determine the cryo-EM structures of E30 with the bound neutralizing antibodies.
Collapse
|
27
|
Molecular basis of Coxsackievirus A10 entry using the two-in-one attachment and uncoating receptor KRM1. Proc Natl Acad Sci U S A 2020; 117:18711-18718. [PMID: 32690697 DOI: 10.1073/pnas.2005341117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
KREMEN1 (KRM1) has been identified as a functional receptor for Coxsackievirus A10 (CV-A10), a causative agent of hand-foot-and-mouth disease (HFMD), which poses a great threat to infants globally. However, the underlying mechanisms for the viral entry process are not well understood. Here we determined the atomic structures of different forms of CV-A10 viral particles and its complex with KRM1 in both neutral and acidic conditions. These structures reveal that KRM1 selectively binds to the mature viral particle above the canyon of the viral protein 1 (VP1) subunit and contacts across two adjacent asymmetry units. The key residues for receptor binding are conserved among most KRM1-dependent enteroviruses, suggesting a uniform mechanism for receptor binding. Moreover, the binding of KRM1 induces the release of pocket factor, a process accelerated under acidic conditions. Further biochemical studies confirmed that receptor binding at acidic pH enabled CV-A10 virion uncoating in vitro. Taken together, these findings provide high-resolution snapshots of CV-A10 entry and identify KRM1 as a two-in-one receptor for enterovirus infection.
Collapse
|
28
|
Chen C, Xia Y, Zhu S, Xu F, Sun Y, Lu H, Gao M, Yang Z, Mao Z, Ge Q, Miao Z, Zhu H, Yao P. Muscle destruction caused by coxsackievirus A10 in gerbils: Construction of a novel animal model for antiviral evaluation. Virus Res 2020; 286:198067. [PMID: 32553610 DOI: 10.1016/j.virusres.2020.198067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
The morbidity and mortality of coxsackievirus A10 (CVA10)-associated hand, foot, and mouth disease (HFMD) have been increasing in recent years, while few studies on the vaccine and animal model of CVA10 have been reported. Here, we first established a CVA10-infected gerbil model and employed it to evaluate the immunoprotective effect of an inactivated CVA10 vaccine. The results showed that gerbils up to the age of 14 days were fully susceptible to CVA10, and all died within five days post-infection by intraperitoneal inoculation. Lethargy, wasting, hind-limb paralysis, and even death could be observed in the CVA10-infected gerbils. Pathological examination suggested that CVA10 has a strong tropism toward muscle tissue, and muscle bundle fracture and muscular fibers necrosis were observed in the limb muscles. Additionally, active immunization results showed that gerbils immunized with the inactivated CVA10 vaccine were 100 % protected from lethal CVA10 challenge. The antisera from vaccinated gerbils also showed high neutralizing titers against CVA10. Based on these results, the CVA10-infected gerbil model was a suitable tool for analyzing the pathogenesis of CVA10 and assessing the protective efficacy of CVA10 candidate vaccines.
Collapse
Affiliation(s)
- Chen Chen
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yong Xia
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shuirong Zhu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fang Xu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yisheng Sun
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hangjing Lu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Meng Gao
- Zhejiang Pukang Biotechnology Co., LTD., Hangzhou, China
| | - Zhangnv Yang
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zian Mao
- Zhejiang Pukang Biotechnology Co., LTD., Hangzhou, China
| | - Qiong Ge
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ziping Miao
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - HanPing Zhu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Pingping Yao
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| |
Collapse
|
29
|
Abrishami V, Ilca SL, Gomez-Blanco J, Rissanen I, de la Rosa-Trevín JM, Reddy VS, Carazo JM, Huiskonen JT. Localized reconstruction in Scipion expedites the analysis of symmetry mismatches in cryo-EM data. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 160:43-52. [PMID: 32470354 DOI: 10.1016/j.pbiomolbio.2020.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 01/10/2023]
Abstract
Technological advances in transmission electron microscopes and detectors have turned cryogenic electron microscopy (cryo-EM) into an essential tool for structural biology. A commonly used cryo-EM data analysis method, single particle analysis, averages hundreds of thousands of low-dose images of individual macromolecular complexes to determine a density map of the complex. The presence of symmetry in the complex is beneficial since each projection image can be assigned to multiple views of the complex. However, data processing that applies symmetry can average out asymmetric features and consequently data analysis methods are required to resolve asymmetric structural features. Scipion is a cryo-EM image processing framework that integrates functions from different image processing packages as plugins. To extend its functionality for handling symmetry mismatches, we present here a Scipion plugin termed LocalRec implementing the localized reconstruction method. When tested on an adenovirus data set, the plugin enables resolving the symmetry-mismatched trimeric fibre bound to the five-fold vertices of the capsid. Furthermore, it improves the structure determination of the icosahedral capsid by dealing with the defocus gradient across the particle. LocalRec is expected to be widely applicable in a range of cryo-EM investigations of flexible and symmetry mismatched complexes.
Collapse
Affiliation(s)
- Vahid Abrishami
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental and Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Serban L Ilca
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Josue Gomez-Blanco
- Biocomputing Unit, National Center for Biotechnology (CSIC), Calle Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Current address: Department of Anatomy & Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, H3A 0C7, Canada
| | - Ilona Rissanen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental and Sciences, University of Helsinki, 00014, Helsinki, Finland
| | | | - Vijay S Reddy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, North Torrey Pines Road, La Jolla, 92037, CA, USA
| | - José-Maria Carazo
- Biocomputing Unit, National Center for Biotechnology (CSIC), Calle Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental and Sciences, University of Helsinki, 00014, Helsinki, Finland; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|